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DNA sequencing technologies have improved at rates eclipsing 
Moore’s law1 revolutionizing biological sciences. Beginning 
in the 1970s, Sanger sequencing2 and subsequent automa-

tion3 facilitated large-scale DNA sequencing projects and paved the 
way for modern genomic research4–7. The first reference genomes 
were followed by the advent of several high-throughput sequencing 
technologies (next-generation sequencing or NGS) including 454, 
Solexa/Illumina, ABI Solid, Complete Genomics and Ion Torrent. 
These technologies employed a range of chemistries and detection 
strategies8–13. All produce relatively accurate reads but are limited in 
read length, typically to less than 300 base pairs (bp). These accurate 
short reads are well-suited for calling SNVs and small indels, but are 
less useful for de novo assembly, haplotype phasing and structural 
variant detection, all of which require information across longer 
sequence spans.

To detect structural variants, phase haplotypes and assemble 
genomes, superior results14–18 could be obtained with technologies 
such as PacBio SMRT sequencing19 and Oxford Nanopore sequenc-
ing20 both of which produce long reads (>10 kb). These technolo-
gies rely on single-molecule detection and are characterized by 
reduced read accuracy (75–90%)19,20. High consensus accuracy can 

be achieved by read-to-read error correction, but it is computation-
ally intensive, and errors remain from mismapping reads or mixing 
haplotypes during correction15,21. As a result of the error rate, long-
read technologies are rarely used to detect SNVs or indels. Although 
human genomes can be sequenced at population scales, it remains 
necessary to combine sequencing technologies to detect all the dif-
ferent types of genetic variation. This increases cost and adds com-
plexity to projects. A sequencing technology with long read length 
and high accuracy could enable comprehensive variant discovery in 
a single experiment.

CCS derives a consensus sequence from multiple passes of a sin-
gle template molecule, producing accurate reads from noisy indi-
vidual subreads22,23. The length and accuracy of CCS (also known as 
‘HiFi’) reads is limited by the number of passes required to achieve 
the desired accuracy and the overall (‘polymerase’) read length of 
the sequencing platform. To date, CCS has primarily been applied to 
DNA inserts shorter than 2 kb24 and has not been used to produce a 
deep-coverage dataset for an entire human genome.

We devised an approach to produce long CCS reads and applied 
our method to sequence the well-characterized human male 
HG002/NA2438525,26. HG002/NA24385 is one of the benchmark 
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samples from the GIAB Consortium. GIAB provides physical refer-
ence materials along with detailed characterization of the sample 
genome, defining ‘benchmark regions’ at which the sequence of the 
sample is known and ‘benchmark variants’ within those regions 
at which the sample differs from the human reference genome.  
We chose this sample as an exemplar for studying sequencing accu-
racy and variant detection. Using CCS reads, we identify small and 
large sequence variation and phase haplotypes in HG002/NA24385 
more accurately than existing technologies. We also use CCS reads 
to assemble the genome with similar contiguity and 5.9× the accu-
racy of the most recently reported PacBio human genome assembly 
(GCA_001542345.1).

Results
CCS library preparation and sequencing. An opportunity to 
produce long CCS reads was suggested by a 16-fold increase in 
the fraction of polymerase reads longer than 100 kb for a control 
Escherichia coli 10-kb amplicon library compared to a long-insert 
(>30 kb) library of sheared E. coli genomic DNA sequenced under 
identical conditions with 10-h collections (Supplementary Fig. 1a). 
This suggested that polymerases on newly synthesized, shorter, 
discrete-sized inserts have better survival, which we hypothesized 
was due to DNA damage on long inserts that terminates the poly-
merase reaction. To evaluate this hypothesis, a library was pre-
pared from BsaAI-digested lambda DNA to examine the effect 
of preextension, in which the polymerase extends (without laser 
illumination) before sequence data collection to effectively elimi-
nate damaged templates (which terminate during the preextension 
period) and select for surviving polymerases. The DNA loading 
concentration was increased with preextension to compensate for 
the polymerases lost due to damaged templates. With preextension 
and 4 h collections to detect early polymerase survival, the fraction 
of reads of an 8 kb fragment from the digested lambda DNA that 
survive to 40 kb polymerase read length increased by 4.5-fold, con-
firming that preextension improves read length for discrete-sized 
inserts (Supplementary Fig. 1b). Insert size was then evaluated, 
with adjustments in collection time, to maximize the yield of high-
accuracy reads (Supplementary Table 1).

Ultimately, a SMRTbell library tightly distributed at 15 kb 
was chosen for high-coverage CCS (Fig. 1a and Supplementary  
Fig. 1c–f) based on estimates of 150 kb polymerase read length and 
a requirement of ten passes to achieve Q30 (Phred quality score 30) 
read accuracy (Fig. 1b). CCS reads with a predicted accuracy of at 
least Q20 (99%) were retained (Supplementary Fig. 2a). The total 
CCS read yield was 89 Gb (mean ± s.d. of 2.3 ± 0.4 Gb over 39 SMRT 
cells on the Sequel System), with a read length of 13.5 ± 1.2 kb  
(Fig. 1c). The predicted accuracy of the CCS reads has a median of 
Q30 (99.9%) and a mean of Q27 (99.8%) (Fig. 1c). Predicted accu-
racy matches well with concordance to the GIAB HG002 bench-
mark (average [Qpredicted – Qconcordance] = −1.2), which indicates that 
the predicted accuracy is well-calibrated (Supplementary Fig. 2b,c). 
Average mapped coverage of the genome is 28-fold, with a minimal 
difference across [GC] content (Supplementary Fig. 2d,e).

Quality evaluation of CCS reads. To characterize the few resid-
ual errors in CCS reads, discordances between the reads and the 
GIAB HG002 benchmark were tallied. The average read concor-
dance is 99.8%, comparable to the concordance of short reads 
from the Illumina NovaSeq (99.9% for 2 × 151 bp reads) and HiSeq 
2500 (99.5% for 2 × 250 bp reads) (Supplementary Table 2). The 
large majority of CCS read discordances are indels in homopoly-
mer contexts: 3.4% are mismatches, 4.6% are indels in nonhomo-
polymer contexts and 92.0% are indels in homopolymers. This 
equates to a mismatch every 13,048 bp in CCS reads, a nonho-
mopolymer indel every 9,669 bp and a homopolymer indel every 
477 bp (Supplementary Table 2). The mismatch rate is 17× lower 

than reads from the Illumina NovaSeq, while the indel rate is 181× 
higher (Supplementary Table 2).

