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Computer systems: Trends and opportunity

" Three key trends
v'Data access is a major bottleneck
v Energy consumption is a key limiter
v Energy to move data dominates compute energy

=" Opportunity

v'"Minimize data movement by performing computation directly (near)
where the data resides

v'Processing in memory (PIM)
o In-memory computing
o Near-memory computing/near data processing

Mutlu et al., Microprocess. Microsyst. (2019)



In-memory computing
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" Perform “certain” computational tasks in place in memory
= Achieved by exploiting the physical attributes of the memory devices, their array level
organization, the peripheral circuitry as well as the control logic

= At no point during computation, the memory content is read back and processed at the
granularity of a single memory element



Why in-memory computing?

Reduce computational time
complexity

Reduce the cost of data motion

LPDDR DRAM

(Gigabytes)

640pJ/word

On-chip SRAM
(Megabytes)

50pJ/word

Local SRAM
(Kilobytes) Mostly from massive parallelism and
analog way of computing
Additional complexity reduction from
physical coupling
\. Dally, ScaledML (2019) Sebastian et al., Nature Comm. (2017)
Horowitz, ISSCC (2014) Di Ventra, Nature Phys. (2013)

0.2pJ for 8bit
multiplication
(45nm CMOS)

5pJ/word
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Constituent elements

Charge-based memory Resistance-based memory
gate
Fluatlng
WL
Coulomb’s law Ohm’s law

Aga et al., HPCA (2017) (SRAM) Burr et al., Adv. Phys. X (2017)

Seshadri et al., MICRO (2017) (DRAM) Sebastian et al., J. Appl. Phys. (2018)

Merrikh-Bayat, IEEE TNNLS (2018) (Flash) lelmini and Wong, Nature Electr. (2018)

= Charge-based memory: Presence or absence of charge (eg. DRAM, SRAM, Flash)

= Resistance-based memory: Differences in atomic arrangements or orientation of
ferromagnetic metal layers (eg. PCM, metal-oxide RRAM, STT-MRAM)

= Several computational primitives realized by both types of memory



Charge-based memory devices

I oo 1
BL"'_L[ZO:I"_L'E

~ 103 electrons
Access time < 1ns
Endurance > 10'°

SRAM
1 T: _OI J_-- ..................... +
' :Z%& EeE
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DRAM

0IOJ00

C = BL

~ 10° electrons
Access time < 10ns
Endurance > 10'°

Flash memory

floating
gate ...

“ N OO0

\Ln_/ D n_J
e
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BL
SOURCE

~ 100 electrons
Access time (read) < 100ns
Endurance < 10°

=" SRAM: Two CMOS inverters connected back to back. The charge is confined
within the barriers formed by FET channels and by gate insulators
" DRAM: Capacitor connected in series to a FET

" Flash: The storage node is coupled to the gate of a FET

Emerging nanoelectronics

devices, John Wiley & Sons (2015)
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Logical operations using DRAM

BL
WL

operands
N

WL

WL

VSEL
CSEL _I:-,_r_.
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_ Vat+Ve+Vige

VL= 3

1

(-

VREF

0/1

A AND Operation SA Result = 1
Bl Ver =0V ViRer
SA Result=0
00 01 10 11 >
Bit combinations
A OR Operation _
Va, Vg, # OV SA Result=1
.................................................... VRer
SA Result=0
00 01 10 11 >

Bit combinations

" Bitwise logical operations performed by simultaneously activating WLs

" Operands in cells A and B, SEL is used to dictate whether AND or OR is realized

Sheshadri et al., MICRO (2017), Li et al., MICRO (2017)
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Logical operations using SRAM

AND Operation  SAResult=1
BL : BL Vi Vier
WL l l ---------------------------------------------------------------
SA Result=0
S B B >
2 B 00 01 10 11
g WL l l Bit combinations
g- SA Result=1

) (s

NOR Operation
v A
VREF J_‘K[Z}H‘ VREF I N v

SA Result=0

V. Ve o0 01 10 1M1
AAND B i BLANQRB Bit combinations

= BL and BL are pre-charged to the supply voltage

>

= Both the WLs are activated so that both BL and BL are discharged at different

rates that depend on the data stored in the bit-cells
Aga et al., HPCA (2017), Jeloka et al., JSSC (2016)
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Matrix-Vector Multiply using SRAM + Capacitor

_ - - - Vin1 o l l
A Agg || X b @G))\\ © @)\\ ©
| JL L A]]_{ p— AZ]_{ p—
MAP to cap \ SRAM cell v SRAM cell v
voltage DECIPHER v, o
from voltage © l ™ l
MAP to SRAM along the BL @ 2% @ @ 2% @
content g .
A H T Az H T
SRAM cell N SRAM cell N
o o
Vout1 Vout2
= SRAM cells used to store the elements of a binary matrix
= Step 1: Capacitors charged to input values Biswas et al., ISSCC (2018)

= Step 2: Capacitors associated with value 0 are discharged Valavi et al., JSSC (2019)
= Step 3: Capacitors shorted along the columns Khaddam-Aljameh, TVLSI (2020)



MVM using Flash memory

i I Voo Voo
A Agp [ X by Vint Vin
— (o] o
Ax A (X2  [b2 V”,Zi | V”vé 4
/ 1\ NG *
Vs
MAP to charge MAPtogate  DECIPHER llos ﬂ
on floating gate voltage from current V Voo °
. t21 t22
(binary) b %
* The current I is a function of V,, V and VGS4r'.|: —
= By fixing V., Kirchhoff’s current law can be o
employed to perform MVM d —>,

* Matrix elements are stored in terms of V, and
the binary input vector is used to modulate V

Diorio et al., IEEE TED, 43, 1972 (1996)
Merrikh-Bayat et al., IEEE Trans. Neural Networks and Learning Systems, 29, 4782 (2018)



Resistance-based memory devices

ReRAM PCM STT-MRAM
Top electrode Top electrode Soft Layer
ooo;.‘g‘@‘l LO000G— Crystalline
Conductive *0.3’3".’{5.}33 ! Tunnel barrier
filament @9"0,3.‘. Amorphous
Bottom _ '

Bottom electrode electrode Pinned Layer
Resistance range = 10%-107 Resistance range = 10*-10’ Resistance range = 10%-10*
Access time (write) = 10ns - 100ns Access time (write) ~ 100ns Access time (write) < 10ns
Endurance = 105-10° Endurance = 10°-10° Endurance > 10"

