
Best of Both Latency and Throughput

Ed Grochowski, Ronny Ronen, John Shen, Hong Wang
Intel Labs

Ed, John, Hong: Intel, 2200 Mission College Blvd, Santa Clara, CA 95054, USA
Ronny: Intel Israel, MTM Scientific Industries Center, Haifa 31015, Israel

edward.grochowski@intel.com, ronny.ronen@intel.com,
john.shen@intel.com, hong.wang@intel.com

Abstract

This paper describes the tradeoff between latency
performance and throughput performance in a power-
constrained environment. We show that the key to
achieving both excellent latency performance as well
as excellent throughput performance is to dynamically
vary the amount of energy expended to process
instructions according to the amount of parallelism
available in the software. We survey four techniques
for achieving variable energy per instruction:
voltage/frequency scaling, asymmetric cores, variable-
size cores, and speculation control. We estimate the
potential range of energies obtainable by each
technique and conclude that a combination of
asymmetric cores and voltage/frequency scaling offers
the most promising approach to designing a chip-level
multiprocessor that can achieve both excellent latency
performance and excellent throughput performance.

1. Introduction

Computer workloads may be broadly classified into
two categories: those that have little inherent
parallelism (scalar) and those that have significant
amounts of parallelism (parallel). Typical scalar
workloads include software development tools, office
productivity suites, and operating system kernel
routines. Typical parallel workloads include 3D
graphics, media processing, and scientific applications.
Scalar workloads may have IPCs in the range of 0.2 to
2 whereas parallel workloads may have IPCs in the
range of 4 to several thousand [28]. The latter high
IPCs are obtainable through the use of instruction-level
parallelism and thread-level parallelism, respectively.

It is desirable to design a microprocessor that can
run both scalar and parallel workloads at high
performance. Moreover, the same program may
contain phases of high parallelism as well as phases of

low parallelism. It is therefore desirable to design a
microprocessor that can dynamically alter its behavior
according to the amount of parallelism available in
each phase. The ability to quickly run both phases of
high parallelism and phases of low parallelism can
reduce the overall run-time of such a program [23].

2. Scalar and Parallel Performance

To achieve high scalar performance, it is necessary
to reduce execution latency as much as possible.
Microarchitectural techniques to reduce effective
latency include speculative execution, branch
prediction, and caching. The pursuit of high scalar
performance has resulted in large out-of-order, highly
speculative, deep pipeline microprocessors such as the
Intel® Pentium® 4 processor [18].

To achieve high parallel performance, it is
necessary to provide as much execution throughput
(bandwidth) as possible. Microarchitectural techniques
to increase throughput include wide superscalar, chip-
level multiprocessing, and multithreading. High-
throughput performance designs include Sony’s
Emotion Engine (used in the Sony PlayStation* 2) and
Sun’s Niagara [25, 30].

Two problems arise when trying to build a
microprocessor that performs well on both scalar and
parallel tasks. The problems are:

• The design techniques needed to achieve short
latency are very different from the design techniques
needed to achieve high throughput
• Achieving short latency often requires expending
large amounts of energy per instruction, whereas

Intel®, Pentium®, Pentium® III, Pentium® 4, i486™, NetBurst®,
and Intel SpeedStep® are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other
countries.
* Other names and brands may be claimed as the property of others.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

achieving high throughput requires minimizing the
amount of energy expended per instruction

In this paper, we assume that the first problem may
be tackled by utilizing both sets of design techniques
(for example, by building a chip-level multiprocessor
using an array of high scalar-performance cores).
Furthermore, we assume that future process
technologies will provide sufficiently large transistor
budgets to enable very large chip-level multiprocessors
to be built, and that future software will provide
enough threads to effectively utilize very large
numbers of processors. With these assumptions,
performance will be limited by power rather than
design effort, die area, or software algorithms. We will
thus concentrate on the fundamental problem of the
differing energy requirements of scalar and parallel
performance.