To confirm the high quality of CCS reads independently, error 
rates were measured through read-to-read alignments27. Consistent 
with the reference-based methods, the average read accuracy is esti-
mated at 99.8%. A putative large artifact is detected in 0.6% of reads: 
0.5% are molecular chimeras, likely due to ligation of DNA frag-
ments during library construction, 0.1% contain a ‘low quality’ run 
of bases, anecdotally in microsatellites and 0.03% have a missing 
SMRTbell adapter on one end. Overall, the read-to-read compari-
son supports the predicted quality of the CCS reads.

Increased mappability of CCS reads. To evaluate increases in 
mappability with long reads, the 13.5 kb CCS reads and a coverage-
matched number of 2 × 250 bp NGS short reads were mapped to 
GRCh37. A genomic position was considered to be mappable if it 
is covered by at least ten reads. The CCS reads cover more of the 
genome at all mapping quality values. At the highest reported value 
(60), 97.5% of the nongap GRCh37 is mappable with 13.5 kb CCS 
reads, while 94.8% is mappable with NGS short reads (Fig. 2a).

The additional regions that are now accessible with longer CCS 
reads include numerous medically relevant genes that have been 
previously reported as recalcitrant to NGS sequencing28. Of the 
193 reported medically relevant genes with at least one NGS prob-
lem exon, 152 are fully mappable with the CCS reads, including 
CYP2D6, GBA, PMS2 and STRC (Fig. 2b,c).

The 13.5 kb CCS reads also resolve complex regions, such as the 
HLA class 1 and 2 genes, which are fully phased and typed to four-
field resolution29 (Supplementary Fig. 3).

Small variant detection with CCS reads. GATK30 was used to 
call SNVs and small indels (<50 bp) with CCS reads. Evaluated 
against the GIAB benchmark26, genome-wide precision for SNVs 
is 99.468% and recall is 99.559%. For indels, precision is 78.977% 
and recall is 81.248%. While GATK performance with CCS reads is 
comparable to NGS for SNVs, it is lower for indels (Table 1). Unlike 
NGS read errors, which are mostly mismatches that are modeled 
well by base quality scores from the read, CCS read errors are mostly 
indels for which GATK uses fixed models designed for NGS reads 
(Supplementary Table 2), likely contributing to the low indel preci-
sion and recall of GATK for CCS reads.

Variant callers based on deep learning have an inherent ability to 
adapt to the error profiles of new data types31,32. To evaluate variant 
calling with a deep learning framework, Google DeepVariant32 was 
used to call SNVs and indels from CCS reads, with chromosome 
20 held out during model training and selection. Using a model 
trained on Illumina reads, precision on chromosome 20 is 99.533% 
and recall is 99.793% for SNVs, and precision is 23.991% and recall 
is 81.692% for indels (Supplementary Table 3). Training a model on 
CCS reads provides a large boost in precision and recall for both 
SNVs and indels. For SNVs, DeepVariant achieves genome-wide 
precision of 99.914% and recall of 99.959%. For indels, DeepVariant 
achieves 96.901% precision and 95.980% recall (Fig. 3a and 
Table 1). Performance is similar on the held out chromosome 20 
(Supplementary Table 3). Most discordant indels (90.33%) occur 
in homopolymer runs, matching the most common discordance 
in CCS reads (Supplementary Table 2). The callset includes 1,969 
SNVs and 62 indels in exons of 193 medically relevant genes previ-
ously reported as recalcitrant to NGS sequencing.

Phasing small variants with CCS reads. To determine whether 
CCS reads could provide both highly accurate variant calls and 
long-range information needed to generate haplotypes, we used 
WhatsHap33 to phase the DeepVariant variant calls. Nearly all 
(99.64%) autosomal heterozygous variants were phased into 19,215 
blocks with an N50 of 206 kb (Supplementary Table 4). The phase 
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block length distribution closely matches the theoretical limit esti-
mated by creating breaks between variants that are separated by 
more than the average CCS read length of 13.5 kb. This suggests that 
the phase block length is limited by the read length and the amount 
of variation in HG002, not by coverage or the quality of the variant 
calls (Fig. 3b and Supplementary Figure 4). Evaluated against the 
GIAB benchmark phase set, the switch error rate is 0.37% and the 
Hamming error rate is 1.91% (Supplementary Table 4).

Improving small variant detection with haplotype phasing. 
GATK and DeepVariant do not directly incorporate long-range 
haplotype phase information when calling variants. To evalu-
ate whether phase information from reliable SNV calls improves 
results, particularly for less-reliable indel calls, CCS reads were 
haplotype-tagged based on trio-phased variants from GIAB (which 
tags 84.55% of reads) and a DeepVariant model was then trained 
on reads passed in haplotype-sorted order. The haplotype-sorted 
model performs similarly to the original DeepVariant CCS model 
for SNVs, but it reduces indel false negatives and false positives 
by around 30%, achieving a precision of 97.835% and recall of 
97.141% (Table 1).

Structural variant detection with CCS reads. Insertion and 
deletion structural variants ≥50 bp were called using two read  

mapping-based tools, pbsv (https://github.com/PacificBiosciences/
pbsv) and Sniffles34. The callsets show similar precision (>94%) 
and recall (>91%) against the GIAB benchmark (Supplementary  
Table 5). Precision is consistent across variant length, but recall is 
lower for variants ≥3 kb (Supplementary Fig. 5a-b). To increase 
recall for larger variants, haplotype-resolved de  novo assemblies 
were analyzed with paftools35 (see “De  novo assembly of CCS 
reads”), with precision >93% and recall >89% (Supplementary  
Fig. 5c,d and Supplementary Table 5).

An integrated callset includes 12,091 insertions and 8,432 
deletions. Precision is 96.13% and recall is 95.99% (Fig. 3c and 
Supplementary Table 5), with similar performance for insertions as 
for deletions and for variants less than 1 kb as for greater than or 
equal to 1 kb (Fig. 3d), indicating the complementarity of mapping- 
and assembly-based structural variant calling. The callset has 143 
insertions and 163 deletions that intersect exons.

For comparison, structural variants were called in PacBio 
continuous (noisy) long reads (CLR) (with pbsv and Sniffles), 
Illumina 2 × 250 bp short reads25 (with Manta36 and Delly37) and 
10x Genomics linked reads25 (with LongRanger38). The CCS callset 
exceeds all others in both precision and recall. The closest in per-
formance is the pbsv CLR callset, which has a precision of 94.64% 
and recall of 94.48%. The Manta callset has a precision of 85.34% 
and recall of 55.88%, with much worse recall for insertions (39.65%) 
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Fig. 1 | Sequencing HG002 with highly accurate long reads. a, CCS derives a consensus or CCS read from multiple passes of a single template molecule, 
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than deletions (76.90%). The LongRanger callset has a precision of 
83.79% and recall of 39.83%, again with worse recall for insertions 
(16.41%) than deletions (70.18%). A callset from paftools run on 
a linked-read SuperNova assembly has a precision of 64.52% and 
recall of 52.74%. All considered short- and linked-read callsets have 
worse performance than all CCS and CLR callsets in both precision 
and recall (Supplementary Table 5 and Supplementary Fig. 5).

