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Abstract 

The Astronautics ZS-1 is a high speed, 64-bit computer 
system designed for scientific and engineenng applications. 
The ZS-1 central processor uses a deeoupled architecture, 
which splits instructions into two streams---one for fixed 
point/memory address computation and the other for floating 
point operations. The two instruction streams are then pro- 
cessed in parallel. Pipelining is also used extensively 
throughout the ZS-1. 

This paper describes the architecture and implementation 
of the ZS-1 central processor, beginning with some of the 
basic design objectives. Descriptions of the instruction set, 
pipeline structure, and virtual memory implementation 
demonstrate the methods used to satisfy the objectives. High 
performance is achieved through a combination of static 
(compile-time) instruction scheduling and dynamic (run-time) 
scheduling. Both types of scheduling are illustrated with 
examples. 

1. Introduction 

1.1. System Overview 

The Astronautics ZS-1 is a high-speed, computer system 
targeted at scientific and engineering applications. It is built 
around a high performance, 64-bit central processor that exe- 
cutes compiled FORTRAN at about a third the rate of a 
CRAY-1. In its maximum configuration, the ZS-1 contains 
256 Megabytes of central memory, and an I/O system con- 

sisting of up to 32 input-output processors. UNIX 1 is the 
primary operating system. The ZS-1 is constructed primarily 
of off-the-shelf Advanced Schottky SSI and MSI logic cir- 
cuits and 256k dynamic MOS memory integrated circuits. 

As shown in Fig. 1, the ZS-1 is divided into four major 
subsystems: the Central Processor, the Memory system, the 
I/O system, and the Interconnection Network. This paper 
will concentrate on the architecture and implementation of 
the Central Processor. 

1 UNIX is a registered trademark of  A T & T  Bell Laboratories 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 
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Fig. 1. Overall Diagram of the ZS-1 System. 

1.2. CPU Design Objectives 

In a system such as the ZS-1 there are many (sometimes 
conflicting) design objectives. The following four are partic- 
ularly relevant in this paper. 

1) A well-balanced general purpose scientific processor 
should provide high performance on programs with relatively 
little or hard-to-find parallelism [WOR81]. To satisfy this 
objective, we use a decoupled architecture [SMIT86], a high 
degree of pipelining with a fast clock, and a simple, 
CDC6600/7600-style instruction set [THOR70]. 

2) Because of the considerable resources being directed at 
developing vector-oriented algorithms, the processor should 
be able to provide performance on parallel programs similar 
to that achievable by a vector processor. 

3) The processor should be designed in conjunction with the 
compilers. The two should work together well. In the ZS-1 
this is most apparent in the way instruction scheduling is 
shared between the compiler and the hardware. 
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4) The processor should be able to support a modern pro- 
gramming environment, while maintaining high performance. 
A primary example is the support of  virtual memory; the vir- 
tual memory architecture must be carefully designed in order 
to keep performance losses at a minimum. 

2. Architecture 

The decoupled architecture of  the ZS-1 provides two 
sets of operating registers for holding operands, addresses, 
and control information in the CPU. A set of thirty-one 32- 
bit "A" registers is used for all memory address computation 
and accessing, and a second set of  thirty-one 64-bit "X" 
registers is used for all floating point operations. The A and 
X registers provide fast temporary storage for 32-bit integers 
and 64-bit floating point numbers, respectively. 

A distinctive feature of the ZS-1 is the use of  architec- 
tural queues for communication with main memory. There 
are two sets of queues. One set consists of a 15 element A 
Load Queue (ALQ) and a 7 element A Store Queue (ASQ). 
These A queues are used in conjunction with the 32-bit A 
registers. The other set of queues consists of a 15 element X 
Load Queue (XLQ) and a 7 element X Store Queue (XSQ). 
These X queues are used in conjunction with the 64-bit X 
registers. 

2.1. Instruction Set 

The three ZS-1 instruction formats are shown in Fig. 2. 

31 22 21 17 16 12 11 5 4 0 

I opeode l i I J 10 ........ 01 k I 
Register Format 

31 22 21 17 16 12 11 0 

[ opoodc [ i [ j [ constant I 

Short Constant Format 

31 22 21 17 16 12 I1 0 

I opeode I i ] j l0  .................. 0 I 
63 32 

[ constant I 
Long Constant Format 

opcode: The opcode specifies the operation to be per- 
formed. 

i, j, and k: The j and k fields specify source operands, 
and the i field specifies the destination. 

constant: In the short and long constant formats a 12-bit 
or 32-bit constant is used in place of the k operaand. 