3. Power and Performance

An examination of microprocessor design trends
shows that modern microprocessors are expending
large amounts of power for relatively small
improvements in scalar performance. A graph of
power versus scalar performance for four generations
of Intel microprocessors is shown in Figure 1. Both
power and performance have been adjusted to factor
out improvements due to process technology over time,
and all data have been normalized to the i486™
microprocessor.

Figure 1: Power versus Scalar Performance

Figure 1 was created by comparing the SpecInt and
power ratings of a pair of microprocessors on the same
process technology, at the same supply voltage, and at

the same point in time. From the raw data in Table 1,
we compute the ratio of the performance of each pair
of microprocessors (Pentium® to i486, Pentium Pro to
Pentium, and Pentium 4 to Pentium III processors), and
multiply together the performance ratios to create the
graph. We repeat the calculation for power. This
method effectively removes the contributions due to
process technology, leaving only the contributions due
to design. The results are as if all four generations of
microprocessors were built on the same process
technology. To realize these performance deltas in
practice, older microprocessors would need to be given
appropriate high-speed memory systems in newer
process technologies.

Table 1: Four Generations of Microprocessors

The steepness of Figure 1 is striking. Relative to
the i486 processor, the Pentium 4 processor delivers
approximately 6 times more scalar performance (2x the
IPC at 3x the frequency), but consumes 23 times more
power. The graph implies that high-performance
microprocessors are spending roughly 4 units of power
for every 1 unit of scalar performance compared to
earlier generations. We informally refer to this graph
as climbing an ever-steepening hill.

The reason for the dramatic increase in power is that
the design techniques needed to increase scalar
performance tend to result in much more energy being
expended per instruction due to higher capacitance
toggled to process each instruction. The higher
switching capacitance is due to the physically larger
layout as well as additional toggles for processing
misspeculated instructions. Large die area is a direct
consequence of the amount of hardware required to
process many in-flight instructions and to recover from
misspeculation.

In contrast to scalar performance, throughput
performance is highly linear with respect to power.
Figure 2 shows what a throughput-oriented
microprocessor similar to Piranha [7] would be
expected to achieve (considering only the CPU
contributions to power).

0

5

10

15

20

25

0 2 4 6 8
Scalar Performance

P
ow

er

power = perf ̂1.73

i486 Pentium

Pentium Pro

Pentium 4

Process

Uarch 486 P5 P5 P6 P6 NetBurst

Product
486DX2-

66
Pentium-

66
Pentium-

100
Pentium

Pro
Pentium

III
Pentium

4
Frequency

(MHz)
66 66 100 150 1000 2000

Voltage
(volts)

5 5 3.3 3.3 1.75 1.75

Performance
39.6

SpecInt
92

77.9
SpecInt

92

3.33
SpecInt

95

6.08
SpecInt

95

405
SpecInt

2K

681
SpecInt

2K

Power (watts)
4.9

typical
13 typical 10.1 peak 33.1 peak

29.0
thermal

75.3
thermal

0.6um 0.18um0.8um

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Power versus Throughput
Performance

Throughput performance tends to have an almost
linear power/performance ratio because replicating a
CPU core results in nearly proportional increases to
both throughput performance and power.

4. Power Efficiency

Power efficiency is commonly measured in terms of
MIPS/watt. The MIPS/watt metric is equivalent to
energy per instruction., or more precisely, MIPS/watt
is the reciprocal of energy per instruction as follows:

An important property of the energy per instruction
metric is that it is independent of the amount of time
required to process an instruction. This makes energy
per instruction an ideal metric for throughput
performance. For latency performance, metrics such as
MIPS^2/watt (equivalent to energy•delay) and
MIPS^3/watt (equivalent to energy•delay^2) are more
appropriate because they assign increasing weight to
the amount of time required to process an instruction.

An approximate analysis of a microprocessor’s
power consumption may be performed by thinking of
the microprocessor as a capacitor that is charged or
discharged with every instruction processed (for
simplicity, we’ll ignore leakage current and short-
circuit switching current). With this assumption,
energy per instruction depends on only two things: the

amount of capacitance toggled to process each
instruction (from fetch to retirement), and power
supply voltage. The well-known formula:

E = ½ • C • V2 (2)

which is normally applied to capacitors, may be
applied to microprocessors as well. E is the energy
required to process an instruction; C is the amount of
capacitance toggled in processing the instruction; and
V is the power supply voltage.

