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Computer systems: Trends and opportunity
▪Three key trends
✓Data access is a major bottleneck

✓Energy consumption is a key limiter

✓Energy to move data dominates compute energy

▪Opportunity
✓Minimize data movement by performing computation directly (near) 

where the data resides

✓Processing in memory (PIM)
o In-memory computing

oNear-memory computing/near data processing

5

Mutlu et al., Microprocess. Microsyst. (2019)



In-memory computing

▪Perform “certain” computational tasks in place in memory
▪Achieved by exploiting the physical attributes of the memory devices, their array level 

organization, the peripheral circuitry as well as the control logic
▪At no point during computation, the memory content is read back and processed at the 

granularity of a single memory element

6

Processing unit & Computational memoryProcessing unit & Conventional memory



Why in-memory computing?
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Reduce the cost of data motion

Horowitz, ISSCC (2014)
Dally, ScaledML (2019)

Local SRAM 
(Kilobytes)

On-chip SRAM 
(Megabytes)

LPDDR DRAM
(Gigabytes)

5pJ/word

50pJ/word

640pJ/word

0.2pJ for 8bit 
multiplication 
(45nm CMOS)

Reduce computational time 
complexity

Mostly from massive parallelism and 
analog way of computing

Sebastian et al., Nature Comm. (2017)
Di Ventra, Nature Phys. (2013)

Additional complexity reduction from 
physical coupling
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Constituent elements
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Charge-based memory Resistance-based memory

Aga et al., HPCA (2017) (SRAM)
Seshadri et al., MICRO (2017) (DRAM)
Merrikh-Bayat, IEEE TNNLS (2018) (Flash)

Coulomb’s law

Sebastian et al., J. Appl. Phys. (2018)
Burr et al., Adv. Phys. X (2017)

Ielmini and Wong, Nature Electr. (2018)

Ohm’s law

▪Charge-based memory: Presence or absence of charge (eg. DRAM, SRAM, Flash)
▪Resistance-based memory: Differences in atomic arrangements or orientation of 

ferromagnetic metal layers (eg. PCM, metal-oxide RRAM, STT-MRAM)
▪ Several computational primitives realized by both types of memory 



Charge-based memory devices

10

Emerging nanoelectronics 
devices, John Wiley & Sons (2015)

SRAM

▪ SRAM: Two CMOS inverters connected back to back. The charge is confined 
within the barriers formed by FET channels and by gate insulators
▪DRAM: Capacitor connected in series to a FET
▪ Flash: The storage node is coupled to the gate of a FET

DRAM Flash memory



Logical operations using DRAM
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Sheshadri et al., MICRO (2017), Li et al., MICRO (2017)

▪Bitwise logical operations performed by simultaneously activating WLs
▪Operands in cells A and B, SEL is used to dictate whether AND or OR is realized

SA Result = 1

SA Result = 0

SA Result = 1

SA Result = 0
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Logical operations using SRAM
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Aga et al., HPCA (2017), Jeloka et al., JSSC (2016)

▪BL and BL are pre-charged to the supply voltage
▪Both the WLs are activated so that both BL and BL are discharged at different 

rates that depend on the data stored in the bit-cells

SA Result = 1

SA Result = 0

SA Result = 1

SA Result = 0

o
p

e
ra

n
d

s



Matrix-Vector Multiply using SRAM + Capacitor
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MAP to SRAM 
content

MAP to cap 
voltage DECIPHER 

from voltage 
along the BL

Biswas et al., ISSCC (2018)
Valavi et al., JSSC (2019)
Khaddam-Aljameh, TVLSI (2020)

▪ SRAM cells used to store the elements of a binary matrix
▪ Step 1: Capacitors charged to input values
▪ Step 2: Capacitors associated with value 0 are discharged
▪Step 3: Capacitors shorted along the columns 



MVM using Flash memory
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MAP to charge 
on floating gate

MAP to gate  
voltage
(binary)