=" ReRAM: Migration of defects such as oxygen vacancies or metallic ions
=" PCM: Joule-heating induced reversible phase transition
=" STT-MRAM: Magnetic polarization of a free layer with respect to a pinned layer

= Resistance-based memory devices also referred to as memristive devices
Wong and Salahuddin, Nature Nanotechnology (2015)
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Logic design using resistance-based memory
devices

Low conductance (Logic “0”)

X \)X ‘ High conductance (Logic “1”)
Y
Y 7

= \/oltage serves as the sole logic state variable in conventional CMOS
=" CMOS gates regenerate this state variable during computation
" How about using the resistance state of memristive devices as a logic state variable?
" Can toggle the states by applying voltage signals; only binary storage required
= Logical operations enabled by the interaction between voltage and resistance state
variables
Borghetti et al., Nature (2010) Vourkas, Sirakoulis, IEEE CAS Magazine (2017)

16



Stateful logic

‘Memristive' switches enable ‘stateful’ logic
operations via material implication

Julien Borghetti', Gregory S. Snider’, Philip J. Kuekes', J. Joshua Yang', Duncan R. Stewart't & R. Stanley Williams' Ope ran dS

. b g & pivPg
Y7 Y7 In In Out
Voo Ve p g ¢ >2VRESET

Q
;/ | 0 0 1
Z 0 1 1
iﬂe 1 0 0

= 1 1 1

MAGIC: NOR Logic
Bit combination = 00

T T

1 1
R
result _|

s

Bit combination = 01

1 0
I

, Bit combination = 11
Borghetti et al., Nature (2010) \

|
o

S

1 0
SR

=" The Boolean variable is represented only in
terms of the resistance state

" Both the operands and result are stored in
terms of the resistance state variable

&

Kvatinsky et al., IEEE TCAS (2014)
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Non-stateful logic

" Both resistance and voltage state-
variables co-exist Va

= Data is stored in terms of resistance logic 3 o) N
state-variables; However, the logical ~ b lout Irer
operations are implemented in the N
periphery

" Eg. by simultaneously sensing multiple
memristive devices connected to the
same sense amplifier

= Key advantage: Memristive devices are SA 00 0110 11 g
programmed rather infrequently - Bit combinations
limited cycling endurance is not a 0/1

challenge . ) ]
Voltage” state variable

““Resistance” state variable

Li et al., Proc. DAC (2016), Xie et al., Proc. ISVLSI (2017), Hamdioui et al., DATE (2019)
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MVM using resistive memory

_A11 A12_ X b,

Axy Agp |[X2 b,

MAP to MAPtoread  DECIPHER Vioo
conductance voltage from the
values current

" [n-place matrix-vector multiply (MVM) operation
with O(1) time complexity

" Exploits analog storage capability and Kirchhoff’s ! lout1 vIOUtZ
circuits laws o] o)

" Can also implement MVM with the matrix Vint Vin
transpose

Burr et al., Adv. Phys. X (2017), Xia and Yang, Nature Materials (2019)



PCM: A prototypical resistance-based memory
Commonly used phase change materials

Ge(In,Ag,Sn)

Amorphous Crystalline

.‘-.* 9

1971
Teg;Ge,55h,S,

Teg;Ge, § (Ge,5Shgg

Te Sh(Bi,Au,As)

AuTe, Sb,Te, Sb;oTes, RESET
Wuttig & Yamada, Nature Materials (2007)

Burr et al., JETCAS (2016)
" A nanometric volume of phase change material .

+ +o4
(AN NI
e
DRROOOOROOIOD

between two electrodes 515:51551515555151555

= “WRITE” Process CR RN
v’ By applying a voltage pulse the material
can be changed from crystalline phase
(SET) to amorphous phase (RESET)
= “READ” process
v Low-field electrical resistance

Disordered, high resistance Ordered, low resistance

SET
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A brief history of phase change memory

t 6, 1
Sep 966 S. R. OVSHINSKY 3,271,591
Filek i . 1963311-1-14:&1. CURRENT CONTROLLING DEVICE
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;f" % T2 = Fai S fféﬁ%« R. G. Neale, D. L. Nelson and G.
% g T % ,;," E. Moore., Electronics (1970)
imp,dwg,z’;‘;@ Capacity: 256 bits
BTN e .~
Stan Ovshinsky (1960s) ’ RESET: ~200mA, <25V, 5 us
SET: 5mA, ~25V, 10ms

Read: 2.5mA, <5V

21



A brief history of phase change memory

Commercial success of Advances in semiconductor

optical recording SET Speed manufacturing

10 ¢
\ 110°
- Cpu transistor count
~100ns by B douPIes .::vcrg 1
1 two years '
8 — B
2 3 3 10?
e
2
-4
V R
01 \ ]
~ \ 65nm 105
1OOUA <: N F : \. 45nm 3
3 eature size \ 1
x0-7 every 32nm 1
I two years \ .
0-01 1 103

Write current 1970 1980 1990 2000 2010 2020



PCM as storage class memory

4 Memory Storage )
< — >
Cost per Bit DRAM —
peran g I ¢ g

Read / Write  DRAM _@ NAND
Latency 50 ns 40 /2500 us
Cell DRAM B @ L — NAND
Endurance  10'5writes - 10% writes
Data DRAM - 8 NAND
Retention NA - Refresh . 0.2to 1yrs
Power per DRAM - @ B — NAND
GB 2 W/GB — 0.5 W/GB
Bandwidth DRAM S— N

\ 10 GB/sec - @ 250ﬁ§)2ec /

= Latency: much faster than FLASH (100’s of ns vs. 100’s of us)

= Write endurance: 1,000 x FLASH

= Nonvolatile, true random access capability, write in-place

= Very good scaling potential demonstrated (beyond 10nm node)
= Cost: between FLASH and DRAM (as technology matures)

Burr et al., IBM JRD (2008), Lee et al. ISCA (2009), Cappelletti, IEDM (2015)

Hard disk ~5 ms
Flash
~100 us >
0
=
()]
<100 ns
<1 ns

Commercialized as
SCM by Intel/Micron
(3D Xpoint)



Why PCM for in-memory computing?

