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Abstract 

This paper describes the tradeoff between latency 
performance and throughput performance in a power-
constrained environment.  We show that the key to 
achieving both excellent latency performance as well 
as excellent throughput performance is to dynamically 
vary the amount of energy expended to process 
instructions according to the amount of parallelism 
available in the software.  We survey four techniques 
for achieving variable energy per instruction: 
voltage/frequency scaling, asymmetric cores, variable-
size cores, and speculation control.  We estimate the 
potential range of energies obtainable by each 
technique and conclude that a combination of 
asymmetric cores and voltage/frequency scaling offers 
the most promising approach to designing a chip-level 
multiprocessor that can achieve both excellent latency 
performance and excellent throughput performance. 

1. Introduction 

Computer workloads may be broadly classified into 
two categories: those that have little inherent 
parallelism (scalar) and those that have significant 
amounts of parallelism (parallel).  Typical scalar 
workloads include software development tools, office 
productivity suites, and operating system kernel 
routines.  Typical parallel workloads include 3D 
graphics, media processing, and scientific applications.  
Scalar workloads may have IPCs in the range of 0.2 to 
2 whereas parallel workloads may have IPCs in the 
range of 4 to several thousand [28].  The latter high 
IPCs are obtainable through the use of instruction-level 
parallelism and thread-level parallelism, respectively. 

It is desirable to design a microprocessor that can 
run both scalar and parallel workloads at high 
performance.  Moreover, the same program may 
contain phases of high parallelism as well as phases of 

low parallelism.  It is therefore desirable to design a 
microprocessor that can dynamically alter its behavior 
according to the amount of parallelism available in 
each phase.  The ability to quickly run both phases of 
high parallelism and phases of low parallelism can 
reduce the overall run-time of such a program [23]. 

2. Scalar and Parallel Performance 

To achieve high scalar performance, it is necessary 
to reduce execution latency as much as possible.  
Microarchitectural techniques to reduce effective 
latency include speculative execution, branch 
prediction, and caching.  The pursuit of high scalar 
performance has resulted in large out-of-order, highly 
speculative, deep pipeline microprocessors such as the 
Intel® Pentium® 4 processor [18]. 

To achieve high parallel performance, it is 
necessary to provide as much execution throughput 
(bandwidth) as possible.  Microarchitectural techniques 
to increase throughput include wide superscalar, chip-
level multiprocessing, and multithreading.  High-
throughput performance designs include Sony’s 
Emotion Engine (used in the Sony PlayStation* 2) and 
Sun’s Niagara [25, 30].  

Two problems arise when trying to build a 
microprocessor that performs well on both scalar and 
parallel tasks.  The problems are: 

• The design techniques needed to achieve short 
latency are very different from the design techniques 
needed to achieve high throughput 
• Achieving short latency often requires expending 
large amounts of energy per instruction, whereas 
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achieving high throughput requires minimizing the 
amount of energy expended per instruction 

In this paper, we assume that the first problem may 
be tackled by utilizing both sets of design techniques 
(for example, by building a chip-level multiprocessor 
using an array of high scalar-performance cores).  
Furthermore, we assume that future process 
technologies will provide sufficiently large transistor 
budgets to enable very large chip-level multiprocessors 
to be built, and that future software will provide 
enough threads to effectively utilize very large 
numbers of processors.  With these assumptions, 
performance will be limited by power rather than 
design effort, die area, or software algorithms.  We will 
thus concentrate on the fundamental problem of the 
differing energy requirements of scalar and parallel 
performance. 

3. Power and Performance 

An examination of microprocessor design trends 
shows that modern microprocessors are expending 
large amounts of power for relatively small 
improvements in scalar performance.  A graph of 
power versus scalar performance for four generations 
of Intel microprocessors is shown in Figure 1.  Both 
power and performance have been adjusted to factor 
out improvements due to process technology over time, 
and all data have been normalized to the i486™ 
microprocessor. 