Fig. 2. ZS-1 Instruction Formats 

Operands specified by i, j, and k fields may be either 
general purpose registers or queues. A designator of 31 in 
the j or k field indicates that the first element of the load 
queue is to be used as a source operand. A designator of 31 
in the i field indicates that the result is to be placed into the 
store queue. The opcode determines whether A registers and 
queues or X registers and queues are to be operated upon. 
All the long constant instructions must be aligned on a word 
boundary. 

2.2. Data Types and Operations 

All major data paths, floating point registers, and func- 
tional units are 64 bits wide. The ZS-1 uses IEEE standard 
32-bit and 64-bit floating point formats, but the arithmetic is 
simplified in the interest of  high performance. In addition to 
the full and half-precision floating point data, 32-bit, 16-bit, 
and 8-bit fixed point data types are implemented. Memory is 
addressed with 32-bit virtual addresses that have byte resolu- 
tion. 

Fixed point operations include unsigned and integer 
arithmetic, logical operations, and addressing for loads and 
stores to and from all the queues. Operations defined on the 
floating point data types are floating point arithmetic, and 
logical operations. 

2.3. Load and Store Instructions 

There are load and store instructions that use each of the 
three instruction formats. In each case, the effective address 
is computed by adding the contents of  register Aj and register 
Ak (or a constant). The computed effective address is placed 
in Ai. Therefore, all loads and stores can be "auto- 
incrementing". 

For load instructions, the computed effective address is 
used to load the appropriate queue with data from memory. 
For store instructions, the computed effective address is used 
to store the first element of the appropriate store queue to 
memory. 

2.4. Conditional Branches 

A subset of the compare instructions explicitly set a 
conditional Branch Flag (B) held in the instruction fetch unit. 
The Branch on Condition True and Branch on Condition 
False instructions test the value in B. If the specified branch 
condition holds, control is transferred to the instruction at the 
address contained in the constant field of the instruction. 

2,5. Example 

Fig. 3a contains a simple FORTRAN loop, and Fig. 3b 
contains a compilation into ZS-1 assembly language. 

2.6. Virtual Memory Architecture 

In the ZS-1, each process has access to a 4 Gigabyte 
virtual memory which is addressed with a 32-bit virtual 
address. This virtual address space is partitioned into two 
halves: user space (in which each process has its own 
independent copy) and kernel space (which is shared among 
all the processes). Both real and virtual memory are divided 
into 64 Kilobyte pages, the basic unit for memory manage- 
ment and protection. 
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D o l 0 I =  1,100 
10 A(I) = B(I)*C(I) + D(I) 

(a) FORTRAN source. 

loop: 

A5 = -100 
A 6 = A - 8  
A 7 = B - 8  
A 8 = C - 8  
A 9 = D -  8 
A5 = A5 + 1 
B, A0 = (AS == 0) 
XLQ = (A7 = A7 + 8) 
XLQ = (A8 = A8 + 8) 
XLQ = (A9 = A9 + 8) 
X2 = XLQ 
X3 = X2 * XLQ 
XSQ = XLQ + X3 
(A6 = A6 + 8) = XSQ 
JMPF loop 

.negative loop count 

.load initial pointer to A 

.load initial pointer to B 

.load initial pointer to C 

.load initial pointer to D 

.increment A5 

.compare =, set branch flag 

.load next element of B 

.load next element of C 

.load next element of D 

.copy B element into X2 

.multiply B and C 

.add D; result to XSQ 

.store result into A 

.branch on false to "loop" 

(b) Assembly language version of the FORTRAN loop. 

Fig. 3. A FORTRAN Loop and Its ZS-1 Compilation. 

All memory accesses in the ZS-1 are done with 32-bit 
virtual addresses. En route to memory loads, stores, and 
instruction fetches pass through an address translation pipe- 
line which contains an address Translation Table. The Trans- 
lation Table contains 4096 translation descriptors. Hence, a 
total of 256 Megabytes can be mapped automatically by the 
hardware at any given time. If there is a miss in the Transla- 
tion Table, then a trap to the operating system is generated. 

