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Abstract

e In commercialrid computingsystems (e.g. [30]), where users are

DRAM memory is a major resource shared among cores in a chip charged for CPU hours, unfair resource sharing would résult

multiprocessor (CMP) system. Memory requests from differeeads
can interfere with each other. Existing memory access sdheg
techniques try to optimize the overall data throughput oted from
the DRAM and thus do not take into account inter-thread fierence.
Therefore, different threads running together on the saig can ex-
perience extremely different memory system performanoe ttoead
can experience a severe slowdown or starvation while amdshen-
fairly prioritized by the memory scheduler.

very unfair billing procedures because the performanceaps-
gram experiences would not necessarily correlate with C®lwsh
it takes as it is dependent on other programs running on the.CM

As processor designers put more processing cores on caiprek-
sure on the shared hardware resources will increase arethingad
interference in shared resources will become an even maerese

This paper proposes a new memory access scheduler, caledrpblem. Therefore, techniques to provigieality of service (or fair-

Stall-Time Fair Memory scheduler (STFMhat provides quality of
service to different threads sharing the DRAM memory sysfEne

goal of the proposed scheduler is to “equalize” the DRAMatet

slowdown experienced by each thread due to interference @iher

threads, without hurting overall system performance. Ahs&TFM

takes into account inherent memory characteristics of ¢akad and
does not unfairly penalize threads that use the DRAM systiémout

interfering with other threads.

ness)o threads sharing CMP resources are necessary.

The DRAM memory subsystem is a major resource shared between
the processing cores in a CMP system. Unfortunately, cdiored
high-performance DRAM memory controller designs do noetao
account interference between different threads when rgaéhedul-
ing decisions. Instead, they try to maximize the data thinpugy ob-
tained from the DRAM using a first-ready first-come-firstvee(FR-

We show that STFM significantly reduces the unfairness in th@:FS) policy [25, 24]. FR-FCFS prioritizes memory requebtt

DRAM system while also improving system throughput (i.eighited
speedup of threads) on a wide variety of workloads and systéor

hit in the row-buffers of DRAM banks over other requests]uding

example, averaged over 32 different workloads running oB-@ore older ones. If no request is a row-buffer hit, then FR-FCF8ritizes
CMP, the ratio between the highest DRAM-related slowdowhthe older requests over younger ones. This scheduling algoighhread-
lowest DRAM-related slowdown reduces from 5.26X to 1.4Xlewhunaware. Therefore, different threads running togethethensame

the average system throughput improves by 7.6%. We qunaditat
and quantitatively compare STFM to one new and three prasijou
proposed memory access scheduling algorithms, includetavark

fair queueing. Our results show that STFM provides the lm@stdss,

system throughput, and scalability.

1. Introduction

Chip multiprocessor (CMP) systems enable multiple thréadsn
simultaneously on a single chip. A CMP system consists otipial
independent processing cores that share parts of the mesubsys-
tem. This chip organization has benefits in terms of powfciency,
scalability, and system throughput compared to a singte-sgstem.
However, shared hardware resources pose a significantroesman-
agement problem in designing CMP systems. Different tteead in-
terfere with each other while accessing the shared resauitcimter-
thread interference is not controlled, some threads coealdrifairly
prioritized over others while other, perhaps higher ptyorthreads
could be starved for long time periods waiting to accesseshag-
sources. There are at least four major problems with sucirure-
source sharing in CMP systems:

e First, unfair resource sharing would render system so#isgop-
erating system or virtual machine) priority-based threatuedul-
ing policies ineffective [5] and therefore cause signifiadiscom-

chip can experience extremely different memory systenopednce:
one thread (e.g. one with a very low row-buffer hit rate) capes
rience a severe slowdown or starvation while another (erg waith
a very high row-buffer hit rate) is unfairly prioritized bizé memory
scheduler.

Figure 1 illustrates the problem by showing the memoryteela
slowdowns of different threads on a 4-core and an 8-core C{4P s
tem. A thread’s memory-related slowdown is the memory sitaié
(i.e. number of cycles in which a thread cannot commit ircgtoms
due to a memory access) the thread experiences when runmiob s
taneously with other threads, divided by the memory staiktit ex-
periences when running aloheThere is a very large variance be-
tween the threads’ memory-related slowdowns in both systémthe
4-core systempmnetppexperiences a slowdown of 7.74X whereas
libquantumexperiences almost no slowdown at all (1.04X). The prob-
lem becomes even worse in the 8-core system délll experienc-
ing a slowdown of 11.35X whilébquantumexperiences only a 1.09X
slowdown? Clearly, trying to maximize DRAM throughput with FR-
FCFS scheduling results in significant unfairness acrassats in a
CMP system.

In this paper we propose a new memory scheduling algorithm,
called theStall-Time Fair Memory Scheduler (STFMhat provides

fort to the end user who naturally expects threads with highfgirness to different threads sharing the DRAM memory systeve

(equal) priorities to get higher (equal) shares of the perémce
provided by the computing system.

e Malicious programs that intentionally deny service to otheeads
can be devised by exploiting the unfairness in the resourasrgy
schemes [20]. This would result in significant productiVibgs
and degradation in system performance.

e Unfairness would reduce the performance predictabilitamubli-

define a memory scheduler to tadr if the memory-related slowdowns
of equal-priority threads running together on the CMP systee the
same. Hence, thguality of service (QoS) goalf the proposed sched-
uler is to “equalize” the memory-related slowdown eachabrexpe-

1The cores have private L2 caches, but they share the mematgolter
and the DRAM memory. Our methodology is described in detaBéction 6.
2libquantumis a memory-intensive streaming application that has a very

cations since the performance of an application becomes$ mygy row-buffer locality (98.4% row-buffer hit rate). Othepplications have

more dependent on the characteristics of other application-

significantly lower row-buffer hit rates. Sinéilequantumcan generate its row-

ning on other cores. This would make it difficult to analyze anpuffer-hit memory requests fast enough, its accessesrasahlways unfairly

optimize system performance.

prioritized over other threads’ accesses by the FR-FCF&dsdimg algorithm.
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Figure 1. Memory slowdown (normalized memory stall time) of programsin two workloads run on 4-core (left) and 8-core (right) CMP gystems

riences due to interference from other threads, withouimmpverall each SDRAM chip has a narrow data interface (e.g. 8 bits) due t

system performance. packaging constraints, combining several of them in a DIMMems
Basic idea: To achieve this QoS goal, the scheduler estimates tilee data interface (e.g. to 64 bits) to DRAM. An SDRAM chip sizts

values for each thread: Tkn.r.a: Memory stall time the thread ex- of multiple independent memory banks such that memory =que

periences when running with others, 2);,».: Memory stall time different banks can be serviced in parallel. Each bank iardmgd as

the thread would have experienced had it been running aBased a two-dimensional array of DRAM cells, consisting of mukipows

on these estimates, the scheduler computesném@ory-slowdows  and columns. A location in the DRAM is thus accessed using AR

of each thread wher8 = Tspared/Taione- If the ratio between the address consisting of bank, row, and column fields.

maximum slowdown value and the minimum slowdown value inthe  ipiwm T

DIMM
system exceeds a threshold (the threshold of maximum téecm- PRAMCHIP7 "
fairness), the scheduler prioritizes memory requests tloeads that [DRAMCHIP T

DRAM CHIP 0

are slowed down the most. Otherwise, the scheduler triesitomize
DRAM throughput by using the baseline FR-FCFS schedulifigyo

We explain how the memory-slowdown of threads can be esti-
mated in hardware and describe the design and implememtafio
STFM. We also describe how STFM can be exposed to the system
software to provide more flexibility and control to the systeoftware
in thread scheduling and resource management. We comphooan
trast STFM to scheduling techniques that try to equalizenteenory
bandwidth utilized by different threads, such asé@twork fair queue-
ing [23, 22]. In contrast to these approaches, STFM takes irtolat ;
inherent memory-related performance of each thread. Tdrexeit |
does not unfairly penalize threads that use the DRAM memystes ;
without interfering with other threads (e.g. when othee#us are not
issuing memory requests).
Contributions: We make the following contributions in this paper:

e We provide a new definition of DRAM fairness that takes inte ac Figure 2. High-level organization of a DRAM system
count inherent memory characteristics of each thread éixgoon Physically only one row in a bank can be accessed at any given
a CMP. We compare the merits of our definition with previouslyme. This row is stored in theow-buffer(i.e. sense amplifiers) ded-
proposed definitions and provide insights into veltgll-time fair- jcated for that bank. The size of the row buffer is typicall KB
nessds a more meaningful fairness definition for DRAM systemsin a DRAM chip, allowing it to hold tens of cache lines. To mave

o We introduce and describe the design and implementationefvia row from the memory array to the row buffer (i.e. to open a raav)
memory access scheduler, STFM, that provides quality eicer activatecommand needs to be issued first. Once a row is in the row
to threads using the proposed definition of DRAM fairness. buffer, thenread or write commands can be issued to read/write data

e We qualitatively and quantitatively evaluate our new memofrom/into the memory addresses (columns) contained indive The
access scheduler with extensive comparisons to one new &tdncy of a memory request therefore depends on whethartdhe
three previously proposed schedulers (FR-FCFS, first-eiinste requested row is in the row buffer of the bank. A memory retjizis
serve, and network fair queueing) in terms of fairness astesy into three different categories:
throughput. Our results show that STFM provides the best fai
ness, throughput, and scalability as the number of coresases
over a wide variety of workloads.

e We describe how the system software can utilize the flexdile f
ness substrate provided by STFM to enfatoead weightand to
control the unfairness in the system.
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e Row hit: The request is accessing the row currently in the row
buffer. Only aread or a write command is needed. This case
results in the lowest bank access latency (called in DRAM
nomenclature, e.g. [18]) as only a column access is required

e Row closed There is no row in the row buffer. Aactivatecom-

mand needs to be issued to open the row followed lbgaal or

write command. The bank latency of this caseis p + tcr as
both a row access and a column access are required.