De  novo assembly of CCS reads. Three different algorithms—
FALCON39, Canu40 and wtdbg241—were used to assemble the full 
CCS read set, which is a mix of paternal and maternal reads. By 
skipping the initial read-to-read error correction step, the algo-
rithms completed 10–100× faster than is typical for long-read  

assemblies21 (Supplementary Table 6). All assemblies have 
high contiguity with a contig N50 from 15.43 to 28.95 Mb. The 
total assembly size is near the expected human genome size for 
FALCON and wtdbg2. The Canu assembly has a total genome 
size of 3.42 Gb, larger than the expected haploid human genome, 
because it resolves some heterozygous alleles into separate contigs 
(Table 2 and Supplementary Fig. 6).

Short reads from the parents of HG002 were used to identify 
k-mers unique to one parent and then partition (trio bin) the CCS 
reads by haplotype42. Three different k-mer sizes were evaluated: 
21 bp (previously reported for trio binning) and longer k-mers of 
51 bp and 91 bp enabled by the accuracy of CCS reads. The 21-mer 
binning assigns 35.3% of reads to the mother and 33.6% to the 
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Table 1 | Performance of small variant calling with CCS reads

Platform Variant caller (training 
model)

SNVs Indels

Precision (%) Recall (%) F1a (%) Precision (%) Recall (%) F1 (%)

Illumina (NovaSeq) DeepVariant (Illumina model) 99.960 99.940 99.950 99.633 99.413 99.523
PacBio (CCS) DeepVariant (CCS model) 99.914 99.959 99.936 96.901 95.980 96.438

PacBio (CCS) DeepVariant (haplotype-
sorted CCS model)

99.904 99.963 99.934 97.835 97.141 97.486

Illumina (NovaSeq) GATK HaplotypeCaller (no 
filter)

99.852 99.910 99.881 99.371 99.156 99.264

PacBio (CCS) GATK HaplotypeCaller (hard 
filter)

99.468 99.559 99.513 78.977 81.248 80.097

Precision, recall and F1 of small variant calling measured against the GIAB v.3.3.2 benchmark using hap.py. Bold indicates the highest value in each column. Underline indicates a value higher than the 
GATK HaplotypeCaller run on 30-fold Illumina NovaSeq reads. Coverage is 28-fold for PacBio CCS and 30-fold for Illumina NovaSeq. aRows are sorted based on F1 for SNVs.
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father (68.9% binned). The 51-mer binning is more complete at 
78.5% binned; using longer 91-mers provides only a small addi-
tional gain to 79.2% binned. The 51-mer binning was selected for 
assembly (Supplementary Table 7).

FALCON, Canu and wtdbg2 were run separately on the pater-
nal and maternal reads, with the unassigned reads included in both 
sets. All algorithms produce highly contiguous and nearly com-
plete assemblies for the parental genomes, with N50 from 12.10 
to 19.99 Mb and genome size from 2.67 to 3.04 Gb (Table 2). From 
95.3% to 98.2% of human genes are identified as single-copy in each 
parental assembly (Table 2). Assembly-based structural variant calls 
have high precision and recall, suggesting few large-scale misas-
semblies (Supplementary Table 5). Furthermore, analysis of the 
phase-consistency43 of maternal and paternal haplotigs shows the 
assemblies are phased properly (Supplementary Fig. 7).

All mixed and parental assemblies are high in quality with 
concordance to the HG002 benchmark ranging from Q44-Q48 
for polished44 and Q26-Q45 for unpolished assemblies (Table 2, 
Supplementary Table 8). This greatly exceeds that of previously 
published and accessioned assemblies at Q40 (6× worse) for PacBio 
noisy long reads and Q29 (77× worse) for Oxford Nanopore reads 
with Illumina polishing (Fig. 4a and Supplementary Table 8).

Large segmental duplications often result in contig breaks 
in de  novo assemblies, and assemblies of noisy long reads typi-
cally span less than 50 of 175 Mb of segmental duplications in the 
human genome15,18,45. The most contiguous assemblies of CCS reads 
span over 60 Mb of segmental duplications, a 20% improvement 
(Supplementary Table 9). A model of assembly contiguity based on 
large repeat resolution suggests that the current assemblies of CCS 
reads resolve 15 kb repeats of 99 to 99.5% identity (Fig. 4b).
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Table 2 | Statistics for de novo assembly of CCS reads

Haplotype Assembler Total size 
(Gb)

Contigs N50 
(Mb)

NG50 
(Mb)

Max 
(Mb)

E-size 
(Mb)

HG002 
concordance 
(Phred)

BUSCO 
genes (%)

Ensembl 
genes (%)

Mixed Canu 3.42 18,006 22.78 25.02 108.46 30.16 31.1 92.3 93.2

Mixed FALCON 2.91 2,541 28.95 24.51 110.21 38.04 25.8 87.6 97.6

Mixed wtdbg2 2.79 1,554 15.43 12.62 84.67 22.61 44.6 94.2 96.1

Maternal Canua 3.04 5,854 18.02 17.04 48.81 19.78 47.2 94.1 98.1

Maternal FALCONa 2.80 924 19.99 15.54 74.33 24.07 43.5 95.1 97.8

Maternal wtdbg2 2.75 2,637 12.10 9.29 66.34 16.55 43.5 93.8 95.6

Paternal Canua 2.96 6,868 16.14 14.90 64.83 20.19 47.7 93.4 98.2

Paternal FALCONa 2.70 1,489 16.40 14.06 95.34 25.61 43.5 93.6 97.7

Paternal wtdbg2 2.67 1,444 13.96 10.86 50.51 15.36 42.1 92.6 95.3

The ‘mixed’ haplotype assemblies use all reads. The ‘maternal’ and ‘paternal’ assemblies use parent-specific reads from trio binning plus unassigned reads. HG002 concordance is measured against the 
GIAB benchmark. BUSCO gene completeness uses the Mammalia ODB9 gene set. Ensembl genes are the percentage of genes from Ensembl R94 that are full-length, single-copy in the assembly relative to 
the full-length, single-copy count for GRCh38. Contigs shorter than 13 kb were excluded from genome size and contiguity measurements; contigs shorter than 100 kb were excluded from the concordance 
measurement. aPolishing with Arrow.
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Coverage requirements for variant calling and de novo assembly. 
To evaluate the depth of CCS read coverage required for variant 
calling and assembly, we randomly subsampled from the full data-
set. For SNVs, precision and recall with DeepVariant remain above 
99.5% for coverage down to 15-fold; performance decays steeply 
below 10-fold (Supplementary Fig. 8a). For indels, DeepVariant 
remains comparable to typical NGS performance (>90%) down 
to 17-fold coverage (Supplementary Fig. 8b). For structural vari-
ants, precision with pbsv is above 95% for all evaluated coverage 
levels. Recall is above 90% down to 15-fold coverage and decays 
steeply below 10-fold (Supplementary Fig. 8c). For phasing with 
WhatsHap, the phase block N50 remains above 150 kb down 
to 10-fold coverage (Supplementary Fig. 8d). Mixed-haplotype 
wtdbg2 assemblies have consistent size above 2.7 Gb, contig N50 
around 15 Mb and concordance above Q42 until coverage falls 
below 15-fold (Supplementary Fig. 8e-g).