DECIPHER 
from current

Diorio et al., IEEE TED, 43, 1972 (1996)
Merrikh-Bayat et al., IEEE Trans. Neural Networks and Learning Systems, 29, 4782 (2018)

▪The current IDS is a function of Vt, VDS and VGS

▪By fixing VDS, Kirchhoff’s current law can be 
employed to perform MVM
▪Matrix elements are stored in terms of Vt and 

the binary input vector is used to modulate VGS



Resistance-based memory devices
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Wong and Salahuddin, Nature Nanotechnology (2015)

ReRAM

▪ReRAM: Migration of defects such as oxygen vacancies or metallic ions
▪PCM: Joule-heating induced reversible phase transition
▪ STT-MRAM: Magnetic polarization of a free layer with respect to a pinned layer
▪Resistance-based memory devices also referred to as memristive devices

PCM STT-MRAM



Logic design using resistance-based memory 
devices
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Y
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C

X

Y

C

S

Vourkas, Sirakoulis, IEEE CAS Magazine (2017)Borghetti et al., Nature (2010)

Low conductance (Logic “0”)

High conductance (Logic “1”)

▪Voltage serves as the sole logic state variable in conventional CMOS
▪CMOS gates regenerate this state variable during computation
▪How about using the resistance state of memristive devices as a logic state variable?
▪Can toggle the states by applying voltage signals; only binary storage required
▪ Logical operations enabled by the interaction between voltage and resistance state 

variables



Stateful logic
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▪The Boolean variable is represented only in 
terms of the resistance state
▪Both the operands and result are stored in 

terms of the resistance state variable

Borghetti et al., Nature (2010)

Kvatinsky et al., IEEE TCAS (2014)

MAGIC: NOR Logic



Non-stateful logic
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▪Both resistance and voltage state-
variables co-exist
▪Data is stored in terms of resistance logic 

state-variables; However, the logical 
operations are implemented in the 
periphery
▪Eg. by simultaneously sensing multiple 

memristive devices connected to the 
same sense amplifier
▪Key advantage: Memristive devices are 

programmed rather infrequently →
limited cycling endurance is not a 
challenge

Li et al., Proc. DAC (2016), Xie et al., Proc. ISVLSI (2017), Hamdioui et al., DATE (2019)

0/1
“Voltage” state variable

“Resistance” state variable



MVM using resistive memory
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▪ In-place matrix-vector multiply (MVM) operation 
with O(1) time complexity
▪Exploits analog storage capability and Kirchhoff’s 

circuits laws
▪Can also implement MVM with the matrix 

transpose

Burr et al., Adv. Phys. X (2017), Xia and Yang, Nature Materials (2019)

MAP to 
conductance 

values

MAP to read 
voltage

DECIPHER 
from the 
current



PCM: A prototypical resistance-based memory
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Commonly used phase change materials

Wuttig & Yamada, Nature Materials (2007)
Burr et al., JETCAS (2016)

SET

RESET

▪A nanometric volume of phase change material 
between two electrodes
▪ “WRITE” Process 

✓ By applying a voltage pulse the material 
can be changed from crystalline phase 
(SET) to amorphous phase (RESET) 

▪ “READ” process
✓ Low-field electrical resistance



A brief history of phase change memory
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R. G. Neale, D. L. Nelson and G. 
E. Moore., Electronics (1970)

Capacity: 256 bits
RESET: ~200mA, <25V, 5 us
SET: 5mA, ~25V, 10ms
Read: 2.5mA, <5V

Stan Ovshinsky (1960s)



A brief history of phase change memory
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Advances in semiconductor 
manufacturing

Commercial success of 
optical recording

~10ms ~100ns

SET Speed

~200mA ~100uA

Write current



PCM as storage class memory
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CPU <1 ns

<100 ns

~100 us

~5 msHard disk

Flash

DRAM

A
ccess tim

e

PCM?