Row conflict: The access is to a row different from the one cur-

rently in the row buffer. The contents of the row buffer firstea

to be written back into the memory array using ginechargecom-

mand (opening a row destroys the row’s contents in the memory

array). The required row then needs to be opened and accessed

2. Background on DRAM Memory Controllers

We provide the pertinent details of DRAM memory systems and
controllers. Our description is based on DDR2 SDRAM systdmtsit  ©
is generally applicable to other DRAM types that employ pagsie.
More details can be found in [3, 25, 4, 24].

2.1. SDRAM Organization and Access Latencies

A modern SDRAM system as shown in Figure 2 consists of one or
more DIMMs (dual in-line memory modules). A DIMM is comprise
of multiple SDRAM chips put together and accessed in pdra&liace

using theactivateandreadwrite commands. This results in the
highest bank access latengyp + trcp + tor (We later provide
the values of these DRAM parameters in Table 2).



In all cases, transferring an entire cache line from/to tfRAD  prechargecommandsf. This policy improves throughput by maxi-
bank over the DRAM data bus incurs additional latency. Thehea mizing the row-buffer hit rate.
line is transferred usingurst modeand a programmableurst length 2. Oldest-first: Ready DRAM commands from older requests (i.e.

(BL) determines how many cycles the transfer takes. requests that arrived earlier in the memory controller)@reritized
over those from younger requests. Note that a simple FCRBitim
2.2. DRAM Controller Organization uses only this rule to prioritize commands.

The DRAM controller is the mediator between processors had t _ 1HUS, With FR-FCFS, the oldest row-hit request has the Isighe
DRAM. Its job is to satisfy processors’ memory requests a/bibey- priority, whereas the youngest row-conflict request hasaiest.

ing the timing and resource constraints of the DRAM bankgs;h . .
and address/data buses. To do so, it translates procegsests into 2.5. Thread-Unfairness of FR-FCFS Scheduling

DRAM commands. A DRAM controller consists of the following__The DRAM command prioritization policies employed by the-FR
structures: FCFS algorithm are unfair to different threads due to twesoes.
. . First, thecolumn-firstpolicy gives higher priority to threads that have
» Request bufferholds state associated with each memory requeghy row-buffer locality If a thread generates a stream of requests
(e.g. the address, type, identifier, age of the requestimessl o gccess different columns in the same row, another dhifeat
completion status). It can be organized as a single unifiéfbu neeqs to access a different row in the same bank will not be ser
for all banks or multiple per-bank buffers. - ) viced until the first thread's column accesses are complEte. ex-
e Read/Write data buffers hold the data that is read from/written toample, assuming 2KB row-buffer size per DRAM chip, 8 DRAM
the DRAM. Eachmemory read/writeequest is allocated an entrychips per DIMM, and 64-byte cache line3K B * 8/64B = 256
in its respective buffer until the request is completelygrrd. row-hit requests from a streaming thread can be serviceordef
e DRAM access scheduledecides which DRAM command to is- row-closed/conflict request from another thread. Secdmloldest-
sue every DRAM clock cycle. It consists of the logic that keefirst policy implicitly gives higher priority to threads that cgener-
track of the state of the DRAM banks/bus and the tlmlng CORte memory requests at a faster rate than others. Reqm‘[gdss
straints of the DRAM. It takes as input the state of the memopfemory-intensive threads are not serviced until all eadieving
requests in the request buffer along with the state of the MRArequests from more memory-intensive threads are servidédre-
banks/buses, and decides which DRAM command should be fisre, less memory-intensive threads suffer relativelgéarncreases
sued based on the implemented scheduling and accessipaioritin memory-related stalfs.
tion policies (which usually try to optimize memory bandtfid  Our goal: Based on these observations, our goal in this paper is to
and latency). The structure of our baseline DRAM controler design a new memory access scheduler that is fair to threadsting
later depicted in Figure 4. on different cores without sacrificing system throughpuit.

2.3. DRAM Access Schedulers 3. Stall-Time Fair Memory Scheduling:
( l\_/lo?lern I;igh-petr_formarllqce _ DIﬁA)M icheldulelrstaremi[rznsp]leTn;]ented Approach and A|gorithm

ogically and sometimes physically) as two-level strue . The T . .
first level consists of theer-bank schedulersEach per-bank sched-3'1D'ef§itna:c:I f;l;lglislzir?llgrll?isl\i ér;slt:()e?w?!\g rf)ﬁstts/g]ls Simply iy
uler maintains a logical priority queue of the memory reqsiesiting . . A L e
to be serviced in the bank it is associated with selects the highest- N9 the DRAM bandwldth evenly across all threac_is 'f |nSLefhd:,| for
priority request from that queue and issues DRAM commandgito |nsta_nce,'because th.'s WOUlq penalize threads with _good-buffe_r
vice that request (while respecting the bank timing congsa The locality, high parallehsr_n, orin general, threads t_hat inyue of their
second level is thacross-bank channel scheduliiat takes as input memory access behavior are able to achieve a higher thraughine
all the commands selected by the per-bank schedulers andehthe DRAM SySt‘?m than others. . . .
highest-priority command (while respecting the timingswaintsand A thread's performance degradation due to DRAM interfeesisc
scheduling conflicts in the DRAM address and data buses)pfibe primarily characterized by itextra memory-related stall-timghat is

itization algorithms implemented in these two levels deiee which Ccaused due to contention with requests from other threadsause
memory requests are prioritized over others. DRAM banks have limited bandwidth, simultaneously exemtnul-

tiple threads on different cores inevitably causes the nmgmredated
. . stall-time of threads to increase. The goal of a fair DRAMestiiler
2.4. State-of-the-art Scheduling AIgonthms_ _is therefore to balance these extra stall-times acrossrdiit threads
_ DRAM schedulers can employ a variety of algorithms to prioriych that all threads exhibit a similar slowdown. This itiui high-
tize the memory requests in the request buffer. The FR-FO§® a |ights the need for the following, fundamentally new defonit of
rithm [25, 24] has been shown to be the best performing oneative pRraM fairness:
in single-threaded systems and it is used as the baselihésipaper A stall-time fair DRAM scheduler schedules requests in sushy
(however, we also evaluate other previously-proposediégas such {hat the extra memory-related slowdown (due to interfegecmused
as a simple FCFS algorithm). FR-FCFS is designed to optithiee by other threads) is equalized across all thredds.
throughput thained from the DRAM. To do so, it prioritizeRBM In order to achieve stall-time fairness, we propose a nowRAR
commands in the following order: scheduler that is based on the following basic idea. For gmehd, the
1. Column-first: Readycolumn accesse§.e. read andwrite gcheduler maintains two valueE; nared aNATh10me. Tshared captures
commands) are prioritized over reamyw accesseg.e. activateand  the memory-related stall-time (in processor cycles) eepeed by the

3The “logical” priority queue is adjusted every DRAM cycle sort the 4A DRAM command is said to be ready if it can be issued withoatating
requests to the bank based on their priorities. The phystoatture of the pri- the timing constraints and without resulting in bank or basflicts. DRAM
ority queue and the scheduler depend very much on the implatien. Many commands that aneot readyare not considered by the scheduler.
implementations use multiple priority encoders and arbite implement the 5The FCFS algorithm is also thread-unfair due to this seceadan.
priority-based selection of requests. Alternatively, samplementations use  ®The limitations of other notions of fairness in the contebgltared DRAM
hardware priority queues [19] that are sorted every DRAMeyc systems are discussed in Section 4.



thread in the shared DRAM system, when running alongsiderothiequest.For instance, when a request is issued to a DRAM bank, the
threads. On the other harifl,;,... expresses the estimated memoryextra stall-timel ,ter ference Of all other threads that haveraady
related stall-time the thread would have had if it had rumeal@vithout request(i.e. a request that can be scheduled by the controller witho
any contending threads on other cores). Based on these tiwatss, violating timing constraints) to the same bank increasé®se ready
the scheduler can compute for each threachiggnory-slowdowis = requests could have been scheduled if the thread that geddhem
Tshared/Taione. INtuitively, a thread has high memory-slowdown had run by itself, but they were delayed due to interfererme fother

if its experienced memory-related stall-time is high, veeer without threads, thereby increasing the thread’s extra stall-titdence, the
the interference caused by other threads, its stall timddiwave been scheduler needs to adjust its estimatd dfie, ference appropriately.
low. Conversely, a thread’s memory-slowdonis low if the thread’s When a requestk from thread C' is scheduled, our mecha-
memory stall-time is similar to when it runs alone. Our salied nism updatesTT,ierference Values of all threads. STFM updates
achieves stall-time fairness by prioritizing requestsifitreads With  T7,;c, ference differently for the request's own thread versus for
very high memory-slowdowr$, thereby equalizing the experiencedther threads as we explain below:

memory slowdown across all threads. 1. Updating other threads’ Trnierference Values: The extra stall
) . time a scheduled request inflicts on another thread that asia
3.2. STFM: Stall-Time Fair Memory Scheduler standingeeady requestonsists of two portions: extra stall time due to