3. Decoupled Implementation 

A block diagram of the ZS-1 CPU is shown in Fig. 4. 
Instruction words are fetched by the Instruction Fetch Unit 
which contains a 16K byte instruction cache. Instructions 
read from the cache are placed in the output register of the 
Instruction Fetch Unit, which is referred to as the "splitter". 
Here, the 64-bit instruction word is examined by the A 
Instruction Pipeline and the X Instruction Pipeline to see 
whether it contains one or two instructions, and to determine 
whether the instructions are 

(1) X unit instructions, 

(2) A unit instructions, 

(3) Branch instructions or system call/return instructions. 

Instructions belonging to the first two classes are sent to an 
instruction buffer at the beginning of the appropriate instruc- 
tion pipeline. Up to two instructions are forwarded to the 
instruction pipelines simultaneously..The instruction buffer 
in the X Instruction Pipeline can hold 24 instructions. The 
buffer in the A Instruction Pipeline is four instructions deep 
and can be bypassed. 
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Fig. 4. The ZS,1 Processor Block Diagram. 
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In the instruction pipelines, instructions are read from 
the instruction buffers, decoded, and issued to functional 
units for execution. It is at the issue stage where conflict 
conditions and data dependencies are detected; for example, 
if an instruction uses the result of a previously issued but 
unfinished instruction, it waits at the issue register until the 
previous instruction completes. 

At the time an instruction is issued from one of the 
pipelines, operand data is read from the appropriate registers 
and/or queues which are held in the A Register and X Regis- 
ter units. 

After being issued, the instruction begins execution in 
one of the parallel functional units. The primary functional 
units for the A instructions are the Shifter, the Integer 
Adder~Logical Unit, and the Integer Multiplier/Divider. The 
primary functional units for the X instructions are the X Logi- 
cal Unit, the Floating Point Adder, the Floating Point Multi- 
plier, and the Reciprocal Approximation Unit. Data can be 
copied between A and X registers via the Copy Unit. 

Load and store instructions compute their effective 
addresses in the Integer Adder, and then pass them to the 
Address Unit. The Address Unit contains the translation 
table and associated logic to translate a virtual address into a 
physical address. Then the address is placed into a load 
address queue, or a store address queue, depending on the 
type of memory operation. Store addresses wait until a 
corresponding data item appears in the appropriate (A or X) 
store data queue. Load addresses may pass store instructions 
that are waiting for their data. Memory hazards are checked 
by comparing load and store addresses so that loads do not 
pass stores to the same address. All load addresses stay in 
order with respect to one another, as do store addresses. 

When a functional unit instruction completes, the result 
is fed back to the register file via a result bus. Store data is 
passed from functional units into the Store Unit. The Store 
Unit contains the store data queues for both 32-bit and 64-bit 
data. Data waits in the queues until the corresponding store 
address is ready in the Address Unit. 

Memory loads and stores are processed in the Local 
Memory. It is organized as a 128 Kilobyte write-back cache, 
enhanced with instructions to expficitly manage it. The 
cache line size is 128 bytes. 

To help with interrupts and traps, the Restart Unit con- 
tains interrupt and trap registers and mask registers. It also 
contains the control logic for context switching. 

Branches and system call/return instructions are detected 
and held in the splitter. These instructions use the long con- 
stant format, so they never share the splitter register with 
another instruction and are more easily detected. 

Conditional branches need to test the Branch Flag (B). 
Compare instructions which set B are detected at the splitter 
as they pass through, and B is marked as "busy". The com- 
pare instruction modifying B proceeds up one of the instruc- 
tion pipelines, issues, completes, and sets B. At that time, B 
is marked as "not busy". Meanwhile, if a conditional branch 
instruction encounters a busy Branch Flag, it must wait. 
When B is not busy, the branch decision is made, and fetch- 
ing either resumes with the next sequential instruction fetch 

address, or with the conditional branch target, depending on 
the outcome. 

Example 
Fig. 5 illustrates the processing of two iterations of the loop 
in Fig. 3b. Only the instructions within the loop body are 
shown. Time, in clock periods, runs across the page from left 
to right. The letters to the right of the instruction sequence 
indicate the pipeline stages that hold the corresponding 
instruction during each clock period. Lower case letters are 
used for A instructions and branches; upper case letters are 
used for X instructions. In the timing diagram, instruction 
processing starts at the splitter; it is assumed that all instruc- 
tion fetches hit in the instruction cache. The letters labeling 
pipeline stages have the following meaning: 

S or s indicates the instruction is being processed at the 
splitter. 