▪ Latency: much faster than FLASH (100’s of ns vs. 100’s of us)
▪ Write endurance: 1,000 x FLASH
▪ Nonvolatile, true random access capability, write in-place
▪ Very good scaling potential demonstrated (beyond 10nm node)
▪ Cost: between FLASH and DRAM (as technology matures)

Burr et al., IBM JRD (2008), Lee et al. ISCA (2009), Cappelletti, IEDM (2015)

Commercialized as 
SCM by Intel/Micron 

(3D Xpoint)



Why PCM for in-memory computing?
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Strong field and temperature 
dependence

Nanoscale thermal transport, 
thermo-electric effects

Phase transitions, 
structural relaxation

Ielmini, Zhang, JAP (2007)
Le Gallo et al., New J. Phys. (2015)
Le Gallo et al., J. Appl. Phys. (2016)

Sebastian et al., Nature Comm. (2014)
Boniardi, Ielmini, APL (2011)
Le Gallo et al., Adv. Electr., Mat. (2018)
Salinga et al., Nature Materials (2018)

Lee et al., Nanotechnology (2012)
Athmanathan et al., SISPAD (2015)

▪ Successfully commercialized
▪Well understood device physics

Le Gallo and Sebastian, J. Phys. D: Appl. Phys. (2020)



Key physical attribute I: Non-volatile binary storage
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▪A binary storage device, with a distribution of SET and RESET conductance values

Tuma et al., Nature Nanotechnology (2016)

Non-idealities: broad SET 
distribution

LOGIC “0”

LOGIC “1”

LOGIC “0”

LOGIC “1”



Key physical attribute II: Analog storage capability
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Sebastian et al., J. Appl. Phys. (2018) Le Gallo et al., Adv. Electr. Mat (2018)

Non-idealities: conductance 
variations

▪An analog storage device, but with noise and drift



MVM using PCM
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MAP to 
conductance 

values

MAP to read 
voltage

DECIPHER 
from the 
current

▪A is a 256X256 Gaussian matrix coded in a 
PCM chip
▪ x is a 256-long Gaussian vector applied as 

voltage
▪Precision equivalent to 4-bit fixed point 

arithmetic
Le Gallo et al., Nature Electronics (2018)

Mushroom-type PCM



Key physical attribute III: Accumulative behavior
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Sebastian et al., J. Appl. Phys. (2018) Le Gallo et al., ESSDERC (2016)

Non-idealities: Stochasticity 
& Nonlinearity

▪A non-volatile integrator, but non-linear and stochastic
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The application landscape

30



Applications exploiting non-volatile binary storage

31

Database query Hyperdimensional computing

Giannopoulos et al., Adv. Int. Sys. (2020) Karunaratne et al., Nature Electr. (2020)



Database query
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▪Database query involves a high percentage of logical operations
▪Key challenge: Retrieving the stored data and bringing it to the processor that will 

execute the query

Information on newly discovered stars Bitmap representation

Hamdoui et al., DATE (2019)

Which star is far or large?
Which star is new and medium?



In-memory database query
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▪Database stored in terms of the conductance states of memristive devices
▪To perform logical operations, multiple rows are biased simultaneously, and the 

resulting current is sensed per column using variable reference SAs. 



Experimental demonstration on a PCM array
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Query:  “Turing Award” OR “Kavli Prize”

▪A PCM array holds the database in a non-
volatile fashion
▪By employing non-stateful AND and OR in-

memory logic operations, it is possible to 
query this database

Giannopoulos et al., Adv. Int. Sys. (2020)



Cascaded database query
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▪Real-world database queries consist of a multitude of subqueries
▪Any query can be expressed as the sum of products (SOP) or the product of sums 

(POS) where sum and product operators correspond to OR and AND, respectively
▪Possible to perform such as cascaded query both in-memory and near-memory



Hyperdimensional computing

36

Pentti Kanerva, Redwood Center for 
Theoretical Neuroscience, UC Berkeley

Kanerva, “An introduction to computing in distributed 
representation with high-dimensional random vectors”, Cogn. 

