
Sun Wu and Udi Manber 

F a s t  

i - .  i 

E r r o r s  
T h e  string-matching problem is a very c o m m o n  problem. 
We are searching for a string P = PtP2. .  "Pro i n s i d e  a la rge  t ex t  

f i le  T = t l t2. . . t . ,  b o t h  sequences of  characters from a f i n i t e  

character set Z. T h e  characters may be English characters in a 
text file, DNA base pairs, lines of  source code, angles between 
edges in polygons, machines or machine parts in a production 
schedule, music  notes and tempo in a musical score, and so 
fo r th .  We w a n t  to  f i n d  a l l  occurrences of  P i n  T; n a m e l y ,  we 

are searching for the set of  starting posit ions F = {i[1 

--- i--- n - m + 1 s u c h  t h a t  titi+ l " " t i +  m - 1 = P } "  T h e  two  most 
famous algorithms for this problem are t h e  B o y e r - M o o r e  

algorithm [3] and t h e  K n u t h  Morris Pratt algorithm [10]. 

There are many extensions to t h i s  problem; for example, we 

may be looking for a set of patterns, a pattern w i t h  "wi ld  
cards," or a regular expression. String-matching tools are 
included in every reasonable text editor, word processor, 
and many other applications. 

In  some instances, however, the 
pattern and/or the text are not 
exact. For example, we may not 
remember  the exact spelling of a 
name we are searching, the name 
may be misspelled in the text, the 
text may correspond to a sequence 
of numbers  with a certain property 
and we do not have an exact pat- 
tern, the text may be a sequence of 
DNA molecules and we are looking 

for approximate patterns. The  
approximate string-matching prob -" 
lem is to find all substrings in T that 
are close to P unde r  some measure 
of closeness. The  most common 
measure of closeness is known as 
the edit distance (also the 
Levenshtein measure [13]). A string 
P is said to be of distance k to a 
string Q if we can transform P to be 
equal to Q with a sequence of k in- 

sertions of single characters in (ar- 
bitrary places in) P, deletions of sin- 
gle characters in P, or substitutions 
of characters. In  some cases we may 
want to define closeness differently. 
For example, a policeman may be 
searching for a license plate 
ABC123 with the knowledge that 
the letters are correct, but there 
may be an error with the numbers.  
In  this case, a string is of distance 1 
to ABC123 if only one error occurs 
and it is within the digits area. 
Maybe there are always three digits 
in a license plate, in which case only 
substitutions are allowed. Some- 
times one wants to vary the cost of 
the different edit operations, say 
deletions cost 3, insertions 2, and 
substitutions 1. 

Many different approximate 
string-matching algorithms have 
been suggested ([4, 5, 6, 8, 11, 12, 
16, 19, 20] is a partial list). In  this 
article we present a new algorithm 
which is very fast in practice, rea- 
sonably simple to implement,  and 
supports a large number  of varia- 
tions of the approximate string- 
matching problem. The  algorithm 
is based on a numeric scheme for 
exact string matching developed by 

COMMUNICATIONS OF THE ACM/October 1992/Vol.35, No.10 8 3  



Baeza-Yates and Gonnet  [2]. The 
algorithm can handle most of the 
common types of queries, including 
arbitrary regular expressions, and 
several variations of closeness mea- 
sures. In our  experiments, the algo- 
ri thm was at least twice as fast as 
other algorithms we tested (which 
are not as flexible), and for many 
cases an order of magnitude faster. 
For example, f inding all occur- 
rences of Homogenos allowing two 
errors in a 1MB bibliographic text 
takes about 0.4 sec on a SUN 
SparcStation II. We actually used 
this example and found a misspell- 
ing in our  text. 

The  algorithms in this article 
served as a basis for a software 
package for Unix called agrep, 
which has been in use since June  
1991. Agrep, which at the date of 
this writing is at version 2.04, is 
available by anonymous ftp from 
cs.arizona.edu. We describe agrep 
briefly at the end of this article. For 
more information see [15, 23, 24]. 

We begin by describing the algo- 
ri thm for the pure string-matching 
problem (i.e., the pattern is a simple 
string). We then present many vari- 
ations and extensions of the basic 
algorithm, culminating with match- 
ing arbitrary regular expressions 
with errors. Experimental  results 
are given, as are details of agrep. 

The Algorithm 
We first describe the case of exact 
string matching. The  algorithm for 
this case is essentially identical to 
that of [2]. We present it here for 
completeness and because we use a 
slightly different notation. We then 
show how to extend the algorithm 
to search with errors. We then de- 
scribe how to speed up the search 
with errors by using afiltering search 
technique. 

Exact MatChing 
Let R be a bit array of size m (the 
size of the pattern). We denote by 
Rj the value of the array R after the 
j character of the text has been pro- 
cessed. The  array Rj contains infor- 
mation about all matches of pre- 
fixes of P that end at j .  More 

precisely, Rj[i] = 1 if the first i char- 
acters of the pattern match exactly 
the last i characters up to j in the 
text (i.e., P]P2...i = tj-i+ltj-l+e...tj). 
When we read tj+l we need to de- 
termine whether tj+l can extend 
any of the partial matches so far. 
For each i such that Rj[i] = 1 we 
need to check whether tj+l is equal 
to pi+l. IfRj[i] = 0 then there is no 
match up to i and there cannot be a 
match up to i + 1. If  tj+l = pl then 
Rj+][1] = 1. IfRj+l[m] = 1 then we 
have a complete match, starting at 
j - m  + 2, and we output  it. The  
transition from Rj to Rj+x can be 
summarized as follows: 
Initially, R0[k] = 0 for all k, 

l ~ k < - m ,  
and Rj[0] = 1, 
for all j, 0 --<j - n. 

f 1 if R j [ i -  1] = 1 
Rj+l[i] = J a n d  pi = tj+l 

( 0  otherwise 

I f  Rj+l[m] = 1 then we output  a 
match at j -  m + 2; 

This transition, which we have to 
compute once for every text char- 
acter, seems quite complicated. 
Other  fast string-matching algo- 
rithms avoid the need to maintain 
the whole array. But, as observed 
by Baeza-Yates and Gonnet,  this 
transition can be computed very 
fast in practice as follows. Let the 
alphabet be Z = Sl,S 2 . . . . .  slE [. For 
each character si in the alphabet we 
construct a bit array Si of size m 
such that Si[r] = 1 if pT = si. (It is 
sufficient to construct the S arrays 
only for the characters that appear 
in the pattern.) In  other words, Si 
denotes the indexes in the pattern 
that contain si. It is easy to verify 
now that the transition from Rj to 
Rj+ 1 a m o u n t s  to no more than a 
right shift of Rj and an AND opera- 
tion with Si, where si = tj+ 1. So, each 
transition can be executed with only 
two simple arithmetic operations, a 
shift and an AND. We assume that 
the right shift fills the first position 
with a 1. If  only 0-filled shifts are 
available (as is the case with C), then 
we can add one more OR operation 
with a mask that has one bit. 
(Baeza-Yates and Gonnet  used 0 to 
indicate a match and an OR opera- 

tion instead of an AND; that way, 
0-filled shifts are sufficient. This is 
counterintuitive to explain, so we 
opted for the easier definition.) An 
example is given in Table la, where 
the pattern is aabac and the text is 
aabaacaabacab. The  masks for ab 
and c are given in Table lb. 