Figure 1: Power versus Scalar Performance 

Figure 1 was created by comparing the SpecInt and 
power ratings of a pair of microprocessors on the same 
process technology, at the same supply voltage, and at 

the same point in time.  From the raw data in Table 1, 
we compute the ratio of the performance of each pair 
of microprocessors (Pentium® to i486, Pentium Pro to 
Pentium, and Pentium 4 to Pentium III processors), and 
multiply together the performance ratios to create the 
graph.  We repeat the calculation for power.  This 
method effectively removes the contributions due to 
process technology, leaving only the contributions due 
to design.  The results are as if all four generations of 
microprocessors were built on the same process 
technology.  To realize these performance deltas in 
practice, older microprocessors would need to be given 
appropriate high-speed memory systems in newer 
process technologies.   

Table 1: Four Generations of Microprocessors 

The steepness of Figure 1 is striking.  Relative to 
the i486 processor, the Pentium 4 processor delivers 
approximately 6 times more scalar performance (2x the 
IPC at 3x the frequency), but consumes 23 times more 
power.  The graph implies that high-performance 
microprocessors are spending roughly 4 units of power 
for every 1 unit of scalar performance compared to 
earlier generations.  We informally refer to this graph 
as climbing an ever-steepening hill.

The reason for the dramatic increase in power is that 
the design techniques needed to increase scalar 
performance tend to result in much more energy being 
expended per instruction due to higher capacitance 
toggled to process each instruction.  The higher 
switching capacitance is due to the physically larger 
layout as well as additional toggles for processing 
misspeculated instructions.  Large die area is a direct 
consequence of the amount of hardware required to 
process many in-flight instructions and to recover from 
misspeculation. 

In contrast to scalar performance, throughput 
performance is highly linear with respect to power.  
Figure 2 shows what a throughput-oriented 
microprocessor similar to Piranha [7] would be 
expected to achieve (considering only the CPU 
contributions to power). 
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Figure 2: Power versus Throughput 
Performance 

Throughput performance tends to have an almost 
linear power/performance ratio because replicating a 
CPU core results in nearly proportional increases to 
both throughput performance and power.  

4. Power Efficiency 

Power efficiency is commonly measured in terms of 
MIPS/watt.  The MIPS/watt metric is equivalent to 
energy per instruction., or more precisely, MIPS/watt 
is the reciprocal of energy per instruction as follows: 

An important property of the energy per instruction 
metric is that it is independent of the amount of time 
required to process an instruction.  This makes energy 
per instruction an ideal metric for throughput 
performance.  For latency performance, metrics such as 
MIPS^2/watt (equivalent to energy•delay) and 
MIPS^3/watt (equivalent to energy•delay^2) are more 
appropriate because they assign increasing weight to 
the amount of time required to process an instruction.  

An approximate analysis of a microprocessor’s 
power consumption may be performed by thinking of 
the microprocessor as a capacitor that is charged or 
discharged with every instruction processed (for 
simplicity, we’ll ignore leakage current and short-
circuit switching current).  With this assumption, 
energy per instruction depends on only two things: the 

amount of capacitance toggled to process each 
instruction (from fetch to retirement), and power 
supply voltage.  The well-known formula: 

E = ½ • C • V2 (2)

which is normally applied to capacitors, may be 
applied to microprocessors as well.  E is the energy 
required to process an instruction; C is the amount of 
capacitance toggled in processing the instruction; and 
V is the power supply voltage. 

A microprocessor must operate within a fixed 
power budget such as 100 watts.  Averaged over some 
time period, the microprocessor’s power consumption 
cannot exceed the power budget regardless of what the 
microprocessor or software do.  To achieve this 
objective, modern microprocessors incorporate some 
form of dynamic thermal management [8, 18].  
Similarly, a chip-level multiprocessor is required to 
regulate (or throttle) its activities to stay within a fixed 
power budget regardless of whether it is delivering 0.2 
IPC or 20 IPC.  To deliver the best performance, the 
chip-level multiprocessor must be able to vary its 
MIPS/watt, or equivalently its energy/instruction, over 
a 100:1 range in this example. 