We first describe STFM assuming that all threads are equally iinterference in the (a) DRAM bus and (b) DRAM bank.
portant. We provide a discussion of how to incorporate thre@ights a) Updating Trnter ference due to interference in DRAM bus:
in Section 3.3. Section 5 shows STFM’s hardware implem@mtat ~ When a read/write command is sent over the bus to a DRAM bank,
it keeps the DRAM data bus busy foy,, cycles’ During this time,
no other thread is able to schedule a read/write commandtevegh
e commands might otherwise be ready to be scheduled. Herce
Tnter ference Of €ach thread (except thredd) that has at least one

3.2.1. STFM Scheduling Policy:STFM estimates the two val-
uesTspared @NdT,i0ne fOr each thread. Obtaining accurate estimat
for Tsnarea IS Simple. The processor increases a counter when it ¢
not C.0mm't instructions due to an L2-cache_ mIss. This causte_nm- ready read/write command in the request buffer increases.by

municated to the memory scheduler. Obtaining accuratmatds for b) Updating T’ due to interference in DRAM bank:
Taione is more difficult and we discuss our techniques in a separaée Interference )

> . ecause thread' has issued a request, other threads with requests to
subse?tlon. Assuming for now that the_ STFM schedule_r kn 518 the same bank have to wait fét to be serviced and therefore expe-
thread's slowdowrS = Tspared/Taione, it Uses the following policy

to determine the next command to be scheduled: rience an increased stall-_time. Howeyer, increaﬂ_ih,gterfe,;ew of
these threads by the service latencyois too simplistic as it ignores
1) Determine Unfairness:From among all threads that have at leashemory-level parallelism [8, 2] of threads. This is beststtated
one ready request in the request buffer, the schedulemdietes \ith an example. Assume two requedts and R2 are simultane-
the thread with highest slowdow'¢..-) and the thread with low- ously being serviced in two different banks. Assume furthet an-
est slowdown §,in). other thread”’ has ready requests for both of these banks that are
2a) Apply FR-FCFS-Rule: If the ratio Synae/Smin < a, then the waiting in the memory request buffer. A%'’s requests need to wait
acceptable level of unfairness is not exceeded and—in twdgy- for R1 and R2 to be serviced first)’ accrues extra stall-time. How-
timize throughput—the next DRAM command is selected accorgver, it would be overly pessimistic to assume that the estatktime
ing to the FR-FCFS priority rules described in Section 2.4. caused byR1 and R2 is thesum of the latencies dt1 and R2. In-
2b) Apply Fairness-Rule: If the ratio Sz /Smin > «, then STFM  stead, because they are serviced in parallel, these twesexjoause
decreases unfairness by prioritizing requests of thiiéag, with extra stall-time only in the order @ihememory access latency. This
largest slowdowrf,,... In particular, DRAM commands are pri- example highlights that our update mechanism needs to ta@ec-
oritized in the following order: count the parallelism inherent to each thread. Our hearistihatif
2b-1) Trnae-first: Ready commands from requests issued b’:ythreadc’ has ready requests waiting to be serviced¥ndifferent
Tmaz Over any command from requests issued by othbanks, then the extra latency threé@t incurs due to the scheduling
threads. of requestR from another thread is amortized across those waiting

2b-2) Column-first: Ready column accesses over ready row atéduests Hence, the extra stall-time of thread due to requesR is
cesses. approximatelyR's service latency divided by. We call the valueX

. . 8
2b-3) Oldest-first: Ready commands from older requests ovdP€BankW aitingParallelism(C') of threadC”.*
those from younger requests. Concretely, STFM estimates the extra stall-time caused by a

In other words. STFM uses either the baseline FR-FCFS poliﬂ est to other threads as follows: When STFM schedules a DRAM

(if the level of unfairness across threads with ready refguissac- commandi fro,m threadC' to bank B, it increases therneer s erence
ceptable), or a fair FR-FCFS policy in which requests from iost of any threadl” # C that has at least one ready cpmmand waiting to
slowed-down thread receive highest priority. be scheduled to bank. If Latency(R) is the service latency aR,

' the newr; e (¢ =

Interference

3.2.2. Maintaining T,jone: EstimatingT,;one is challenging be- ol )+ Latency(R)

cause STFM needs to determine how much memory stall-timeadh Interference v * BankW aiting Parallelism(C")
would have accrued if it had executed by itself. Since diyedtter-
mining Tui0ne While the thread is running with other threads is diffi
cult, we expres§hione aSThione = Tshared — Tinter ference and es- "The value ofty, s depends on the DRAM type, command type and burst
timateTrpier ference INStEAA T ter ference iS theextra stall-timethe length. For a read or write commarg,,; = BL/2 for DDR2 SDRAM.

thread experiéricéé because requésis 4f4rom other threadsraieed 8This is an approximation of the extra stall-time that is atiyuincurred.

: , Exactly determining the extra stall-time is very difficuédause it requires the
by the DRAM ahead of this thread's requests. In order to CclmpLbetermination of how much impact the delayed request hastbread’s per-

each thread’s memory slowdovih the STFM scheduler maintains ang mance (and how mucBankWaiting Parallelism matters). There are
estimate of 1nterference- more elaborate ways of approximating the extra stall-tisuek as by deter-

Initially, each thread's 1 ierference Value is Z€r0 I nterference  Mining whether the delayed request is on the critical patexeicution), but
of each thread is updated whenever the STFM scheduler siedseau they are much more difficult to implement.




The constanty is a parameter that determines how aggressively Second, to support different treatment of threads based®in t
the scheduler should consider its (potentially inaccQrastimate of importance, we add the notion tfread weightdo our mechanism.
BankW aiting Parallelism in its updates of 1pier ference. We Use  The system software conveys thweightof each thread to STFM. The
~ as a scaling factor because the actual bank parallelisne valan smaller the weight, the less important the thread and the rtobera-
estimate: some of the waiting requests estimated to beceehin ble its slowdown. Threads with equal weights should stillmved
parallel might not actually be serviced in parallel in theufe. We set down equally. To support this notion of thread weights angbrie
v = 1, which makes the logic to scale withtrivial to implement? oritize threads with larger weights, STFM scales the slowdwalue
2. Updating own thread’s Tinterference Value: Even the thread computed for the thread by the thread’s non-negative wesigth that
whose own request is being scheduled may experience exlirtirste, the weighted slowdowiis S = 1 + (S — 1) * Weight. That is,
i.e., may be delayed more than it would have been if it had lomea threads with higher weights are interpreted to be slowedndmere
Consider a thread that has two consecutive requesend R. to the and thus they are prioritized by STFM. For example, for aatireith
same row in the same bank. If this thread was running alosisgit- weight 10, a measured slowdown of 1.1 is interpreted as adsiaww
ond request would result inraw-hit (with latencytcr). In a shared of 2 whereas the same measured slowdown is interpreted &srhl
DRAM system, however, it is possible that other requestsifosher thread with weight 1. Note that even after this modificatibis the
threads are serviced betwe&n and R, and, thereforeR, could re- ratio Syqz/Smin that determines whether or not the fairness-rule is
sult in arow-conflictwith much higher latencytgp + trecp + tor).  applied. Measured slowdowns of equal-weight threads wiltaled

To account for this potential extra stall time, STFM deteresi equally and thus those threads will be treated equally bgt¢heduler.
whether a scheduled request would have been a row-hit or a row

conflict had the thread run alone. Determining this is sigie only ; ; ioti
need to maintain the address of the last accessed row by le@eiut 4. Comparlson with EXIStmg DRAM Schedulers

in each bank. If the scheduled request is a row-conflict, twbiuld We compare the notion of stall-time fairness and the comeding
have been a row-hit had threddrun alone, therC’s Trnier ference  STFM scheduler with other ways of defining and enforcingriess
increases by the difference in latency between a row-cordlid a in shared DRAM memory systems. The existing DRAM schedulers
row-hit (ExtraLatency = trp + trop)'° divided by thebank ac- we are aware of suffer from the fact that they disregard therent
cess parallelismof C, i.e., memory performance (properties) of different threads civieads to
Titerserence(C) = Tiier perence (C) + ExtraLatency extremely variable behavior in terms of fairness for a giGERAM
BankAccessParallelism(C)  gcheduler. We already showed how this limitation maniféstsif

We do not add the fulEztraLatency t0 Trnterference DeCause in the FR-FCFS scheduling scheme. We now examine three other
the wholeFExtra Latency might not manifest itself as extra stall timescheduling schemes that could provide better fairnessRRaRCFS.
for threadC'. If more than one ofC's requests are being serviced FCFS: The simplest fairness mechanism is to use a first-come
in parallel in different DRAM banks, some of thBxztraLatency first-serve scheduling policy (among ready DRAM commandisy
will remain hidden because it will be amortized across these- regarding the current state of the row-buffer. However, SGFrves
current requests [8, 2]. Therefore, we dividertraLatency by threads that do not issue a lot of memory accesses becalisecthe
BankAccessParallelism. BankAccessParallelism is the num- quests get backed up in the request buffer behind the largdeu
ber of requests that airrently being serviceth DRAM banks by of requests from memory-intensive threads. Since FCFS latalp
this thread. In other words, it is the number of banks thakapt busy neglects the potential performance gain from exploiting-buffer lo-
due to Thread’s requests. cality, the achieved DRAM throughput deteriorates sigaifity. As a

result, the overall system performance degrades.
3.3. Support for System Software & Thread Weights FR-FCFS with a Cap on Column-Over-Row Reordering (FR-

So far, we have assumed that fairness should be enforcediay eqFCFS+Cap): This is a new algorithm that addresses one major source
izing the threads’ memory-related slowdowns. Howeves thay not of unfairness in FR-FCFS: the reordering of younger coluraw<hit)
always be desirable at the system level as the system seftfivar accesses over older row (row-closed/conflict) accessesalfiorithm
operating system or virtual machine monitor) might: enforces a&apon the number of younger column accesses that can be
serviced before an older row access to the same bank. Wheaphe
is reached, the FCFS policy is applied. While such a cap iaties
the problem that threads with poor row-buffer locality aemalized, it
does not solve the FCFS-inherent problem of penalizingmemory-

1. notwant fairness to be enforced by the hardware at allusecthat
could possibly interact adversely with the system softigave/n
high-level fairness mechanisms (such as fair thread sdingjlu

2. not want each and every thread to be treated equally besause intensive threads
threads can be (and usually are) more/less important thersot '

. Network fair queueing (NFQ): A more involved alternative fair-
Inr:otrhelsthC:nsilttf:rge threads should be allowed to be slowed dor\\’\érés definition for shared DRAM memory systems has been peapo

i ] _inthe form ofnetwork fair queueing23]. The objective of a memory
We adjust STFM to seamlessly incorporate enough flexibibty scheduler based on network fair queueing is [2R]threadi that is
support the system software. First, the threshelthat denotes the aliocated a fractiong; of the memory system bandwidth will run no
maximum tolerable unfairness can be set by the system seftWa sjower than the same thread on a private memory system rgratin
a privileged instruction in the instruction set architeetulf the sys- #; of the frequency of the shared physical memory system.
tem softwgre doe_s not need hardware-enforced fairness &RAM One problem with this fairess definition is that it may be @sgi-
controller it can simply supply a very largevalue. ble to enforce it. DRAM scheduling, as opposed to packetchalirey
- — ) ) ) on a wire, is not a pure bandwidth allocation problem. Thed&in
9We determinedy empirically. Our simulations show that setting= 1 PP ; ;
captures the average degree of bank parallelism accurately 2 mental observation is that sustained memory bandwidth doesor-
10The row-closed case follows the same principle. For brewty explain respond to observed performance when different threadsfem_e. I
princip P exp several threads access the shared memory system at theisame t
only the row-conflict case. Moreover, it is possible that ifterference be- , ry ; Y .
tween two threads ipositiveespecially if the threads share code or data. [[f1€Y can destroy each other's row-buffer locality and baaaftelism
other words, a request might result in a row-hit in the shasetem whereas (i-e. the number of requests serviced in parallel in diffietganks),
it would have been a row-conflict had the thread run alone. hit tase, and hence, all threads can be slowed down more than thaiNFQ-
ExtraLatency would be negative; our scheme considers all possibilities. share” suggests. Therefore, even if a thread is guarantemde”




amount of bandwidth as indicated by its fair NFQ-share, ridsguar- Thread 1 HHHHHHHHHHHHHHHHHHHHTH-

anteed “some” amount of performance. For this very reaseniNFQ Thread2 - - - HHHF - - - - HHH -
notion of fairness also cannot provide performance ismfeti shared

h d ........ H—l.H ....... 1.H_H_|. .....
DRAM memory system&! As such, NFQ-based fairness definitions Threads
are suited primarily fostateless systems that do not have parallelism Thread 4 e e HHH - HHH -
(such as a network wire) as opposed to shared DRAM memory sys- : : : >

1 2 3 time
Figure 3. Idleness problem on a 4-core systeniach vertical line represents a
DRAM memory request. Memory schedulers based on networlgésueing
treat the non-bursty Thread 1 unfairly.

tems that have state (row buffers) and parallelism (matiphnks),
which affect the performance impact of the scheduling decss
In practice, schedulers that enforce NFQ-fairness havieailp
made use oéarliest virtual deadline firsschemes, e.g. [13, 22]. A
virtual deadline (or virtual finish-time) is the virtual tema thread’s (good vs. poor bank access balance). Threads with unbaldrasek
memory request will finish on the thread’s private virtuaiéimemory Usage are penalized because in the few banks they typiaatysa
system. In the context of shared DRAM memory systems, Nesbittheir virtual deadlines accrue much faster than deadlirfestiwer
al. [22] propose an NFQ-based memory scheduler that maisaich threads. In these critical banks, unbalanced threadsereftie depri-
virtual deadlines for each thread in each bank as follows.ehva Oritized compared to threads whose requests are well-tedaacross
request of a thread is serviced, the thread's virtual deadh this all banks. This leads to starvation and high memory-relskegdown
bank is increased by the request’s access latency timesithber of for threads with poor bank access balance. In a sense, stedudth
threads in the system. The intuition is that if a thread shtme DRAM  suffer from the idleness problem in an individual bank. STa¥ids
memory system withX other threads, it should géf Xth of the total this problem because it implicitly takes into account ansfqrenance
DRAM bandwidth and hence, its requests can be slowed down b§l@wdown incurred by a thread due to poor bank access balance
factor of X. The NFQ-based memory scheduler prioritizes requests In summary, all alternative memory access schedulersdnujtthe
from threads that have an early deadline. The premise ibthabing NFQ-based approach suffer from the fact that they do notcserfiily
so, every thread's requests will be scheduled within theimits set consider the inherent memory characteristics of diffetereads. As
by the NFQ definition, and hence, the resulting DRAM perfannea OUr evaluations in Section 7 show, problems such asdieaessor
would be fairly shared among all threads. the access balanc@roblem can result in significant unfairness and
Unfortunately, in addition to the fact that NFQ-fairessyniee Performance loss in real workloads.
theoretically unachievable, these NFQ-deadline-basategies suffer -
from practical shortcomings as they fail to properly taki® iaccount 5. Imp!e.mentatlon o .
the inherent memory access characteristics of individuakids. This STF.M is implemented by modlfyln_g the _basell_n_e_FR-FCFS sched
problem manifests itself in several ways. For the sake ofityiewe uler to incorporate an additional priority policy: priozation of com-
discuss two most important ones. mar_lds based on the slowdowns of the threads t_hey pe_long te. Th
NFQ: ldleness Problem: A severe problem inherent to NFQ-bas'C strL_Jcture of the memory controlle_r _(as explalr_led _n:tlSras 2.2
based approaches is tidieness problem Consider the 4-core sce-anq 2.3) is not changed. However, additional circuitry idetito .(D
nario illustrated in Figure 3. Thread 1 continuously issmesnory re- estimate the slowdown_ Of _each thread, (2) compute the umefsarin
guests, whereas the three remaining threads generatetequieursts the system, and (3) prioritize commands based on the slowslol
with idle periods in between. Until timel, only Thread 1 issues the threads they belong to. - .
requests. These requests are scheduled without intecégréence, Figure 4 .S.hOWS the_organl_zatlon ofthe on-chl_p STFM memory co
Thread 1's virtual deadline advances. At titie Thread 1’s virtual U\%liﬁi eﬁsdéizgﬁlblé)%cerigylfsdp;%gn;?lfhr?seggg S'-I'rlljt;\ﬂ |§;§$
deadiine is very large and Thread 2's virtual deadline ivzbence, STFM controller is very similar to that of the baseline coflar ex-

Thread 2's requests are prioritized in the inteffval ¢2] and Thread 1 o X . . .
is starved. Similarly, in the intervat2, t3], Thread 3's requests areCepLfor the additional STFM logic which sits on the side aoohmu-
nicates with the baseline scheduling logic.

prioritized over Thread 1, and so on. Overall, the non-lyufstread 1

suffers significant performance loss over its bursty coitgrsteven 5 1 State Required to Estimate Unfairness

though it fairly utilized the shared DRAM resources in theeiwal To estimate and store the memory-related slowd@wof each

[0, 1] when no other thread needed theiim fact, the problem can thread, the STFM scheduler maintains a set of registersareimiare

be quite dramatic because Thread 1 may be completely decteS® thread. These per-thread registers are reset at everyxtamtéch

to DRAM memory during certain intervals. In contrast, owllsime  anq at regular intervals (evedhterval Length cycles) to adapt to

fair scheduler treats all four threads fairly: At time, for instance, threads’ time-varying phase behavior. Table 1 describessét of

STFM realizes that neither Thread 1 nor Thread 2 has beeredloggisters that need to be maintained in one implementafi@T&M

down and hence, they are treated equally dufingt2]. The exam- (his is the implementation we evaluate in Section 7). Addilly,

ple shows that NFQ-based schemes become unfair if somelthae@ gach entry in the memory request buffer stores the ID of theath

bursty and remain idle for some time. When such threads ressim (thread-ID) that generated the memory request. With 8 tmean

suing memory requests, they capture the DRAM bandwidthyisig Interval Length value of22*, 8 DRAM banks,2'* rows per bank,

threads that had run previously. and a 128-entry memory request buffer, the additional stajaired
NFQ: Access Balance Problem:Another problem of NFQ-based by STFM is 1808 bits.

approaches arises when some threads spread their accessss a Tsharea for each thread is the only counter computed in the pro-

many banks, while others mostly access a small number ofsbagkssor core and communicated to the DRAM scheduler pesitiic
(in our implementation, with every memory request). Thecps

- » sor core incrementdpqreq if the thread cannot commit instruc-
are scheduled over a single, memoryless channel. In suatelsss” systems, . : Co
fair scheduling is purely a fair bandwidth allocation prefol—since bandwidth tions because _the oldest instruction is an L2 migﬁ”terfe’“ence_and
directly correlates with performance (because what wasdadbd previously Slowdown registers are updated when a DRAM command is sched-
does not affect the latency of what is scheduled next). Iirash the existence Uled. BankW aiting Parallelism registers andntervalCounter
of row-buffer state and multiple banks in the DRAM systenmitiiates the are updated every DRAM cycleBank AccessParallelism regis-
direct relationship between bandwidth and performance. ter for a thread is incremented when a DRAM command for that

1INFQ does indeed provide performance isolation in networkeres flows
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Size (bits) |

[ Register [ Function [
Per-thread registers used to compute and store slowdowns

Tshared Number of cycles in which the thread cannot commit instordidue to L2 miss (supplied by the cor{a) log2Interval Length (24)
Number of extra stall cycles due to interference from othegads (computed in the memory controller)logs Interval Length (24)
Tsh.a'red/(Tsha'red'Ti'rLte7~fe7~ence) 8 (ﬂXEd pOint)
Number of banks that have at least one request that is wadtibg serviced for the thread loga NumBanks (3)
Number of banks that are currently servicing requests flwnthread loga NumBanks (3)

[ Per-thread per-bank registers used in estimating the deiency due to inter-thread interference
| LastRowAddress [ The last row address accessed by thread i in bank b

[ Per-request registers stored in the memory request buffpetform prioritization

TinteTfe’renue

Slowdown
BankW aiting Parallelism
BankAccessParallelism

[loga NumRowsInBank (14)|

| ThreadID [ The ID of the thread that generated the memory request [ loggpNumThreads 3) |
Individual registers
IntervalCounter [ Counter used to reset other registers when it reaches a maxtmeshold valudntervalLength [ logzIntervalLength (24)
Alpha | Register used to store thevalue (which can be set by system software) | 8 (fixed point)

Table 1. Registers used in our STFM implementation

thread is scheduled and decremented when the command is cosed. This implementation changes only the priority asaigmt logic
pletely serviced. When a thread initiates a row access innk,bawithout affecting the structure of request buffers or ptjoencoders.

the Last RowAddress register for that thread-bank pair is update% Experimental Evaluation Methodology

to store the address of the accessed row. Slowdowns are ¢teanp - )

as described in Section 3.2. Logic required to update alkréigis- W_e evaluate STFM using acycle—_accurate x86 _CMP simulatoe. T

ters consists of adders/subtracters, muxes, and shifterapproxi- functional front-end of the simulator is based on Pin [14je DRAM

mate fixed-point division and multiplication). The updateit can Memory system model and the performance model are loosegdba
on DRAMsim [31] and Intel Pentium M [9], respectively. Talf?e

be pipelined (if needed) and components can be shared leretiff .
threads. There is ample flexibility to accommodate thesegtmas Presents the major parameters for both DRAM and processtes.
scale the number of DRAM channels with the number of corebab t

the on-chip DRAM controller is not on the critical path of exéion - i ! ‘ ] -
and it only needs to make a decision every DRAM cycle, which @nflguratlons_ with more cores are not unfairly penalizeteims of
significantly longer than the processor core’s cycle time. DRAM bandwidth.

52 Prioritizat d Schedull . 6.1. Benchmarks: Characteristics and Classification
2. Prioritization and Scheduling Logic We use the SPEC CPU2006 benchmarks as well as desktop appli-
Every DRAM cycle, the memory controller orders threads vaith cations (see Section 7.4) for evaluatfdrve classify the benchmarks
least one ready command based on tidirwdown values. It also into four categories based on their memory intensivenessdt high)
computes unfairness by dividing the maximum slowdown vaiye and row-buffer locality (Iow or high). Table 3 shows the catey and
the minimum slowdown. If the unfairness computed in the jo&y  characteristics of the benchmarks when they run alone imémaory
DRAM cycle is greater thawy, the controller prioritizes commandssystem. Each benchmark was compiled using gcc 4.1.2 withop®i3
from threads with higheflowdown values. Otherwise, it prioritizes mizations and run for 100 million instructions chosen frophase as
commands using the baseline FR-FCFS policy. Prioritizetibcom- determined by the SimPoint tool [27]. Benchmarks are oxtieesed
mands can be implemented in several different ways. Ourlihase on their memory intensiveness in Table 3 and in all the figures
FR-FCFS implementation assigns a single priority valueattheeady e evaluate combinations of multiprogrammed workloadsinm
command based on its type (column or row access) and aival A on 2, 4, 8, and 16-core CMPs. Obviously, evaluating each awatibn
priority encoder selects the command with the highest fyiorlue. of 4 benchmarks on a 4-core system requires an enormous awfoun
STFM adds only one more variable into the computation of tfie psimulation time. Therefore, we have evaluated combinatigtench-

ority value of each ready command. If unfairess is gredtantx  marks from different categories. For 4-core simulations ewaluated
at the beginning of a DRAM cycle, each ready command is assdign

a priority value based on its Thread-ID (i.e. slowdown),eyand  12410.bwaves, 416.gamess, and 434.zeusmp are not includadseewe
arrival time. Otherwise, baseline FR-FCFS priority assignts are were not able to collect representative traces for them.




Processor pipeline 4 GHz processor, 128-entry instruction window, 12-stagelpie
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memoeyabion

L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte blopk,s2-cycle latency

L2 Caches 512 K-byte per core, 8-way set associative, 64-byte blank, si2-cycle latency, 64 MSHRs

DRAM controller on-chip; 128-entry req. buffer, FR-FCFS/open-page ppB@yentry write data buffer, reads prioritized over writé©R-based addr-to-bank mapping [6, B2]
DRAM chip parameters [Micron DDR2-800 timing parameters (see [18]} 1, =15ns,t rc p=15ns,t g p=15ns,B L /2=10ns; 8 banks, 2K-byte row-buffer per bank

DIMM configuration single-rank, 8 DRAM chips put together on a DIMM (dual indimemory module) to provide a 64-bit wide data interface @DQRAM controller

Round-trip L2 miss latencyFor a 64-byte cache line, uncontended: row-buffer hit: 3849 cycles), closed: 50ns (200 cycles), conflict: 70ns @&fles)
Cores and DRAM channel€hannels scaled with cores: 1, 1, 2, 4 parallel lock-stepifd4de channels for respectively 2, 4, 8, 16 cores (1 chbna 6.4 GB/s peak bandwidth)

Table 2. Baseline processor and DRAM system configuration

[# [Benchmark  [[Type[MCPI[L2 MPKI]RB hit ratd Categor{[[# [Benchmark [[Type[MCPI[L2 MPKI]RB hit ratg Category o
Table 3. Characteristics of bench-

T [429.mcf INT [10.02] 101.06| 41.9% 2 [[[14]464.h264ref [[INT [0.71 | 3.22 | 65.3% T
2 1462 bquantum|[INT [9.10 | 50.00 | 98.4% | 3 ||[[15(401bzip2 |[INT [055 | 3.55 | 414% | 0O marks. MCPI: Memory Cycles Per
3 [437lesliead ||FP |7.82 | 36.21 | 82.5% 3 16(435.gromacs||[FP_[0.37 | 1.26 | 41.0% 1 Instruction (i.e. cycles spent waiting
4 [450.soplex FP [7.48 | 45.66 | 63.9% 3 17|445.gobmk [[INT [0.19 | 0.94 56.8% 1 for memory divided by number of in-
5 [433.milc FP |6.74 | 51.05 | 91.77% | 3 |||18/447.deall ||FP |0.16 | 0.86 | 90.2% 1 structions), L2 MPKI: L2 Misses per
6 [470.Ibm FP [6.44 | 43.46 | 54.6% 3 [[[To[48T.wrf FP [0.14 | 0.77 | 76.9% 1 1000 Instructions, RB Hit Rate: Row-
e bTHFP 357 |17 | oo% > lotladrmand (PP foTi | oai | roew 1| Duffer hit rate,Categories: 0 (Not:

.Gems . . 2% .nam . . 6% H H .
9 [436.cactusADM|FP [3.53 | 14.66 | 2.0% 2 [[[22[465tonto  [[FP [0.07 | 0.39 | 345% | 0 intensive,Low RB hit rate), 1 (Not-
T0[483 xalancbmk|[INT [3.18 | 21.66 | 54.8% | 3 [|[23]403.9cC INT [007 | 042 | 586% | 1 intensive,High RB hit rate), 2 (In-
11[473.astar INT [2.02 | 9.25 | 44.8% | 0 ||[24[454.calculix ||FP |0.05 | 0.29 | 718% | 1 tensive,Low RB hit rate), 3 (Inten-
12|471.omnetpp ||INT |1.78 | 13.83 | 21.9% 0 25[400.perlbencl{INT [0.03 | 0.20 | 69.8% 1 sive,High RB hit rate)
13[456.nmmer _|[INT [1.62 | 582 | 32.7% 0 [[[26]453.povray ||[FP [0.01 | 0.00 | 76.6% 1

256 combinations; for 8-core, 32 combinations; and for a&¢3 6.3. Parameters Used in Evaluated Schemes

combinations. Space limitations prevent us from enumegatil eval- STFM: We setae = 1.10 and IntervalLength = 2%* in the
uated combinations, but Section 7 tries to show as manytsesith  proposed STFM scheme. Increasingncreases the amount of unfair-
representative individual combinations as possible. ness. We found thatnterval Length value does not impact fairness

. . or throughput unless it is less thak®, in which case STFM becomes
6.2. Metrics for Fairness and System Throughput ess effective in enforcing faimess because its slowdostimates

_ Our fairmess metric is thenfairness indexf the system, which pecome less reliable due to the short sampling intervals.eVaté-

is the ratio between the maximum memory-related slowdowhthe  4te STFM in comparison to three other scheduling algoritfF@Fs,
minimum memlary-related slowdown among all threads shaifity FR-FCFS+Cap, and NFQ) described in SectionFR-FCFS+Cap:
DRAM system.” The unfaimess index of a perfectly-fair systenj oyr implementation, theapis set to 4 based on empirical evalu-
is 1 and a perfectly-unfair systemiisfinity. Memory related slow- 4tion, Hence, only 4 younger column accesses can bypassien ol
down of each threadis computed by dividing the memory stall time;qy access.NFQ-based scheduling (NFQ):We use Nesbit et al.’s
per instruction a thread experiences when running togettierother  pest scheme (FQ-VFTF) presented in [22]. We use the priomigr-
threads with the memory stall time per instruction it expeees when sjon prevention optimization they propose in Section 3.28af with
running alone in the same memory system using the FR-FCR&/pola threshold of 4 (the same threshold used in [22]). This optimiza-
MCPI; Unfairness — Xt MemSlowdowni tion limits the amount of prioritization of younger columecasses

lone ’ in: M .
MCPIgone min; J'uemSlowdmunl over older row accessé%.
We measure overall system throughput usingabeghted speedup

metric [28], defined as the sum of relative IPC performanckes
each thread in the evaluated workloadV eighted Speedup =

[pCshared X
> Theatone - We also report results using thenean speedumet-

MemSlowdown; =

7. Experimental Results
7.1. STFM on Dual-core Systems

: . L . To evaluate STFM on 2-core systems, we run the mcf bench-
ric that balances fairness and throughput [15]. This is txenlonic . ’ .
mean of the relative IPC performancg oF:‘ ea[ch ]thread in théload: mark concurrently with every other benchmark. Figure Siayss the
1 " memory slowdowns experienced by mcf and the concurrentiging

Hmean Speedup = NumThreads/ TPCshared /[ pCatone benchmark with the baseline FR-FCFS scheduler. Note the véd-

_ _ o ' ance in the slowdowns of benchmarks. When mcf is run withlfjeal
Finally, thesum of IPCsmetric considers IPC throughput only,,cf experiences a slowdown of only 1.05X whereas dealll sloown
without taking into account fairness (or forward progressall and py 4.5% 16 |n contrast, when mcf is run with libquantum, libquantum’s
thus should be int_erprete_d with extreme cautioBum of IPCs =  glowdown is negligible (1.04X) while mcf slows down by 5.28%-
>, rpcgtered. This metric should not be used to evaluate systegyting in an unfairness of 5.08. This is due to the very higirbuffer
throughput [28, 15] since even throughput-oriented réel&ystems |ocality in libquantum. FR-FCFS prioritizes libquantuméw-hit re-
need to consider fairness and ensure forward progress widoél quests over mcf's row-conflict requests and starves mcfbagidin-
threads. We report results with this metoioly to provide deeper in- {m is memory-intensive enough to continuously generataRRe-
sights into some results and to show that some schedulingitigs  gyests. Mcf's impact and thus unfairmess is drastic esjyecianon-
unfairly speed up non-memory-intensive threads (thereiyroving  memory-intensive benchmarks (to the right of the figuredsehbench-

sum-of-IPCs). marks’ slowdowns are almost always more than 2X because sncf i
13The evaluated combinations are shown fritp://research.
mi crosoft. com ~onur/ pub/ st f m workl oads. t xt . 151n fact, we found the behavior of NFQ (as implemented withRReVFTF

14This metric is the inverse of the fairness metric proposeffjnWe use scheme of [22]) is similar to FR-FCFS without this optimirat
unfairness instead of fairness since we believe lookingtitness is a more  8We found that dealll's DRAM accesses are heavily skewed tg two
intuitive way of understanding the system. A large unfasmealue immedi- DRAM banks. As mcf generates DRAM accesses much more freéiguban
ately shows the ratio of maximum and minimum slowdowns wittrequiring  dealll, mcf's DRAM requests that go to those two banks areoatnalways
any calculation. prioritized over dealll’s requests by the FCFS nature oRReFCFS scheduler.
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Figure 5. Memory-slowdown of each of the two threads when mcf is run wi all others in a 2-core system using FR-FCFS scheduling (apd STFM (b).
Bottom figure compares FR-FCFS with STFM in terms of Weigl8pdedup, Sum of IPCs, and Hmean Speedup.
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Figure 6. A memory intensive 4-core workload: memory slowdowns and ufairness (left), throughput metrics (right)

NFQ STFM

able to flood the memory system and get prioritized due to tBe fi ferent memory controllers are used. The unfairness of eactialer
come-first-serve nature of FR-FCFS scheduling. is denoted on top of the figure. Figure 6(right) compares ffezieof

Figure 5(b) shows the corresponding slowdowns when STFMdentrollers on throughput using three different metricsve3al obser-
used. STFM brings the memory-slowdowns of the two threads \tations are in order:

very close values. The maximum L_Jnfairne_ss observed is In#4 a, As seen before, FR-FCFS heavily prioritizes libquantumrove
the average7(ggometr|c mean) unf_almess_ is reduced by ‘A, f other threads due to its high row-buffer locality and memniotgn-
2.02 to 1.24 Figure 5(c) provides insight into the balance between gjyeness. GemsFDTD is heavily penalized because its rdterbu
throughput and fairness in STFM. STFM improves weighteckdpp hit rate is extremely low (0.2% as shown in Table 3).
0, - 0, i

gﬁl 1 f{; iriréishtr)ﬁ?zrllszpeeer?;%gcgSFﬁe.rfol—rlr?]r;%%esi;Flr\gvinpm\gs ngt FCFS eliminates the unfairness due to row-buffer locahtyleita-

y P S ©1mp T tion, but it unfairly prioritizes heavily memory-intengithreads
mainly from better system utilization: without fair memasghedul- (mcf and libquantum) over others (because older requesdstee
ing, hon-memory-intensive threads slow _down .too much .a’“““.‘“’"" be from memory-intensive threads). FCFS results in a higllogr-
make progress when run with memory-intensive ones (in thgec

. L down for libquantum than mcf even though the L2 miss rate of
mcf). STFM prevents the starvation of such threads 'r!f“?“”e' these two threads are very similar. This is because theibasel
quests and thus allows them to make faster progress. Thipjmsted

N i . ; . memory performance of libquantum is much higher than that of
by _the data in Flg_ure 5(0).' STFM S thrqughput Improvemermist mcf due to libquantum’s high row-buffer locality. FCFS ireses
salient when mcf is run with non-intensive benchmarks.

fairness but degrades system performance (in terms of vezigh

. . . speedup) compared to FR-FCFS.
7.2. STFMvs. Other Scheduling Techniques: Case e FRFCFS+Cap improves throughput compared to FCFS because

.StUd'eS and Results on 4-Core Systems it is able to better exploit row buffer locality. For this sz, it
Fairness becomes a much larger problem as the number of coress|ightly improves the slowdowns experienced by all thread=pt
sharing the DRAM system increases and as the threads dyversi GemsFDTD, which has the lowest row-buffer hit rate.
terms of their memory behavior. We demonstrate this by comg@a , NEQ provides better faimess and throughput than both FOIES a

STFM to other scheduling techniques on diverse wor_kloadlsing on FRFCFS+Cap for this workload. However, it penalizes (slows
4, 8, and 16-core systems. We start with case studies of typézl down) mcf significantly (by 3.4X). We found that mcf continu-

workloads running on 4-core systems. ously generates memory requests whereas the other threb-ben
7.2.1. Case study I: Memory-intensive workload (3 inten- ~ marks have bursty memory access patterns. This is exadly th
sive benchmarks run with 1 non-intensive benchmark)Fig- idleness problendiscussed in Section 4. Due to its design, NFQ

prioritizes bursty threads over non-bursty ones. Astas alews
down significantly (by 3.3X) with NFQ, which is due to thecess

17percentage reduction in unfairness is calculated relaiiesince unfair- balance problem(Section 4). Astar’s accesses are heavily con-
ness cannot take a value less than 1. centrated in two DRAM banks whereas other threads have much

ure 6(left) shows the memory slowdown of each thread whertfive
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Figure 8. A non-memory-intensive 4-core workload: memory slowdowngnd unfairness (left), throughput metrics (right)

more uniform access distribution to banks. Therefore rasta-

tual deadlines lag significantly on those two banks, whicults

in its deprioritization when other threads also accesstasks.
e STFM provides the best fairness substrate, improving uméas

in libquantum and h264ref, which have high row-buffer hiesa

NFQ is less fair than FCFS in this workload, resulting in a mem
ory slowdown of 3.47X for omnetpp. The reason is that in thekisa
accessed by both h264ref and omnetpp, NFQ prioritizes le?84xc-

from 1.87 (NFQ) to 1.27. It also improves weighted speedup lpgsses because (1) h264ref's accesses are bursty, (2phBédibet-
3% and hmean-speedup by 8% over NFQ. The sum-of-IPCstef row-buffer locality which is exploited by NFQ up to somiatic
NFQ is slightly better than that of STFM because NFQ unfairlihreshold [22]. This unfair prioritization leads to a retlan in om-

prioritizes a less memory-intensive thread (GemsFDTD)clvis
able to execute its instructions much faster. We found ti&\G
is not able to achieve perfect fairness because it slighijew

netpp’s bank parallelism and thus serializes omnetppseasig. Such
serialization significantly degrades omnetpp’s perforoeabecause
the processor stalls for the latency of each miss rather ahaortiz-

estimates the slowdown of libquantum in this case. Impmviring the memory latency by overlapping multiple misses. Ailsim
STFM's technique to estimate thread slowdowns could tleeeef behavior is also observed for hmmer.

result in even better fairness.

7.2.2. Case study II: Mixed workload (2 intensive bench-
marks run with 2 non-intensive benchmarks) Figure 7 shows
the unfairness and throughput comparison of differentdualees for a
mixed-behavior workload that contains benchmarks fronficali dif-

ferent categories. FR-FCFS is not as unfair for this wortlas it was
for the previous one because the variance between the rtes-bo

cality of these four benchmarks is relatively low (see T&)leThere-
fore, eliminating or reducing row-buffer locality explatton in the
scheduler by implementing FCFS or FRFCFS+Cap actiradiyeases
unfairness while also reducing system performance! Thosvshthat

In contrast, STFM results in the smallest unfairness valugl(
while also providing the best performance, improving wésgh
speedup (2.7%) and hmean-speedup (11.3%) over NFQ.
Summary of Case StudiesThese three case studies provide insight
into why previously proposed memory access schedulinghtqabs
cannot consistently provide sufficient fairness. As palrdat in Sec-
tion 4, the major reason is that these previous techniquemttake
into account the inherent memory behavior and performaheach
thread. This inherent performance is dependent on manyeies,
including memory intensiveness, row-buffer locality, k@tcess bal-
ance, and memory parallelism. For this very reason, diftsehedul-
ing policies (other than STFM) provide widely varying faiss values

the unfairness behavior of FR-FCFS is very much dependethen ;. qifferent workloads. For example, the scheduling poticst pro-

workload running on the system.

vides the second-best fairness value is NFQ for the menmepsive

NFQ increasesunfairness compared to FR-FCFS for this mixeg|orkioad whereas it is FCFS for the two other workloads. STIRM

workload because it implicitly prioritizes the bursty arhrintensive
threads leslie3d and h264ref over the intensive thread mdiginess
problem). This improves sum-of-IPCs but degrades hmeanesp
(i.e. it degrades the balance between fairness and thratigtg§rFM
achieves the best fairness (1.28) while improving weigisigeledup

corporates the effect of all these machine-dependent giepén its
estimate ofSlowdown for each thread and therefore it is able to pro-
vide much better fairness than any of the other techniques.
Average Results on 4-Core SystemsWe conclude the section by
showing the unfairness of different scheduling technicure40 other

by 4.8% and hmean-speedup by 8% over NFQ. As with the pigsmple workloads along with the unfairess averaged atnes56
vious workload, STFM lags NFQ on sum-of-IPCs because it doggferent combinations of benchmarks from the differentegaries

not unfairly prioritize non-intensive threads. On the cant, STFM
tends to slightly favor intensive threads whose memory Ifedism
and thus slowdown is more difficult to estimate (e.g. lesl)e@ver
non-intensive ones.

7.2.3. Case study lll: Non-memory-intensive Workload (1
intensive benchmark run with 3 non-intensive benchmarks)
As shown in Figure 8, FCFS significantly reduces unfairnasd
improves sum-of-IPCs for this workload because it allowstlakee
non-intensive threads to make much faster progress ratlaer lhe-
ing starved until libquantum’s row-hit requests are seslic FR-
FCFS+Cap further improves throughput (all three metriegy #CFS

in Figure 9(left). The average unfairness of FR-FCFS, FOHS,
FCFS+Cap, NFQ, and STFM techniques are respectively 3.80, 1
1.65, 1.58, and 1.24. Hence, STFM provides the best fairnAss
shown in Figure 9(right), STFM also provides the best systeough-
put: it improves weighted-speedup and hmean-speedup Ipeces
tively 5.8% and 10.8% compared to NFQ.

7.3. Scaling to 8-Core and 16-Core Systems

Unfairness in the memory system will increase as the number o
cores sharing it increases. We evaluate how existing anddieaM
scheduling techniques scale to 8 and 16 cores. Figure 10sstiav

without significantly sacrificing fairness, as it enablestéa progress comparison of different schedulers for a non-memory-isitenwork-

10



= FR-FCFS
=FCFS

= FRFCFS+Cap| ) m— FR-FCFS

" 1.6 —
o : =NFQ — Q14 == FCFS
€ 49 =STFM Z 12 === FRFCFS+Ca
8 s - == NFQ 7
5 32 5 ==STFM —

[}

=

m

>

OORENNWWANJITIOONN
—OUOUIOTIOTOTIOTIOUTIOU

1 [l
“iggupit I iboiShumiBaYANRIeple3d  gaef, lbayugaum,, et o a3iar,, astar, GMEAN
e et R B ot e o YR

Figure 9. Unfairness (left) and throughput metrics (right) averaged(using geometric mean) over all 256 workloads run in the 4-ae system

GMEAN-Sum-of-IPCs GMEAN-Hmean-Speedup

U9f§imess:3.46 3.93 4.14 293=mr | 1.30

70 = bzip2 5.5
s 83 ] ‘ } = groma 5.0 == FR-FCFS
2 gg | = gobmk o 4.5 ===FCFS —
S 50 | = dealll 5 4.04 == FRFCFS+Cag——
2 75 = wif S 3.5] ==NFQ —
%) 40 = namd s« 3.0 = STFM —
> 331 S 251
g 251 3 2.0
g 20 S 15
= 131 1.0

054 0.51

0.04 0.0

FR-FCFS FCFS FRFCFS+Cap NFQ STFM Weighted-Speedup Sum-of-IPCs Hmean-Speedup
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Figure 12. Unfairness (left) and throughput metrics (right) averaged(using geometric mean) over all workloads run in the 16-corsystem

load (1 intensive and 7 non-intensive benchmarks) runnm@ro 8- problem becomes much more severe because more threadsivgity b

core system. Even in this non-intensive workload, the unésis of access patterns can disrupt and unfairly get prioritized aamemory-

FR-FCFS is very high (3.46). NFQ reduces unfairness to Z88v- intensive thread. Second, a thread with pbank access balandee-

ever, the memory-intensive thread, mcf, is very heavilyglieed by comes much more likely to be penalized because more threglds w

NFQ because the non-intensive threads have bursty accesnpa better access balance compete for the same banks that ifitesal/-

Hence, NFQ'ddleness problerbecomes more severe as we move aity accessing. Therefore, both FCFS and FRFCFS+Cap, whiciod

to more cores. STFM reduces unfairness to 1.30 while alsocawrg ~ suffer from these two problems, provide better fairnesa tHEQ.

system throughput. In all 16-core workloads, STFM provides the best fairnasprov-
Figure 11(left) shows the unfairness of different scheduliech- ing average unfairness from 2.23 (FCFS) to 1.75. STFM alsoiges

niques on 10 other sample workloads along with the averafgrun the best system throughput, improving weighted-speeddharean-

ness over 32 diverse combinations of benchmarks seleaeudif- speedup respectively by 4.6% and 15% over NFQ. We concluate th

ferent categories. FR-FCFS’s average unfairness hassedesignif- STFM scales better with the number of cores than the otherNDRA

icantly to 5.26 as compared to the 4-core system evaluatéigime 9, scheduling techniques

supporting our claim that DRAM unfairness will become magmgi- .

cant in systems with more cores. Furthermore, the differéetween 7.4. Effect on Desktop Applications

the unfairness of STFM and other techniques widens as otitbrt  We also evaluated STFM on Windows desktop workloads and

niques become increasingly ineffective at providing fasist the av- present one case stutfy. Figure 13 considers a 4-core workload

erage unfairness of FRFCFS+Cap and NFQ are respectivelya® scenario with two background threads (XML parser searchirfite

2.53. In contrast, STFM’s unfairness is only 1.40. database, and Matlab performing convolution on two imaged)two
Figure 12(left) shows the unfairness of different schedutiech- foreground threads the user is focusing on (Internet Egpland In-

niques on 3 workloads run on the 16-core system. The work|oagtant Messenger). Table 4 shows the application charsiibsti

from left to right consist of 1) the most memory intensive Ehbh- The baseline FR-FCFS scheduler significantly penalizesdine

marks, 2) the most intensive 8 benchmarks run with the legshsive intensive threads because the background threads are \eanpmy-

8 benchmarks, and 3) the least intensive 16 benchmarks. NFQ b

comes highly unfair in 16 cores due to two reasons. Firstidlemess  18We used iDNA [1] to trace the evaluated Windows applications

11



Urlfgirness:8.88 7.42 7.51 1.75 1.37 20
11 == xm|-parser *
é 12 === matlab [ o = FR-FCFS
8 8] == jexplorer [ = === FCFS [
g 7 == instant-messenger e == FRFCFS+Cap
- - === NFQ
» 6 5 [—
> 5 ° === STFM
£ 3 3
3
3 2] s
1,
0 FR-FCFS FCFS FRFCFS+Cap NFQ STFM Weighted-Speedup Sum-of-IPCs Hmean-Speedup
Figure 13. A mixed 4-core workload of desktop applications: memory slavdowns and unfairness (left), throughput metrics (right)
Unfairmess (equal pri..75 2.77 1.29 Unfairmess (equal pri..75 2.99 1.20
7.0 s |ibquantum 7.0 s |ibquantum

=== cactusADM
= astar
=== omnetpp

1 STFM-!eighlS-l-éi-S-l

!
=== cactusADM | pR—
= astar ]
=== omnetpp

NFQ-shires-l-lG-l-l STFM—ieighlS-l-lG-l-l FR-FCFS NFQ-ShEres-l— -8-

Figure 14. Evaluation of STFM and NFQ with different thread weights

NOTIOUIOUTO!

Memory Slowdown

Memory Slowdown
OORENNWWAROITIONG:

OO

o
T

|Benlczmark HR’T' ngé!ig"gg'|R2:';;‘tqcatzgo“r creases, STFM resembles FR-FCFS in terms of both unfaiamess
matlal . . .8% B

stantmessenghINT | 1561 772 | 22.8% - throughpu_t. Hence, if the system software_does not neednfoece
xmi-parser INT 18561 5326 | 95.8% 3 ment of fairness by the memory controller, it canséo be very large
iexplorer INT [ 0.55| 355 | 41.4% 0 (in this case, to a value of 20) to maximize the throughpuaioled

Table 4. Characteristics of the evaluated desktop applications

intensive and have very high row-buffer locality. NFQ reesicinfair-
ness to 1.75, but still penalizes both iexplorer and messesignifi-

cantly because the accesses of these two applicationsrasertoated
only on two and three banks, respectively. STFM improvegsianéss

from the DRAM. Note that STFM provides better throughput whe
is set to 1.1 rather than 1.0, without sacrificing much fameAna
value of 1.0 causes the fairness-rule to be applied too oftemeby
disabling the DRAM controller’s ability to optimize for tbughput
most of the time. Amx value of 1.05 results in similar, but better,
behavior as STFM’s slowdown estimates are not always ateura

5.5

to 1.37, while also improving system throughput: weightpeedup B pyv—
by 5.4% and hmean-speedup by 10.7%. 048 e
‘3 3:5 :-Alpha=1:2 I
H 2 30 =Apha=2 |
7.5. Evaluation of Support for System Software 5 25 b
As explained in Section 3.3, STFM can be configured by the sys- € 15 =FR-FCFS |—
tem software to assign different weights to different thisea We gigf T
present one typical result to show the effectiveness of STRMp- © Unfaimess Weightéd-Speedup  Sum-of-IPCs Hmean-Speedup

port for thread weights. Figure 14(left) shows the memooyslowns
of threads with different weights running on a 4-core systising FR-
FCFS, NFQ, and STFM. Threads are assigned the followinght&ig
libquantum (1), cactusADM (16), astar (1), omnetpp (1). F&S ba
is thread-unaware and slows down the high-priority caciiglfby
4.5X. In contrast, NFQ takes into account thread weightsssjgaing
each thread a share of the DRAM bandwidth that is proportitma
the thread's weight [22}° NFQ succeeds in prioritizing the higher-
priority cactusADM, but fails to treat equal-priority tlags equally
because, as shown in previous sections, equalizing DRAMitput
of threads does not necessarily correlate with equalizeréppmance
slowdowns. STFM enforces thread weights more effectiwsiyprior-
itizing cactusADM such that its memory slowdown is only 1.&Kile

at the same time treating equal-priority threads moreyfairl

Figure 15. Effect of « on fairness and throughput

7.6. Sensitivity to DRAM Banks and Row-buffer Size
We have analyzed the sensitivity of STFM to the number of DRAM
nks and row-buffer size. Table 5 shows the fairness aodghput
comparison with FR-FCFS averaged over 32 diverse workloadke
8-core system. Average unfairness of FR-FCFS decreasks aain-
ber of banks increases because the interference betwesadshbe-
comes less prevalent due to reduced bank conflicts. On tee ludimd,
average unfairness of FR-FCFS increases as row-buffeirsimases
because the probability of exploiting row-buffer localftye. reorder-
ing younger column accesses over row accesses) increa3ésM S
significantly improves both unfairness and weighted-sppéddr all
row buffer sizes and DRAM bank counts. Furthermore, then&ss
provided by STFM is independent of the number of DRAM banks an
Figure 14(right) shows memory slowdowns when threads are @se size of the row-buffer. Even though these two parametiest
signed the following weights: libquantum (1), cactusADM),(4s- the slowdowns experienced by threads, STFM is able to bakimse
tar (8), and omnetpp (1). Both NFQ and STFM manage to pdtowdowns without depending on these paraméters.
oritize higher-priority threads over lower-priority onesHowever,
NFQ is again unable to ensure fairness across equal-pribrigads, 8. Related Work
slowing down omnetpp (6.2X) more than libquantum (2.07X). |  Nesbit et al. [22] is the only work we are aware of that address
contrast, STFM preserves equal memory-slowdowns amongl-ed¢airness issues at the DRAM controller level. We have alygam-
priority threads (unfairness: 1.20). vided extensive qualitative and quantitative comparigorthis work.
Figure 15 shows the effect of STFMs parameter on unfairnessour previous work [20] describes how the unfairness in theADR
and throughput. Recall that is set by system software and it desybsystem can be exploited by malicious programs to perémial
termines the maximum tolerable unfairness among threads if-  of service against other programs sharing the memory system

19This bandwidth partitioning is performed dynamically byjusting a 20Also note that STFM’s weighted-speedup improvement irsgsavith the
thread’s virtual deadlines inverse-proportionally to stsare [22]. In Fig- number of DRAM banks. This is because a larger number of balldws more
ure 14(left) cactusADM’s bandwidth share is 16/19, wher@sother three flexibility in scheduling DRAM commands and enables STFMpiove fair-
threads have equal bandwidth shares of 1/19. ness while sacrificing less of DRAM throughput.

12



DRAM banks

Row-buffer Size |

4 [} 16 1KB 2 KB 4 KB
UnfairnessW. Speedufj UnfairnessW. Speeduf UnfairnessW. Speeduf UnfairnessW. SpeedufjUnfairnessW. Speeduff UnfairnessW. Speedup
FR-FCFS 5.47 241 5.26 2.75 5.01 3.14 4.98 2.53 5.26 2.75 5.51 2.81
STFM 1.41 2.54 1.40 2.96 1.39 3.49 1.37 2.71 1.40 2.96 1.38 3.03
Improvemenf[] 3.88X 5.4% 3.78X 7.6% 3.60X 11.1% 3.64X 7.1% 3.78X 7.6% 3.99X 7.8%

Table 5. Sensitivity of fairness and throughput of STFM to DRAM banks and row-buffer size

DRAM Throughput Optimizations for Multithreaded Systems:
Natarajan et al. [21] examine the effect of different memzogtroller
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niques utilize SMT-specific information about threads }sas reorder References

buffer or issue queue occupancies, to improve throughputtiey
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tion. Several studies (e.qg. [29, 11]) proposed technicoefafr cache [12]
partitioning. These are complementary to our work. [13]
Fairness Issues in Multithreaded SystemsAlthough fairness issues
have been studied in multithreaded systems especiallg @rtitessor [14]
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tems; it can be used in the general case of multiple threadgithe [16]
DRAM subsystem.

9. Conclusion

We introduced, implemented, and evaluated the conceptadif
time fair memory scheduling (STFM$TFM is a configurable sub-[19]
strate that provides fair DRAM access to different threddsisg the
DRAM system. The key idea that makes STFM work is that equéf]
priority threads, when run together, should experiencekgumounts [21]
of slowdown as compared to when they are run alone. We destrib
the design and implementation of STFM. We also showed howMsTH22]
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