Strong field and temperature

Nanoscale thermal transport,
dependence

thermo-electric effects
lelmini, Zhang, JAP (2007)

Le Gallo et al., New J. Phys. (2015)
Le Gallo et al., J. Appl. Phys. (2016)

Lee et al., Nanotechnology (2012)
Athmanathan et al., SISPAD (2015)

Ambient
Voltage (V) temperature (7,.,)

-i &

Current (/) Power (/V)

3 _ Structural
' dynamics

Amorphous thickness (u,)

State of relaxation (Z)

= Successfully commercialized

= Well understood device physics

Phase transitions,
structural relaxation

Sebastian et al., Nature Comm. (2014)
Boniardi, lelmini, APL (2011)

Le Gallo et al., Adv. Electr., Mat. (2018)
Salinga et al., Nature Materials (2018)

Le Gallo and Sebastian, J. Phys. D: Appl. Phys. (2020)
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Key physical attribute I: Non-volatile binary storage

10 LOGIC llo” 1 0000 J J ! J
""" e Non-idealities: broad SET
- e 8000 distribution
- O
G O
- = ue\N»
g % 6000 LoGIC “0
g 10° e ke
2 - 2 4000
[
= LOGIC “1” ~ E
Sy Rt R . < LOGIC “1”
--m- SET '-._. 2000 \
--o- RESET . -
D L
10° 10" 10> 10® 10* 10° 10° 10" 10° 10° 10" 0 10 20 30 40 50 60

Conductance (pS)

Number of cycles

Tuma et al., Nature Nanotechnology (2016)

= A binary storage device, with a distribution of SET and RESET conductance values



Key physical attribute Il: Analog storage capability

Resistance (QQ)

-
o
)
IIII

10 -

10° -

100 200 300 400 500 600 700 800
Programming current (uA)
Sebastian et al., J. Appl. Phys. (2018)

Resistance (Q)

—

Q

(9}
1aal 1

=t
o
o)
llll

Non-idealities: conductance

- 7

variations

l
4 ' :.'\“.J\J

107_ "."M

v V""'W::: :: : ::mulz II = " l
% 00,
4 414«“‘4‘
»
N4 e ™ ) ? " h I‘

10 10° 10°
Time (s)
Le Gallo et al., Adv. Electr. Mat (2018)

= An analog storage device, but with noise and drift
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MVM using PCM

A Ay b1
A1 Az = | b2
Azr Asp]| 2 b3

! e !

MAP to MAPtoread DECIPHER
conductance voltage from the
values current

" Ais a 256X256 Gaussian matrix coded in a
PCM chip

" x is a 256-long Gaussian vector applied as
voltage

= Precision equivalent to 4-bit fixed point
arithmetic

Mushroom-type PCM

Axr = b

NN

. value
N

A

Estimated b
N o

O PCM chip
%X 4x4-bit fixed-point

-4 -2 0 2 4
Exact b; value
Le Gallo et al., Nature Electronics (2018)
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Key physical attribute Ill: Accumulative behavior

107

Resistance (Q)
=l

—

o
(6]

|

0 5 10 15 20 25
Number of pulses

Sebastian et al., J. Appl. Phys. (2018)

Non-idealities: Stochasticity

Conductance (uS)
. ...+ 7

& Nonlinearity

r—

AN

A

Q\;"lﬁ‘ -) f‘/]j«‘, L@?? »—} >

. ¥
N
NS

RO
SRAT

10 15
Number of pulses
Le Gallo et al., ESSDERC (2016)

20

= A non-volatile integrator, but non-linear and stochastic
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Outline

= Applications
v Exploiting non-volatile binary storage
v'Scientific computing
v'Signal processing & Machine learning
v'Deep learning
v'Stochastic computing and security

29



The application landscape

Combinatorial

Stochastic
computing

and security
Low degree of precision

Data motion
—>
Low « @ ® @ High

>,A optimization

= Reservoir O

k) computing : Spiking neural

= networks

: ? Q...

8 RNG L DL : Sparse ompre_ssed
© | PUF ¢ :Associative inference  : coding  °S"SNY
o| @ : . memory : ’ : '
+ ‘ Image : : 5

"g filtering and :

o . compression:

& : :

S ®

@

Deep learning

Signal processing, optimization and machine learning

Computational precision

PCA
®

DL

training Solving linear

‘ and partial
differential equations

.
.
.
.
.
.

Scientific
computing

High degree of precision
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Applications exploiting non-volatile binary storage

Database query

Giannopoulos et al., Adv. Int. Sys. (2020)

Hyperdimensional computing

natureelectronics

»\J < e

Ly W
In-memory'computing
finds a new.dimension

Karunaratne et al., Nature Electr. (2020)
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Database query

Informatlon on newly discovered stars Bitmap representation
| I@m -!IEII!IEIEEEIII
' Large 2016 0
! B 23 Medium 2014 LI S LR
Large 1 0 0 0 00O 0 O
C 43 Small 2015 Medium [0 1 0 1 1 1 0 O
D 60 Medium 2016 Small 0 01 0 0 0 1 1
E 25  Medium 2000 New 1 0 0 1 0 0 0 O
F 34  Medium 2001 ol L O L RO R N
G 18  Small 2012 OR [1/0f111]0/0]0]0
H 30 Small 2011 AND |0/0]0/1]0]|0]f0]0

Which star is far or large?
Which star is new and medium?

= Database query involves a high percentage of logical operations
= Key challenge: Retrieving the stored data and bringing it to the processor that will
execute the query

Hamdoui et al., DATE (2019)
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In-memory database query

Entry .
Attribute #1#2 #3 #4#5
A o 1 0 1 0
. : . . 1 ; VRead
C 0 1 0 0 1 ’
D 0 0 1 1 0
E o 1 1 0 1
! ! ! 0 0 0 VRead
CORE 0 1 1 0 1
A AND D 0 0 0 1 0

AND 7OR
I ref I ref

Control

Qutery

SV VAVl

Output

) A

v dvd
VA ddvd

1004

IReaq (a.u.)