The key to designing a microprocessor that can 
achieve both high scalar performance and high 
throughput performance is to dynamically vary the 
amount of energy expended to process each instruction 
according to the amount of parallelism available in the 
software.  In other words, if there’s little parallelism, a 
microprocessor should expend all available energy 
processing a few instructions; and if there’s a lot of 
parallelism, the microprocessor should expend very 
little energy in processing each instruction.  We can 
formalize this relationship as: 

P = EPI • IPS (3) 

where P is the fixed power budget, EPI is the average 
energy per retired instruction, and IPS is the aggregate 
number of instructions retired per second across all 
CPU cores.  We take the goal of maintaining the total 
multiprocessor chip power at a nearly constant level, 
which is a simple but reasonable goal for AC line 
powered equipment.  Battery powered devices will 
require a more sophisticated power management 
policy. 

We now consider several techniques to achieve 
variable ratios of energy per instruction.  For each 
technique, we quantify the potential range of energy 
per instruction and the amount of time required to vary 
energy per instruction.  Note that we are quantifying a 
minimum-to-maximum range of energy per instruction 
rather than incremental energy per instruction as in 
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more theoretical work.  Of the four techniques we 
examine, three vary the amount of switching 
capacitance while one varies power supply voltage. 

5. Voltage/Frequency Scaling 

Marketed under tradenames such as Intel’s 
SpeedStep® technology [19], AMD’s PowerNow!* [3], 
and Transmeta’s LongRun* [14], CMOS 
voltage/frequency scaling has long been used to 
achieve different energy per instruction ratios.  The 
basic idea is to vary the microprocessor’s power supply 
voltage and clock frequency in unison according to the 
performance and power levels desired.  Ideal 
voltage/frequency scaling exhibits a cubic relationship 
between power and performance according to the well-
known equations: 

P = C • V2 • F (4) 
F ~ V  for small deltas (5) 
P ~ F3 (6) 
P ~ V3 (7)

where P is power, C is switching capacitance, V is 
supply voltage, and F is clock frequency.  Note that 
switching capacitance may be expressed as an activity 
factor multiplied by a total, constant amount of 
capacitance. 

To maintain a chip-level multiprocessor’s total 
power consumption within a fixed power budget, 
voltage/frequency scaling may be applied dynamically 
as follows: 

• In phases of low thread parallelism, run a few cores 
using high supply voltage and high frequency for best 
scalar performance 
• In phases of high thread parallelism, run many cores 
using low supply voltage and low frequency for best 
throughput performance 

For simplicity, we assume that inactive cores 
consume no power.  To come close to this goal, 
leakage control techniques such as dynamic sleep 
transistors and body bias [29] will be required in 
addition to clock gating.  We analyze energy per 
instruction by estimating the range of possible supply 
voltages and applying equation (2). 

From equation (2), energy per instruction is 
proportional to the square of the supply voltage.  
Today’s mobile microprocessors operate over a supply 
voltage range from 1.4 down to 1.0 volts, yielding a 2x 
reduction in energy per instruction.  We estimate that a 
supply voltage reduction of 50% may be designed for 
today as a stretch goal, yielding a 4x reduction in 

energy per instruction.  However, in future process 
technologies, the range of useful voltage/frequency 
scaling can be expected to decrease. 

6. Asymmetric Cores 

Recent research has suggested the possibility of 
designing a single-ISA heterogeneous multi-core 
microprocessor in which different microarchitectures 
are used to span a range of performance and power [13, 
16, 20, 21, 24].  For our work, we assume a chip-level 
multiprocessor built from two types of CPU cores, 
referred to as the large core and small core.  The two 
cores implement the same instruction set architecture, 
use cache coherency to implement shared memory, and 
differ only in their microarchitecture.  The large core 
may be an out-of-order, superscalar, deep pipeline 
machine whereas the small core may be an in-order, 
scalar, short pipeline machine.  The Intel Pentium 4 
processor and Intel i486 processor are representative of 
the two classes of cores.  Table 2 presents some 
estimated parameters.   