Revising and expanding GIAB benchmarks. High-quality callsets 
from CCS reads provide an opportunity to identify mistakes in the 
GIAB benchmarks, particularly for structural variants where the 
benchmark is still in draft form. Sixty small variant and 40 structural 
variant discrepancies between the GIAB benchmark (small variant 
v.3.3.2, structural variant v.0.6) and the CCS callsets (DeepVariant 
haplotype-sorted, structural variant integrated) were selected for 
manual curation. Selected variants were spread across variant types, 
discrepancy types and both inside and outside homopolymers and 
tandem repeats.

For small variants, 29 of 31 discrepancies in homopolymers 
were classified as correct in the benchmark. Outside homopoly-
mers, 19 of 29 were classified as errors in the benchmark. Most of 
these benchmark errors (13 of 19) are true variants in L1 elements 
called homozygous reference in GIAB (Supplementary Fig. 9a,b and 
Supplementary Table 10). The identified benchmark errors overlap 
with putative errors in a DeepVariant Illumina whole genome case 
study (https://github.com/google/deepvariant). Of 745 putative 
false positive (in the callset but not the benchmark) SNVs in the 
case study, 344 agree with the CCS callset, with 282 (82.0%) fall-
ing within large interspersed repeats. Fewer of the false negative (in 
the benchmark but not the callset) SNVs (8%), false negative indels 
(25%) and false positive indels (19%) from the case study agree with 
the CCS callset. Extrapolating from manual curation, we estimate 

that 2,434 (1,313–2,611; 95% confidence interval) errors in the cur-
rent GIAB benchmark could be corrected using the CCS reads.

For structural variants, curator classification was unclear for 11 
of 40 discrepancies, typically because of tandem repeat structure 
that permits multiple representations of a variant. For the remain-
der, 15 of 16 false negative discrepancies were classified as correct in 
the benchmark. However, for false positive discrepancies, 11 of 13 
were classified as errors in the benchmark (Supplementary Fig. 9c,d 
and Supplementary Table 11). This suggests that the GIAB struc-
tural variant benchmark set is precise but incomplete.

The high-quality CCS callsets also provide an opportunity to 
expand the benchmarks into repetitive and highly polymorphic 
regions that have been difficult to characterize with confidence 
using short reads. Adding the CCS DeepVariant callset to the exist-
ing GIAB small variant integration pipeline would expand the 
benchmark regions by up to 1.3% and 418,875 variants (210,184 
SNVs and 208,691 indels). For structural variants, only 9,232 of 
18,832 autosomal variant calls overlap benchmark regions, which 
means that the number of variants in the benchmark would more 
than double if all CCS variants calls were incorporated.

Discussion
We present a protocol for producing highly accurate long reads 
using CCS on the PacBio Sequel System. We apply the protocol 
to sequence the human HG002 to 28-fold coverage with an aver-
age read length of 13.5 kb and an average read accuracy of 99.8%. 
We analyze the CCS reads to call SNVs, indels and structural vari-
ants; phase variants into haplotype blocks; and de  novo assemble 
the HG002 genome. We demonstrate that CCS reads from a single 
library approach the accuracy of short reads for small variant detec-
tion while accessing more of the genome, including medically rel-
evant genes. CCS reads also enable structural variant detection and 
de novo assembly at similar contiguity and with markedly higher 
concordance than noisy long reads.

The CCS performance for SNV and indel calling rivals that of the 
commonly used pairing of BWA and GATK on 30-fold short-read 
coverage. Interestingly, though the overall accuracy of CCS reads 
is similar to short reads, direct application of the GATK pipeline 
to CCS reads produces inferior results, especially for indels. The 
major residual error in CCS reads—indels in homopolymers—is 
not as frequent in short reads. We suspect that the current GATK, 
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which was designed for short reads, does not properly model the 
CCS error profile, and thus performance lags for indels. This is sup-
ported by results with DeepVariant. When a DeepVariant model 
trained on Illumina reads is run on CCS reads, the performance is 
poor for indels. When DeepVariant is trained on CCS reads, per-
formance improves dramatically. As more CCS datasets are made 
available, both model-based callers like GATK and learning-based 
callers like DeepVariant will have the opportunity to improve on the 
performance reported here, including the incorporation of haplo-
type phase information and evaluating and training against updated 
GIAB benchmarks that correct errors using CCS reads. Further, 
advances in sequencing chemistry or consensus base calling (such 
as the application of deep learning) that reduce the residual indel 
errors in CCS reads also could improve variant calling performance.

Structural variant calling and de  novo genome assembly with 
CCS reads match or exceed that reported for noisy long reads. The 
CCS reads have an advantage of high accuracy, which eliminates 
the need for read correction, allows more stringent criteria to be 
used in variant calling or read overlapping and ultimately produces 
more accurate assemblies and variant calls. Noisy long reads have an 
advantage of longer maximum read length, but increased accuracy of 
CCS reads compensates for the length required for highly contiguous 
assembly. Modeling (Fig. 4b) suggests modest advances in accuracy 
(to 99.9%) at 15 kb read length would double the current contiguity, 
which already matches the best published de novo assemblies46.

Evaluation of variant calls and assemblies relies on high-qual-
ity benchmarks and supporting tools47. For small variants, CCS 
reads provide an opportunity to improve the GIAB benchmark by 
expanding into difficult genomic regions and correcting errors, pri-
marily in large interspersed repeats. For structural variants, both 
the GIAB set and benchmarking tools need to be further developed.  
It remains a challenge to reconcile when two structural variant calls 
describe the same allele, particularly in tandem repeats. Moreover, 
the GIAB structural variant set is not as complete or accurate as 
for small variants. Including structural variant calls from CCS reads 
offers to improve the GIAB set.