B or b indicates the instnmtion is being read from an instruc- 
tion buffer. 

D or d indicates the instruction is being decoded. 

I or i indicates the instruction is being issued for execution. 

E or e indicates the instruction is being executed. 

Periods are used to indicate that instructions are being held in 
a stage, possibly due to delays in preceding instructions, and 
are simply waiting for the next pipeline stage to become 
available. 

Instruction 

A5=A5+i 
A0,B=(A5==0) 
XLQ=(A7=A7+8) 
XLQ=(A8=A8+8) 
XLQ=(A9=A9+8) 
X2=XLQ 

X3=X2*XLQ 
XSQ=XLQ+X3 

Time (in clock periods) 
1111111111222222222233333 

01234567890123456789012345678901234 

sdie 
sbdie 
sbdieeeeeeee 
s.bdieeeeeeee 
s.bdieeeeeeee 
SBD ........ IE 
SB ........ DIEEEEEE 
S ......... BD ..... IEEEEEE 

(A6=A6+8)=XSQ 
JMPF loop 

A5=A5+i 

A0,B=(A5==0) 
XLQ=(A7=A7+8) 

XLQ=(A8=A8+8) 
XLQ=(A9=A9+8) 
X2=XLQ 
X3=X2*XLQ 
XSQ=XLQ+X3 
(A6=A6+8)=XSQ 
JMPF loop 

sbdieeee ............... e 

ss 

sdie 
sbdie 
sbdieeeeeeee 
s.bdieeeeeeee 
s.bdieeeeeeee 
S .... B ..... DIE 
S ......... BDIEEEEEE 
S .......... BD ..... IEEEEEE 
sbdieeee ................ e 
ss 

Fig. 5. The Processing of Two Iterations of the Loop in Fig. 4. 

The first instruction (A5 = A5 + 1) is split at time 0, 
decoded at time 1 (the buffer is bypassed), issued at time 2, 
and executed at time 3. 

The second instruction is split at the same time as the 
first, and is read from the buffer at time 1. Note that this 
second instruction sets the Branch Flag. The next three 
instructions follow a similar sequence for processing. 
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The sixth instruction is the first X instruction. It is split 
at time 2, is read from the X instruction buffer at time 3, and 
is decoded at time 4. It then must wait for data from the 
XLQ before continuing. 

The seventh and eighth instructions perform the required 
floating point operations in sequence with the eighth putting 
its result in the XSQ for storage to memory. 

The ninth instruction generates the store address for the 
preceding one. It is an A instruction that issues at time 7. It 
passes through four clock periods of execution while the 
address is generated and translated. It then waits while the 
preceding floating point addition completes. Then the result 
is stored to memory. 

The tenth and final instruction in the loop body is the 
conditional branch. It is detected and executed in the splitter 
stage. 

The second and all subsequent loop iterations are similar 
to the first. However. the A instructions have moved ahead of 
the X stream, so that the waits for memory data are elim- 
inated, and the X instructions requiring data from memory 
issue as soon as they are decoded. [n steady state, dependen- 
cies involving the floating point operations determine overall 
performance. By extrapolating from the diagram it can be 
seen that up to four iterations of the loop can be in some 
phase of  processing simultaneously. During many clock 
periods eight or more instructions are being processed m 
parallel (not counting those being blocked). 

The example just given is intended to illustrate aspects 
of the ZS-1 implementation. In fact, the compilers automati- 
cally unroll loops. When this is done, and instructions are 
rescheduled using the resulting larger basic blocks, floating 
point operations are interleaved so that they can be issued at 
a maximum rate. The same loop, unrolled four times, is illus- 
trated in Fig. 6. The bottleneck becomes the memory access 
path. The A instruction stream is able to issue a load or 
store nearly every clock period. Hence, the memory path is 
saturated and performance comparable to a vector processor 
is achieved. In the example, as many as 20 instructions are 
processed in parallel. 

4. Instruction Scheduling 

A very important aspect of pipelined processing is the 
ordering or scheduling of instructions to increase overlap. 
This scheduling can be done by the compiler (static schedul- 
ing) and at runtime by the hardware (dynamic scheduling). 
These two types of scheduling are by no means mutually 
exclusive, and in the ZS-I both are used extensively. 