This discussion assumes, of 
course, that the pattern's size is no 
more than the word size, which is 
often the case. If  the pattern's size is 
twice the word size, then four arith- 
metic operations will suffice. If  the 
pattern is very large (e.g., in some 
biological applications the pattern 
size can be in the thousands), then 
other methods will be better. For 
most text-searching problems, 
small patterns are the norm. We 
discuss this issue later, but  for now 
we will assume that the pattern's 
size is no more than the word size. 
This algorithm is clearly very easy 
to implement.  Its r u n n i n g  time is 
totally predictable because it essen- 
tially depends only on the size of 
the text (assuming again that the 
pattern fits into a word) and not on 
the actual text or the alphabet. 

Approximate Matching 
We now show how to adapt the pre- 
vious algorithm to allow errors. 
(Baeza-Yates and Gonnet  [2] 
showed how to handle only mis- 
matches by essentially counting k of 
them with a log2k size counter, but  
they did not handle insertions or 
deletions.) We start with a very sim- 
ple case: only one insertion is al- 
lowed into the pattern at any posi- 
tion. In  other words, we want to 
find all intervals of size at most m + 
1 in the text that contain the pat- 
tern as a subsequence. We define 
the R and S arrays as before, but 
now we have two possibilities for 
each prefix match. We can have an 
exact match or a match with one 
insertion. Therefore,  we introduce 
another  array, denoted by R), 
which indicates all possible matches 
up to tj with at most one insertion. 
More precisely, R)[i] = 1 if the first 
i characters of the pattern match i 
of the last i + 1 characters up to j  in 
the text. If  we can maintain both R 

84 O c t o b e r  1992/Vol .35,  No.IO/¢OMMUNWCATION$ OF THE A@M 



a n d  R l t h e n  we can  f i nd  all m a t c h e s  
wi th  at  mos t  o n e  inse r t ion :  Rj[m] = 
1 indica tes  t h a t  t h e r e  is a n  exact  
m a t c h  a n d  R)[m]  = 1 ind ica tes  t h a t  
t h e r e  is a m a t c h  wi th  at  mos t  o n e  
i n s e r t i o n  ( somet imes  b o t h  will equa l  
1 at  the  s ame  t ime).  

T h e  t r ans i t i on  fo r  t he  R a r r ay  is 
the  s ame  as be fo re .  We n e e d  on ly  to 
specify the  t r ans i t i on  for  R 1. T h e r e  
a re  two cases fo r  a m a t c h  wi th  a t  
mos t  o n e  i n s e r t i o n  o f  t he  f irst  i 
c h a r a c t e r s  o f  P u p  to tj+l: 

I 1. T h e r e  is a n  exact  m a t c h  o f  t he  
f i rs t  i c h a r a c t e r s  u p  to tj. I n  this  
case, i n s e r t i n g  tj+ 1 at the  e n d  o f  t he  
exact  m a t c h  c rea tes  a m a t c h  wi th  
o n e  inse r t ion .  
I2. T h e r e  is a m a t c h  o f  t he  f irst  i - 
1 c h a r a c t e r s  u p  to tj with  o n e  inser -  
t ion  and  tj+ 1 = Pi. In  this  case, the  
i n s e r t i o n  is s o m e w h e r e  ins ide  t he  
p a t t e r n  a n d  no t  at  t he  end .  

Case  I1 can  be  h a n d l e d  by j u s t  
copy ing  the  va lue  o f  R to R 1 a n d  
case I2 c an  be  h a n d l e d  wi th  a r i g h t  
sh i f t  o f  R 1 a n d  a n  A N D  o p e r a t i o n  
wi th  Si such  t h a t  s i =  §+l. So, to 
c o m p u t e  R ]  we n e e d  o n e  a d d i t i o n a l  
sh i f t  ( the  sh i f t  o f  R is d o n e  a l ready) ,  
o n e  A N D  o p e r a t i o n  a n d  o n e  O R  
o p e r a t i o n .  A n  e x a m p l e  (with the  
s ame  p a t t e r n  a n d  tex t  as the  e x a m -  
ple for  t he  exact  m a t c h i n g )  is g iven  
in T a b l e  2. 

C o n s i d e r  now a l lowing  o n e  dele-  
t ion  f r o m  the  p a t t e r n  ( and  n o  inser -  
t ions).  We will d e f i n e  R, R 1 (which  
now  ind ica tes  o n e  de le t ion) ,  a n d  S 
as be fo re .  T h e r e  a re  a g a i n  two cases 
fo r  a m a t c h  wi th  at  mos t  o n e  dele-  
t ion  o f  the  f i rs t  i c h a r a c t e r s  o f  P u p  
tO /j+l: 

D1. T h e r e  is a n  exact  m a t c h  o f  t he  
f i rs t  i - 1  c h a r a c t e r s  u p  to tj+l 
(which  is i n d i c a t e d  by the  new va lue  
o f  t he  R a r r ay  R j + l [ i -  1]). T h i s  
case c o r r e s p o n d s  to d e l e t i n g  pi a n d  
m a t c h i n g  the  f i rs t  i - 1 cha rac t e r s .  
D2. T h e r e  is a m a t c h  o f  t he  f i rs t  
i -  1 c h a r a c t e r s  u p  to tj with  o n e  
de l e t i on  and  tj+ x = pi. I n  this  case, 
the  de l e t i on  is s o m e w h e r e  ins ide  
t he  p a t t e r n  a n d  no t  at  t he  end .  

Case D2 is h a n d l e d  as b e f o r e  (it is 
exact ly  the  same) ,  a n d  case D1 is 
h a n d l e d  by a r i g h t  sh i f t  o f  the  new 
va lue  o f  Rj+ 1. 