The CCS read approach alleviates some challenges of long-
read sequencing. First, aiming for fragments in the 10–20 kb size 
range relaxes the need to isolate ultra-long genomic DNA. Second, 
increased accuracy allows for more stringent alignment and over-
lap comparisons, greatly reducing the compute time and cost while 
improving assembly results by recognizing fine-grained repeat and 
haplotype phase information. Third, familiar tools such as GATK 
that were developed for accurate short reads are readily applied to 
CCS reads. Fourth, manual interpretation in genome browsers is 
easier with accurate reads. Finally, increased accuracy could enable 
the calling of low-frequency somatic variants.

Variant calling and assembly with CCS reads perform well down 
to 15-fold coverage, which offsets the current reduced throughput per 
run compared to noisy long reads. The newer Sequel II System provides 
more CCS reads per run (8× compared to this study), simplifying the 
workflow and reducing data collection to 2–3 SMRT cells for 15-fold 
coverage of a human genome (Supplementary Table 12). Improved 
CCS consensus calling algorithms and increased polymerase read 
length will enable longer inserts and further increase throughput and 
quality. Together, this will facilitate rapid, population-scale analysis of 
full genomes with CCS reads to improve human health.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41587-019-0217-9.
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Methods
Library preparation. All sequencing libraries were prepared using SMRTbell 
Template Prep Kit v.1.0 (Pacific Biosciences Ref. No. 100-259-100). To minimize 
ligation chimeras, hairpin adapters were ligated overnight at 500× molar excess to 
the genomic fragment molecules. Sequencing primers were conditioned by heating 
to 80 °C for 2 min and rapidly cooled to 4 °C. The sequencing primer was annealed 
to the template at a molar ratio of 20:1 (primer:template) for 30 min at 20 °C. After 
primer annealing, polymerase was bound to the primed template at a molar ratio 
of 10:1 (polymerase:template) for 4 h at 30 °C. Polymerase-bound samples were 
then kept at 4 °C before use. Before sequencing, excess unbound polymerase was 
removed by incubating the complexes for 5 min with 0.6× (vol:vol) AMPure PB 
beads (Pacific Biosciences Ref. No. 100-265-900) at room temperature. Beads 
were not washed with 80% ethanol. After removing the free polymerase in the 
supernatant, the polymerase-bound complexes were eluted with MagBead Binding 
Buffer v.2 (Pacific Biosciences Ref. No. 101-046-400). Modifications to this protocol 
are listed below for the amplicon, E. coli large-insert, lambda-digest and human 
sequencing libraries.

10 kb E. coli PCR amplicon library preparation. Library input DNA was generated 
by amplification of a 10 kb region of E. coli strain K12 (CP032667.1:871,407–
881,407) using genomic DNA as the template. Products were purified using Sage 
BluePippin with a 9 kb high-pass cutoff on a 0.75% agarose cassette (Sage Science 
Product No. PAC30KB) and the library was constructed as described above.

30 kb E. coli large-insert library preparation. A SMRTbell library was prepared 
using unsheared, high molecular weight (>50 kb) genomic DNA from E. coli strain 
K12. Before annealing primers, the library was size-selected on the Sage BluePippin 
using a 0.75% agarose cassette (Sage Science Product No. PAC30KB) and a 30 kb 
high-pass cutoff.

Lambda-digest library preparation. Lambda DNA (New England BioLabs Product 
No. N3011L) was digested with BsaAI (New England BioLabs Product No. 
R0531L) and the fragments purified with AMPure and constructed into SMRTbells 
as described above.

Human CCS library preparation. Library preparation was performed on the human 
reference genome sample HG002 obtained from NIST. Genomic DNA was sheared 
using the Megaruptor from Diagenode with a long hydropore cartridge and a 20 kb 
shearing protocol. Before library preparation, the size distribution of the sheared 
DNA was characterized on the Agilent 2100 BioAnalyzer System using the DNA 
12000 kit. To tighten the size distribution of the SMRTbell library, the sample was 
separated into 3 kb fractions on the SageELF System from Sage Science using the 
SageELF Native Agarose for DNA 0.75% 1–18 kb cassette (Sage Science Product 
No. ELD7510). Fractions having the desired size distributions were identified on 
the Agilent 2100 BioAnalyzer using the DNA 12000 kit (Supplementary Fig. 1c–f). 
Fractions centered at 10, 15 and 18 kb were used for sequencing with the 15 kb 
fraction selected for high-coverage sequencing.

Sequencing. All sequencing reactions were performed on the PacBio Sequel 
System with the Sequel Sequencing Kit 3.0 chemistry (Pacific Biosciences Ref. No. 
101-500-400 and 101-427-800). The 10 kb E. coli PCR amplicon and 30 kb  
E. coli large-insert libraries were sequenced with no preextension and 10 h collection 
time. The lambda-digest library was sequenced with 0 and 5 h preextension and 
4 h collection time. The HG002 human libraries were sequenced with 4 or 12 h 
preextension and 20, 24 or 30 h collection depending on insert length.

Consensus read generation. Consensus reads (CCS reads) were generated using 
ccs software v.3.0.0 (https://github.com/pacificbiosciences/unanimity/) with 
--minPasses 3 --minPredictedAccuracy 0.99 --maxLength 21000. For the 13.5 kb 
human library, average run time is 3,035 CPU core hours per SMRT cell (118,365 
total). Total CCS read yield was 89 Gb (2.3 ± 0.4 Gb per SMRT cell), with read 
length of 13.5 ± 1.2 kb.

Read mapping. Reads were mapped to the GRCh37 human reference genome, 
specifically the hs37d5 build from the 1000 Genome Project48. CCS reads 
were mapped using pbmm2 v.0.10.0 (https://github.com/PacificBiosciences/
pbmm2) with --preset CCS. CLR reads were mapped using pbmm2 with --preset 
SUBREAD. NGS reads were mapped with minimap2 (ref. 35) v.2.14-r883 with -x sr.

Measuring HG002 concordance. To measure concordance to HG002, alignments 
to GRCh37 were evaluated at positions within GIAB v.3.3.2 benchmark 
regions that have no variant call26. Then Concordance = M/(M + X + D + I), 
where M is the number of matches, X is the number of mismatches, D is the 
number of deletion base pairs and I is the number of insertion base pairs and 
Phred = min[−10 × log10(1 – Concordance), −10 × log10(1/(1 + ReadLength))].

A deleted base pair is considered a homopolymer deletion when it matches 
the preceding or following base pairs in the reference genome. An insertion is 
considered a homopolymer insertion when the base pairs of the insertion are 

identical and match either the preceding or following base pairs in the  
reference genome.