Table 2: Asymmetric Multiprocessor Cores  

To illustrate, let’s consider a chip-level 
multiprocessor built with one large core and 25 small 
cores, with the two types of cores having a 25:1 ratio in 
power consumption, a 5:1 ratio in scalar performance, 
and a 5:1 range of energy per instruction.  The chip-
level multiprocessor would operate as follows: 

• In phases of low thread-level parallelism, run the 
large core for best scalar performance 
• In phases of high thread-level parallelism, run 
multiple small cores for best throughput performance 

For simplicity, we assume that inactive cores 
consume no power.  At any instant in time, the 
microprocessor may run either one large core or 25 
small cores.  Because the number of available software 
threads will vary over time, the asymmetric 

 Large core Small core 
Microarchitecture Out-of-order, 

128-256 entry 
ROB
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Width 3-4 1 
Pipeline depth 20-30 5 
Normalized 
performance 

5-8x 1x 

Normalized power 20-50x 1x 
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multiprocessor must be capable of migrating a thread 
between large and small cores. 

In practice, it is desirable to allow a few small cores 
to run simultaneously with the large core in order to 
minimize the throughput performance discontinuity at 
the point of switching off the large core.  In the 
previous example, a discontinuity of 3 units of 
throughput results from switching off the large core 
and switching on two small cores.  To minimize the 
percentage of the total throughput lost, we can move 
the discontinuity to occur with a higher number of 
running threads by permitting, for example, up to 5 
small cores to run simultaneously with the large core.  
Figure 3 illustrates this concept which necessitates a 
small increase in power budget compared to the non-
overlapping case. 

Figure 3: Overlapping Large and Small Cores 

Using two types of cores representative of today’s 
microprocessors, a 4:1 range of energy per instruction 
is achievable as shown in section 3.  As future 
microprocessors continue to deliver even higher levels 
of scalar performance, the range of possible energy per 
instruction may be expected to increase to perhaps 6:1. 

7. Variable-size Core 

Recent research has examined the possibility of 
building variable-sized schedulers, caches, TLBs, and 
branch predictors to minimize switching capacitance 
(and hence energy) when large array sizes aren’t 
needed [1, 2, 6, 10, 11, 15].  In addition to dynamically 
resizing arrays, it is also possible to design a large core 
that degrades into a small core by dynamically 
disabling execution units and even pipestages [5, 12, 
17].  These techniques are collectively known as 

adaptive processing.  A chip-level multiprocessor 
would operate as follows: 

• In phases of low thread parallelism, run a few cores 
using all available resources on each core for best 
scalar performance 
• In phases of high thread parallelism, run many cores 
using fewer resources on each core for best throughput 
performance 

The net effect of reducing array sizes and disabling 
execution units is to reduce the capacitance toggled per 
instruction.  However, switching capacitance cannot be 
reduced by as much as designing a smaller core to 
begin with.  While unused execution hardware may be 
gated off, the physical size of the core does not change, 
and thus the wire lengths associated with the still active 
hardware blocks remain longer than in a small core.   

We estimate the possible reduction in energy per 
instruction by examining the floorplan of a large out-
of-order microprocessor and determining how many 
blocks can be turned off to convert the processor into a 
small in-order machine (keeping in mind that the 
blocks cannot be physically moved).  We then quantify 
the percentage of CPU core area turned off, which 
approximates the reduction in switching capacitance.  
From equation (2), energy per instruction is directly 
proportional to the amount of switching capacitance. 

A rough estimate is that up to 50% of the switching 
capacitance may be turned off, resulting in a 1-2x 
reduction in energy per instruction.  Previously 
published results tend to be on the low end of this 
range because most research has concentrated on 
minimizing scalar performance loss rather than energy 
per instruction, and has considered turning off only a 
few portions of the CPU core.  Achieving a 2x 
reduction in energy per instruction will mandate the 
use of leakage control techniques such as dynamic 
sleep transistors and body bias in addition to clock 
gating. 

8. Speculation Control 

Various forms of speculation control have been 
proposed to reduce energy wasted due to misspeculated 
instructions, for example, instructions following a 
mispredicted branch [4, 9, 22, 26].  The additional 
energy results from capacitance toggled to process a 
misspeculated instruction.  While the results of the 
misspeculated instruction may be discarded, the energy 
has already been spent.  This energy may be accounted 
for by charging it to the next correctly-speculated 
(retired) instruction. 
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Pipeline gating is a technique to avoid filling the 
pipeline with instructions that are likely to be discarded 
due to one or more low-confidence branch predictions.  
Simultaneous multithreading is also a form of 
speculation control since the pipeline is filled with 
instructions from several threads that are more likely to 
be retired than instructions from a single thread [27].  
This is due to the shorter effective distance between 
fetch and branch resolution as seen by each thread.  
Using speculation control, a chip-level multiprocessor 
would operate as follows: 