Final ly  we will c o n s i d e r  a substi-  
t u t ion .  T h a t  is, we allow r e p l a c i n g  
o n e  c h a r a c t e r  o f  P wi th  o n e  charac-  
t e r  o f  T. (We can  ach ieve  subs t i tu-  
t ion  wi th  o n e  de l e t i on  a n d  o n e  in- 
ser t ion ,  b u t  in  m a n y  cases we w a n t  
subs t i t u t i on  to c o u n t  as on ly  o n e  
e r ro r . )  We aga in  have  two cases: 

S1. T h e r e  is a n  exac t  m a t c h  o f  the  
f i rs t  i - 1 c h a r a c t e r s  u p  to tj. T h i s  
case c o r r e s p o n d s  to subs t i t u t i ng  tj+ l 
with  pi ( w h e t h e r  o r  no t  they  a re  

Table I .  An example of exact matching and the  corresponding 
masks 

a a b a a c a a b a c a b a b c 
a 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 
a 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 
b 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 
a 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
c 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

a. b. 

1"uble 2. An example for  approximate m a t c h i n g  w i t h  one insert ion 

e q u a l - - t h e  equa l i ty  will be  indi -  
ca ted  in R) a n d  m a t c h i n g  t he  f i rs t  
i -  1 cha rac t e r s .  
$2. T h e r e  is a m a t c h  o f  t he  f i rs t  i - 
1 c h a r a c t e r s  u p  to tj with  o n e  subst i -  
t u t i o n  a n d  tj+ 1 = Pi. I n  this  case, t he  
subs t i t u t i on  is s o m e w h e r e  ins ide  
t he  p a t t e r n  a n d  no t  at  t he  end .  

Case $2 is a g a i n  t he  same.  Case  S1 
c o r r e s p o n d s  to l ook ing  at  Rj[ i  - 1] 
as o p p o s e d  to l o o k i n g  at  Rj+l [ i  - 1] 
in case D 1. Still very  few o p e r a t i o n s  
cove r  o n e  subs t i t u t i on  as well. 

We a re  now r e a d y  to c o n s i d e r  t he  
g e n e r a l  case o f  u p  to k e r ro r s ,  
w h e r e  a n  e r r o r  c an  be  e i t h e r  a n  in-  
ser t ion ,  a de le t ion ,  o r  a subs t i t u t i on  
( the  L e v e n s h t e i n  o r  the  edi t -  
d i s t ance  measu re ) .  Overa l l ,  i n s t ead  
o f  o n e  a d d i t i o n a l  R 1 a r ray ,  we will 
m a i n t a i n  k a d d i t i o n a l  a r rays  R 1, R 2, 
..., R k, such  t h a t  a r r a y  R a s tores  all 
poss ible  m a t c h e s  wi th  u p  to d er-  
rors .  We n e e d  to d e t e r m i n e  the  
t r a n s i t i o n  f r o m  a r r a y  R a to RJ+I. 
T h e r e  a re  f o u r  possibi l i t ies  fo r  ob-  
t a i n i n g  a m a t c h  o f  t he  f i rs t  i cha rac -  
ters  wi th  - d  e r r o r s  u p  to tj+l: 

c T h e r e  is a m a t c h  o f  t he  f i rs t  i - 1 
c h a r a c t e r s  wi th  -<d e r r o r s  u p  to tj 
a n d  tj+l = Pi. T h i s  case c o r r e s p o n d s  
to m a t c h i n g  tj+l. 
* T h e r e  is a m a t c h  o f  the  f i rs t  i - 1 
c h a r a c t e r s  wi th  ~ d  - 1 e r r o r s  u p  to 
tj. T h i s  case c o r r e s p o n d s  to subst i-  

t u t i n g  tj+ I. 
* T h e r e  is a m a t c h  o f  t he  f i rs t  i - 1 
c h a r a c t e r s  wi th  -<d - 1 e r r o r s  u p  to 
t j+l.  T h i s  case c o r r e s p o n d s  to dele t -  

ing  pi. 
c T h e r e  is a m a t c h  o f  t he  f irst  i 
c h a r a c t e r s  wi th  -<d - I e r r o r s  u p  to 
tj. T h i s  case c o r r e s p o n d s  to inser t -  

i ng  tj+ l. 

Let 's  d e n o t e  R as R °, a n d  a s s u m e  
t h a t  tj+x = so. Overa l l ,  we h a v e  t he  

a a b a a c a a b a c a b a a 
a 1 1 0 1 1 0 1 1 0 1 0 1 0 a 1 1 
a 0 1 0 0 1 0 0 1 0 0 0 0 0 a 0 1 
b 0 0 1 0 0 0 0 0 1 0 0 0 0 b 0 0 
a 0 0 0 1 0 0 0 0 0 1 0 0 0 a 0 0 
c 0 0 0 0 0 0 0 0 0 0 1 0 0 c 0 0 

R 

b a 

1 1 
l 1 
l 1 
0 1 
0 0 

a c a a b a c a b 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 0 0 0 
0 0 0 0 1 1 0 0 0 
1 0 0 0 0 1 1 0 0 
0 1 0 0 0 0 1 1 0 

R l 

COMMUNICATIONS OF THE ACM/October 1992/Vol.35, No.10 8 S  



following expression for Rd+l : 

R~ = 11..100...000 d ones. 
Rd+t = Rshift[R d] AND Sc OR 

Rshift[R d-l] OR 
nshift[nd+~] OR R~- '  

= Rshift[R ]] AND Sc OR 
Rshift[R d-1 OR Rd+, I] OR 
n d-1. (2.1) 

Overall,  we have a total o f  two 
shifts, one AND, and three ORs for 
each R d. 

The  time and space analysis of  
the a lgori thm is as follows. Denote 
the word size by w. The  preprocess-  
ing requires O(mJZJ) time and space, 
which is the same as the exact 

matching algori thm, plus o(kJ J) 
to initialize the k vectors. Dur ing 
the matching process, the algo- 

/ r - ' I x  

r i thm spends O(kJmJ)  steps per  

character.  Therefore ,  the total run-  

ning time is O(nkJml) .  In cases 
\ I W l /  

where m is n o t  t o o  large, which are 
the cases the algori thm was de- 
signed for, the runn ing  time is ef- 
fectively O(nk). 

An impor tan t  feature of  this al- 
gor i thm is that it can be relatively 
easily ex tended  to several more  
complicated patterns.  Several such 
extensions will be described. 