The 2 × 250 bp Illumina HiSeq 2500 reads were obtained from GIAB25 (ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
NIST_Illumina_2x250bps/ or https://bit.ly/2WjH7tF) and mapped to GRCh37 
with minimap2 (ref. 35) v.2.14-r883 with -x sr. The 2 × 151 bp Illumina NovaSeq 
reads were obtained from SRX5648942.

Coverage by [GC] content. To measure coverage by local [GC] content, bedtools49 
v.2.27.1 was used to divide the GRCh37 reference genome into 500 bp windows 
(bedtools makewindows -w 500) and then to calculate the [GC] content (bedtools 
nuc) and average coverage (bedtools coverage -mean) of each window.

Reference-independent quality evaluation. The Dazzler suite (https://dazzlerblog.
wordpress.com/) was used to evaluate the accuracy of the CCS reads without 
relying on a reference genome. Briefly, daligner27 commit 381fa920 was used to 
align pairs of CCS reads and produce all local alignments longer than 1 kb with less 
than 5% difference in sequence. Each CCS subject read was partitioned into 100 bp 
panels, within which its coverage by and concordance to other reads aligning to 
it was calculated. Panels with a concordance in the worst 0.1% of all panels were 
considered low quality. Abrupt ends in the alignment of five or more reads to a 
given panel along the CCS subject read were used to estimate library artifacts such 
as chimeric molecules and missing adapters.

Mappability of CCS and NGS reads. To compare with the mappability of 13.5 kb 
CCS reads, a coverage-matched (89 Gb) set of 2 × 250 bp Illumina HiSeq 2500 
reads for HG002 was obtained from GIAB25 (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/ or 
https://bit.ly/2WjH7tF) and mapped to GRCh37 with minimap2 (ref. 35) v2.14-r883 
with -x sr.

A genome position is considered mappable if it is covered by alignments for at 
least ten reads at a specified mapping quality or higher, which was evaluated using 
bedtools bamtobed and bedtools genomecov -bga. Gaps (‘N’ bp in the reference) 
were excluded.

Previously reported NGS problem exons28 were considered mappable if every 
base pair in the exon is covered by a read at a mapping quality of 60.

HLA typing. The HLA-A and HLA-DPA1 genes were typed by comparing the 
sequence of CCS reads that span the genes to entries in the IMGT database50 
v.3.19.0.

Small variant detection and benchmarking. To develop a workflow for calling 
variants in CCS reads with GATK30 HaplotypeCaller v.4.0.6.0, different values of 
the HaplotypeCaller parameter --pcr-indel-model and VariantFiltration parameter 
--filter-expression were considered to maximize SNV and indel F1 without 
excessive complication, starting from the GATK best practices for hard filtering. 
In the end, HaplotypeCaller was run on reads with a minimum mapping quality of 
60 using allele-specific annotations (--annotation-group AS_StandardAnnotation) 
and --pcr_indel_model AGGRESSIVE. Autosomes and the pseudo-autosomal 
regions (PARs) on chromosome X were called with --ploidy 2; chromosome Y 
and the non-PAR regions of chromosome X were called with --ploidy 1. Multi-
allelic variant sites were split into separate entries for filtration with a custom 
script. SNVs were filtered using GATK VariantFiltration with --filter_expression 
of AS_QD < 2.0 for SNVs and indels longer than 1 bp, and AS_QD < 5.0 for 1 bp 
indels. A similar pipeline was used to call variants in coverage-matched 2 × 151 bp 
Illumina NovaSeq reads with a few differences: a minimum mapping quality of 20, 
--pcr-indel-model NONE, --standard_min_confidence_threshold_for_calling 2.0 
and no variant filtration.

A Google DeepVariant model for CCS reads was generated as previously 
reported32 using DeepVariant v.0.7.1. Briefly, models were trained using CCS reads 
for chromosomes 1–19 and the HG002 GIAB v.3.3.2 benchmark. A single model 
was selected based on performance in chromosomes 21 and 22 to avoid overfitting. 
Neither training nor model selection considers chromosome 20, which is available 
for accuracy evaluations. To support long reads, local reassembly is disabled for 
DeepVariant with CCS reads. The wgs_standard model v.0.7.1 was used to  
call variants in NovaSeq reads and to apply a model trained on Illumina reads to 
CCS reads.

To incorporate long-range haplotype information, DeepVariant was modified 
to produce pileups with reads sorted by the BAM haplotype (HP) tag. Haplotype 
information was added to the pbmm2 CCS alignments using WhatsHap v.0.17 
(whatshap haplotag) with the trio-phased variant calls from GIAB (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_MPI_
whatshap_08232018/RTG.hg19.10x.trio-whatshap.vcf.gz or https://bit.ly/2R73grR). 
A new DeepVariant model then was trained as described above.

Small variant callsets were benchmarked against the GIAB v.3.3.2 HG002 set26 
by vcfeval51 (https://github.com/RealTimeGenomics/rtg-tools) with no partial 
credit run through hap.py v.0.3.10 (https://github.com/Illumina/hap.py). Only 
PASS calls were considered.
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Phasing small variants. Small variant calls were phased using WhatsHap v.0.17 
(whatshap phase). The number of switch and Hamming errors was computed 
against trio-phased variant calls from GIAB using whatshap compare.

To model the phase blocks achievable with a given read length, cuts were 
introduced between heterozygous variants in the GIAB trio-phased variant callset 
that are separated by more than the read length, which effectively assumes  
that adjacent heterozygous variants separated by less than the read length  
can be phased.

Structural variant detection. pbsv v.2.1.0 (https://github.com/PacificBiosciences/
pbsv) was run on pbmm2 CCS read alignments. The pbsv discover stage was run 
separately per chromosome with tandem repeat annotations (https://github.com/
PacificBiosciences/pbsv/tree/master/annotations) passed with --tandem-repeats. 
The pbsv call stage was run on the full genome.

Sniffles v.1.0.10 was run on pbmm2 CCS reads alignments with -s 3 --skip_
parameter_estimation and with the variant sequence obtained from reads.

Structural variants in the maternal and paternal Canu and FALCON assemblies 
from CCS reads (see “De novo assembly”) were called using a previously described 
workflow52. Briefly, contigs were mapped to GRCh37 using minimap2 --paf-no-
hit -cx asm5 --cs -r 2k; variants were called with paftools.js call;35 maternal and 
paternal variants were concatenated and indel calls of at least 30 bp were retained.