Comp., 2009
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Normalized Hamming distance

D = 10,000

D = 1,000

D = 100

D = 32

▪ The brain’s circuits are massive in terms of numbers of neurons and synapses
▪ Remarkably robust to failures and imperfections
▪ How about computing with holographic hyperdimensional (HD) binary vectors (~10,000)?
▪ The vectors in an HD space are nearly orthogonal to each other
▪ By manipulating such vectors one can efficiently realize certain machine learning tasks

Orthogonality of randomly drawn HD vectors



Example: European language classification
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A = [1 0 0 1 0 … 0 1 0]
B = [0 1 0 1 1 … 1 0 1]

Z = [0 1 1 1 0 … 0 0 1]
# = [0 1 1 1 0 … 0 0 1]

How to encode “ICH BIN”?

C = [0 1 1 1 1 1 … 0 1 0 1]

I = [0 1 0 0 1 1 … 0 0 1 0]

ρC = [1 0 1 1 1 1 … 1 0 1 0]

H = [1 1 1 0 0 1 … 1 0 1 1]

“ICH” = ρρI*ρC*H = [1 1 0 0 1 0 … 1 1 0 1]

“CH ” = ρρC*ρH*# = [0 0 1 1 0 1 … 1 0 1 0]

“H B” = ρρH*ρ#*B = [0 0 1 1 1 0 … 0 1 0 1]

“ BI” = ρρ#*ρB*I = [1 0 1 0 0 0 … 1 0 0 0]

“BIN” = ρρB*ρI*N = [0 1 1 0 0 1 … 0 1 1 0]

“ICH BIN” = “ICH” + … = [0 0 1 1 0 1 … 1 1 0 0]

ρI = [0 0 1 0 0 1 … 1 0 0 1]ρρI = [1 0 0 1 0 0 … 1 1 0 0]

ITEM MEMORY

▪ Find a language prototype vector using trigrams



Example: European language classification
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Training phase

Item Memory

Encoding:
(∗,+,ρ) operations

Letter HD vector
10,000-bit

Language HD vector
10,000-bit

Train text: “Denn im Tau der kleinen Dinge 
findet das Herz seinen Morgen und erfrischt 
sich...”

German

21 learned language prototype vectors

Associative Memory

0 0 1 1 0 1 1 ....

0 1 1 0 1 0 1 ....

Testing phase

Identified 
language

Test sentence: “Gegen dummheit 
gibt es keine pillen”

Search on the language prototype vectors

Item Memory

Encoding:
(∗,+,ρ) operations

Associative Memory

Letter HD vector
10,000-bit

Query HD vector
10,000-bit

0 0 1 1 0 1 1 ....

0 1 1 0 1 0 1 ....

▪ Find the closest prototype HD vector to the query HD vector



In-memory hyperdimensional computing
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Software PCM
< 2% < 2% < 1%

▪ HD computing involves manipulation 
and comparison of vectors

▪ Highly robust to computational errors
▪ Encoding

✓ In-memory read logic
▪ Associative memory search

✓ In-memory dot-product
▪ Exploits non-volatile binary storage

Karunaratne et al., Nature Electronics (2020)



Scientific computing
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Bit slicing

Bojnordi et al., HPCA (2016)

Mixed-precision

Le Gallo et al., Nature Electronics (2018)



Mixed-precision linear solver

41
Le Gallo et al., Nature Electronics (2018)

D
A

C
/A

D
C

DAC/ADC

Programming circuit

Computational memory unitHigh-precision unit

▪ Solution iteratively updated with low-precision error-correction terms (iterative 
refinement)
▪Correction terms are obtained using an inexact inner solver 
▪The matrix multiplications in the inner solver are performed using in-memory computing



Mixed-precision linear solver: Experimental results
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Experimental result: 10,000x10,000 matrix,  959,376 PCM devices

Matrix A:

5x less digital 

multiplications

▪Measured energy savings on end-to-end system w/o computational memory: 
✓ Speed-up of 7x and energy reduction of 7x over CPU-only (POWER8 with 8 threads)
✓ Speed-up of 3.6x and energy reduction of 7x over GPU-only (Nvidia P100)
✓ Expected energy savings of 20x with improved PCM devices

▪More accurate in-memory computing → Higher gain in performance



Signal processing and optimization

43

Compressed sensing

Le Gallo et al., Proc. IEDM (2017)
Li et al., Nature Electr. (2018)

Combinatorial optimization

Bojnordi et al., HPCA (2016)
Cai et al., Nature Electr. (2020)



Compressed sensing and recovery
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Measurement

High-dimensional 
signal

Iterative reconstruction (AMP Algorithm)

High-dimensional 
signal

Le Gallo et al., Proc. IEDM (2017) Le Gallo et al., IEEE Trans. Electr. Dev. (2018)

▪ Store the measurement matrix in a cross-bar array of resistive memory devices
▪ The same array used for both compression and reconstruction
▪ Reconstruction complexity reduction: O(NM) → O(N)



Compressed sensing and recovery: Experiments
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 4x4-bit Fixed-point

 Floating-point

Experimental result: 128X128 image, 50% sampling rate, 
Computation memory unit with 131,072 PCM devices

▪ Estimated power reduction of 50x compared to using an optimized 4-bit FPGA matrix-
vector multiplier that delivers same reconstruction accuracy at same speed

Le Gallo et al., Proc. IEDM (2017) Le Gallo et al., IEEE Trans. Electr. Dev. (2018)



Deep Learning
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Sebastian et al., VLSI (2019)
Eleftheriou et al., IBM JRD (2019)
Joshi et al., Nature Comm. (2020)
Nandakumar et al., Front. Neuroscience (2020)



Deep Learning: Training and Inference
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Data input 
(MINST database)

?



Deep Learning: Training and Inference
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Data input 
(MNIST database)

Forward propagation
TRAINING

7



Deep Learning: Training and Inference
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Backward propagation:  this is a two!

TRAINING

Data input 
(MNIST database)

7X



Deep Learning: Training and Inference
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Data input 
(MINST database)

Update weights

TRAINING

Data input 
(MNIST database)



Deep Learning: Training and Inference

51

INFERENCING
Fully Trained Network

2



Deep Learning: Approaching human accuracy

0 

5 

10 

15 

20 

25 

2000 2002 2004 2006 2008 2010 2012 

Speech Recognition - %Error Rate 

Introduction of large 

scale neural networks

Introduction of large 
scale neural networks

650,000 neurons

5,000,000 neurons

Human
Error

▪Key reasons: Large amounts of data and immense computing power
▪ Significant role played by the semiconductor industry and computer architects!



The computational efficiency problem of DL
Training Image recognition model
Dataset:  ImageNet-22K
Network:  ResNet-101

256 GPUs
7 hours
~450kWh

4 GPUs
16 days
~385 kWh

For reference:  1 model training run is ~2 
weeks of home energy consumption

https://arxiv.org/abs/1708.02188

▪Deep learning is computationally intensive
▪Time consuming even with high-performance computing resources
▪Power consumption prohibitive for applicability in domains such as internet of things



Deep learning based on in-memory computing

54

Biswas et al., IEEE JSSC 2019
Valavi et al., IEEE JSSC, 2019

SRAM

Hu et al., Adv. Mat., 2018
Xue et al., ISSCC, 2019

RRAM

Ambrogio et al., Nature, 2018
Sebastian et al., VLSI, 2019

PCM

Merrick-Bayat et al., IEEE TNNLS, 2017

Flash

Wang et al., IEEE TVLSI, 2019

CHARGE-BASED 
MEMORY

RESISTANCE-
BASED MEMORY



Deep learning: Inference

2

The trained synaptic weights are mapped to an array of computational memory cores 
performing matrix vector multiply operations corresponding to each layer



Mapping synaptic weights to PCM devices

56

Iterative 
programming 

algorithm

+

-

Papandreou et al., ISCAS (2011)
Sebastian et al., E/PCOS (2016)

Measurements based on >10k devices Target synaptic weight

▪ Iterative programming algorithms used to achieve a target conductance value
▪Non-ideal analog storage → Distribution of conductance values

32 representative states



Mapping synaptic weights to PCM devices

57

ResNet-32 on CIFAR-10

▪A custom training approach needed to account for the conductance distributions
▪Possible to achieve software-equivalent classification accuracies

Joshi et al., Nature Comm. (2020)



Inference experiment: ResNet-32 on CIFAR-10

58

723,444 PCM devices (1T1R)

  
 

  
 

  
 

  
 

  
 

  
 

  
 

    

    

    

    

    

    

    

            

 
  

 
 

  
 
  
 
 
  
 
 
 
 
  

 
 
  
 

 

        

           

             

                  

Joshi et al., Nature Comm. (2020)

              

         

              

         

              

         

   
  
  

   
  
  

   
 
  

   
  
  

   
  
  

   

  

  

   

  

  

   

  

  

       

              

   
  
  

   
  
  

   
  
  

   
  
  

   
  
  

   
  
  

     
              

                      

       

           

              

               

   

  

  

▪With a custom noise-injective training, software equivalent accuracies can be achieved



System integration: Communication fabric

59

▪Compared to all-digital 
implementations, in-memory 
computing is more amenable to 
highly pipelined dataflows

▪Communication fabric should 
facilitate efficiently movement of 
activations from one computational 
memory unit to another 



Communication fabric for CNNs

60

Consolidated graph representation of CNNs
5 Parallel Prism topology 

Dazzi et al., MLSys Workshop @NeurIPS, 2019

Simple feedforward

ResNet (2015)

DenseNet (2016)

Inception (2014)

▪ The key distinguishing feature of the various CNN architectures is their connectivity
▪ Obtain a consolidated graph representation for all state-of-the-art CNNs (C)

▪ Vertices represent convolution layers
▪ Edges represent activations

▪ Communication fabric with 5-parallel prism topology (F)
▪ CNN executable in a pipelined fashion on F if there exists a homomorphism h: C→ F



Mapping of ResNet-32 on an array of CM cores

61

▪ The communication fabric is 5PP
▪ The links active in this implementation verify the homomorphism
▪ Each CM core has modest digital processing capability and its own input and output memory
▪ Each core stores the weights corresponding to each convolution layer
▪ The input memory stores the pixel neighborhood required for the convolution and the result of 

the dot product computation is stored in the output memory
▪ The estimated throughput is 38600 Images/s!



System integration: Software stack

62

Software stack

Eleftheriou et al., “Deep learning acceleration based on in-memory computing”, IBM J. Res. Dev., 2019
Kourtis et al., “Compiling neural networks for a computational memory accelerator”, Proc. SPMA (EuroSys), 2020

▪ Essential to develop a software stack that can 
compile a NN model into operators suitable for 
the accelerator
✓ Compile the model into optimized 

operations and routing
✓ Orchestrates the data movement to and 

from the accelerator

▪ Three essential software components
✓ The computational memory OS driver
✓ The computational memory compiler
✓ A library that allows inference hiding low-

level details

▪ A non-trivial task and fertile area of research



Sebastian et al., VLSI, 2019

Forward propagation

7
Backward propagation:  this is a two!

7X
Backward propagation:  this is a two!

High Precision!

Non-ideal accumulative 
behaviorUpdate weights

High Precision!

Apply acc. pulses sporadically & blindly!

Nandakumar et al., ArXiv, 2017

Deep learning training



Mixed-precision training: Experimental results

16

▪Each synaptic weight mapped to two PCM devices 
(~400,000 PCM devices)
▪Comparable test accuracy as FP32 training
▪Negligible accuracy drop during inference after training

https://analog-ai-demo.mybluemix.net

https://analog-ai-demo.mybluemix.net/


Cloud Demo

65

https://analog-ai-demo.mybluemix.net

https://analog-ai-demo.mybluemix.net/


Mixed-precision training: Extension to larger 
networks

18

▪Convolutional neural network with approx. 1.5 Million parameters
▪Better generalization that FP32 based training due to the use of stochastic devices
▪Also applicable to long-short term memory  (LSTM) networks  and generative 

adversarial networks (GANs)



Deep learning training: Other approaches

67

Approach II (In place weight update)

Nandakumar et al., Proc. ISCAS (2018)

Approach I (Mixed-precision)

Yu, Proc. IEEE (2018)

Prezioso, Nature (2015)

Eleftheriou et al., IBM JRD (2019)
Ambrogio et al., Nature (2018)
Gokmen and Vlasov, Front. Neuroscience (2016)
Alibart et al., Nature Comm. (2013)

Gokmen and Haensch, Front. Neuroscience (2020)



Spiking Neural Networks (SNNs)

68

▪ Objective 1: Exploit the temporal coding and synaptic/neuronal dynamics to transcend deep learning
▪ Objective 2: Develop computing substrates for efficient realization of neuronal and synaptic dynamics

Static non-linear functions

Information transmitted as floating point numbers!

Scalar multiply units

Neuron
Synapse

Conventional Neural Networks

Pfeiffer and Pfeil, Front. Neuroscience (2018), Rajendran et al., IEEE SP Magazine (2019)

▪ Asynchronous
▪ Local, event-based learning
▪ Employed by the brain

Synaptic dynamics

Neuronal dynamics
Information transmitted in terms of spikes (rate, timing etc.)



SNN co-processors (Digital and Analog CMOS-
based)

69

▪Computation of neuronal and synaptic 
dynamics in digital CMOS circuitry  

▪Exploit subthreshold MOSFET 
characteristics to directly emulate 
neuronal and synaptic dynamics

Merolla et al., Science (2014)
Davies et al., IEEE MICRO (2018)

Benjamin et al., Proc. IEEE (2014)
Qiao et al., Front. Neuroscience (2015)
Moradi et al., IEEE Trans. Biomed. Circuits Syst. (2018)



SNNs using in-memory computing
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Yu et al., IEEE TED (2011)
Kuzum et al., NanoLetters (2012)
Kim et al., Proc. IEDM (2015)
Wang et al., Nature Mat. (2017)

Al-Shedivat et al., IEEE Trans. Emerg. Sel. 
Topics Circuits Syst. (2015)
Tuma et al., Nature Nanotech. (2016)
Mehonic and Kenyon, Front. Neurosci. (2016)
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Stochastic computing and security
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Probabilistic inferenceTrue random number generator

Stochastic neurons/synapses Physical unclonable function

Inherent stochasticity 
associated with 

resistance switching

Jiang et al., Nature Comm., 8 (2017)

Tuma et al., Nature Nano., 11 (2016)

Shim et al., Sci. Reports, 7 (2017)
Mizrahi et al., Nature Comm 9 (2018)

Nili et al., Nature Electr., 1 (2018)

Carboni & Ielmini, Adv. 
Electr. Mat. (2019)

Ability to control the 
stochasticity via the 

voltage/duration of write pulses!

Bichler et al., IEEE TED, 59 (2012)



Outline
▪ Introduction

▪ Memory devices and computational primitives
✓Charge-based memory devices & Computational primitives
✓Resistance-based memory devices & Computational primitives
✓Phase change memory: A prototypical resistance-based memory

▪ Applications
✓Exploiting non-volatile binary storage
✓Scientific computing 
✓Signal processing & Optimization
✓Deep learning 
✓Stochastic computing and security 

▪ Discussion
✓Increasing the precision of in-memory computing
✓Photonic in-memory computing
✓Summary
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Increasing the precision of in-memory computing
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Boybat et al., Nature Comm. (2018)

Non-ideal accumulative behavior:
Multi-device synaptic architectures

Boybat et al., Proc. ISCAS (2019)

S. Kim et al., IEDM (2013)
Koelmans et al., Nature Comm. (2015)
Giannopoulos et al., IEDM (2018)

Non-ideal analog storage: Projected 
phase-change memory

Sub 10fJ, 8b scalar multiplication 
without moving data!