A microprocessor must operate within a fixed
power budget such as 100 watts. Averaged over some
time period, the microprocessor’s power consumption
cannot exceed the power budget regardless of what the
microprocessor or software do. To achieve this
objective, modern microprocessors incorporate some
form of dynamic thermal management [8, 18].
Similarly, a chip-level multiprocessor is required to
regulate (or throttle) its activities to stay within a fixed
power budget regardless of whether it is delivering 0.2
IPC or 20 IPC. To deliver the best performance, the
chip-level multiprocessor must be able to vary its
MIPS/watt, or equivalently its energy/instruction, over
a 100:1 range in this example.

The key to designing a microprocessor that can
achieve both high scalar performance and high
throughput performance is to dynamically vary the
amount of energy expended to process each instruction
according to the amount of parallelism available in the
software. In other words, if there’s little parallelism, a
microprocessor should expend all available energy
processing a few instructions; and if there’s a lot of
parallelism, the microprocessor should expend very
little energy in processing each instruction. We can
formalize this relationship as:

P = EPI • IPS (3)

where P is the fixed power budget, EPI is the average
energy per retired instruction, and IPS is the aggregate
number of instructions retired per second across all
CPU cores. We take the goal of maintaining the total
multiprocessor chip power at a nearly constant level,
which is a simple but reasonable goal for AC line
powered equipment. Battery powered devices will
require a more sophisticated power management
policy.

We now consider several techniques to achieve
variable ratios of energy per instruction. For each
technique, we quantify the potential range of energy
per instruction and the amount of time required to vary
energy per instruction. Note that we are quantifying a
minimum-to-maximum range of energy per instruction
rather than incremental energy per instruction as in

Mips
Watt

Instructions
Second

Joules
Second

=
Instructions

Joule =

0

5

10

15

20

25

0 2 4 6 8
Performance

P
ow

er Scalar
Performance

Throughput
Performance

(1)

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

more theoretical work. Of the four techniques we
examine, three vary the amount of switching
capacitance while one varies power supply voltage.

5. Voltage/Frequency Scaling

Marketed under tradenames such as Intel’s
SpeedStep® technology [19], AMD’s PowerNow!* [3],
and Transmeta’s LongRun* [14], CMOS
voltage/frequency scaling has long been used to
achieve different energy per instruction ratios. The
basic idea is to vary the microprocessor’s power supply
voltage and clock frequency in unison according to the
performance and power levels desired. Ideal
voltage/frequency scaling exhibits a cubic relationship
between power and performance according to the well-
known equations:

P = C • V2 • F (4)
F ~ V for small deltas (5)
P ~ F3 (6)
P ~ V3 (7)

where P is power, C is switching capacitance, V is
supply voltage, and F is clock frequency. Note that
switching capacitance may be expressed as an activity
factor multiplied by a total, constant amount of
capacitance.

To maintain a chip-level multiprocessor’s total
power consumption within a fixed power budget,
voltage/frequency scaling may be applied dynamically
as follows:

• In phases of low thread parallelism, run a few cores
using high supply voltage and high frequency for best
scalar performance
• In phases of high thread parallelism, run many cores
using low supply voltage and low frequency for best
throughput performance

For simplicity, we assume that inactive cores
consume no power. To come close to this goal,
leakage control techniques such as dynamic sleep
transistors and body bias [29] will be required in
addition to clock gating. We analyze energy per
instruction by estimating the range of possible supply
voltages and applying equation (2).

From equation (2), energy per instruction is
proportional to the square of the supply voltage.
Today’s mobile microprocessors operate over a supply
voltage range from 1.4 down to 1.0 volts, yielding a 2x
reduction in energy per instruction. We estimate that a
supply voltage reduction of 50% may be designed for
today as a stretch goal, yielding a 4x reduction in

energy per instruction. However, in future process
technologies, the range of useful voltage/frequency
scaling can be expected to decrease.