An integrated callset was produced from the pbsv, Sniffles and paftools/
Canu callsets using SURVIVOR53 and custom scripts. Two calls were considered 
supporting if the calls had the same structural variation type, a start position 
within 1 kb and a difference in length less than 5%. One call from each matching 
set was retained with precedence given to pbsv, then Sniffles and then paftools. 
Because pbsv and Sniffles have poor sensitivity for calls larger than 1 kb, all 
nonmatched calls from paftools that are larger than 1 kb were retained. The callset 
integration is robust to more stringent definitions of supporting calls (99.1% 
identical when requiring start position within 100 bp instead of 1 kb).

Structural variants were called in pbmm2 alignments of PacBio CLR reads 
(SRX5590586) with pbsv v.2.1.0 exactly as for the CCS reads and with Sniffles 
v.1.0.10 with default parameters.

NovoAlign (http://www.novocraft.com) alignments to GRCh37 of 300-fold 
coverage of HG002 with 2 × 250 bp Illumina HiSeq 2500 reads were obtained from 
GIAB. Structural variants were called with Manta36 v.1.4.0 with all coverage and 
Delly37 v.0.7.6 with coverage subsampled to 30-fold using samtools view -b -s 0.1.

Structural variant callsets on 10x Genomics reads from LongRanger v.2.2 
were obtained from GIAB (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/10XGenomics_ChromiumGenome_LongRanger2.2_
Supernova2.0.1_04122018/ or https://bit.ly/2Mtj084). Insertion and deletion 
variants at least 30 bp were combined from the sequence-resolved indels and large 
deletion calls (NA24385_LongRanger_snpindel.vcf.gz, NA24385_LongRanger_
sv_deletions.vcf.gz). Another callset was produced using paftools on the diploid 
SuperNova v.2.0.1 assembly as described above.

Structural variant callsets were benchmarked against the GIAB v.0.6 
HG002 structural variant set (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6 or https://bit.ly/2T7iLBX) 
using Truvari (https://github.com/spiralgenetics/truvari) commit 600b4ed7 
modified to allow a single variant in the benchmark set to support multiple 
variants in the callset. Truvari was run with -r 1000 -p 0.01 --multimatch 
--includebed HG002_SVs_Tier1_v0.6.bed -c HG002_SVs_Tier1_v0.6.vcf.gz. The 
-p 0 option was used to disable sequence checks for callsets that report symbolic 
alleles instead of sequence-resolved calls (LongRanger, Delly).

De novo assembly. Mixed-haplotype assemblies were produced using 
all CCS reads. Canu40 v.1.7.1 was run with -p asm genomeSize = 3.1 g 
correctedErrorRate = 0.015 ovlMerThreshold = 75 batOptions = "-eg 0.01 -eM 0.01 
-dg 6 -db 6 -dr 1 -ca 50 -cp 5" -pacbio-corrected. FALCON39 kit v.1.2.0 was run 
with ovlp_HPCdaligner_option = -v -B128 -M24 -k24 -h1024 -e.97 -l2500 -s100, 
ovlp_DBsplit_option = -s400, and overlap_filtering_setting = --max-diff 90 --max-
cov 120 --min-cov 2. Wtdbg2 (https://github.com/ruanjue/wtdbg2) v.2.2 was run 
with -k 0 -p 21 -AS 4 -s 0.5 -e 2 -K 0.05 and followed by wtdbg2-cns.

CCS reads from HG002 were ‘trio binned’ as maternal, paternal or unassigned 
as previously described42. Briefly, 2 × 250 bp Illumina HiSeq 2500 reads for 
the father (HG003/NA24149) and mother (HG004/NA24143) of HG002 were 
obtained from GIAB (HG003: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG003_NA24149_father/NIST_Illumina_2x250bps/ or 
https://bit.ly/2TADePc; HG004: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG004_NA24143_mother/NIST_Illumina_2x250bps/ or https://
bit.ly/2uw7joJ). Sequence k-mers unique to the mother or father were identified 
and used to categorize CCS reads (https://github.com/skoren/triobinningScripts), 
using k-mer sizes of 21, 51 and 91 and excluding k-mers that occur 25 times or 
fewer. The maternal and unassigned reads were used for the ‘maternal’ assemblies; 
paternal and unassigned reads were used for the ‘paternal’ assemblies.

The maternal and paternal assemblies were generated with Canu and wtdbg2 
using the same software version and same options as for the mixed haplotype 
assembly. For the maternal and paternal assemblies, FALCON v.0.7 was run with 
length_cutoff_pr = 2000, ovlp_HPCdaligner_option = -k24 -e.95 -s100 -l1000 

-h600 -mdust -mrep8 -mtan -M21, ovlp_DBsplit_option = -x2000 -s400, falcon_
sense_option = --min_idt 0.70 --min_cov 4 --max_n_read 200, and overlap_
filtering_setting = --max_diff 40 --max_cov 80 --min_cov 2 --min_len 500.

The maternal and paternal Canu assemblies were polished with Arrow v.2.2.2 
run through ArrowGrid (https://github.com/skoren/ArrowGrid) using subreads 
that correspond to the CCS reads used for each assembly. The maternal and 
paternal FALCON assemblies were polished with Arrow v. 2.2.2 using all subreads.

Assembly evaluation. For each assembly, contigs were broken into 100 kb chunks 
with remainders shorter than 100 kb ignored. The chunks were aligned to GRCh37 
using minimap2 --eqx -x asm5, and primary alignments that span at least 50 kb in 
the reference at higher than 50% identity were retained. The concordance of each 
chunk was evaluated just as for CCS reads (see "Measuring HG002 concordance"). 
The overall assembly concordance was calculated as the average concordance of the 
100 kb chunks.

Gene completeness was measured using BUSCO54 v.3.0.2 using the Mammalia 
ODB9 gene set. The single plus duplicated gene count in the BUSCO summary 
is reported. For a human-specific measure of completeness, we calculated the 
fraction of single-copy human genes that remain single-copy in each assembly. 
The human transcript sequences from Ensembl55 build r94 were mapped to each 
assembly with minimap2 -cx splice -B 4 -O 4,34 -C9 -uf --cs and evaluated with 
paftools.js asmgene -i 0.98, which retains the longest of overlapping transcripts and 
counts a transcript hit if 99% of the transcript sequence maps at 98% identity or 
higher. A single-copy transcript has exactly one hit. Counts are normalized to the 
number of transcripts that are considered single-copy by these criteria in GRCh38 
(GCA_000001405.15).

To measure the number of segmental duplications spanned by each assembly, 
the assemblies were processed with segDupPlots (https://github.com/mvollger/
segDupPlots), which maps contigs to GRCh38 and considers a segmental 
duplication to be spanned by the assembly if a contig alignment extends fully 
through the segmental duplication and into at least 50 kb of unique sequence on 
each flank45.

Model of assembly contiguity. To predict assembly contiguity at different 
read lengths and read accuracies, a previously described model21 was updated 
with improvements for high-accuracy reads. Briefly, all repeat annotations 
for GRCh38 were downloaded from the UCSC Genome Browser. Repeat 
identity was defined as by each track except for: the nested repeat track 
where identity was 50 + 50 × (score/1,000), RepeatMasker where identity was 
1 – ((mismatches + deleted + inserted)/1,000), and microsat and windowmasker/
sdust that does not define identity and thus was treated as 100%. Gaps were 
included as 100% identity repeats. Additional repeats were added from self-
matches using MashMap56 (https://github.com/marbl/MashMap).

The assembly contiguity was predicted based on the ability to resolve 
repeats. At a given percent identity, repeats below that identity were excluded 
and remaining repeats separated by 15 bp or fewer were merged. Then, cuts were 
introduced at each repeat of a given length and assembly NG50 was calculated 
assuming that contigs end at each cut.

Coverage titration. To evaluate the performance of variant calling and assembly 
at different coverage levels, CCS reads were downsampled from the 28-fold 
dataset and processed. For small variant calling, alignments were subsampled in 
DeepVariant v.0.7.1 from 4% to 100% in steps of 3%. Variants were called on each 
subsample using the DeepVariant CCS model. Precision and recall for SNVs and 
indels were evaluated with hap.py as described above (see “Small variant detection 
and benchmarking”). For phasing, alignments were subsampled (samtools view -s) 
at rates from 10% to 100% in steps of 10%. The DeepVariant callset from the full 
28-fold coverage data was phased using WhatsHap v.0.17 (whatshap phase) with 
the subsampled alignments. For structural variants, alignments were subsampled 
(samtools view -s) at rates from 10% to 100% in steps of 10%. Variants were called 
on the subsampled alignments with pbsv v.2.1.0 and benchmarked with Truvari 
as described above (see “Structural variant detection”). For assembly, reads were 
subsampled at rates from 10% to 100% in steps of 10%. Sampling was performed 
based on read name (10% sample is reads that end in 0, 20% is reads that  
end in 0–1 and so on). Assembly of subsampled reads was performed with  
wtdbg2 v.2.2 and benchmarked as described above (see “De novo assembly” and 
“Assembly evaluation”).

Revising and expanding genome in a bottle benchmarks. Discrepancies between 
the GIAB v.3.3.2 small variant benchmark and the DeepVariant callset from 
haplotype-sorted CCS reads were identified with vcfeval from RTG Tools v.3.8.2 
and hap.py v.0.3.10. Discrepancies between the GIAB v.0.6 structural variant 
benchmark and the integrated structural variant callset from CCS reads were 
identified with Truvari. A sample of 60 small variant and 40 structural variant 
discrepancies were selected for manual curation by random sampling across 
discrepancy types (false positive, false negative and genotype difference), variant 
types (SNV, indel, insertion structural variant and deletion structural variant), 
both inside and outside homopolymers and tandem repeats. Variants were 
curated as previously described26. Briefly, curators evaluated variants in IGV along 
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with tracks showing segmental duplications, interspersed and simple repeats, 
alignments of CCS reads and 10x Genomics reads (ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/AshkenazimTrio/analysis/10XGenomics_ChromiumGenome_
LongRanger2.2_Supernova2.0.1_04122018/ or https://bit.ly/2Mtj084), Illumina 
short reads (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
HG002_NA24385_son/NIST_Illumina_2x250bps/ or https://bit.ly/2WjH7tF) and 
Illumina reads from a 6 kb mate pair library (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_Stanford_Illumina_6kb_
matepair/ or https://bit.ly/2I2Zdw1), all obtained from GIAB. At each variant site, 
the reliability of alignments for each read set was evaluated by examining depth 
of coverage compared to genome-wide average, evenness of coverage around 
the variant, mapping quality of alignments, density of variants in the region and 
clipping of aligned reads while considering genomic repeat context. The correct 
call was determined as the one supported by reliable technologies with normal 
coverage, consistent haplotype structure and consistency of forward and reverse 
reads. The benchmark error rate was estimated by variant type and discrepancy 
type and used to extrapolate from the sample to the number of errors in the  
full GIAB benchmark. Confidence intervals were calculated assuming a  
binomial distribution.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available in NCBI BioProject PRJNA529679. CCS reads are available 
on NCBI SRA with accession code SRX5327410. Small variant calls are available 
on NCBI dbSNP with accession codes ss3783301452–ss3798736595. Structural 
variant calls are available on NCBI dbVar with accession nstd167. The trio 
binned Canu assemblies are available on NCBI Assembly with accession codes 
GCA_004796485.1 (maternal) and GCA_004796285.1 (paternal). Alignments 
to GRCh37 are available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/ or https://bit.

ly/2RW1b3I. Additional data, including all assemblies and a track hub for the 
UCSC Genome Browser, are available at https://downloads.pacbcloud.com/public/
publications/2019-HG002-CCS.

Code availability
Custom scripts are available at https://github.com/PacificBiosciences/hg002-ccs/. 
Google DeepVariant, a model trained on PacBio CCS reads, and instructions for 
use are available at https://github.com/google/deepvariant.
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Sample size One human genome was sequenced and analyzed.  This sample has been extensively sequenced on several platforms and is a NIST Genome in 
a Bottle benchmark sample.

Data exclusions All data that passed quality filters in the manufacturer's data collection pipeline was used in the study.  No data was excluded.

Replication To assay reproducibility and quality, data analysis was performed on subsampled data as described in the manuscript and is consistent across 
groupings.

Randomization There is no allocations into groups as there was only one sample sequenced.

Blinding Blinding was not required for this study as there is only one sample.  For DeepVariant (a deep learning algorithm), training and model 
selection were performed without considering chromosome 20, and then models were evaluated for chromosome 20.
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Human research participants
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Population characteristics One 'personally identifying genetic information (PIGI)' consented human sample obtained from NIST (NA24385/HG002) was 
sequenced.   The cell line for this sample was created from a 45 yr (at sampling) male.  Remarks on the sample are:  Participant 
(huAA53E0) in the Personal Genome Project: http://www.personalgenomes.org.  History of blue rubber bleb nevus syndrome; 
central serous chorioretinopathy; cystoid macular degeneration; hemangioma; migraine with aura; narcolepsy; sleep paralysis; 
same subject as GM26105 (stem cell); mother is GM24143 (Lymph) / GM26077 (stem cell); father is GM24149 (Lymph).

Recruitment The sample was recruited by the Personal Genome Project: http://www.personalgenomes.org and is distributed by the National 
Institute of Standards  and Technology.  The sample has been consented as mentioned above.

Ethics oversight Ethics oversight is managed by the Personal Genome Project.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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