0

o0 [ o0 | 10 ] 11

2-bit possible combinations

= Database stored in terms of the conductance states of memristive devices
* To perform logical operations, multiple rows are biased simultaneously, and the
resulting current is sensed per column using variable reference SAs.
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Experimental demonstration on a PCM array

100 nm
/:’14‘50 nm

IBM Research 1 2 3 4 5 6 7 8 9 10
it

Labs Almaden | Australia Brazil China Haifa India Ireland | TJWatson | Tokyo | Zurich
1-Age 45-75y | ® L ] [ ] ‘
2-Age 20-45y [] ® ] ®

) 3-Age <20y | ® ® ® ‘
Logical state 1
4- Size(S) L ] L) L] L) L) L]
5- Size(L) [ ] | [ ] L ] [ ] ‘
6 — Nobel prize ] [] [}
7 - Turing award ] | [ ] ‘
- 8 - Kavli pri
Logical state 0 aviiprize C C
ooooo - e e e 9-N.Hem. [ ] | [ ] [ ] L ] L ] ° [ ] [ ] ‘
00000000 2
10— 8. Hem. ® ®

Query: “Turing Award” OR “Kavli Prize”

= A PCM array holds the database in a non-
volatile fashion
= By employing non-stateful AND and OR in-

S
@)

Column Current (uA)
N g (o))

o @)
memory logic operations, it is possible to S G Ll SN B St
. . |
query this database DS {\'@ b'ro D O S
Fe® e 8 RACLCIN
Giannopoulos et al., Adv. Int. Sys. (2020) v Ny
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Cascaded database query

!l ............. R e PR R PRPEEEEREPPPPEOPORRES : [Blood Pr. (H) OR Old peak (M)]
) . ra ™ .
S : 'Read » (1] L) : AND [Age (L) OR Gender (M)]
5 o :
In-memory: Analog § L SA D Q :
computational unit] | 3 : : 41x303 crosshar 1 2 303
Periphery: Digital i : > ; ; s :ge :1-) 0 1.0
computational unitJ / ° ! o ender(M)] 1 1 0
Do ! ol 3| Blood Pr. (H
SEEE A g e
( HEEER S ' \ : :
Configuration Switches | => |&| & |&/ & . & = |
: 21181 18 |1® : N T 5 41 ‘ Old peak (M)| 0 0 ) 1 ]
: © A= [BJOR[41] | 1 O 1 v
@crosshar @periphery \ : i A : e
[7 {_ . B=[1OR[2] 1 1 0 S
) ' ' @
l" k Analog I:D:I || (k-1) Digital C=[AJAND[B] | 1 O 0 i<
Computations Computations 0 ' i
Switch 52 1OR Cycle #1 Cycle #2
Cycle #1 Cycle #2 Cycle #{k1)  cycle #k :
i i i i . | —
|Analog| |Analog| |Analog |Analog . A I_IK net b ﬁ @ & —* Result
|—Digital-| |—Digital-| CLK Delay | Delay |
Time ke = memameumamneraneanannaraemananaasanaansaameanaanasacmecnnamsansansnnnnans . Time

= Real-world database queries consist of a multitude of subqueries

" Any query can be expressed as the sum of products (SOP) or the product of sums
(POS) where sum and product operators correspond to OR and AND, respectively

" Possible to perform such as cascaded query both in-memory and near-memory



Hyperdimensional computing

Orthogonality of randomly drawn HD vectors
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Pentti Kanerva, Redwood Center for
Theoretical Neuroscience, UC Berkeley
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Kanerva, “An introduction to computing in distributed
representation with high-dimensional random vectors”, Cogn.
Comp., 2009

R 4 1 L. —
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(=]

Normalized Hamming distance

1 O O0000101000 1 O 000 100000100000000001100101

= The brain’s circuits are massive in terms of numbers of neurons and synapses

= Remarkably robust to failures and imperfections

= How about computing with holographic hyperdimensional (HD) binary vectors (~10,000)?
= The vectors in an HD space are nearly orthogonal to each other

= By manipulating such vectors one can efficiently realize certain machine learning tasks



Example: European language classification

Wwita
Wullkommcn

Welcome * * * e Riiaat

* Benvenuti

Dobrododii
Udvozoljok *
wéllkom

Svelkl atvyke Tervetoloa

Laipin 10dza

ST, * * KoAwg fipBare

Bienvenue * * * Velkommen

Vitame Vas Merhba Bem-Vindos

Welkom

ITEM MEMORY

=[10010..010]
=[01011..101]

=[01110..001]
=[01110..001]

= Find a language prototype vector using trigrams

‘ (

How to encode

10H BIN

ppI=[100100..12100]
=[101111..1010]

))?

=[(111001..1011]

“ICH” = ppI*pC*H=[110010..1101]
“CH” = ppC*pH*#=[0011071...1010]
“HB” =ppH*p#*B=[001110...0101]
“BI” =pp#*pB*I=[101000..1000]

“BIN” = ppB*pI*N=[011001..0110]
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Example: European language classification

Training phase

Train text: “Denn im Tau der kleinen Dinge
findet das Herz seinen Morgen und erfrischt
sich...” {

Item Memory

Letter HD vector
10,000-bit

Encoding:
(x,+,p) operations

Language HD vector
10,000-bit

German
—p] 0011011....

Associative Memory
0110101....

21 learned language prototype vectors

Testing phase

Test sentence: “Gegen dummbheit
gibt es keine pillen”

Identified
language

= Find the closest prototype HD vector to the query HD vector

38



In-memory hyperdimensional computing

« [slk-1] [ sk [slk+1] [slk+2] | —»> ==~
symbol (s[k]) u
ftem Memory

$,— B, i t =
ol G, B

symbol (s[k])

HD computing involves manipulation
and comparison of vectors
Highly robust to computational errors
Encoding

v" In-memory read logic
Associative memory search

v In-memory dot-product

item hypervector (B[k]) Td bits

row decoder
==
7 |
o704 |
i
o
=z

Bncoder s &

A

(&) .

: 'J - .