An Improvement to the Main 
Algorithm 
I f  the number  of  errors  is small 
compared  to the size of  the pattern,  
then we can improve the runn ing  
time sometimes by what we call the 
partition approach. Suppose again 
that the pa t te rn  P is of  size m and 
that at most k errors  are allowed. 

Let r = , and let P1, P2 .. . . .  

Pk+l be the first k + 1 blocks of  P 
each of  size r. In  o ther  words, P1 = 
Plp2...pT and Pj = p(j-1)r+l...Pjr. I f  r 
contains a match o f  P with at most k 
errors,  then at least one of  the Pj's 
must be matched exactly. We can 
search for all Pj's at the same time 
(we discuss how to do that shortly) 
and,  if  one of  them matches, then 
we check the whole pat tern  directly 
but  only within a ne ighborhood  of  

size m from the position of  the 
match. Since we are looking for an 
exact match, there  is no need to 
maintain all k of  the R d vectors. 
This scheme will run  fast if  the 
number  o f  exact matches to any 
o n e  of  the Pj's is n o t  t o o  high. The  
number  o f  such matches depends  
on many factors including the size 
of  the alphabet,  the actual text, and 
the values of  r and m. 

For  example,  if  r = 1, then we 
will need to check any time there is 
a character  match, which is proba-  
bly too often. On the o ther  hand,  if  
r = 3, m = 12 (which implies k = 3), 
the a lphabet  size is 26, and the text 
is uniformly r andom (i.e., each 
character  appears  with the same 
probability), the expected number  
of  matches of  any o f  the Pj's is 
about  0.02% of  the time. In this 
case, it is obviously advantageous to 
search for exact matches and use 
the approximate  scheme only for 
the rare occasions at which a match 
occurs. T h e  runn ing  time in this 
case is essentially the same as the 
runn ing  time o f  a search without 
errors.  (Experiments  using this 
part i t ion scheme for di f ferent  al- 
phabet  sizes are given later.) 

The  main advantage o f  this 
scheme is that the a lgori thm for 
exact matching presented  earl ier  
can be adapted  in an elegant  way to 
suppor t  it. We illustrate the idea 
with an example.  Suppose the pat- 
tern is A BCD E FG H IJK L  (m = 12) 
and k = 3. We divide the pat tern  
into k + 1 = 4 blocks: ABC, DEF, 
GHI ,  and  JKL. We need to f ind 
whether  any of  them appears  in the 
text. We create one combined pat- 
tern by interleaving the four  blocks: 
ADGJBEHKCFIL.  We then build 
the mask vector R as usual for this 
inter leaved pat tern  (see section o n  

Exact Matching). The  only differ-  
ence is that, instead of  shifting by 
o n e  in each step, we shift by four! 
The re  is a match if  any of  the last 
four  bits is 1. (When we shift we 
need to fill the first four  positions 
with ls, o r  bet ter  yet, use shift-OR.) 
Thus,  the match for all blocks can 
be done exactly the same way as 

regular  matches and it takes essen- 
tially the same runn ing  time. 

Extensions 
An impor tan t  feature  of  our  algo- 
r i thm is its flexibility. In  addi t ion to 
asking about  a single string, the al- 
gor i thm supports  range of  charac- 
ters (e.g., "0-9"), complements  (e.g., 
everything except  blank), arbi t rary  
sets o f  characters  (e.g., {a,e,i,o,u}), 
unl imited "wild cards," and combi- 
nations. Searching for several 
strings at the same time is also pos- 
sible, a l though the size o f  the pat- 
tern becomes the sum of  the sizes o f  
the di f ferent  strings (and might  
thus require  more  than one word to 
represent) .  Except  for  the unlim- 
ited wild cards, all these extensions 
were developed by Baeza-Yates and 
Gonnet  [2] for exact matching.  We 
can apply  them all to approximate  
matching in a s t ra ightforward man- 
ner. This  is a major  s t rength of  the 
algori thm: most extensions (at least 
all those that  we tried) that work f o r  

exact matching can also be used for 
approximate  matching. Previous 
algori thms for  approx imate  match- 
ing with complements  or  wild 
cards, for example,  were quite com- 
plicated (see, for example,  [1, 18]). 
The  runn ing  time for all these ex- 
tensions is the same as the runn ing  
time of  the basic a lgori thm given 
earlier.  

In addi t ion to these extensions, 
we also suppor t  two extensions that 
are specific to approximate  match- 
ing. One deals with pat terns  in 
which some parts need to match 
exactly and o ther  parts may contain 
errors.  Ano the r  extension is match- 
ing with some nonuni fo rm costs; 
for example,  we can def ine the cost 
of  insertions to be twice that of  de- 
letions. 

The  most complicated pat terns  
we can handle  are  arbi t rary  regular  
expressions. T h e  ability to effi- 
ciently match regular  expressions 
allowing errors  enabled us to ex- 
tend the grep family and imple- 
ment  the approximate  pat tern-  
matching tool agrep. We now de- 
scribe the extensions in more  detail. 

8 6  O c t o b e r  1 9 9 2 / V o 1 . 3 5 ,  No.10/COMMUNICATIONS O F  T H E  ACM 



sets  of  Characters 
Replacing one character with a set 
of allowable characters is very easy 
to achieve with this algorithm (as 
was shown in [2]). Suppose the pat- 
tern we want to find is ABC fol- 
lowed by one digit followed by 
XYZ, and that we allow up to k er- 
rors. We denote this pattern by 
ABC[0-9]XYZ. The  only thing we 
need to do to accept any digit in the 
fourth position is to put  1 in the 
fourth position in the S arrays for 
all digits. That  is, in the preprocess- 
ing stage, when we decide for each 
character the positions that this 
character matches in the pattern, 
we include all the characters in the 
set within that position. The  rest of 
the algorithm is identical with the 
regular algorithm. A complement 
of a character is a special case of a 
set of characters and it can obvi- 
ously be handled in the same way. 

