
The ZS-1 Central Processor

J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski,
D. L. Fowler, K. R. Scidmore, and J. P. Laudon

Astronautics Corporation of America
Madison, Wisconsin

Abstract

The Astronautics ZS-1 is a high speed, 64-bit computer
system designed for scientific and engineenng applications.
The ZS-1 central processor uses a deeoupled architecture,
which splits instructions into two streams---one for fixed
point/memory address computation and the other for floating
point operations. The two instruction streams are then pro-
cessed in parallel. Pipelining is also used extensively
throughout the ZS-1.

This paper describes the architecture and implementation
of the ZS-1 central processor, beginning with some of the
basic design objectives. Descriptions of the instruction set,
pipeline structure, and virtual memory implementation
demonstrate the methods used to satisfy the objectives. High
performance is achieved through a combination of static
(compile-time) instruction scheduling and dynamic (run-time)
scheduling. Both types of scheduling are illustrated with
examples.

1. Introduction

1.1. System Overview

The Astronautics ZS-1 is a high-speed, computer system
targeted at scientific and engineering applications. It is built
around a high performance, 64-bit central processor that exe-
cutes compiled FORTRAN at about a third the rate of a
CRAY-1. In its maximum configuration, the ZS-1 contains
256 Megabytes of central memory, and an I/O system con-

sisting of up to 32 input-output processors. UNIX 1 is the
primary operating system. The ZS-1 is constructed primarily
of off-the-shelf Advanced Schottky SSI and MSI logic cir-
cuits and 256k dynamic MOS memory integrated circuits.

As shown in Fig. 1, the ZS-1 is divided into four major
subsystems: the Central Processor, the Memory system, the
I/O system, and the Interconnection Network. This paper
will concentrate on the architecture and implementation of
the Central Processor.

1 UNIX is a registered trademark of A T & T Bell Laboratories

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

MEMORY

32-256 Mbytes

$

$
INTERCONNECTION

NETWORK
1.42 Gbytes/sec.

~180 Mbytes/sec ~
ZS-1

CENTRAL
PROCESSING

UNIT
22.5 Mflops 45 Mips

I/O
I MUX

r4"'
L2_I t_!2_

I/O
MUX

Fig. 1. Overall Diagram of the ZS-1 System.

1.2. CPU Design Objectives

In a system such as the ZS-1 there are many (sometimes
conflicting) design objectives. The following four are partic-
ularly relevant in this paper.

1) A well-balanced general purpose scientific processor
should provide high performance on programs with relatively
little or hard-to-find parallelism [WOR81]. To satisfy this
objective, we use a decoupled architecture [SMIT86], a high
degree of pipelining with a fast clock, and a simple,
CDC6600/7600-style instruction set [THOR70].

2) Because of the considerable resources being directed at
developing vector-oriented algorithms, the processor should
be able to provide performance on parallel programs similar
to that achievable by a vector processor.

3) The processor should be designed in conjunction with the
compilers. The two should work together well. In the ZS-1
this is most apparent in the way instruction scheduling is
shared between the compiler and the hardware.

© 1987 ACM 0-89791-238-1/87/1000-0199 $00.75

199

!

4) The processor should be able to support a modern pro-
gramming environment, while maintaining high performance.
A primary example is the support of virtual memory; the vir-
tual memory architecture must be carefully designed in order
to keep performance losses at a minimum.

2. Architecture

The decoupled architecture of the ZS-1 provides two
sets of operating registers for holding operands, addresses,
and control information in the CPU. A set of thirty-one 32-
bit "A" registers is used for all memory address computation
and accessing, and a second set of thirty-one 64-bit "X"
registers is used for all floating point operations. The A and
X registers provide fast temporary storage for 32-bit integers
and 64-bit floating point numbers, respectively.

A distinctive feature of the ZS-1 is the use of architec-
tural queues for communication with main memory. There
are two sets of queues. One set consists of a 15 element A
Load Queue (ALQ) and a 7 element A Store Queue (ASQ).
These A queues are used in conjunction with the 32-bit A
registers. The other set of queues consists of a 15 element X
Load Queue (XLQ) and a 7 element X Store Queue (XSQ).
These X queues are used in conjunction with the 64-bit X
registers.

2.1. Instruction Set

The three ZS-1 instruction formats are shown in Fig. 2.