6. Asymmetric Cores

Recent research has suggested the possibility of
designing a single-ISA heterogeneous multi-core
microprocessor in which different microarchitectures
are used to span a range of performance and power [13,
16, 20, 21, 24]. For our work, we assume a chip-level
multiprocessor built from two types of CPU cores,
referred to as the large core and small core. The two
cores implement the same instruction set architecture,
use cache coherency to implement shared memory, and
differ only in their microarchitecture. The large core
may be an out-of-order, superscalar, deep pipeline
machine whereas the small core may be an in-order,
scalar, short pipeline machine. The Intel Pentium 4
processor and Intel i486 processor are representative of
the two classes of cores. Table 2 presents some
estimated parameters.

Table 2: Asymmetric Multiprocessor Cores

To illustrate, let’s consider a chip-level
multiprocessor built with one large core and 25 small
cores, with the two types of cores having a 25:1 ratio in
power consumption, a 5:1 ratio in scalar performance,
and a 5:1 range of energy per instruction. The chip-
level multiprocessor would operate as follows:

• In phases of low thread-level parallelism, run the
large core for best scalar performance
• In phases of high thread-level parallelism, run
multiple small cores for best throughput performance

For simplicity, we assume that inactive cores
consume no power. At any instant in time, the
microprocessor may run either one large core or 25
small cores. Because the number of available software
threads will vary over time, the asymmetric

 Large core Small core
Microarchitecture Out-of-order,

128-256 entry
ROB

In-order

Width 3-4 1
Pipeline depth 20-30 5
Normalized
performance

5-8x 1x

Normalized power 20-50x 1x
Normalized
energy/instruction

4-6x 1x

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

multiprocessor must be capable of migrating a thread
between large and small cores.

In practice, it is desirable to allow a few small cores
to run simultaneously with the large core in order to
minimize the throughput performance discontinuity at
the point of switching off the large core. In the
previous example, a discontinuity of 3 units of
throughput results from switching off the large core
and switching on two small cores. To minimize the
percentage of the total throughput lost, we can move
the discontinuity to occur with a higher number of
running threads by permitting, for example, up to 5
small cores to run simultaneously with the large core.
Figure 3 illustrates this concept which necessitates a
small increase in power budget compared to the non-
overlapping case.

Figure 3: Overlapping Large and Small Cores

Using two types of cores representative of today’s
microprocessors, a 4:1 range of energy per instruction
is achievable as shown in section 3. As future
microprocessors continue to deliver even higher levels
of scalar performance, the range of possible energy per
instruction may be expected to increase to perhaps 6:1.

7. Variable-size Core

Recent research has examined the possibility of
building variable-sized schedulers, caches, TLBs, and
branch predictors to minimize switching capacitance
(and hence energy) when large array sizes aren’t
needed [1, 2, 6, 10, 11, 15]. In addition to dynamically
resizing arrays, it is also possible to design a large core
that degrades into a small core by dynamically
disabling execution units and even pipestages [5, 12,
17]. These techniques are collectively known as

adaptive processing. A chip-level multiprocessor
would operate as follows:

• In phases of low thread parallelism, run a few cores
using all available resources on each core for best
scalar performance
• In phases of high thread parallelism, run many cores
using fewer resources on each core for best throughput
performance

The net effect of reducing array sizes and disabling
execution units is to reduce the capacitance toggled per
instruction. However, switching capacitance cannot be
reduced by as much as designing a smaller core to
begin with. While unused execution hardware may be
gated off, the physical size of the core does not change,
and thus the wire lengths associated with the still active
hardware blocks remain longer than in a small core.

We estimate the possible reduction in energy per
instruction by examining the floorplan of a large out-
of-order microprocessor and determining how many
blocks can be turned off to convert the processor into a
small in-order machine (keeping in mind that the
blocks cannot be physically moved). We then quantify
the percentage of CPU core area turned off, which
approximates the reduction in switching capacitance.
From equation (2), energy per instruction is directly
proportional to the amount of switching capacitance.