Wild Cards 
A single wild card is a symbol that 
matches all characters. As such, it is 
a special case of a set of characters 
and can be handled as we discussed 
in the previous section. Sometimes, 
however, we want to indicate that 
we allow an unbounded  number  of 
characters to appear in the middle 
of the pattern (or even do it several 
times in the middle of the pattern). 
This case requires modifying the 
algorithm slightly. Let the pattern 
be P = PlP2...Pm, and assume that 
the positions of "#" (which indi- 
cates unlimited wild cards in agrep) 
are after the characters pfi, pi 2 ..... Pis. 
(There is no reason to have two #'s  
in a row.) Let S ° be a bit array that 
has 1 in exactly the positions il, i2, 
.... i,. The  effect of putt ing a "#" 
following pi is as follows. If  we are 
scanning tj and we find a match 
with up to d errors that ends at pi, 
then later when we scan tr, for any 
r > j ,  we can start matching tr to 
Pi+ ! no matter how many characters 
we skipped. In  other words, if at 
some point there is a match up to Pi 
then this match is always valid later 
on (because all the characters later 
on can be considered as part of the 
,,#,,). 

We can adjust the algorithm for 
this case as follows. At each step, we 
apply the regular algorithm to com- 
pute all the R arrays. Tha t  is, we 
compute R °, R] . . . . .  R~ using (2.1). 
Then,  for each i, 1 -< i -< d, we set 

n'j o R  ' = [R~-I AND S#]. This 
step corresponds to the action "if at 
any point, there is a 1 entry in R i 
AND S °, then this entry should 
remain 1 from now on." 

Unknown Number of  Errors 
In  some cases, we do not know the 
number  of errors a priori. We would 
like to find all occurrences of the 
pattern with the minimal number  of 
errors possible. The  algorithm can 
be extended to this case as follows. 
We first try to find the pattern with 
no errors. If  we are unsuccessful, 
we try with one error, then with 
three errors, then with 7 errors, 
and so on, essentially doubling the 
number  of errors (and adding one) 
at each attempt. If  the number  of 
errors turns out to be k, 
then the r unn i ng  time will be O 
( 1 - n  + 2 " n  + 4 - n + ' - ' +  2b.n) ,  
where 20 is the first power of 2 
greater than k. In  the worst case, we 
perform 4 times as many opera- 
tions as we would have had we 
known k (in most cases, the factor is 
actually 2 or 3). 

A Combination of Exact and 
Approximate Matching 
Sometimes we do not want to allow 
parts of the pattern to have errors. 
For example, we may look for li- 
cense plate ABC123, and we know 
that the letters are correct but the 
numbers  may have one error in 
them. We denote this pattern by 
<ABC>123.  We can modify the 
algorithm to shield parts of the pat- 
tern from having any errors in 
them. Let's assume that I is the set 
of indexes in the pattern where no 
error is allowed, and let M be a 
masking array (of size m) that has a 
0 in the indexes of I and a 1 other- 
wise. We would like to modify (2.1) 
such that insertions, deletions, and 
substitutions can only occur outside 
of I. This is done by masking these 
cases with M. The  expression in 

(2.1) is changed to 

R~+, = [Rshift[Rd] AND Sc] 

OR [[Rshift[R~-l OR R]+~] 

O R R ]  -1] A N D M ]  (2.2) 

Nonuniform Costs 
The edit distance measure assumes 
that insertions, deletions, and sub- 
stitutions all have the same cost. But 
in some cases, we want to allow 
fewer deletions, say, than substitu- 
tions, or maybe no deletions at all. 
The  algorithm can be extended, 
albeit in a limited way, to the case in 
which each operation has a differ- 
ent cost. We illustrate this extension 
with an example: Suppose that sub- 
stitutions add 1 to the distance, but 
insertions and deletions add 3 each. 
Insertions and deletions are han- 
dled in cases 4 and 3 (see section 2). 
Insertions contribute the OR of 
R ]-~ and deletions contribute the 
OR of Rshift[R~+~] (2.1). We would 
like them to cost 3 times as much. 
In  other words, a deletion or inser- 
tion that leads to a match with d er- 
rors should come from a match 
with d - 3  errors. This can be 
achieved by simply replacing the 
d - 1 in both expressions with d - 
3. This modification is very simple 
and it does not add to the runn ing  
time; however, it works only for 
small integer costs. (Another algo- 
ri thm that allows different costs for 
different positions or different 
characters appears in [14].) 

A Set of Patterns 
If  we have several patterns and we 
want to find all occurrences of any 
of them, then we can either search 
them one at a time or together. The 
advantage of searching for all of 
them together is that it can be done 
in one scan (and in one command). 
Suppose we are looking for P1, Pz, 
.... Pr. We concatenate all the pat- 
terns and put  them in one array 
(using as many words as needed), 
and apply the algorithm on that 
array with the following modifica- 
tions. Let M be a bit array the size of 
the combined pattern, and let bit i 

COMMUNICATIONS OF THE ACM/October 1992/Vol.35, No.10 8 T  



be 1 if  and only if i corresponds to 
the first character  of  any o f  the pat- 
terns. For  each S E E, we build two 
bit arrays. The  first, Ss is identical 
with the one we previously de- 
scribed. It is used to de termine  if  a 
match occurs. The  second array 
S', = S~ AND M. It  indicates 
whether  s is the first character  of  
any pattern.  I f  so, then we must 
start the match at that pat tern:  we 
do not  want to depend  on the end 
of  the previous pattern.  Thus,  after 
we compute  Rj, we OR it with S', 
(where s = tj). 

We compute  the rest o f  the R 
arrays as before,  except that in each 
step we OR them to a special mask 
that sets the first d bits in R a of  each 
separate pat tern  to 1; this allows d 
initial errors  in each pattern.  (This 
is not the most efficient way to solve 
this problem,  but  it is reasonably 
simple.) This case is a special case of  
pat terns  as regular  expressions, 
which we will discuss shortly. (Ver- 
sion 2 of  agrep  includes a new algo- 
r i thm for mult ipat terns,  which uses 
Boyer-Moore- type filtering; it can 
handle  very large pat terns  [24].) 

Long Patterns 
Suppose that the pat tern  occupies 
several words and it is a simple 
string. The  algori thm proceeds in 
the same fashion by comput ing  the 
R a arrays for all words. However,  
unless the number  of  errors  is 
large, the first part  of  the pat tern  
will not be matched quite often. I f  
there  is no match with k errors  
start ing after  position r of  the pat- 
tern, then there is no need to main- 
tain the R arrays cor responding  to 
positions larger  than r (their values 
will be 0). Thus,  most of  the time 
there will be no need to maintain 
the R a arrays for  the r ight  side o f  
the pattern.  We only need to be 
aler ted when the last bit of  the last 
R a array  that we maintain gets the 
value o f  1. In  that case, we start  
maintaining the Ra arrays for the 
next par t  of  the pattern.  This im- 
provement  does not  work for sets 
of  pat terns  or  regular  expressions. 

Regular Expressions 
The  algori thm can be ex tended  to 

allow any regular  expression as a 
pattern.  We describe the method 
here  only briefly; for more  details 
see [23]. Other  algori thms for ap- 
proximate  matching to regular  
expressions can be found in [17, 22, 
25]. First, we illustrate the algo- 
r i thm with a simple example.  We do 
not  try to optimize the algori thm 
here;  we try to make it as simple as 
possible to describe. Let the pat tern  
be P = ab(cdle)*fg (i.e., starting with 
ab and ending  with fg  with any 
number  of  ei ther  cd or e in be- 
tween). This regular  expression is 
t ranslated to the nondeterminis t ic  
finite automata  shown in Figure 1 
(for more  on such translations, see 
[9]). We now assign a bit ar ray to 
represent  the automata.  We num- 
ber  the states including the null 
states that do not  cor respond to any 
character.  This  "linearizes" the au- 
tomata. Each state corresponds to 
one entry in the array. Thus,  for P 
we have an array of  size I 1. Notice 
that all the non-e moves go to the 
next  state and thus can be handled  
by essentially a shift and  an AND 
operat ion.  We need to find a way to 
deal  with arbi t rary j u m p s  required 
by the e moves (e.g., f rom state 2 to 
state 8) and with "nonjumps"  that 
happen  to be in consecutive states 
(e.g., f rom state 5 to state 6). The  
nonjumps  can be handled  easily 
with a mask. The  arbi t rary  j u m p s  
are ha rde r  to handle.  The  meaning 
of  an e move f rom state i to s ta te j  is 
that  if, at any point, we match up  to 
state i then the same match holds 
also up  to s ta te j .  In  o ther  words, if  
there  is a 1 cor responding  to state i 
in the array, then the e move from i 
t o j  implies that there  should be a 1 
cor responding  to state j .  T h e  main 
observation is that a given bit ar ray 
and set o f  e moves completely de- 
termine the value of  the bit ar ray 
after  the e moves are  taken. Thus,  
the set o f  e moves defines a func- 
tion that maps a bit ar ray to an- 
other. We need to be able to imple- 
ment  this function efficiently. 

Let f denote  the function that 
maps one bit ar ray to another  by 
applying all the e moves. We divide 
the bit ar ray into bytes (i.e., groups  

of  8 bits each). Consider  the first 8 
bits of  the bit array. The  values of  
these bits de te rmine  which l 's  
should be set when we apply the e 
moves on states 1 to 8. Since there  
are only 256 (=28 ) possible values 
for 8 bits, we can preprocess  all pos- 
sibilities and  construct  a table of  size 
256 which will hold, for each possi- 
ble byte, the whole bit a r ray  with ls  
only in places cor responding  to the 
e moves. (We need the whole array 
and not  jus t  the first 8 bits, because 
there  might  be forward  jumps. )  We 
can do that  for each byte. Given 
now a cur ren t  value of  R, we first 
apply  the regular  algori thm, taking 
care o f  regular  non e moves, then 
we divide the array into bytes, find 
the cor responding  arrays in the 
tables (we have one table pe r  byte), 
and OR all o f  them to R. This im- 
plements  all the jumps ,  and  if the 
pat tern  occupies no more  than 32 
bits (as is often the case), only four  
more  steps are  required.  ( I f  the text 
is large, it is worthwhile to prepro-  
cess 16 bits for a table of  size 65536 
and half  as many steps; this is the 
choice made  in agrep.)  

The  runn ing  time of  this algo- 

r i thm is O ( n k I l ~ g ~ n ] ' I P ] ) ,  

where p is the size o f  the regular  
expression. I f  the regular  expres-  
sion is not  too large and n is large, 
the effective runn ing  time is O(nk). 

Experimental Results 
Here  we present  some exper imen-  
tal results involving the algori thms 
discussed in the previous sections. 
The  purpose  o f  these exper iments  
is to show that our  algori thms are 
very efficient for small patterns.  We 
used only pat terns  that are smaller 
than the compute r  word size, thus 
the comparisons to other  algo- 
r i thms are  not general  and  may not 
be fair. All tests were run  on a SUN 
SparcStation II  runn ing  Unix. The  
numbers  given here  should be 
taken with caution. Any such re- 
suits depend  on the architecture,  
the opera t ing  system, and the com- 
pilers used. Note also that the cur- 
rent  version of  agrep  employs some 
newer algorithms, so its cur ren t  

8 8  October 1992/Vol.35, No.10/COMMUNICATIONS OF THE ACM 



performance is sometimes better 
than the results in this section. 

We tested the partition algorithm 
against two other algorithms, one 
by Ukkonen [20] (which we imple- 
mented) and one by Galil and Park 
[6] (labeled MN2; the program was 
provided for us by W.I. Chang) 
which is based on another tech- 
nique by Ukkonen [21]. These two 
algorithms are both improvements 
of  the basic dynamic programming 
algorithm and their expected run- 
ning time is O(nk). We used random 
text (of size 1 million) and pattern 
(of size 20), and two different al- 
phabet sizes. In this case, since we 
use the idea of  partitioning the pat- 

tern, the size of  the alphabet makes 
a big difference. A large alphabet 
leads to very few accidental exact 
matches, thus the running time is 
essentially the same as the one for 
exact matching. A small alphabet 
leads to many matches and the al- 
gorithm's performance degrades. 
The  case of  binary alphabet serves 
as the worst case for this purpose. 
Results are shown in Table 3. 

The second test was for more 
complicated patterns, including 
some of  the extensions discussed in 
the previous section. (Anything 
within the < >  brackets must match 
exactly; a "#"  stands for a wild card 
of  arbitrary length; a ";" serves as 

Figure 1. The nondeterministlc automata corresponding to 
ab(c~e)*fg 

Iruble l .  Approximate string matching of simple strings 

'robio 4. Approximate matching of complicated patterns 

the Boolean AND operation, 
namely all patterns must appear 
within the same line; a "]" is the reg- 
ular expression union operation; 
and a "*" is the Kleene closure.) 
The  results are given in Table 4 
(the file was a bibliographic text of  
size 1MB). Another  algorithm for 
approximate matching to arbitrary 
regular expressions is by Myers and 
Miller [ 17]. (Recently, we improved 
some parts of  this algorithm [25].) 
The  running times o f  the Myers 
and Miller algorithm for the cases 
we tested, which include only small 
regular expressions and small er- 
rors, are more than an order  of  
magnitude slower than our  algo- 
rithm; however, this is not a fair 
comparison because their algo- 
rithm can handle more general cost 
functions and its running time is 
independent  of  the number  of  er- 
rors. 