31 22 21 17 16 12 11 5 4 0

I opeode l i I J 10 01 k I
Register Format

31 22 21 17 16 12 11 0

[opoodc [i [j [constant I

Short Constant Format

31 22 21 17 16 12 I1 0

I opeode I i] j l0 0 I
63 32

[constant I
Long Constant Format

opcode: The opcode specifies the operation to be per-
formed.

i, j, and k: The j and k fields specify source operands,
and the i field specifies the destination.

constant: In the short and long constant formats a 12-bit
or 32-bit constant is used in place of the k operaand.

Fig. 2. ZS-1 Instruction Formats

Operands specified by i, j, and k fields may be either
general purpose registers or queues. A designator of 31 in
the j or k field indicates that the first element of the load
queue is to be used as a source operand. A designator of 31
in the i field indicates that the result is to be placed into the
store queue. The opcode determines whether A registers and
queues or X registers and queues are to be operated upon.
All the long constant instructions must be aligned on a word
boundary.

2.2. Data Types and Operations

All major data paths, floating point registers, and func-
tional units are 64 bits wide. The ZS-1 uses IEEE standard
32-bit and 64-bit floating point formats, but the arithmetic is
simplified in the interest of high performance. In addition to
the full and half-precision floating point data, 32-bit, 16-bit,
and 8-bit fixed point data types are implemented. Memory is
addressed with 32-bit virtual addresses that have byte resolu-
tion.

Fixed point operations include unsigned and integer
arithmetic, logical operations, and addressing for loads and
stores to and from all the queues. Operations defined on the
floating point data types are floating point arithmetic, and
logical operations.

2.3. Load and Store Instructions

There are load and store instructions that use each of the
three instruction formats. In each case, the effective address
is computed by adding the contents of register Aj and register
Ak (or a constant). The computed effective address is placed
in Ai. Therefore, all loads and stores can be "auto-
incrementing".

For load instructions, the computed effective address is
used to load the appropriate queue with data from memory.
For store instructions, the computed effective address is used
to store the first element of the appropriate store queue to
memory.

2.4. Conditional Branches

A subset of the compare instructions explicitly set a
conditional Branch Flag (B) held in the instruction fetch unit.
The Branch on Condition True and Branch on Condition
False instructions test the value in B. If the specified branch
condition holds, control is transferred to the instruction at the
address contained in the constant field of the instruction.

2,5. Example

Fig. 3a contains a simple FORTRAN loop, and Fig. 3b
contains a compilation into ZS-1 assembly language.

2.6. Virtual Memory Architecture

In the ZS-1, each process has access to a 4 Gigabyte
virtual memory which is addressed with a 32-bit virtual
address. This virtual address space is partitioned into two
halves: user space (in which each process has its own
independent copy) and kernel space (which is shared among
all the processes). Both real and virtual memory are divided
into 64 Kilobyte pages, the basic unit for memory manage-
ment and protection.

200

D o l 0 I = 1,100
10 A(I) = B(I)*C(I) + D(I)

(a) FORTRAN source.

loop:

A5 = -100
A 6 = A - 8
A 7 = B - 8
A 8 = C - 8
A 9 = D - 8
A5 = A5 + 1
B, A0 = (AS == 0)
XLQ = (A7 = A7 + 8)
XLQ = (A8 = A8 + 8)
XLQ = (A9 = A9 + 8)
X2 = XLQ
X3 = X2 * XLQ
XSQ = XLQ + X3
(A6 = A6 + 8) = XSQ
JMPF loop

.negative loop count

.load initial pointer to A

.load initial pointer to B

.load initial pointer to C

.load initial pointer to D

.increment A5

.compare =, set branch flag

.load next element of B

.load next element of C

.load next element of D

.copy B element into X2

.multiply B and C

.add D; result to XSQ

.store result into A

.branch on false to "loop"

(b) Assembly language version of the FORTRAN loop.

Fig. 3. A FORTRAN Loop and Its ZS-1 Compilation.

All memory accesses in the ZS-1 are done with 32-bit
virtual addresses. En route to memory loads, stores, and
instruction fetches pass through an address translation pipe-
line which contains an address Translation Table. The Trans-
lation Table contains 4096 translation descriptors. Hence, a
total of 256 Megabytes can be mapped automatically by the
hardware at any given time. If there is a miss in the Transla-
tion Table, then a trap to the operating system is generated.

3. Decoupled Implementation

A block diagram of the ZS-1 CPU is shown in Fig. 4.
Instruction words are fetched by the Instruction Fetch Unit
which contains a 16K byte instruction cache. Instructions
read from the cache are placed in the output register of the
Instruction Fetch Unit, which is referred to as the "splitter".
Here, the 64-bit instruction word is examined by the A
Instruction Pipeline and the X Instruction Pipeline to see
whether it contains one or two instructions, and to determine
whether the instructions are

(1) X unit instructions,

(2) A unit instructions,

(3) Branch instructions or system call/return instructions.

Instructions belonging to the first two classes are sent to an
instruction buffer at the beginning of the appropriate instruc-
tion pipeline. Up to two instructions are forwarded to the
instruction pipelines simultaneously..The instruction buffer
in the X Instruction Pipeline can hold 24 instructions. The
buffer in the A Instruction Pipeline is four instructions deep
and can be bypassed.

--• INSTRuXcTION
PIPELINE

A
INSTRUCTION

PIPELINE

LOGICAL
UNIT

FLOATING 1
POINT

/IULTIPLIER

FLOATING ~
POINT
ADDER

UNIT I I I STORE

COPY I-.-..A I X DATA i I
UNIT ~ I .:t l--"] TO CENTRAL

I H 1-1-1 1 I , IMEMORY
I I A DATA I !..J I . --

INTEGER L__~ I / 7 LOCAL I~, > '
SHIFTER I 1 l MEMORY |

' t l i j '--I-
,NTEOER U I

ADDER/ ~ l i LOADS E l I
Loo,o, '--171-"

, ,
MOLT'PL'ER'H I STORE I

DIVIDER I] =

Fig. 4. The ZS,1 Processor Block Diagram.

201

In the instruction pipelines, instructions are read from
the instruction buffers, decoded, and issued to functional
units for execution. It is at the issue stage where conflict
conditions and data dependencies are detected; for example,
if an instruction uses the result of a previously issued but
unfinished instruction, it waits at the issue register until the
previous instruction completes.

At the time an instruction is issued from one of the
pipelines, operand data is read from the appropriate registers
and/or queues which are held in the A Register and X Regis-
ter units.

After being issued, the instruction begins execution in
one of the parallel functional units. The primary functional
units for the A instructions are the Shifter, the Integer
Adder~Logical Unit, and the Integer Multiplier/Divider. The
primary functional units for the X instructions are the X Logi-
cal Unit, the Floating Point Adder, the Floating Point Multi-
plier, and the Reciprocal Approximation Unit. Data can be
copied between A and X registers via the Copy Unit.

Load and store instructions compute their effective
addresses in the Integer Adder, and then pass them to the
Address Unit. The Address Unit contains the translation
table and associated logic to translate a virtual address into a
physical address. Then the address is placed into a load
address queue, or a store address queue, depending on the
type of memory operation. Store addresses wait until a
corresponding data item appears in the appropriate (A or X)
store data queue. Load addresses may pass store instructions
that are waiting for their data. Memory hazards are checked
by comparing load and store addresses so that loads do not
pass stores to the same address. All load addresses stay in
order with respect to one another, as do store addresses.

When a functional unit instruction completes, the result
is fed back to the register file via a result bus. Store data is
passed from functional units into the Store Unit. The Store
Unit contains the store data queues for both 32-bit and 64-bit
data. Data waits in the queues until the corresponding store
address is ready in the Address Unit.

Memory loads and stores are processed in the Local
Memory. It is organized as a 128 Kilobyte write-back cache,
enhanced with instructions to expficitly manage it. The
cache line size is 128 bytes.

To help with interrupts and traps, the Restart Unit con-
tains interrupt and trap registers and mask registers. It also
contains the control logic for context switching.

Branches and system call/return instructions are detected
and held in the splitter. These instructions use the long con-
stant format, so they never share the splitter register with
another instruction and are more easily detected.

Conditional branches need to test the Branch Flag (B).
Compare instructions which set B are detected at the splitter
as they pass through, and B is marked as "busy". The com-
pare instruction modifying B proceeds up one of the instruc-
tion pipelines, issues, completes, and sets B. At that time, B
is marked as "not busy". Meanwhile, if a conditional branch
instruction encounters a busy Branch Flag, it must wait.
When B is not busy, the branch decision is made, and fetch-
ing either resumes with the next sequential instruction fetch

address, or with the conditional branch target, depending on
the outcome.

Example
Fig. 5 illustrates the processing of two iterations of the loop
in Fig. 3b. Only the instructions within the loop body are
shown. Time, in clock periods, runs across the page from left
to right. The letters to the right of the instruction sequence
indicate the pipeline stages that hold the corresponding
instruction during each clock period. Lower case letters are
used for A instructions and branches; upper case letters are
used for X instructions. In the timing diagram, instruction
processing starts at the splitter; it is assumed that all instruc-
tion fetches hit in the instruction cache. The letters labeling
pipeline stages have the following meaning:

S or s indicates the instruction is being processed at the
splitter.

B or b indicates the instnmtion is being read from an instruc-
tion buffer.

D or d indicates the instruction is being decoded.

I or i indicates the instruction is being issued for execution.

E or e indicates the instruction is being executed.

Periods are used to indicate that instructions are being held in
a stage, possibly due to delays in preceding instructions, and
are simply waiting for the next pipeline stage to become
available.

Instruction

A5=A5+i
A0,B=(A5==0)
XLQ=(A7=A7+8)
XLQ=(A8=A8+8)
XLQ=(A9=A9+8)
X2=XLQ

X3=X2*XLQ
XSQ=XLQ+X3

Time (in clock periods)
1111111111222222222233333

01234567890123456789012345678901234

sdie
sbdie
sbdieeeeeeee
s.bdieeeeeeee
s.bdieeeeeeee
SBD IE
SB DIEEEEEE
S BD IEEEEEE

(A6=A6+8)=XSQ
JMPF loop

A5=A5+i

A0,B=(A5==0)
XLQ=(A7=A7+8)

XLQ=(A8=A8+8)
XLQ=(A9=A9+8)
X2=XLQ
X3=X2*XLQ
XSQ=XLQ+X3
(A6=A6+8)=XSQ
JMPF loop

sbdieeee e

ss

sdie
sbdie
sbdieeeeeeee
s.bdieeeeeeee
s.bdieeeeeeee
S B DIE
S BDIEEEEEE
S BD IEEEEEE
sbdieeee e
ss

Fig. 5. The Processing of Two Iterations of the Loop in Fig. 4.

The first instruction (A5 = A5 + 1) is split at time 0,
decoded at time 1 (the buffer is bypassed), issued at time 2,
and executed at time 3.

The second instruction is split at the same time as the
first, and is read from the buffer at time 1. Note that this
second instruction sets the Branch Flag. The next three
instructions follow a similar sequence for processing.

202

The sixth instruction is the first X instruction. It is split
at time 2, is read from the X instruction buffer at time 3, and
is decoded at time 4. It then must wait for data from the
XLQ before continuing.

The seventh and eighth instructions perform the required
floating point operations in sequence with the eighth putting
its result in the XSQ for storage to memory.

The ninth instruction generates the store address for the
preceding one. It is an A instruction that issues at time 7. It
passes through four clock periods of execution while the
address is generated and translated. It then waits while the
preceding floating point addition completes. Then the result
is stored to memory.

The tenth and final instruction in the loop body is the
conditional branch. It is detected and executed in the splitter
stage.

The second and all subsequent loop iterations are similar
to the first. However. the A instructions have moved ahead of
the X stream, so that the waits for memory data are elim-
inated, and the X instructions requiring data from memory
issue as soon as they are decoded. [n steady state, dependen-
cies involving the floating point operations determine overall
performance. By extrapolating from the diagram it can be
seen that up to four iterations of the loop can be in some
phase of processing simultaneously. During many clock
periods eight or more instructions are being processed m
parallel (not counting those being blocked).

The example just given is intended to illustrate aspects
of the ZS-1 implementation. In fact, the compilers automati-
cally unroll loops. When this is done, and instructions are
rescheduled using the resulting larger basic blocks, floating
point operations are interleaved so that they can be issued at
a maximum rate. The same loop, unrolled four times, is illus-
trated in Fig. 6. The bottleneck becomes the memory access
path. The A instruction stream is able to issue a load or
store nearly every clock period. Hence, the memory path is
saturated and performance comparable to a vector processor
is achieved. In the example, as many as 20 instructions are
processed in parallel.

4. Instruction Scheduling

A very important aspect of pipelined processing is the
ordering or scheduling of instructions to increase overlap.
This scheduling can be done by the compiler (static schedul-
ing) and at runtime by the hardware (dynamic scheduling).
These two types of scheduling are by no means mutually
exclusive, and in the ZS-I both are used extensively.

Because of recent successes with simplified instruction
sets and hardware, combined with increased emphasis on
compiler technology, there has been a recent movement
toward eliminating all hardware interlocks [HENN83,
FISH83]. However, we do not take such an extreme view;
the advantages to hardware interlocks are too great to discard
them.

First, consider arguments against dynamic scheduling.
One is that dynamic scheduling requires additional hardware.

Instruction

A5=A5+i

A0,B=(A5==0)

XLQ=(AT=A7+8

XLQ=(AS=A8+8

XLQ=(A7=A7+8
XLQ=(AS=AS+8

XLQ=(A7=A7+8

XLQ=(AS=AS+8
X2=XLQ

X3=X2*XLQ

Time (in clock periods)
1111111111222222222233333

01234567890123456789012345678901234

sdie
sbdie
sbdieeeeeeee
s.bdieeeeeeee
s.bdieeeeeeee
s..bdieeeeeeee
s..bdieeeeeeee
s...bdieeeeeeee
SBD IE

S.B DIEEEEEE
XLQ=(A7=A7+8)

XLQ=(A8=A8+8)
X3=XLQ

X4=X3*XLQ

XLQ=(A9=A9+8)

XLQ=(A9=A9+8)

X4=XLQ
X5=X4*XLQ

XLQ=(A9=Ag+8)

XLQ=(Ag=A9+8)

X5=XLQ

X6=X5*XLQ

XSQ=XLQ+X3

(A6=A6+8)=XSQ

XSQ=XLQ+X4

(A6=A6+8)=XSQ

XSQ=XLQ+X5

(A6=A6+8)=XSQ

XSQ=XLQ+X6

(A6=A6+8)=XSQ
JMPF loop

A5=A5+i

A0,B=(A5==0)

XLQ=IA7=A7+8

XLQ=(A8=A8+8
XLQ=(A7=A7+8

XLQ=(A8=AS+8

XLQ=(A7=A7+8

XLQ=(A8=A8+8

s..bdieeeeeeee
s...bdieeeeeeee
S BDIE

S BDIEEEEEE

s..bdieeeeeeee
s...bdieeeeeeee
S BDIE

S BDIEEEEEE

s..bdieeeeeeee
s...bdieeeeeeee
S BDIE

S BDIEEEEEE

S BDIEEEEEE
s.,bdieeee e
S BDIEEEEEE

s..bdieeee e
S BD.IEEEEEE

s..bdieeee e
S B.D.IEEEEEE
s..bdieeee e
ss

sbdie
s.bdie

s.bdieeeeeeee
s..bdieeeeeeee
s..bdieeeeeeee
s...bdieeeeeeee
s...bdieeeeeeee
s bdieeeeeeee

Fig. 6. The Processing of an Unrolled Loop

In a 64-bit processor which has an architecture designed for
high overlap, the hardware devoted to pipeline interlocks is
rather small. A more important potential disadvantage is
delay added to critical timing paths which can increase the
clock period. In the ZS-1, the design is done in such a way
that the required interlocks are not the most critical paths. In
fact, the tightest paths are in the data portion of the integer
adder.

The example in Fig. 5 illustrates the way that static and
dynamic scheduling complement each other in the ZS-1
design. Each of the two pipelines processes its instructions
strictly in the order in which they are received. This is to
keep the instruction issue logic simple. The issue logic must
check register, queue, functional unit, and result bus conflicts.
By doing as much preprocessing as possible during the
decode pipeline phase, the issue phase can be done in the
time required to do a multiplex and a NAND function. The
remainder of the issue clock period can be used for the large
fanout required of the "issue" control signal. Because each
of the streams is executed in order, static scheduling is
important for keeping the separate instruction streams highly
overlapped within themselves.

203

On the other hand, the two instruction streams do not
have to be executed in lockstep. The data access stream can
move ahead of the floating point execution stream. This is
made possible by the splitting of the instruction streams, the
large buffers at the beginning of the X instruction pipeline,
and the hardware in the Address Unit that allows loads to
bypass stores. This is a form of dynamic scheduling that
allows instructions from one basic block to be issued while
floating point instructions from a preceding basic block are
still awaiting execution. While static scheduling can be used
to modify the size and contents of basic blocks (as is done in
loop unrolling, for example), it cannot provide the capability
of spanning basic blocks at run time.

Performance is also improved because dynamic schedul-
ing decisions are made at run time based on actual data and
addresses. Consider vectorizing compilers where array refer-
ences must be checked for memory hazards involving loads
and stores. If store addresses in one loop iteration are
different from the load addresses of subsequent iterations,
then a loop may be vectorized. However, the sets of
addresses may not be known at compile time, for example
when there are complex subscript calculations, subscripted
subscripts, or subscript values passes as subroutine argu-
ments. In these cases a compiler must often make the worst-
case assumption that there will be conflicts. In the ZS-1, load
addresses in the Address Unit are allowed to pass preceding
stores, provided their addresses do not conflict. Memory
hazard decisions are made at run time with the actual
addresses. Hence, the ZS-1 can achieve a vector level of
performance; on what might well be non-vectorizable code.

A mix of static and dynamic scheduling is also used for
overlapped execution of conditional branches. Static schedul-
ing is used to push the compare instruction ahead of the
branch as far as possible so that the branch decision can be
made in advance of when the branch instruction enters the
splitter. Because branch instructions are executed at the
splitter, instead of one of the instruction pipelines, the branch
can be executed ahead of both A and X instructions that pre-
cede it. This dynamic scheduling allows the branch instruc-
tion to be executed early, and instruction fetching can
proceed while instructions from previous basic block(s) are
still buffered in the A and X Instruction pipelines.

5. Implementation of Virtual Memory
In a processor as highly parallel as the ZS-1, the imple-

mentation of virtual memory presents some problems.
Perhaps the most significant problem is in saving and restor-
ing a context properly when a virtual memory trap condition
is detected during instruction processing.

To simplify the problem, a trap is generated when there
is a miss in the Translation Table held in the CPU. The
hardware does not go to page tables in memory as is the case
in a conventional virtual memory implementation. Instead,
operating system software is responsible for searching page
tables and updating the Translation Table via special instruc-
tions. One advantage of using this type of virtual memory
translation method is that it reduces control hardware needed

to perform address translation. A more significant advantage
is that it is always known exactly 4 clock periods after a load
or store instruction issues whether it will get a virtual
memory trap. This, short constant delay allows precise res-
tartable traps to be implemented more easily because less
state information needs to be buffered because of pending
instructions that may trap.

There are also some software advantages to implement-
ing virtual memory in this way. For example, the software
implementation of page tables provides greater flexibility
because the operating system can use page table structures
that the system software writers deem optimal.

The most significant disadvantage of this virtual
memory method is the potential for added delays because
there is a trap for every Translation Table miss, rather than
for every page fault as in a conventional system. We have
attempted to reduce the performance impact by using a large
translation table that can map 256 Mbytes of virtual memory
at any given time. There is also a special vectored location
set aside for translation traps.

6. Summary

The ZS-1 is a scalar processor that provides high perfor-
mance on inherently scalar code, and performance similar to
that provided by a vector processor on vectorizable code.
This is achieved by using a mix of static and dynamic
instruction scheduling. The compilers automatically unroll
loops to increase the size of basic blocks. Basic blocks are
statically scheduled to minimize delays. Dynamic scheduling
allows runtime re-ordering of instructions beyond the basic
block boundaries provided by the compiler. Furthermore,
because runtime scheduling by the hardware is done with
actual rather than worst-case data and address values, it can
make scheduling decisions not possible in the compiler.

Virtual memory is provided in order to speed program
development and permit efficient memory management by the
operating system. Virtual memory, however, has potential
for reducing performance. To reduce performance losses, the
ZS-1 virtual memory architecture is specially designed for a
pipelined implementation.

References

[FISH83] J.A. Fisher, "Very Long Instruction Word Architec-
tures and the ELI-512", l Oth Annual International Symposium
on Computer Architecture, Stockholm, Sweden, pp.140-150,
June 1983.

[HENN83] J.L. Hennessy, et al., "Design of a High Perfor-
mance VLSI Processor," 3rd Caltech Conference on VLSI,
pp. 33-54, Mar. 1983.

[SM1T86] J.E. Smith, S. Weiss, and N. Y. Pang, "A Simula-
tion Study of Decoupled Architecture Computers," IEEE
Transactions on Computers, pp. 692-702, Aug. 1986.

[THOR70] J. E. Thornton, Design o f a Computer - The Con-
trol Data 6600, Scott, Foresman and Co., Glenview, IL,
1970.

[WOR81] J. Worlton, "The Philosophy Behind the
Machines," Computer Worm Nov. 9. 1981.

204