A rough estimate is that up to 50% of the switching
capacitance may be turned off, resulting in a 1-2x
reduction in energy per instruction. Previously
published results tend to be on the low end of this
range because most research has concentrated on
minimizing scalar performance loss rather than energy
per instruction, and has considered turning off only a
few portions of the CPU core. Achieving a 2x
reduction in energy per instruction will mandate the
use of leakage control techniques such as dynamic
sleep transistors and body bias in addition to clock
gating.

8. Speculation Control

Various forms of speculation control have been
proposed to reduce energy wasted due to misspeculated
instructions, for example, instructions following a
mispredicted branch [4, 9, 22, 26]. The additional
energy results from capacitance toggled to process a
misspeculated instruction. While the results of the
misspeculated instruction may be discarded, the energy
has already been spent. This energy may be accounted
for by charging it to the next correctly-speculated
(retired) instruction.

6
5

4
3

2

7

1

0

2

4

6

8

10

12

14

16

0 5 10 15
Threads

T
hr

ou
gh

pu
t Overlapping

execution

Non-overlapping
execution

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

Pipeline gating is a technique to avoid filling the
pipeline with instructions that are likely to be discarded
due to one or more low-confidence branch predictions.
Simultaneous multithreading is also a form of
speculation control since the pipeline is filled with
instructions from several threads that are more likely to
be retired than instructions from a single thread [27].
This is due to the shorter effective distance between
fetch and branch resolution as seen by each thread.
Using speculation control, a chip-level multiprocessor
would operate as follows:

• In phases of low thread parallelism, run a few cores
using as much speculation as possible for best scalar
performance
• In phases of high thread parallelism, run many cores
using little speculation on each core for best
throughput performance

There exists some overlap between the variable-size
core technique and speculation control because
reducing the number of scheduler and reorder buffer
entries also reduces the number of instructions that
may be speculated. The size of other CPU resources
such as caches, TLBs, and branch predictors do not
have as great an effect on the amount of speculation
possible.

Figure 4 shows a histogram of the percentage of
instructions discarded due to misspeculation in a large
out-of-order microprocessor on a suite of 57 traces
from the 12 SpecInt2K benchmarks. On average,
misspeculation accounts for 37% of all instructions
fetched, 23% of all instructions decoded, and 19% of
all instructions executed. The variation in the data is
large: on some traces, 65% of all instructions fetched
may be discarded due to misspeculation, whereas on
other traces, the percentage may be as small as 4%.
Aragon [4] estimates that 28% of the power consumed
in a typical microprocessor is attributable to
misspeculation on benchmarks with high branch
misprediction rates. Thus, if we were to completely
eliminate all misspeculation, we would expect up to a
1.4x reduction in energy per instruction. Note that
applications that can be parallelized usually do not
suffer from high misspeculation.

Figure 4: Misspeculated Instructions

9. Comparison

A comparison of the four techniques for varying
energy per instruction is shown in Table 3.

Table 3: Comparison of Energy/Instruction
Techniques

While we have evaluated each technique
independently, some techniques may be used in
combination to further extend the range of energy per
instruction. For example, voltage/frequency scaling
may be used in combination with asymmetric cores to
vary energy per instruction over a 24:1 range.

Table 3 also presents an order-of-magnitude
estimate of the amount of time required to vary energy
per instruction over the specified range. The amount
of time varies enormously between the four techniques.
Slower techniques will require longer program phases
to realize the benefits.

10. An Energy Per Instruction Throttle

For each of the techniques we’ve examined, on-chip
hardware regulates the operation of the multiprocessor

Method EPI Range Time to Vary EPI
Voltage frequency
scaling

1:2 to 1:4 100us (ramp Vcc)

Asymmetric cores 1:4 to 1:6 10us (migrate
256KB L2 cache)

Variable-size core 1:1 to 1:2 1us (fill 32KB L1
cache)

Speculation control 1:1 to 1:1.4 10ns (pipeline
latency)

0

5

10

15

20

25

0-10% 20-
30%

40-
50%

60-
70%

80-
90%

N
um

be
r

of
 T

ra
ce

s

Fetch

Decode

Execute

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

to maintain total chip power within a fixed power
budget. The regulator hardware satisfies equation (3)
by varying the amount of energy per instruction in
inverse proportion to the aggregate number of
instructions retired per second. In response to an over
power situation, the regulator takes one or more of the
following actions:

� Lower voltage and frequency (in the case of
voltage/frequency scaling)
� Migrate threads from large cores to small cores (in
the case of asymmetric cores)
� Reduce the capacity of processor resources (in the
case of variable-size cores)
� Reduce the amount of speculation (in the case of
speculation control)

In each case, software views the processor as a large
symmetrical chip-level multiprocessor, albeit with the
unusual property that existing threads become slower
as the software asks hardware to run more threads
simultaneously, even though net throughput increases.
With this approach, software written for today’s
shared-memory multiprocessor programming model
will continue to run without modification. Future work
may examine the possibility of using software to
manage energy policies.

11. Conclusion

In this paper, we have shown that the key to
achieving both high scalar performance and high
throughput performance is to dynamically vary the
amount of energy expended to process each instruction
according to the amount of parallelism available.
We’ve surveyed four approaches to achieving a range
of energy per instruction and shown that the most
promising direction is a combination of asymmetric
cores and voltage/frequency scaling. Developing the
microarchitecture and software model for such a
multiprocessor are areas of future work.

12. Acknowledgements

The authors would like to acknowledge the
contributions of Murali Annavaram, Bryan Black,
Shekhar Borkar, Ned Brekelbaum, Doug Carmean,
Glenn Hinton, Doron Orenstein, Jeff Rupley, and Gad
Sheaffer.

13. References

[1] Albonesi, D.H.; “Selective cache ways: on-demand cache
resource allocation”, Proceedings. 32nd Annual International
Symposium on Microarchitecture, 1999.

[2] Albonesi, D.H.; Balasubramonian, R.; Dropsho, S.G.;
Dwarkadas, S.; Friedman, E.G.; Huang, M.C.; Kursun, V.;
Magklis, G.; Scott, M.L.; Semeraro, G.; Bose, P.;
Buyuktosunoglu, A.; Cook, P.W.; Schuster, S.E.;
“Dynamically tuning processor resources with adaptive
processing”, Computer , Volume 36, Issue 12, Dec. 2003.

[3] AMD PowerNow! Technology, http://www.amd.com/us-
en/assets/content_type/DownloadableAssets/Power_Now2.p
df

[4] Aragon, J.L.; Gonzalez, J.; Gonzalez, A.; “Power-aware
control speculation through selective throttling”, Proceedings
The Ninth International Symposium on High-Performance
Computer Architecture, 2003.

[5] Bahar, R.I.; Manne, S.; “Power and energy reduction via
pipeline balancing “,Proceedings 28th Annual International
Symposium on Computer Architecture, 2001.

[6] Baniasadi, A.; Moshovos, A.; “Branch predictor
prediction: a power-aware branch predictor for high-
performance processors”, Proceedings IEEE International
Conference on Computer Design, 2002.

[7] Barroso, L.A.; Gharachorloo, K.; McNamara, R.;
Nowatzyk, A.; Qadeer, S.; Sano, B.; Smith, S.; Stets, R.;
Verghese, B.; “Piranha: a scalable architecture based on
single-chip multiprocessing”, Proceedings of the 27th
International Symposium on Computer Architecture, 2000.

[8] Brooks, D.; Martonosi, M.; “Dynamic thermal
management for high-performance microprocessors”, The
Seventh International Symposium on High-Performance
Computer Architecture, 2001.

[9] Buyuktosunoglu, A.; Karkhanis, T.; Albonesi, D.H.;
Bose, P.; “Energy efficient co-adaptive instruction fetch and
issue”, Proceedings 30th Annual International Symposium on
Computer Architecture, 2003.

[10] Delaluz, V.; Kandemir, M.; Sivasubramaniam, A.;
Irwin, M.J.; Vijaykrishnan, N.; “Reducing dTLB energy
through dynamic resizing”, Proceedings 21st International
Conference on Computer Design, 2003.