A Description of  Agrep 
Having such flexible algorithms 
motivated us to develop an approx- 
imate matching tool for Unix. 
Agrep has been in wide use since 
June 1991, and it has gone through 
two major revisions. It includes sev- 
eral new algorithms in addition to 
the ones described in this article 
(e.g., a new multipattern algorithm 
and an improved approximate 
string matching for simple strings). 
It is used similarly to grep/egrep/ 
fgrep and it supports most o f  the 
features of  the grep family (al- 
though it is not 100% compatible), 
but it supports many additional fea- 
tures (mostly but not all related to 
approximate matching). Agrep is at 
least as fast and in many cases faster 
than all other greps that we know 
of. One notable difference between 
agrep and the previous greps (be- 
sides the ability to search approxi- 
mately) is that agrep is record ori- 
ented (rather than line oriented). A 
record (e.g., a paragraph, a mail 
message) is defined by the user 
(with the default being a line). 
Agrep outputs all records that 
match the query (see the -d option 
described below). Agrep is avail- 
able, free of  charge, by anonymous 

COMMUNICATIONS OF THE ACM/Octobcr 1992/Vo1.35, No.10 8 9  



ftp from cs.arizona.edu (IP number  
192.12.69.5). Next, we describe the 
unusual  features of  agrep  that are 
not found in similar programs.  A 
complete descript ion is given in the 
manual  pages distr ibuted with 
agrep  (see also [24]). 

-d 'delim' 
delim is a user-def ined symbol (or 
string) for record delimiter  (the 
default  is the new-line symbol). 
This enables searching paragraphs  
(in which case delim = '$$') or  mail 
messages (delim = '^From'). 
-k finds all occurrences with at most 
k errors  (insertions, deletions, or  
substitutions), where k is a positive 
integer. 
-B finds all matches with min imum 
number  o f  errors  (e.g., if the best 
match has 2 errors,  this is the same 
as runn ing  agrep  with -2, but  of  
course 2 is unknown). 
-Dc each delet ion counts as c errors;  
c must  be a nonnegative integer; 
the defaul t  value of c is 1 
-Ic each insertion counts as c errors;  
c must be a nonnegative integer; 
the defaul t  value of  c is 1 
-Sc each substitution counts as c er- 
rors; c must  be a nonnegative inte- 
ger; the defaul t  value of  c is 1 

Examples of using agrep 
agrep  -1 -I2 -D2 555-1234 phone-  
list 

finds all numbers  that differ  
f rom 555-1234 in at most one 
digit; setting the cost of  insertions 
and deletions to 2 prevents them 
in this case. 

agrep  -B -d '$$' Shmidth address-  
list 

finds all addresses (assuming the 
addresses are  separated by a 
blank line) containing the best 
match to Shmidth.  

agrep  -d " F r o m  ' 'breakdown;ar-  
panet '  mail-file 

outputs  all mail messages (the 
pat tern  '^From ' separates mail 
messages in a mail file) that con- 
tain breakdown and arpanet (the 
symbol ; stands for the Boolean 
AND). 

agrep  -B -w otomaton/usr/dict /  
words 

finds the closest words in the dic- 
t ionary to otomaton; the -w option 
forces the match to be against the 
whole word ra ther  than a par t  of  
it. (The best match has two errors  
and there are two of  them: au- 
tomaton and tomato.) 

agrep  -d '$$' - 1 
' < w o r d l  > < w o r d 2 > '  

finds all paragraphs  that contain 
word 1 followed by word2 with at 
most one e r ror  in place of  the 
blank between the words (the < >  
indicate that no e r ro r  is allowed 
inside). In  particular,  if  word l  is 
the last word in a line and word2 
is the first word in the next line, 
then the space will be substituted 
by a new line symbol and it will 
match. Thus,  this is a way to 
overcome separat ion by a new 
line. Note that -d '$$' (or another  
del im that  spans more  than one 
line) is necessary, because other-  
wise agrep  searches only one line 
at a time. 

agrep -5 ' a # b # c # d # e # f # g # h # i # j '  
/usr/dict/words 

finds all words that have at least 5 
of  the first 10 letters of  the alpha- 
bet in order ;  the # sign signals 
unl imited wild cards, which 
means here  that any insertion is 
for free (there is actually a special 
opt ion -p for that purpose).  Try 
it; the answer starts with academia 
and ends with sacrilegious, which 
must mean something.  

Conclusions 
Searching text in the presence of  
errors  is commonly done  by h a n d - -  
one tries all possibilities. This  is 
frustrating,  slow, and with no guar-  
antee of  success. The  new algo- 
r i thm presented in this article for 
searching with er rors  can alleviate 
this problem and make searching in 
general  more  robust. I t  also makes 
searching more  convenient  by not 
having to spell everything precisely. 
The  algori thm is very fast and gen- 
eral and it should find numerous  
applications. 

The re  is one impor tan t  area of  
searching with errors  that we did 
not  add res s - - sea rch ing  an indexed 
file. T h roughou t  the article we as- 

sumed that the files are not indexed 
(preprocessed) in any way, thus a 
sequential scan th rough  them is 
necessary. We believe that the prob-  
lem of  f inding good indexing 
schemes that  allow approx imate  
search is the unresolved problem in 
this area. We note, however, that 
with the speed of  cur ren t  comput-  
ers, scanning large files (up to tens 
of  MB) can be done reasonably fast. 
One can argue  that since the size of  
our  data increases as our  speed o f  
processing it increases, waiting for  
faster computers  will not help and 
indexing will always be necessary. 
This is certainly t rue for some ap- 
plications, but  not  for all. Some 
applications have a reasonable 
uppe r  bound  on their  size and se- 
quential  search for those applica- 
tions is (and will remain) realistic. 

Acknowledgments 
We thank Ricardo Baeza-Yates, 
Gene Myers, and  Chunghwa H. 
Rao for many helpful  conversations 
about  approx imate  string matching 
and for comments  that improved 
the manuscript .  We thank Ric An- 
derson,  Cliff Hathaway, and Shu- 
Ing  Tsuei  for their  help and com- 
ments that improved the imple- 
mentat ion o f  agrep.  We also thank 
William I. Chang for kindly provid-  
ing programs for some of  the ex- 
periments.  [ ]  

References 
1. Abrahamson, K. Generalized string 

matching. SIAM J. Comput. 16, 6 
(1987), 1039-1051. 