Because of recent successes with simplified instruction 
sets and hardware, combined with increased emphasis on 
compiler technology, there has been a recent movement 
toward eliminating all hardware interlocks [HENN83, 
FISH83]. However, we do not take such an extreme view; 
the advantages to hardware interlocks are too great to discard 
them. 

First, consider arguments against dynamic scheduling. 
One is that dynamic scheduling requires additional hardware. 

Instruction 

A5=A5+i 

A0,B=(A5==0) 

XLQ=(AT=A7+8 

XLQ=(AS=A8+8 

XLQ=(A7=A7+8 
XLQ=(AS=AS+8 

XLQ=(A7=A7+8 

XLQ=(AS=AS+8 
X2=XLQ 

X3=X2*XLQ 

Time (in clock periods) 
1111111111222222222233333 

01234567890123456789012345678901234 

sdie 
sbdie 
sbdieeeeeeee 
s.bdieeeeeeee 
s.bdieeeeeeee 
s..bdieeeeeeee 
s..bdieeeeeeee 
s...bdieeeeeeee 
SBD ..... IE 

S.B ..... DIEEEEEE 
XLQ=(A7=A7+8) 

XLQ=(A8=A8+8) 
X3=XLQ 

X4=X3*XLQ 

XLQ=(A9=A9+8) 

XLQ=(A9=A9+8) 

X4=XLQ 
X5=X4*XLQ 

XLQ=(A9=Ag+8) 

XLQ=(Ag=A9+8) 

X5=XLQ 

X6=X5*XLQ 

XSQ=XLQ+X3 

(A6=A6+8)=XSQ 

XSQ=XLQ+X4 

(A6=A6+8)=XSQ 

XSQ=XLQ+X5 

(A6=A6+8)=XSQ 

XSQ=XLQ+X6 

(A6=A6+8)=XSQ 
JMPF loop 

A5=A5+i 

A0,B=(A5==0) 

XLQ=IA7=A7+8 

XLQ=(A8=A8+8 
XLQ=(A7=A7+8 

XLQ=(A8=AS+8 

XLQ=(A7=A7+8 

XLQ=(A8=A8+8 

s..bdieeeeeeee 
s...bdieeeeeeee 
S ..... BDIE 

S ...... BDIEEEEEE 

s..bdieeeeeeee 
s...bdieeeeeeee 
S ..... BDIE 

S ...... BDIEEEEEE 

s..bdieeeeeeee 
s...bdieeeeeeee 
S ..... BDIE 

S ...... BDIEEEEEE 

S ...... BDIEEEEEE 
s.,bdieeee ...... e 
S ...... BDIEEEEEE 

s..bdieeee ...... e 
S ...... BD.IEEEEEE 

s..bdieeee ....... e 
S ...... B.D.IEEEEEE 
s..bdieeee ........ e 
ss 

sbdie 
s.bdie 

s.bdieeeeeeee 
s..bdieeeeeeee 
s..bdieeeeeeee 
s...bdieeeeeeee 
s...bdieeeeeeee 
s .... bdieeeeeeee 

Fig. 6. The Processing of an Unrolled Loop 

In a 64-bit processor which has an architecture designed for 
high overlap, the hardware devoted to pipeline interlocks is 
rather small. A more important potential disadvantage is 
delay added to critical timing paths which can increase the 
clock period. In the ZS-1, the design is done in such a way 
that the required interlocks are not the most critical paths. In 
fact, the tightest paths are in the data portion of the integer 
adder. 

The example in Fig. 5 illustrates the way that static and 
dynamic scheduling complement each other in the ZS-1 
design. Each of the two pipelines processes its instructions 
strictly in the order in which they are received. This is to 
keep the instruction issue logic simple. The issue logic must 
check register, queue, functional unit, and result bus conflicts. 
By doing as much preprocessing as possible during the 
decode pipeline phase, the issue phase can be done in the 
time required to do a multiplex and a NAND function. The 
remainder of the issue clock period can be used for the large 
fanout required of the "issue" control signal. Because each 
of the streams is executed in order, static scheduling is 
important for keeping the separate instruction streams highly 
overlapped within themselves. 
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On the other hand, the two instruction streams do not 
have to be executed in lockstep. The data access stream can 
move ahead of the floating point execution stream. This is 
made possible by the splitting of the instruction streams, the 
large buffers at the beginning of the X instruction pipeline, 
and the hardware in the Address Unit that allows loads to 
bypass stores. This is a form of dynamic scheduling that 
allows instructions from one basic block to be issued while 
floating point instructions from a preceding basic block are 
still awaiting execution. While static scheduling can be used 
to modify the size and contents of basic blocks (as is done in 
loop unrolling, for example), it cannot provide the capability 
of spanning basic blocks at run time. 

Performance is also improved because dynamic schedul- 
ing decisions are made at run time based on actual data and 
addresses. Consider vectorizing compilers where array refer- 
ences must be checked for memory hazards involving loads 
and stores. If store addresses in one loop iteration are 
different from the load addresses of subsequent iterations, 
then a loop may be vectorized. However, the sets of 
addresses may not be known at compile time, for example 
when there are complex subscript calculations, subscripted 
subscripts, or subscript values passes as subroutine argu- 
ments. In these cases a compiler must often make the worst- 
case assumption that there will be conflicts. In the ZS-1, load 
addresses in the Address Unit are allowed to pass preceding 
stores, provided their addresses do not conflict. Memory 
hazard decisions are made at run time with the actual 
addresses. Hence, the ZS-1 can achieve a vector level of 
performance; on what might well be non-vectorizable code. 

A mix of static and dynamic scheduling is also used for 
overlapped execution of conditional branches. Static schedul- 
ing is used to push the compare instruction ahead of the 
branch as far as possible so that the branch decision can be 
made in advance of when the branch instruction enters the 
splitter. Because branch instructions are executed at the 
splitter, instead of one of the instruction pipelines, the branch 
can be executed ahead of both A and X instructions that pre- 
cede it. This dynamic scheduling allows the branch instruc- 
tion to be executed early, and instruction fetching can 
proceed while instructions from previous basic block(s) are 
still buffered in the A and X Instruction pipelines. 

5. Implementation of Virtual Memory 
In a processor as highly parallel as the ZS-1, the imple- 

mentation of virtual memory presents some problems. 
Perhaps the most significant problem is in saving and restor- 
ing a context properly when a virtual memory trap condition 
is detected during instruction processing. 

To simplify the problem, a trap is generated when there 
is a miss in the Translation Table held in the CPU. The 
hardware does not go to page tables in memory as is the case 
in a conventional virtual memory implementation. Instead, 
operating system software is responsible for searching page 
tables and updating the Translation Table via special instruc- 
tions. One advantage of using this type of virtual memory 
translation method is that it reduces control hardware needed 

to perform address translation. A more significant advantage 
is that it is always known exactly 4 clock periods after a load 
or store instruction issues whether it will get a virtual 
memory trap. This, short constant delay allows precise res- 
tartable traps to be implemented more easily because less 
state information needs to be buffered because of pending 
instructions that may trap. 

There are also some software advantages to implement- 
ing virtual memory in this way. For example, the software 
implementation of page tables provides greater flexibility 
because the operating system can use page table structures 
that the system software writers deem optimal. 

The most significant disadvantage of this virtual 
memory method is the potential for added delays because 
there is a trap for every Translation Table miss, rather than 
for every page fault as in a conventional system. We have 
attempted to reduce the performance impact by using a large 
translation table that can map 256 Mbytes of virtual memory 
at any given time. There is also a special vectored location 
set aside for translation traps. 

6. Summary  

The ZS-1 is a scalar processor that provides high perfor- 
mance on inherently scalar code, and performance similar to 
that provided by a vector processor on vectorizable code. 
This is achieved by using a mix of static and dynamic 
instruction scheduling. The compilers automatically unroll 
loops to increase the size of basic blocks. Basic blocks are 
statically scheduled to minimize delays. Dynamic scheduling 
allows runtime re-ordering of instructions beyond the basic 
block boundaries provided by the compiler. Furthermore, 
because runtime scheduling by the hardware is done with 
actual rather than worst-case data and address values, it can 
make scheduling decisions not possible in the compiler. 

Virtual memory is provided in order to speed program 
development and permit efficient memory management by the 
operating system. Virtual memory, however, has potential 
for reducing performance. To reduce performance losses, the 
ZS-1 virtual memory architecture is specially designed for a 
pipelined implementation. 
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