Jgam gl l 5 .. [l
| L (s ]

peripheral

.........................

query hypervector (Q) /

bundler ! ‘
”””””” ﬁ'""’; prototype hypervector (P) H dbis . SOftwa re . PCM
d bits @ prototype hypervector (P)

‘ wordline driver < 2% < Z% < 1%
Associative Memoary
query hypervector (Q)
class; — P,
class, — P, . JE % J.E —_
k3] — 32
. ] e
d bits t E T ~
8 .F’2 " = om g E 5
) S 2 [g]
‘g) . . - | 2 @ 5
Distance Computation . @ . @. | g & o
- - - D U
< <<
“[efa ~ - [B
predicted class |
=) Inference-only datapaths [ ] Memory unit predicted class [
——> Training-only datapaths [] Computing unit La nguage News
=) Common datapaths [ ] In-memory computing unit

Karunaratne et al., Nature Electronics (2020)



Scientific computing
Bit slicing
Input Data
(0,1,3,2)(3,6,2,1)=14

. MsSB LSB MSB LSB
0! 0 0 ---» C
' AR
1 : 0 1 —"’. '
. 6
31 1 1---»4 .
2
2 E 1 0 --->e 1
_ v 1
Analog to digital
converters
 Input MSB
14 —@——Q
8
. Input LSB

Bojnordi et al., HPCA (2016)

Mixed-precision

Low-precision computational memory unit

Control unit

A
Y

Crossbar array(s)

& &
& &
& &
& &

K
R
KK

& &
. &
P
& &
Wi

.8 £

-

3 S
] ]

Ll

1]

i

Fast imprecise matrix-

vector multiplication via
computational memory

[terative refinement to
accurate solution via
digital processing

Y
ST T T T L I
: Arithmetic and : : Control :
. logic unit (ALU) 43 ynit |
1 | 1 1

Central processing unit (CPU)

<> Memory

High-precision digital processing unit

Le Gallo et al., Nature Electronics (2018)
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Mixed-precision linear solver
if Az =0, find

High-precision unit
Ab

)

Set initial solution z =0

INBNNB\

| NEvbee
C idual r = b— A e(re)
ompute residual 7 & Solve inexactly Az = r % \%\ \%\ \%\
(Krylov subspace method) w(k)
Update solution x = x + 2 & R \%\ \%\ \%\
7|2 < tol? [ DAC/ADC ]

L Programming circuit

= Solution iteratively updated with low-precision error-correction terms (iterative
refinement)
= Correction terms are obtained using an inexact inner solver

= The matrix multiplications in the inner solver are performed using in-memory computing

Le Gallo et al., Nature Electronics (2018)
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Mixed-precision linear solver: Experimental results
Experimental result: 10,000x10,000 matrix, 959,376 PCM devices
102 . ' ' ' '

—&— CPU-only
Mixed-precision memcomputing,
experimental

100_

10-2 L

Solution error

10_4 -

107 ' ' ' ' '
0 10 20 30 40 50 60
Iteration
» Measured energy savings on end-to-end system w/o computational memory:
v’ Speed-up of 7x and energy reduction of 7x over CPU-only (POWERS with 8 threads)
v’ Speed-up of 3.6x and energy reduction of 7x over GPU-only (Nvidia P100)
v Expected energy savings of 20x with improved PCM devices

* More accurate in-memory computing = Higher gain in performance -



Signal processing and optimization

Combinatorial optimization

s
\ S\
\ \
|
)
~
.b ~
' ’
,
’
/

Bojnordi et al., HPCA (2016)
Cai et al., Nature Electr. (2020)

Compressed sensing

UNIVERSITY
MASSACHUSETTS

al - -

Le Gallo et al., Proc. IEDM (2017)
Li et al., Nature Electr. (2018)
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Compressed sensing and recovery

High-dimensiona

igh-dimensiona

Measurement Iterative reconstruction (AMP Algorithm

y = Ax ) q(k) = Az(k u(k) = AT z(k)

. AH % o A AT k)%%..%

YUY % LA A VY %
y1 Y2 YM q1(k) a2(k) ane(k) 2 (k) 20(k) zm (k)

= Store the measurement matrix in a cross-bar array of resistive memory devices
=" The same array used for both compression and reconstruction
= Reconstruction complexity reduction: O(NM) = O(N)

Le Gallo et al., Proc. IEDM (2017) Le Gallo et al., IEEE Trans. Electr. Dev. (2018)
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Compressed sensing and recovery: Experiments

Experimental result: 128X128 image, 50% sampling rate,

10° . . Computation memory unit with 131,072 PCM devices
—— PCM chip Original Image Reconstructed Image
= = 4x4-bit Fixed-point
10} =+ = Floating-point
L
)
= | AL - e - -- -
Z10° v
\/
10-3 i N ~N - e o oo
0 10 20 30
Iterations

= Estimated power reduction of 50x compared to using an optimized 4-bit FPGA matrix-
vector multiplier that delivers same reconstruction accuracy at same speed

Le Gallo et al., Proc. IEDM (2017) Le Gallo et al., IEEE Trans. Electr. Dev. (2018)
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Deep Learning

Digital interface

O

SO

O
\

NN

%

’%

Control

Communication network
Computational memory

Sebastian et al., VLSI (2019)

Eleftheriou et al., IBM JRD (2019)

Joshi et al., Nature Comm. (2020)
Nandakumar et al., Front. Neuroscience (2020)
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Deep Learning: Training and Inference

47



Deep Learning: Training and Inference

Forward propagation

TRAINING _, 0 s )

Data input
(MNIST database)
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Deep Learning: Training and Inference

TRAINING

Data input
(MNIST database)

Backward propagation: this is a two!
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Deep Learning: Training and Inference

TRAINING

Data input
(MNIST database)

N
SR
e\
7 —

/X W
P
LS

Update weights
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Deep Learning: Training and Inference

INFERENCING
Fully Trained Network
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Deep Learning: Approaching human accuracy

Image Recognition - %Error Rate Speech Recognition - %Error Rate

Introduction of large

% orks T T—
. 650,000 neurons \

\ / Introduction of large \
g

\\\ ___scale neural networks

%
5,000,000 neurons

201 2012 2013 2014

2000 2002 2004 2006 2008 2010 2012

= Key reasons: Large amounts of data and immense computing power
= Significant role played by the semiconductor industry and computer architects!