• In phases of low thread parallelism, run a few cores 
using as much speculation as possible for best scalar 
performance 
• In phases of high thread parallelism, run many cores 
using little speculation on each core for best 
throughput performance 

There exists some overlap between the variable-size 
core technique and speculation control because 
reducing the number of scheduler and reorder buffer 
entries also reduces the number of instructions that 
may be speculated.  The size of other CPU resources 
such as caches, TLBs, and branch predictors do not 
have as great an effect on the amount of speculation 
possible.  

Figure 4 shows a histogram of the percentage of 
instructions discarded due to misspeculation in a large 
out-of-order microprocessor on a suite of 57 traces 
from the 12 SpecInt2K benchmarks.  On average, 
misspeculation accounts for 37% of all instructions 
fetched, 23% of all instructions decoded, and 19% of 
all instructions executed.  The variation in the data is 
large: on some traces, 65% of all instructions fetched 
may be discarded due to misspeculation, whereas on 
other traces, the percentage may be as small as 4%.  
Aragon [4] estimates that 28% of the power consumed 
in a typical microprocessor is attributable to 
misspeculation on benchmarks with high branch 
misprediction rates.  Thus, if we were to completely 
eliminate all misspeculation, we would expect up to a 
1.4x reduction in energy per instruction.  Note that 
applications that can be parallelized usually do not 
suffer from high misspeculation.   

Figure 4: Misspeculated Instructions 

9. Comparison 

A comparison of the four techniques for varying 
energy per instruction is shown in Table 3. 

Table 3: Comparison of Energy/Instruction 
Techniques 

While we have evaluated each technique 
independently, some techniques may be used in 
combination to further extend the range of energy per 
instruction.  For example, voltage/frequency scaling 
may be used in combination with asymmetric cores to 
vary energy per instruction over a 24:1 range.   

Table 3 also presents an order-of-magnitude 
estimate of the amount of time required to vary energy 
per instruction over the specified range.  The amount 
of time varies enormously between the four techniques.  
Slower techniques will require longer program phases 
to realize the benefits. 

10. An Energy Per Instruction Throttle 

For each of the techniques we’ve examined, on-chip 
hardware regulates the operation of the multiprocessor 

Method EPI Range Time to Vary EPI 
Voltage frequency 
scaling 

1:2 to 1:4 100us (ramp Vcc) 

Asymmetric cores 1:4 to 1:6 10us (migrate 
256KB L2 cache) 

Variable-size core 1:1 to 1:2 1us (fill 32KB L1 
cache) 

Speculation control 1:1 to 1:1.4 10ns (pipeline 
latency) 
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to maintain total chip power within a fixed power 
budget.  The regulator hardware satisfies equation (3) 
by varying the amount of energy per instruction in 
inverse proportion to the aggregate number of 
instructions retired per second.  In response to an over 
power situation, the regulator takes one or more of the 
following actions: 

� Lower voltage and frequency (in the case of 
voltage/frequency scaling) 
� Migrate threads from large cores to small cores (in 
the case of asymmetric cores) 
� Reduce the capacity of processor resources (in the 
case of variable-size cores) 
� Reduce the amount of speculation (in the case of 
speculation control) 

In each case, software views the processor as a large 
symmetrical chip-level multiprocessor, albeit with the 
unusual property that existing threads become slower 
as the software asks hardware to run more threads 
simultaneously, even though net throughput increases.  
With this approach, software written for today’s 
shared-memory multiprocessor programming model 
will continue to run without modification.  Future work 
may examine the possibility of using software to 
manage energy policies.   

11. Conclusion 

In this paper, we have shown that the key to 
achieving both high scalar performance and high 
throughput performance is to dynamically vary the 
amount of energy expended to process each instruction 
according to the amount of parallelism available.  
We’ve surveyed four approaches to achieving a range 
of energy per instruction and shown that the most 
promising direction is a combination of asymmetric 
cores and voltage/frequency scaling.  Developing the 
microarchitecture and software model for such a 
multiprocessor are areas of future work. 
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