Projected phase-change memory 
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Kim et al., Proc. IEDM (2013), Koelmans et al., Nature Comm. (2015), Giannopoulos et al., IEDM (2018)

▪ Modified PCM device concept
▪ Exploits the I-V characteristic of phase change materials
▪ Substantially lower drift and conductance fluctuations arising from 1/f noise
▪ Precision equal to 8-bit fixed-point arithmetic



Multi-device synaptic architectures

75
Boybat et al., Nature Communications (2018)

▪ Using multi-device architectures, an increased dynamic range/conductance change 
granularity, extended linear behavior and improvements in conductance change 
stochasticity can be achieved

▪ It is possible to device very innovative arbitration schemes for device selection



Photonic memory devices
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▪ Information stored in the phase configuration of a PCM segment on top of a 
nanophotonic waveguide

▪ Write: Evanescent coupling to the PCM
▪ Read: Monitor changes in the optical transmission

Rios et al., Nature Photonics, 9, pp. 725 (2015)
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Analog storage capability
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Amorphous
GST

Increasing programming pulse energy

Programming Energy (pJ)

▪Possible to achieve a continuum of transmission levels 

Li et al., Optica 6(1), 1-6 (2019)



Photonic in-memory computing
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▪Can perform in-memory scalar multiplication analogous to the electrical counterpart
▪ Larger areal footprint
▪Exhibits higher linearity and improved accuracy
▪Potential gain in speed
▪ Inherent wavelength division multiplexing capability

Rios et al., Science Advances, 5(2), (2019)

scalar multiplication



Integrated photonic tensor core
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Feldmann et al., ArXiv (2020)

▪By exploiting the Inherent 
wavelength division multiplexing 
capability, it is possible to perform 
a complete convolution operation 
in a single time step!



Summary
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▪ In-memory computing is an emerging von Neumann computing paradigm 
where the physical attributes of memory devices are exploited to compute in place 
▪ Can realize several logical and arithmetic primitives using both charge-based as well as resistance-

based memory devices
▪ Non-volatile binary storage, analog storage and accumulative behavior typically exploited when 

computing with phase-change memory
▪ The applications span high precision scientific computing to stochastic computing that relies on 

imprecision
✓ Data-base query and hyperdimensional computing facilitated by non-volatile binary storage
✓ Approaches such as bit slicing and mixed-precision computing required to meet the precision 

requirements of scientific computing
✓ Signal processing and optimization are particularly attractive application domains for in-

memory computing
✓ Using custom noise-injective training approaches, it is possible to achieve almost software-

equivalent classification accuracies in deep learning inference
✓ Using mixed-precision training, it is possible to achieve almost software-equivalent 

classification accuracies in deep learning training
▪ Emerging device-level concepts include projected memory and photonic in-memory computing



Review article on in-memory computing
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Analog 
AI Hardware 
Acceleration 
Toolkit

IBM Research AI Hardware Center  /  © 2020 IBM Corporation

https://analog-ai.mybluemix.net/

Current Capabilities Include:

• Simulate analog MVM operation 
including analog backward/update 
pass

• Simulate a wide range of analog AI 
devices and crossbar configurations 
by using abstract functional models 
of material characteristics with 
adjustable parameters

• Abstract device (update) models

• Analog friendly learning rule

• Hardware-aware training for 
inference capability

• Inference capability with drift and 
statistical (programming) noise 
models

Roadmap:

Integration of more simulator features in 
the PyTorch interface

Tools to improve inference accuracy by 
converting pre-trained models with 
hardware-aware training

Algorithmic tools to improve training 
accuracy 

Additional analog neural network layers

Additional analog optimizers

Custom network architectures and 
dataset/model zoos

Integration with the cloud

Hardware demonstrators
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