The computational efficiency problem of DL

Training Image recognition model
Dataset: ImageNet-22K
Network: ResNet-101

256 GPUs
7 hours
~450kWh

For reference: 1 model training run is ~2
weeks of home energy consumption
https://arxiv.org/abs/1708.02188

= Deep learning is computationally intensive
=" Time consuming even with high-performance computing resources
=" Power consumption prohibitive for applicability in domains such as internet of things



Deep learning based on in-memory computing

SRAM RRAM
38 CHARGE-BASED
MEMORY 1Mb 1T1R
A ReRAM-CIM Macro ||2.5mm
(Inc. Test Mode)
i BT
Biswas et al., IEEE JSSC 2019 Hu et al., Adv. Mat., 2018
Valavi et al., IEEE JSSC, 2019 Xue et al., ISSCC, 2019
Flash PCM
: E RESISTANCE-

BASED MEMORY

/ol b JAHAARIGRRNY

Merrick-Bayat et al., IEEE TNNLS, 2017 Ambrogio et al., Nature, 2018
Wang et al., IEEE TVLSI, 2019 Sebastian et al., VLSI, 2019

T it

AN
VA A i e e 50 I o e O 4 (R 1R AR 1A
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Deep learning: Inference

NN\

2 @
N

The trained synaptic weights are mapped to an array of computational memory cores
performing matrix vector multiply operations corresponding to each layer



Mapping synaptic weights to PCM devices

Target synaptic weight Measurements based on >10k devices
] 32 representative states

Iterative
programming
algorithm

0O 5 10 15 20 25 30 35 40 45 50 55
Conductance (uS)
" [terative programming algorithms used to achieve a target conductance value

= Non-ideal analog storage —> Distribution of conductance values

Papandreou et al., ISCAS (2011)

Sebastian et al., E/PCOS (2016)
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Mapping synaptic weights to PCM devices

ResNet-32 on CIFAR-10

1 ! 1 I ! I 1 95 | ' I v | ! |
12 m Experiment - . | Il After training i
Polynomial fit . — B After transfer to PCM synapses

10 - X 94 |
n S
:L >\
S U
§ 08| - S
3 3 93
) S
g 0.6 | ~HHHL - §
L('E B . o 92
© - =
€04 | 4 D
©
n - —|4fI}I: i Thq— - i 91

02 I 8 10 12 14 16 4 O

X Conductance (uS)
00 1 | 1 1 | 1 | 1 90
0 5 10 15 20 25 32-bit 4-bit Ternary  Additive noise

Conductance (uS)
= A custom training approach needed to account for the conductance distributions
= Possible to achieve software-equivalent classification accuracies

Joshi et al., Nature Comm. (2020)

Training schemes
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Inference experiment: ResNet 32 on CIFAR-10

32x32x3 1x1 1x1
CIFAR 10 image m m
3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 56x10

Kernel size
GIobaI average

Input channels 16 16 16 16 16 28 28 56 )
Output channels 16 16 16 16 16 8 28 28 28 56 56 56 s Poding  Fully conmected
ResNet block 1 ResNet block 2 ResNet block 3
10 lavers 10 lavers 10 lavers

723,444 PCM devices (1T1R)

HOr xnm:-- b < = = = — - - - - 28S€line
Soash . R VN '
K935 \\4 & 1
a [~ -
® 93.0 |- _
>
8 B -
© 92.5 |- -
‘.(75 i -
2
o 92.0 1
% 9151 Model (GDC) [
L i Model (AdaBS) ]
© 910  ~* ~ Experiment (AdaBS) |

(oT0 o S S W N W T E T N R V1Y) MR 1Y) M AW R TV M AW ETTIT R

] 10" 10*  10°  10*  10°  10° 107
Joshi et al., Nature Comm. (2020)
Time (s)

= With a custom noise-injective training, software equivalent accuracies can be achieved
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System integration: Communication fabric

= Compared to all-digital
implementations, in-memory
computing is more amenable to
highly pipelined dataflows

=" Communication fabric should
facilitate efficiently movement of
activations from one computational
memory unit to another

2 i
LAl Ll A A Ll Y]
A A

LI O O O O L] DIV%?
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Communication fabric for CNNs

Consolidated graph representation of CNNs

5 Parallel Prism topology

RS NN

Simple feedforward F ﬁ%_,h_.;*

AN NS |
ResNet (2015) /§/\ \\

DenseNet (2016)

—

ption (2014)

Dazzi et al., MLSys Workshop @NeurlPS, 2019

= The key distinguishing feature of the various CNN architectures is their connectivity
= Obtain a consolidated graph representation for all state-of-the-art CNNs (C)
= Vertices represent convolution layers
= Edges represent activations
= Communication fabric with 5-parallel prism topology (F)
= CNN executable in a pipelined fashion on F if there exists a homomorphism h: C=> F



Mapping of ResNet-32 on an array of CM cores

g@ oA A A A Y

-

Ny

- Rl

=
RIS

Input Memory

—
(I
i/—v

B
=
=
vl
=
gl
7
=
el
I
el

i
| A ACAH] ATE| ATE| AE A R
l‘nl i \J_ﬂ |/|_/ |/|- ﬂ | =,
Layer onvolution | | | | | |
a1 (SN [N [N [N L [N
Remdualactivﬂ% C% = — .\=:§= \=\= —
bt ] /| = [ E [ E EE

= The communication fabric is 5PP

= The links active in this implementation verify the homomorphism

= Each CM core has modest digital processing capability and its own input and output memory

= Each core stores the weights corresponding to each convolution layer

= The input memory stores the pixel neighborhood required for the convolution and the result of
the dot product computation is stored in the output memory

= The estimated throughput is 38600 Images/s!
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System integration: Software stack

Software stack

= Essential to develop a software stack that can [ Python ] [ it ] [ o ] o
compile a NN model into operators suitable for ) Application
the accelerator PycmDNN ] cM

v' Compile the model into optimized S Plugin_J
operations and routing (o [ . |
v Orchestrates the data movement to and é = ¢ )
from the accelerator S S o
N )
" Three essential software components
v The computational memory OS driver 4 ; st [t [Hes ,.,g'\ HW
v The computational memory compiler : kR EEEE EE
v" A library that allows inference hiding low- 5 Eﬁ%%' =|% %1"%| SRR
level details = 3 e |
. J

= A non-trivial task and fertile area of research

Eleftheriou et al., “Deep learning acceleration based on in-memory computing”, IBM J. Res. Dev., 2019
Kourtis et al., “Compiling neural networks for a computational memory accelerator”, Proc. SPMA (EuroSys), 2020
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Deep learning training

l Compute AW
[ >

- + X pe Compute p
floor(x/e€)

Accumulate AW

N

N
N

A
..%/][yyz..zggg
%

High Precision!

Nandakumar et al., ArXiv, 2017
Sebastian et al., VLSI, 2019



Mixed-precision training: Experimental results

100 | 1 100
784 input 250 hidden 10 output
" neuron Iayer neurons neurons
9 N 99 Training set
o Y 52 X 99
= =y > >
o o 3 S —4—Training set
2 = 5 Test set = ——
s 3 97 > Test set
£ o C S 98
5 o 8 FP64 <
S g % PCM model ’\’\R—O—-\._w
N —4—Experiment
95 : | 97
Training epoch Time (s)

" Each synaptic weight mapped to two PCM devices
(~400,000 PCM devices)

" Comparable test accuracy as FP32 training

=" Negligible accuracy drop during inference after training

https://analog-ai-demo.mybluemix.net



https://analog-ai-demo.mybluemix.net/

Cloud Demo

W),

To run a test, draw a number
between 0 and 9.