[11] Dhodapkar, A.S.; Smith, J.E.; “Managing multi-
configuration hardware via dynamic working set analysis”,
Proceedings 29th Annual International Symposium on
Computer Architecture, 2002.

[12] Efthymiou, A.; Garside, J.D.; “Adaptive pipeline depth
control for processor power-management”, Proceedings
IEEE International Conference on Computer Design, 2002.

[13] Figueiredo, R.J.O.; Fortes, J.A.B.; "Impact of
heterogeneity on DSM performance", Proceedings Sixth

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

International Symposium on High-Performance Computer
Architecture, 2000.

[14] Fleischmann, M. “LongRun Power Management”,
http://www.transmeta.com/pdfs/paper_mfleischmann_17jan0
1.pdf, 2001

[15] Folegnani, D.; Gonzalez, A.; “Energy-effective issue
logic”, Proceedings 28th Annual International Symposium on
Computer Architecture, 2001.

[16] Gebotys, C.H.; Gebotys, R.J.; "Power minimization in
heterogeneous processing", Proceedings of the Twenty-Ninth
Hawaii International Conference on System Sciences, 1996.

[17] Gonzalez, J.; Gonzalez, A.; “Dynamic cluster resizing”,
Proceedings 21st International Conference on Computer
Design, 2003.

[18] Intel® Pentium® 4 Processor in the 423-pin Package at
1.30 GHz, 1.40 GHz, 1.50 GHz, 1.60 GHz, 1.70 GHz and
1.80 GHz Datasheet, 2001. Pages 78-79.

[19] Intel® Pentium® M Processor Datasheet, April 2004.
Pages 13-14.

[20] Kumar, R.; Farkas, K.I.; Jouppi, N.P.; Ranganathan, P.;
Tullsen, D.M, “Single-ISA heterogeneous multi-core
architectures: the potential for processor power reduction”,
Proceedings 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003.

[21] Kumar, R.; Tullsen, D.; Ranganathan, P.; Jouppi, N.;
Farkas, K. "Single-ISA heterogeneous multi-core
architectures for multithreaded workload performance".
Proceedings 31st International Symposium on Computer
Architecture, 2004

[22] Manne, S.; Klauser, A.; Grunwald, D.; “Pipeline gating:
speculation control for energy reduction”, Proceedings the
25th Annual International Symposium on Computer
Architecture, 1998.

[23] Menasce, D.; Almeida, V.; "Cost-performance analysis
of heterogeneity in supercomputer architectures",
Proceedings of Supercomputing '90.

[24] Morad, T. Y.; Weiser, U.; Kolodny, A.; "ACCMP -
Asymmetric Chip Multi-Processing", CCIT Technical Report
#488,
http://www.ee.technion.ac.il/morad/publications/accmptr.pdf,
June 2004.

[25] Oka, M.; Suzuoki, M.; “Designing and programming the
emotion engine”, IEEE Micro, Volume 19, Issue 6, Nov-Dec
1999.

[26] Parikh, D.; Skadron, K.; Zhang, Y.; Barcella, M.; Stan,
M.R.; “Power issues related to branch prediction”,
Proceedings Eighth International Symposium on High-
Performance Computer Architecture, 2002.

[27] Seng, J.S.; Tullsen, D.M.; Cai, G.Z.N.; “Power-sensitive
multithreaded architecture”, Proceedings IEEE International
Conference on Computer Design, 2000.

[28] TOP500 Supercomputer Sites List for November 2003,
http://www.top500.org/list/2003/11.

[29] Tschanz, J.; Narendra, S.; Yibin Ye; Bloechel, B.;
Borkar, S.; Vivek De; “Dynamic-sleep transistor and body
bias for active leakage power control of microprocessors”,
Digest of Technical Papers, IEEE International Solid-State
Circuits Conference, 2003.

[30] Turner, V; Willard, C; "Sun's Throughput Computing
Strategy to Create a Quantum Change in Server
Performance",
http://www.sun.com/processors/whitepapers/idc_whitepaper.
pdf, February 2004.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04)
1063-6404/04 $ 20.00 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 02,2020 at 19:47:54 UTC from IEEE Xplore. Restrictions apply.

	footer1:

