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ABSTRACT
Processing-in-memory (PIM) provides high bandwidth, mas-
sive parallelism, and high energy efficiency by implement-
ing computations in main memory, therefore eliminating
the overhead of data movement between CPU and mem-
ory. While most of the recent work focused on PIM in
DRAM memory with 3D die-stacking technology, we pro-
pose to leverage the unique features of emerging non-volatile
memory (NVM), such as resistance-based storage and cur-
rent sensing, to enable efficient PIM design in NVM. We
propose Pinatubo1, a Processing In Non-volatile memo-
ry ArchiTecture for bUlk Bitwise Operations. Instead of
integrating complex logic inside the cost-sensitive memory,
Pinatubo redesigns the read circuitry so that it can com-
pute the bitwise logic of two or more memory rows very
efficiently, and support one-step multi-row operations. The
experimental results on data intensive graph processing and
database applications show that Pinatubo achieves a ∼500×
speedup, ∼28000× energy saving on bitwise operations, and
1.12× overall speedup, 1.11× overall energy saving over the
conventional processor.

1. INTRODUCTION
In the big data era, the “memory wall” is becoming the

toughest challenge as we are moving towards exascale com-
puting. Moving data is much more expensive than comput-
ing itself: a DRAM access consumes 200 times more en-
ergy than a floating-point operation [14]. Memory-centric
processing-in-memory (PIM) architecture and Near-data-com-
puting (NDC) appear as promising approaches to address
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Mount Pinatubo is an active volcano that erupted in 1991. We
envision our design to invigorate the future PIM research, similar
to the rejuvenation of life after an volcanic eruption.
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such challenges. By designing processing units inside/near
main memory, PIM/NDC dramatically reduces the overhead
of data movements. It also takes advantage of the large
memory internal bandwidth, and hence the massive paral-
lelism. For example, the internal bandwidth in the hybrid
memory cube (HMC) [20] is 128 times larger than its SerDes
interface [4].

Early PIM efforts [19] are unsuccessful due to practical
concerns. They integrate processing units and memory on
the same die. Unfortunately, designing and manufacturing
the performance-optimized logic and the density-optimized
memory together is not cost-effective. For instance, complex
logic designs require extra metal layers, which is not desir-
able for the cost-sensitive memory vendors. Recent achieve-
ments in 3D-stacking memory revive the PIM research [18],
by decoupling logic and memory circuits in different dies.
For example, in HMC stacked memory structure, an extra
logic die is stacked with multi-layer of DRAM dies using
massive number of through-silicon-vias [18].

Meanwhile, the emerging non-volatile memories (NVM-
s), i.e., phase changing memory (PCM) [10], spin-transfer
torque magnetic random access memory (STT-MRAM) [24],
and resistive random access memory (ReRAM) [8] provide
promising features such as high density, ultra-low stand-
by power, promising scalability, and non-volatility. They
have showed great potential as candidates of next-generation
main memory [15, 28, 27].

The goal of this paper is to show NVM’s potential on en-
abling PIM architecture, while almost all existing efforts fo-
cus on DRAM systems and heavily depend on 3D integra-
tion. NVM’s unique features, such as resistance-based s-
torage (in contrast to charge-based in DRAM) and current-
sensing scheme (in contrast to the voltage-sense scheme used
in DRAM), are able to provide inherent computing capabil-
ities [13, 16]. Therefore, NVM can enable PIM without the
requirement of 3D integration. In addition, it only requires
insignificant modifications to the peripheral circuitry, result-
ing in a cost-efficient solution. Furthermore, NVM-enabled
PIM computation is based on in-memory analog signals,
which is much more energy efficient than other work that
uses digital circuits.

In this paper, we propose Pinatubo, a Processing In Non-
volatile memory ArchiTecture for bUlk Bitwise Operations,
including OR, AND, XOR, and INV operations. When
Pinatubo works, two or more rows are activated simulta-
neously, the memory will output the bitwise operations re-
sult of the open rows. Pinatubo works by activating two (or
more) rows simultaneously, and then output of the memo-
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ry is the bitwise operation result upon the open rows. The
results can be sent to the I/O bus or written back to an-
other memory row directly. The major modifications on the
NVM-based memory are in the sense amplifier (SA) design.
Different from a normal memory read operation, where the
SA just differentiates the resistance on the bitline between
Rhigh and Rlow, Pinatubo adds more reference circuit to the
SA, so that it is capable of distinguishing the resistance of
{Rhigh/2 (logic “0,0”), Rhigh||Rlow (logic “0,1”), Rlow/2 (log-
ic “1,1”)} for 2-row AND/OR operations. It also potentially
supports multi-row OR operations when high ON/OFF ra-
tio memory cells are provided. Although we use 1T1R PCM
as an example in this paper, Pinatubo does not rely on a
certain NVM technology or cell structure, as long as the
technology is based on resistive-cell.

Our contributions in this paper are listed as follows,

• We propose a low-cost processing-in-NVM architecture
with insignificant circuit modification and no require-
ment on 3D integration.
• We design a software/hardware interface which is both

visible to the programmer and the hardware.
• We evaluate our proposed architecture on data inten-

sive graph processing and data-base applications, and
compare our work with SIMD processor, accelerator-
in-memory PIM, and the state-of-the-art in-DRAM
computing approach.

2. NVM BACKGROUND
Although the working mechanism and the features vary,

PCM, STT-MRAM, and ReRAM share common basics: all
of them are based on resistive-cell. To represent logic “0”
and “1”, they rely on the difference of cell resistance (Rhigh

or Rlow). To switch between logic “0” and “1”, certain polar-
ity, magnitude, and duration voltage/current are required.
The memory cells typically adopt 1T1R structure [10], where
there are a wordline (WL) controlling the access transistor,
a bitline (BL) for data sensing, and a source line (SL) to
provide different polarized write currents.

Architecting NVM as main memory has been well stud-
ied [28, 15]. The SA design is the major difference be-
tween NVM and DRAM design. Different from the conven-
tional charge-based DRAM, the resistance-based NVM re-
quires a larger SA to convert resistance difference into volt-
age/current signal. Therefore, multiple adjacent columns
share one SA by a multiplexer (MUX), and it results in a
smaller row buffer size.
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Figure 1: A current-based SA (CSA) [8].

Fig. 1 shows the mechanism of a state-of-the-art CSA [8].
There are three phases during sensing, i.e., current-sampling,
current-ratio amplification, and 2nd-stage amplification.

3. MOTIVATION AND OVERVIEW
Bitwise operations are very important and widely used

by database [26], graph processing [5], bio-informatics [21],

and image processing [6]. They are applied to replace ex-
pensive arithmetic operations. Actually, modern processors
have already been aware of this strong demand, and devel-
oped accelerating solutions, such as Intel’s SIMD solution
SSE/AVX.
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Figure 2: Overview: (a) Computing-centric ap-
proach, moving tons of data to CPU and write back.
(b) The proposed Pinatubo architecture, performs
n-row bitwise operations inside NVM in one step.

We propose Pinatubo to accelerate the bitwise operations
inside the NVM-based main memory. Fig. 2 shows the
overview of our design. Conventional computing-centric ar-
chitecture in Fig. 2 (a) fetches every bit-vector from the
memory sequentially. The data walks through the narrow
DDR bus and all the memory hierarchies, and finally is exe-
cuted by the limited ALUs in the cores. Even worse, it then
needs to write the result back to the memory, suffering from
the data movements overhead again. Pinatubo in Fig. 2 (b)
performs the bit-vector operations inside the memory. On-
ly commands and addresses are required on the DDR bus,
while all the data remains inside the memory. To perform
bitwise operations, Pinatubo activates two (or more) mem-
ory rows that store bit-vector simultaneously. The modified
SA outputs the desired result. Thanks to in-memory calcu-
lation, the result does not need the memory bus anymore. It
is then written to the destination address thought the WD
directly, bypassing all the I/O and bus.

Pinatubo embraces two major benefits from PIM architec-
ture. First, the reduction of data movements. Second, the
large internal bandwidth and massive parallelism. Pinatubo
performs a memory-row-length (typical 4Kb for NVM) bit-
vector operations. Furthermore, it supports multi-row oper-
ations, which calculate multi-operand operations in one step,
bringing the equivalent bandwidth ∼1000× larger than the
DDR3 bus.

4. ARCHITECTURE AND CIRCUIT DESIGN
In this section, we first show the architecture design that

enables the NVM main memory for PIM. Then we show
the circuit modifications for the SA, LWL driver, WD, and
global buffers.

4.1 From Main Memory to Pinatubo
Main memory has several physical/logic hierarchies. Chan-

nels runs in parallel, and each channel contains several ranks
that share the address/data bus. Each rank has typical 8
physical chips, and each chip has typical 8 banks as shown in
Fig. 3 (a). Banks in the same chip share the I/O, and banks
in different chips work in a lock-step manner. Each bank
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Figure 3: The Pinatubo Architecture. Glossary: Global WordLine (GWL), Global DataLine (GDL), Local

WordLine (LWL), SelectLine (SL), BitLine (BL), Column SelectLine (CSL), Sense Amplifier (SA), Write Driver (WD).

has several subarrays. As Fig. 3 (b) shows, Subarrays share
the GDLs and the global row buffer. One subarray contains
several MATs as shown in Fig. 3 (c), which also work in the
lock-step manner. Each Mat has its private SAs and WDs.
Since NVM’s SA is much larger than DRAM, several (32 in
our experiment) adjacent columns share one SA by a MUX.

According to the physical address of the operand rows,
Pinatubo performs three types of bitwise operations: intra-
subarray, inter-subarray, and inter-bank operations.
Intra-subarray operations. If the operand rows are all
within one subarray, Pinatubo performs intra-subarray oper-
ations in each MAT of this subarray. As shown in Fig. 3 (c),
the computation is done by the modified SA. Multiple rows
are activated simultaneously, and the output of the modified
SA is the operation result. The operation commands (e.g.,
AND or OR) are sent by the controller, which change the
reference circuit of the SA. We also modify the LWL driver
is also implemented to support multi-row activation. If the
operation result is required to write back to the same sub-
array, it is directly fed into the WDs locally as an in-place
update.
Inter-subarray operations. If the operand rows are in
different subarrays but in the same bank, Pinatubo performs
inter-subarray operations as shown in Fig. 3 (b). It is based
on the digital circuits added on the global row buffer. The
first operand row is read to the global row buffer, while the
second operand row is read onto the GDL. Then the two
operands are calculated by the add-on logic. The final result
is latched in the global row buffer.
Inter-bank operations. If the operand rows are even in
different banks but still in the same chip, Pinatubo performs
inter-bank operations as shown in Fig. 3 (a). They are done
by the add-on logic in the I/O buffer, and have a similar
mechanism as inter-subarray operations.

Note that Pinatubo does not deal with operations between
bit-vectors that are either in the same row or in differen-
t chips. Those operations could be avoided by optimized
memory mapping, as shown in Section 5.

4.2 Peripheral Circuitry Modification
SA Modification: The key idea of Pinatubo is to use SA
for intra-subarray bitwise operations. The working mecha-
nism of SA is shown in Fig. 5. Different from the charge-
based DRAM/SRAM, the SA for NVM senses the resistance
on the BL. Fig. 5 shows the BL resistance distribution dur-
ing read and OR operations, as well as the reference val-
ue assignment. Fig. 5 (a) shows the sensing mechanism for
normal reading (Though the SA actually senses currents, the
figure presents distribution of resistance for simplicity). The
resistance of a single cell (either Rlow or Rhigh) is compared
with the reference value (Rref-read), determining the result
between “0” and “1”. For bitwise operations, an example for

a 2-row OR operation is shown in Fig. 5 (b). Since two rows
are activated simultaneously, the resistance on the BL is the
parallel connection of two cells. There could be three situ-
ations: Rlow||Rlow (logic “1”,“1”), Rlow||Rhigh (“1”,“0”), and
Rhigh||Rhigh (“0”,“0”)2. In order to perform OR operations,
the SA should output “1” for the first two situations and
output “0” for the last situation. To achieve this, we simply
shift the reference value to the middle of Rlow||Rhigh and
Rhigh||Rhigh, denoted as Rref-or. Note that we assume the
variation is well controlled so that no overlap exists between
“1” and “0” region. In summary, to compute AND and OR,
we only need to change the reference value of the SA.

Rlow Rhigh Rlow||Rlow Rhigh||RhighRlow||Rhigh

 1  region  0  region
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 1  region  0  region
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(a) SA reads with Rref-read. (b)  SA processes OR with Rref-or.
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Figure 5: Modifying Reference Values in SA to En-
able Pinatubo.
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Figure 6: Current Sense Amplifier (CSA) Modifica-
tion (left) and HSPICE Validation (right).

Fig. 6 (a) shows the corresponding circuit modification
based on the CSA [8] introduced in Section 2. As explained
above, we add two more reference circuits to support AND/OR
operations. For XOR, we need two micro-steps. First, one
operand is read to the capacitor Ch. Second, the other
operand is read to the latch. The output of the two add-on
transistors is the XOR result. For INV, we simply output
the differential value from the latch. The output is select-
ed among READ, AND, OR, XOR, and INV results by a
MUX. Fig. 6 (b) shows the HSPICE validation of the pro-
posed circuit. The circuit is tested with a large range of
cell resistances from the recent PCM, STT-MRAM, and R-
eRAM prototypes [23].
Multi-row Operations: Pinatubo supports multi-row
operations that further accelerate the bitwise operations. A
multi-row operation is defined as calculating the result of
multiple operands at one operation. For PCM and ReRAM

2
“||” denotes production over sum operation.



Main Memory

Mode Register 
4 (MR4)

Ctrl.

Memory with PIM

CMD
ADR

DAT

Programming Model Driver Lib

pim_malloc( );

pim_op(dst,src1,src2,

data_t,op_t, len);

C Run-time 
Library

pim-aware 
malloc

OS
pim-aware memory 

management

expose PA by sys-
call

schedule 
opt

extend 
ISA

...

Software Stack Hardware Control

Figure 4: Pinatubo System Support.

which encode Rhigh as logic “0”, Pinatubo can calculate n-
row OR operations3. After activating n rows simultaneously,
Pinatubo needs to differentiate the bit combination of only
one “1” that results in “1”, and the bit combination with all
“0” that results in “0”. This leads to a reference value be-
tween Rlow||Rhigh/(n − 1) and Rhigh/n. This sensing mar-
gin is similar with the TCAM design [17]. State-of-the-art
PCM-based TCAM supports 64-bit WL with two cells per
bit. Therefore we assume maximal 128-row operations for
PCM. For STT-MRAM, since the ON/OFF ratio is already
low, we conservatively assume maximal 2-row operation.
LWL Driver Modification: Conventional memory acti-
vates one row each time. However, Pinatubo requires multi-
row activation, and each activation is a random-access. The
modifications of the LWL driver circuit and the HPSICE
validation are shown in Fig. 7. Normally, the LWL driver
amplifies the decoded address signal with a group of invert-
ers. We modify each LWL drive by adding two more transis-
tors. The first transistor is used to feed the signal between
inverters back and serves as a latch. The second transis-
tor is used to force the driver’s input as ground. During
the multi-row activation, it requires to send out the RESET
signal first, making sure that no WL has latched anything.
Then every time an address is decoded, the selected WL
signal is latched and stuck at VDD until the next RESET
signal arrives. Therefore, after issuing all the addresses, all
the corresponding selected WL are driven to the high voltage
value.
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WD Modification: Fig. 8 (a) shows the modification to a
WD of STT-MRAM/ReRAM. We do not show PCM’s WD
since it is simpler with unidirectional write current. The
write current/voltage is set on BL or SL according to the
write input data. Normally, the WD’s input comes from the
data bus. We modify the WD circuit so that the SA result
is able to be fed directly to the WD. This circuit bypasses
the bus overhead when writing results back to the memory.
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Figure 8: (a) Modifications to Write Driver (WD).
(b) Modifications for Inter-Sub/Bank Operations

3
Multi-row AND in PCM/ReRAM is not supported, since it is un-

likely to differentiate Rlow/(n− 1)||Rhigh and Rlow/n, when n > 2.

Global Buffers Modification: To support inter-subarray
and inter-bank operations, we have to add the digital circuits
to the row buffers or IO buffers. The logic circuit’s input is
the data from the data bus and the buffer. The output is s-
elected by the control signals and then latched in the buffer,
as shown in Fig. 8 (b).

5. SYSTEM SUPPORT
Fig. 4 shows an overview of Pinatubo’s system design.

The software support contains the programming model and
run-time supports. The programming model provides two
functions for programmers, including the bit-vector alloca-
tion and the bitwise operations. The run-time supports in-
clude modifications of the C/C++ run-time library and the
OS, as well as the development of the dynamic linked driver
library. The C/C++ run-time library is modified to provide
a PIM-aware data allocation function. It ensures that differ-
ent bit-vectors are allocated to different memory rows, since
Pinatubo is only able to process inter-row operations. The
OS provides the PIM-aware memory management that max-
imizes the opportunity for calling intra-subarray operations.
The OS also provides the bit-vector mapping information
and physical addresses (PAs) to the PIM’s run-time driver
library. Based on the PAs, the dynamic linked driver library
first optimizes and reschedules the operation requests, and
then issues extended instruction for PIM [3]. The hardware
control part utilizes the DDR mode register (MR) and com-
mand. The extended instructions are translated to DDR
commands and issued through the DDR bus to the main
memory. The MR in the main memory is set to configure
the PIM operations.

6. EXPERIMENT
In this section, we compare Pinatubo with state-of-the-art

solutions and present the performance and energy results.

6.1 Experiment Setup
The three counterparts we compare are described below:

SIMD is a 4-core 4-issue out-of-order x86 Haswell proces-
sor running at 3.3GHz. It also contains a 128-bit SIMD
unit with SSE/AVX for bitwise operation acceleration. The
cache hierarchy consists of 32KB L1, 256KB L2, and 6MB
L3 caches.
S-DRAM is the in-DRAM computation solution to accel-
erate bitwise operations [22]. The operations are executed
by charges sharing in DRAM. Due to the read-destructive
feature of DRAM, this solution requires copying data before
calculation. Only 2-row AND and OR are supported.
AC-PIM is an accelerator-in-memory solution, where even
the intra-subarray operations are implemented with digital
logic gates as shown in Fig. 8 (b).

The S-DRAM works with a 65nm 4-channel DDR3-1600
DRAM. AC-PIM and Pinatubo work on 1T1R-PCM based
main memory whose tRCD-tCL-tWR is 18.3-8.9-151.1ns [9].
SIMD works with DRAM when compared with S-DRAM,



Vector: pure vector OR operations.
dataset: e.g. 19-16-1(s/r) means 219-lentgh vector, 216 vec-

tors, 21-row OR ops (sequntial/random access)

Graph: bitmap-based BFS for graph processing [5].
dataset: dblp-2010, eswiki-2013,amazon-2008 [1]

Database: bitmap-based database (Fastbit [26]) application.
dataset: 240/480/720 number of quraying on STAR [2]

Table 1: Benchmarks and Data Set

and with PCM when compared with AC-PIM and Pinatubo.
Note that the experiment takes 1T1R PCM for a case study,
but Pinatubo is also capable to work with other technologies
and cell structures.

The parameters for S-DRAM are scaled from existing
work [22]. The parameters for AC-PIM are collected from
synthesis tool with 65nm technology. As to parameters for
Pinatubo, the analog/mixsignal part, including SA, WD,
and LWL, is extracted from HSPICE simulation; the digital
part, including controllers and logics for inter-subarray/bank
operations, is extracted from the synthesis tool. Based on
those low-level parameters, we heavily modify NVsim [11] for
the NVM circuit modeling, and CACTI-3DD [9] for the main
memory modeling, in order to achieve high-level parameters.
We also modify the PIN-based simulator Sniper [7] for SIMD
processor and the NVM-based memory system. We develop
an in-house simulator to evaluate the AC-PIM, S-DRAM,
and Pinatubo. We show the evaluation benchmarks and da-
ta sets in Table 1, in which Vector only has OR operation
while Graph and Database contain all AND, OR, XOR, and
INV operations.

6.2 Performance and Energy Evaluation
Fig. 9 shows Pinatubo’s OR operation throughput. We

have four observations. First, the throughput increases with
longer bit-vectors, because they make better use of the mem-
ory internal bandwidth and parallelism. Second, we observe
two turning points, A and B, after which the speedup im-
provement is showed down. Turning point A is caused by
the sharing SA in NVM: bit-vectors longer than 214 have to
be mapped to columns the SA sharing, and each part has to
be processed in serial. Turning point B is caused by the lim-
itation of the row length: bit-vectors longer than 219 have
to be mapped to multiple ranks that work in serial. Third,
Pinatubo has the capability of multi-row operations (as the
legends show). For n-row OR operations, larger n provides
larger bandwidth. Fourth, the y-axis is divided into three
regions: the below DDR bus bandwidth region which only
includes short bit-vectors’ result; the memory internal band-
width region which includes the majority of the results; and
the beyond internal bandwidth region, thanks to the multi-
row operations. DRAM systems can never achieve beyond
memory internal bandwidth region.
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We compare both Pinatubo of 2-row and 128-row opera-
tion with two aggressive baselines in Fig. 10, which shows the
speedup on bitwise operations. We have three observation-
s: First, S-DRAM has better performance than Pinatubo-
2 in some cases with very long bit-vectors. This is be-
cause DRAM-based solutions benefit from larger row buffer-
s, compared with the NVM-based solution. However, the
advantage of NVM’s multi-row operations still dominates.
Pinatubo-128 is 22× faster than S-DRAM. Second, the AC-
PIM solution is much slower than Pinatubo in every single
case. Third, multi-row operations show their superiority,
especially when intra-subarray operations are dominating.
An opposite example is 14-16-7r, where all operations are
random accesses and it is dominated by inter-subarray/bank
operations, so that Pinatubo-128 is as slow as Pinatubo-2.
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Figure 11: Energy Saving Normalized to SIMD.
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Figure 12: Overall Speedup and Energy Saving Nor-
malized to SIMD Baseline.

Fig. 11 shows the energy saving result. The observations
are similar with those from speedup: S-DRAM is better
than Pinatubo-2 in some cases but worse than Pinatubo-
128 on average. AC-PIM never has a change to save more
energy then any of the other three solutions, since both S-
DRAM and Pinatubo rely on high energy efficient analogy



computing. On average, Pinatubo saves 2800× energy for
bitwise operations, compared with SIMD processor.

Fig. 12 shows the overall speedup and energy saving of
Pinatubo in the two real-world applications. The ideal leg-
end represents the result with zero latency and energy spent
on bitwise operations. We have three observations. First,
Pinatubo almost achieves the ideal acceleration. Second,
limited by the bitwise operations’ proportion, Pinatubo can
improve graph processing applications by 1.15× with 1.14×
energy saving. However, it is data dependent. For the eswi-
ki and amazon data set, since the connection is “loose”, it
has to spend most of the time searching for an unvisited
bit-vector. For dblp, it has 1.37× speedup. Third, for the
database applications, it achieves 1.29× overall speedup and
energy saving.

6.3 Overhead Evaluation
Fig. 13 shows the area overhead results. As shown in

Fig. 13 (a), Pinatubo incurs insignificant area overhead on-
ly 0.9%. However, AC-PIM has 6.4% area overhead, which
is critical to the cost-sensitive memory industry. S-DRAM
reports ∼0.5% capacity loss, but it is for DRAM-only re-
sult and orthogonal with Pinatubo’s overhead evaluation.
Fig. 13 (b) shows the area overhead breakdown. We con-
clude that the majority area overhead are taken by inter-
subarray/bank operations. For intra-subarray operations,
XOR operations takes most of the area.
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Figure 13: Area Overhead Comparison (left) and
Breakdown (right).

7. RELATED WORK
Pinatubo distinguishes itself from PIM work, in-DRAM

computing work, and logic-in-memory work. First, differ-
ent from other PIM work, Pinatubo does not need 3D in-
tegration [18], and does not suffer from logic/memory cou-
pling problem [19] either. Pinatubo benefits from NVM’s
resistive-cell feature, and provides cost and energy efficien-
t PIM. Although ProPRAM [25] leverages NVM for PIM,
it uses NVM’s lifetime enhancement peripheral circuits for
computing, instead of the NVM’s character itself. More-
over, bitwise AND/OR is not supported in ProRPAM, and
it is computing with digital circuit while Pinatubo takes ad-
vantage of high energy-efficient analog computing. Second,
based on charge sharing, in-DRAM bulk bitwise operations
is proposed [22]. However, it suffers from read destructive
problem so that operand copy is required before comput-
ing, incurring unnecessary overhead. Also, only maximal
2-row operations are supported. Third, there is other work
using NVM for logic-in-memory functionality such as asso-
ciate memory [17, 12]. Recent studies also take use of R-
eRAM crossbar array to implement IMPLY-based logic op-
erations [16, 13]. However, none of them are necessarily fit-
ted to the PIM concept: they use the memory technique to
implement processing unit, but the processing unit appears
as either a co-processor or a stand-alone accelerator. They
still pay for the expensive data fetching from the memory
and are limited by the memory bus bandwidth.

8. CONCLUSION
In this paper, a processing-in-NVM architecture for bulk

bitwise operations is proposed. The computation makes
use of NVM’s resistive-cell feature and achieves high per-
formance and energy efficiency with insignificant area over-
heads. Experimental results show that the proposed archi-
tecture achieves ∼500× speedup and ∼28000× energy sav-
ing on bitwise operations, and 1.12× overall speedup, 1.11×
overall energy saving on data intensive graph processing and
database applications with real-world data.
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