Run on simulator

Run on real chip

Sign out

-ai-demo.mybluemix.net

Current visualized on chip

First array (+) 784x250

First array (-) 784x250

S

Strength of current

0

Second array (+) 250x10

Second array (-) 250x10



https://analog-ai-demo.mybluemix.net/

Mixed-precision training: Extension to larger

networks
Filter

weights

CIFAR-10 "=J_|

image

Filter

weights

32 I

3 32 ]
32 o — 48 I;'L .
3 1 32 .

"3 3L_H4s8
3 3
convolution  convolution
layer 1 layer 2

FP32 training

—PCM model training
—PCM model test

FP32 test

Fully- 100
connected
layers
o ;\:; 95
O =
OO 8 9
: >
32 O 256 © < 85,
512
80
maxpool 100
dropout

200

= Convolutional neural network with approx. 1.5 Million parameters

" Better generalization that FP32 based training due to the use of stochastic devices

300
Training epoch

" Also applicable to long-short term memory (LSTM) networks and generative

adversarial networks (GANSs)

400



Deep learning training: Other approaches

Approach | (Mixed-precision) Approach Il (In place weight update)
<--—- <--—-
N RN T SNRERN
<--—- — <--—- -—=
R SN T SRS
%— 3 ML A 3 %— 3 AL A
W i W i
Compute | SIS = I > < > [
AVVIJ -C'% -E %l%l ooo%l -g -E %'%I ooo%l
= © I I | L2 03 I | |
= \ \/ vV 5 5 2 I v \/ \/
@© o Q @® o
s ¢ ettt S ¢ ¢ [
N - ) N -
1: Forward l l i X W l 1: Forward 2 v ZxWy
A A A
2: Backward T T g T 2: Backward 9
- Updat
3+ Update 3: Update 4 0 0, A
Prezioso, Nature (2015) Alibart et al., Nature Comm. (2013)
Nandakumar et al., Proc. ISCAS (2018) Gokmen and Vlasov, Front. Neuroscience (2016)
Yu, Proc. IEEE (2018) Ambrogio et al., Nature (2018)

Eleftheriou et al., IBM JRD (2019) Gokmen and Haensch, Front. Neuroscience (2020)



Spiking Neural Networks (SNNs)

Information transmitted as floating point numbers!
Neuron

Synapse
Conventional Neural Networks <D {. :D@

) ] . Scalar multiply units
Static non-linear functions

Neuronal dynamics
Information transmitted in terms of spikes (rate, timing etc.)

dl/t/dt — F(l/l) + G(l/l)] Action Post-synaptic neuron Action

potential potential|

‘/\[ , ‘/M = Asynchronous
v / | V| =Local, event-based learning

= Employed by the brain

Dendrites Dendrites

Synaptic dynamics
Isyn — gsyns(v - Esyn)

= Objective 1: Exploit the temporal coding and synaptic/neuronal dynamics to transcend deep learning
= Objective 2: Develop computing substrates for efficient realization of neuronal and synaptic dynamics
Pfeiffer and Pfeil, Front. Neuroscience (2018), Rajendran et al., IEEE SP Magazine (2019)

Synapse

68



SNN co-processors (Digital and Analog CMOS-

based)

Neuron Neuron Neuron
Ce Communication
Neuron Neuron Neuron
C Communication
Synapses Synapses Synapses

= Computation of neuronal and synaptic
dynamics in digital CMOS circuitry

Merolla et al., Science (2014)
Davies et al., IEEE MICRO (2018)

DPI/DEMUX/NEURON|

LTP
SYNAPSE || SYNAPSE
ARRAY ARRAY

T _vesterock

= Exploit subthreshold MOSFET
characteristics to directly emulate
neuronal and synaptic dynamics

Benjamin et al., Proc. IEEE (2014)
Qiao et al., Front. Neuroscience (2015)
Moradi et al., IEEE Trans. Biomed. Circuits Syst. (2018)
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SNNs using in-memory computing
Synapse

Neuron
. ®? ¢ Dendrites Soma Axon
® ., 4 Neuronal
‘ > membrane
o 0% o \V Neuronal potential ® 00 o

SRR input Spike event B
: *@ - generation spikes

Biology== > Technology

|
Y
000000000 E Top electrode (T
1133333333
§§§ Lipid bilayer %; o} -c!
$33s0simnsanpssd () oimeeminy
outon ,
CICICICICICICICIC) o i

Yu et al., IEEE TED (2011) Al-Shedivat et al., IEEE Trans. Emerg. Sel.
Kuzum et al., Nanoletters (2012) Topics Circuits Syst. (2015)

Kim et al., Proc. IEDM (2015) Tuma et al., Nature Nanotech. (2016)

Wang et al., Nature Mat. (2017) Mehonic and Kenyon, Front. Neurosci. (2016)
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Stochastic computing and security
True random number generator Probabilistic inference

PULSE
Inherent stochasticity
associated with

resistance switching Springler (S)
- Counter (Even or Odd) WRITE PULSE
Y1 daton Shim et al., Sci. Reports, 7 (2017)

Jiang et al., Nature Comm., 8 (2017) ;[:‘mp"t“de Mizrahi et al., Nature Comm 9 (2018)
Stochastic "eMﬂnf;ge"s/ Synapses Physical unclonable function

e rembrane ke event| T Y17V RS HRS v

SQF:erlferationt me ) \% ‘A 1. 90 ® \%\\%\

Dendrites AX;:““ Carboni & lelmini, Adv. g % X

Electr. Mat. (2019) E | §

Biology

Technology

Ability to control the
stochasticity via the
voltage/duration of write pulses!

(CJCIClCICIC]C[Cl6)]

1888484480
Lipid bilayer

] ]
it

CCCICICCICICIC) |
| RESPONSE

Bichler et al., IEEE TED, 59 (2012) Nili et al., Nature Electr., 1 (2018)
Tuma et al., Nature Nano., 11 (2016)

IN-1 IN

Current Sense Amplifier
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Outline

= Discussion
v'Increasing the precision of in-memory computing
v'Photonic in-memory computing
v'Summary
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Increasing the precision of in-memory computing

Non-ideal analog storage: Projected

phase-change memory

3 [=3 Proj-PCM [ 8-bit fixed point | |

Rervst<< Aproy  Sub 10fJ, 8b scalar multiplication
without moving data!