2. Baeza-Yates, R.A. and Gonnet, 
G.H. A new approach to text 
searching. Commun. ACM 35, 10 
(1992). Preliminary version ap- 
peared in Proceedings of the 12th 
Annual ACM-SIGIR Conference on 
Information Retrieval, Cambridge, 
Mass. (June 1989), pp. 168-175. 

3. Boyer, R.S. and Moore, J.S. A fast 
string searching algorithm. Com- 
mun. ACM 20, 10 (Oct. 1977), 762- 
772. 

4. Chang, W.I. and Lawler, E.L. Ap- 
proximate string matching in sub- 
linear expected time. FOCS 90, pp. 
116-124. 

5. Galil, Z. and Giancarlo, R. Data 
structures and algorithms for ap- 

9 0  October 1992/Vol.35, No.10/COMMUNICATIONS OF THE ACM 



proximate string matching. J. Com- 
plex. 4 (1988), 33-72. 

6. Galil, Z. and Park, K. An improved 
algorithm for approximate string 
matching. SIAM J. Comput. 19 (Dec. 
1990), 989-999. 

7. Gonnet, G.H. and Baeza-Yates, 
R.A. Handbook of Algorithms and Data 
Structures. Second ed. Addison- 
Wesley, Reading, Mass., 1991. 

8. Hall, P.A.V. and Dowling, G.R. 
Approximate string matching. Com- 
put. Surv. (Dec. 1980), 381-402. 

9. Hopcroft, J.E. and Ullman, J.D. In- 
troduction to Automata Theory, Lan- 
guages, and Computation. Addison- 
Wesley, Reading, Mass. (1979). 

10. Knuth, D.E., Morris, J.H. and Pratt, 
V.R. Fast pattern matching in 
strings. SlAM J. Comput. 6 (June 
1977), 323-350. 

11. Landau, G.M. and Vishkin, U. Fast 
string matching with k differences. 
J. Comput. Syst. Sci. 37 (1988), 63-  
78. 

12. Landau, G.M. and Vishkin, U. Fast 
parallel and serial approximate 
string matching.J. Algor. 10 (1989). 

13. Levenshtein, V.I. Binary codes ca- 
pable of correcting deletions, inser- 
tions, and reversals. Sov. Phys. Dokl. 
(Feb. 1966), 707-710. 

14. Manber, U. and Wu, S. Approxi- 
mate string matching with arbitrary 
costs for text and hypertext. IAPR 
Workshop on Structural and Syntactic 
Pattern Recognition, (Bern, Switzer- 
land Aug. 1992). 

15. Manber, U. and Wu, S. Approxi- 
mate pattern matching. BYTE. To 
be published Nov. 1992. 

16. Myers, E.W. An O(ND) difference 
algorithm and its variations. Al- 
gorithmica 1 (1986), 251-266. 

17. Myers, E.W. and Miller, W. Ap- 
proximate matching of regular ex- 
pressions. Bull. Math. Bio. 51 (1989), 
5-37. 

18. Pinter, R. Efficient string matching 
with don't-care patterns. In Combi- 
natorial Algorithms on Words, A. 
Apostolico and Z. Galil, Eds., 
Springer-Verlag, Berlin, 1985. 

19. Tarhio, J. and Ukkonen, E. Ap- 
proximate Boyer-Moore string 
matching. Tech. Rep. #A-1990-3, 
Dept. of Computer Science, Uni- 
versity of Helsinki (Mar. 1990). 

20. Ukkonen, E. Finding approximate 
patterns in strings. J. Algor. 6 
(1985), 132-137. 

21. Ukkonen, E. Algorithms for ap- 
proximate string matching. Inf. 

Control 64 (1985), 100-118. 
22. Wagner, R.A. and Seiferas, J.I. Cor- 

recting counter-automaton-recog- 
nizable languages. SIAM J. Comput. 
7 (1978), 357-375. 

23. Wu, S. Approximate pattern match- 
ing and its applications. Ph.D. dis- 
sertation, Dept. of Comput. Sci., 
University of Arizona, June 1992. 

24. Wu, S. and Manber, U. Agrep- -A 
fast approximate pattern-matching 
tool. Usenix Winter 1992 Technical 
Conference (San Francisco Jan. 
1992), pp. 153-162. 

25, Wu, S., Manber, U. and Myers, 
E.W. A Sub-Quadratic Algorithm 
for Approximate Regular Expres- 
sion Matching, submitted for publi- 
cation (May 1992). 

CR Categories and Subject Descrip- 
tors: F.2.2 [Theory of Computing]: 
Numerical Algorithms and Problems-- 
pattern matching; H.3.3 [Information 
Systems]: Information Search and Re- 
trieval-search process; 1.5.4 [Computing 
Methodologies]: Pattern Recognition-- 
text processing 

General Terms: Algorithms 
Additional Key Words and Phrases: 

Approximate string matching, informa- 
tion retrieval, pattern matching, soft- 
ware tools, string searching 

About the Authors: 
SUN WU is a member of the technical 
staff at Bell Laboratory in Murray Hill, 
N.J. His research interests include ap- 
proximate pattern matching, text pro- 
cessing and distributed database sys- 
tems. Author's Present Address: 
AT&T Bell Labs, 600 Mountain Ave., 
Murray Hill, N.J. 07974 

UDI MANBER is a professor of com- 
puter science at the University of Ari- 
zona, where he has been since 1987. His 
research interests include pattern 
matching, design for algorithms and 
computer networks. Author's Present 
Address: Dept. of Computer Science, 
University of Arizona, Tucson, Az. 
85721; email: udi@cs.arizona.edu 

Supported in part by an NSF Presidential 
Young Investigator Award (grant DCR- 
8451397), with matching funds from AT&T, 
and by an NSF grant CCR-9002351. 

Permission to copy without fee all or part of 
this material is granted provided that the 
copies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
date appear, and notice is given that copying 
is by permission of the Association for 
Computing Machinery. To copy otherwise, or 
to republish, requires a fee and/or specific 
permission. 

©ACM0002-0782/92/1000-083 $1.50 

CARE plants the most wonderful seeds on earth. 
Seeds of self-sufficiency that help stai'ving people become 

healthy, productive people. And we do it village by village by village. 
Please help us turn cries for help into the laughter of hope. 

C O M M U N I C A T I O N S  O F  T H E  AOM/October 1992/Vol.35, No.10 91 