R amor >> Rproy

S. Kim et al., IEDM (2013)

Koelmans et al., Nature Comm. (2015)
Giannopoulos et al., IEDM (2018)

-0.005 0 0.005

Non-ideal accumulative behavior:
Multi-device synaptic architectures

...............

X4

Y

Q
ol
ad

\

Y

X2

\]

N=7

L] L] I L]
Y1 y2 0 25 50 75
Number of potentiation pulses

Boybat et al., Nature Comm. (2018)
Boybat et al., Proc. ISCAS (2019)
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Projected phase-change memory

During write During read

current

(b}
=
§ 2|
=
AMOR =
. a e Proj-PCM
voltage § 1 » 8-bit fixed point

RcrysT << Rproy

— Double precision
Ramor >> Reroy

Ramor.oN << Rproy

1 2 3
Exact b, value

= Modified PCM device concept

= Exploits the I-V characteristic of phase change materials

= Substantially lower drift and conductance fluctuations arising from 1/f noise
= Precision equal to 8-bit fixed-point arithmetic

Kim et al., Proc. IEDM (2013), Koelmans et al., Nature Comm. (2015), Giannopoulos et al., IEDM (2018)
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Multi-device synaptic architectures

,,,,, WAl
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= Using multi-device architectures, an increased dynamic range/conductance change
granularity, extended linear behavior and improvements in conductance change
stochasticity can be achieved

= |t is possible to device very innovative arbitration schemes for device selection

Boybat et al., Nature Communications (2018)
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Photonic memory devices

Amorphous
C
O @
(V)]
L
-
L Mixture
(©
| -
|_
Ie
O
-
(@ HEE
O Crystalline
® Ge/Sb ©Te

" Information stored in the phase configuration of a PCM segment on top of a
nanophotonic waveguide

= Write: Evanescent coupling to the PCM

= Read: Monitor changes in the optical transmission

Rios et al., Nature Photonics, 9, pp. 725 (2015)
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Analog storage capability

Increasing programming pulse energy

80 pJ 7 100 pJ 140 pJ 180 pJ T(K)>890K
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~ i il . Sl — 1132
x —| |- 50 ns n : . 3
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m Possible to achieve a continuum of transmission levels

Li et al., Optica 6(1), 1-6 (2019)
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Photonic in-memory computing

=a X & R

VAN -

= 061 i

/‘ ‘:n éo-“- I

po S s |
Pout

scalar multiplication

60-

40

K ;Ziék‘kﬁ\w

0 Wﬁ@ - A

0.10 -0.05 0.00 0.05
Error 5 — (3

= Can perform in-memory scalar multiplication analogous to the electrical counterpart

" Larger areal footprint

= Exhibits higher linearity and improved accuracy

" Potential gain in speed

" Inherent wavelength division multiplexing capability

Rios et al., Science Advances, 5(2), (2019)

0.10
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Integrated photonic tensor core

Original image Input matrix Filter matrix
channel 1

o X

(n-k+1)

channel d

]
L]
w
] =
[
[ |
]

I{IIIIIII‘II‘IIIIIIIIIIIII L1 ]|

o
Ir
g
d_channels (A} e

mcond AARRRRLEELEE B e

modulation

matrix multiplication

A/ On-chip

On-chip
comb generation

Feldmann et al., ArXiv (2020)

d, x k* wavelengths
2 2 2 [_‘
= =
|
— d, . kernels of

. size k x k

H I 1
[}
- | 1.. din E ]
; i iy :

d,.arraysof k1 d k*xd_,

= By exploiting the Inherent
wavelength division multiplexing
capability, it is possible to perform
a complete convolution operation
in a single time step!
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Summary

" [n-memory computing is an emerging von Neumann computing paradigm
where the physical attributes of memory devices are exploited to compute in place
= Can realize several logical and arithmetic primitives using both charge-based as well as resistance-
based memory devices
= Non-volatile binary storage, analog storage and accumulative behavior typically exploited when
computing with phase-change memory
= The applications span high precision scientific computing to stochastic computing that relies on
imprecision
v Data-base query and hyperdimensional computing facilitated by non-volatile binary storage
v" Approaches such as bit slicing and mixed-precision computing required to meet the precision
requirements of scientific computing
v' Signal processing and optimization are particularly attractive application domains for in-
memory computing
v Using custom noise-injective training approaches, it is possible to achieve almost software-
equivalent classification accuracies in deep learning inference
v Using mixed-precision training, it is possible to achieve almost software-equivalent
classification accuracies in deep learning training
= Emerging device-level concepts include projected memory and photonic in-memory computing
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Review article on in-memory computing

nature
nanotechnology

Non-von Neumann
nanoelectronics in focus

\‘
Lk
\

' %‘?J |‘~

ORAL INSULIN D[LIVERY

nature

nanotechnology FOCUS | REVIEW ARTICLE

https://doi.org/10.1038/541565-020-0655-z

W) Check for updates ‘

Memory devices and applications for in-memory
computing

Abu Sebastian® *, Manuel Le Gallo®, Riduan Khaddam-Aljameh and Evangelos Eleftheriou
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Aﬂa O Current Capabilities Include: Roadmap:
P
AI I_ a rd \Na re Simulate analog MVM operation
. including analog backward/update iﬁéeggigfghﬂig‘;{:;imu‘atorfeatures in
Acceleration = pess .
. . Tools to improve inference accuracy by
Simulate a wide range of analog Al converting pre-trained models with

TO O I. k | t devices and crossbar configurations LEENETEE WD Wi

by using abstract functional models Algorithmic tools to improve training
of material characteristics with accuracy
adjustable parameters

https://analog-ai. mybluem IX. net/ Additional analog neural network layers

« Abstract device (update) models
. Analog friendly [earning rule Additional analog optimizers

saraton it 2 « Hardware-aware training for

The - . ‘e Custom network architectures and
iy inference capability

dataset/model zoos

« Inference capability with drift and e
statistical (programming) noise LT R G
models

Hardware demonstrators

IBM Research AI Hardware Center / © 2020 IBM Corporation
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