
MRLoc: Mitigating Row-hammering based on memory Locality
Jung Min You

Department of Electrical and Computer Engineering
Sungkyunkwan University
Samsung Electronics Co. Ltd

Suwon, Korea
yugura@g.skku.edu

Joon-Sung Yang
Department of Semiconductor System Engineering

Sungkyunkwan University
Suwon, Korea

js.yang@skku.edu

ABSTRACT
With the increasing integration of semiconductor design, many
problems have emerged. Row-hammering is one of these problems.
The row-hammering effect is a critical issue for reliable memory
operation because it can cause some unexpected errors. Hence, it is
necessary to address this problem. Mainly, there are two different
methods to deal with the row-hammering problem. One is a counter
based method, and the other is a probabilistic method. This paper
proposes the improved version of the latter method and compares
it with other probabilistic methods, PARA and PRoHIT. According
to the evaluation results, comparing the proposed method with
conventional ones, the proposed one has increased row-hammering
reduction per refresh 1.82 and 7.78 times against PARA and PRoHIT
in average, respectively.

CCS CONCEPTS
• Security and privacy→Hardware attacks and countermea-
sures; • Hardware → Dynamic memory;
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1 INTRODUCTION
Memory reliability is one of the most important aspects in modern
computing. No matter how well a memory device is designed, its
functionality is at risk if reliability is not guaranteed. Hence, it
is necessary to address memory reliability issues, which the row-
hammering problem is one.
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Row-hammering occurs when a certain row in DRAM is accessed
frequently [6, 9]. When this happens, the data bits in the rows adja-
cent to the frequently accessed row can be flipped. This problem is
due to the electromagnetic interference between the DRAM cells,
which is the result of large-scale integration in state-of-the-art semi-
conductor design [8]. This problem is critical to memory reliability
because it flips the data without actually accessing it [7]. Hence-
forth, the accessed row is called an aggressor row and the adjacent
rows are called victim rows.

To overcome the row-hammering problem, it is necessary to
additionally refresh the victim rows [13] before a certain row be-
comes the victim row more than the row-hammering threshold
(typically 2000 [12]). Choosing the victim rows that are refreshed
additionally is also an important issue. Since additional refreshes
need power, it concludes to the energy consumption problem. As a
result, many methods are researched to find effective algorithms
to choose which rows should be refreshed properly and those are
considered as main solutions against the row-hammering problem.
This paper suggests a new method to overcome the limitations of
conventional row-hammering solutions.

There are two main-stream methods in the row-hammering
solutions. One is counter-based methods [5, 11] and the other is
the probability-based methods [7, 12]. The counter-based methods
perform better in terms of reliability improvement, because these
are based on counting all victim rows from memory accesses. On
the other hand, since these methods require a counter for each
row in the memory, of the considerably increase the memory area.
Despite their high reliability, they are not preferred because of their
poor area efficiency.

The second type of solutions (i.e., the probability-basedmethods),
try to address the huge area overhead of the counter-based methods.
Those methods help in a considerable reduction in area overhead.
The main examples of probabilistic methods are Probabilistic Ad-
jacent Row Activation (PARA) [7] and Probabilistic Row-hammer
HIstory Table (PRoHIT) [12]. This paper focuses on discussing these
methods with the proposed one.

There are two major conventional probabilistic methods that
deal with the row-hammering problem. The first is PARA, which
adapts a simple probabilistic algorithm to solve the problem. The
probability of PARA is fixed and assigned to the victim rows to
decide whether the victims should be refreshed at every memory
access. This method is easy and simple to implement, however, it
might suffer from significant drawback. For instance, PARA can
still allow the row-hammering problem to occur if the problematic
victim row is not refreshed based on the probability.

The second algorithm is PRoHIT. This method is a combination
of two main concepts: table management, which uses two tables
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Figure 1: Locality of benchmarks
to prioritize the victim rows, and probabilistic operation. PRoHIT
has been proposed to address the reliability issue of PARA. On the
other hand, PRoHIT can increase the additional refresh operations
despite its improved row-hammering reduction. Hence, PRoHIT
may lead to high power consumption problem.

This paper tries to mitigate the reliability and power issues of
the conventional methods by optimizing the refresh probability
based on the memory locality. To overcome the disadvantages of
the conventional methods, the victim row addresses are stored in a
special queue and are used to calculate the probability for additional
refreshes. Applying the stored row addresses in the queue, the
proposed method calculates a weiдht that is used to obtain the
optimized refresh probability. This paper suggests an equation and
a calculation process of theweiдht in Section 3. The following items
are the main contributions of this paper.

• This paper introduces a new method that adapts memory
locality patterns to the conventional probabilistic method to
increase the reliability.

• The proposed method uses a circular queue as a data struc-
ture to store the victim rows that are used to calculate the
locality-basedweiдht .

• The proposed method calculates the probability based on
DRAM locality to prevent the excessive refreshes that occur
in the conventional algorithms

The rest of the paper is organized as follows. In Section II, back-
ground knowledge about the conventional row-hammering solu-
tions, PARA and PRoHIT, has been presented. The detailed archi-
tecture, queue management policy, and probability calculation of
the proposed algorithm are described in Section III. To evaluate the
benefits of the proposed method, different experiments and results
are discussed in Section IV. Finally, Section V concludes the paper.

2 RELATEDWORKS
The general approach for mitigating the row-hammering is by per-
forming additional refresh operations. Since additional refreshes
are a power consuming process, it is necessary to choose the rows
to be refreshed efficiently. There are several methods to select the
rows based on different concepts [1, 10]. This paper focuses on one
of the main streams in those methods (i.e., the probability-based al-
gorithms) that have an advantage in area overhead against the other
main stream (i.e., counter-based algorithms). Below, two existing
probability-based solutions are explained for the row-hammering
problem.

2.1 PARA
PARA method applies a fixed probability to perform additional
refreshes. The main advantage of this algorithm is the simplicity of
the logic circuit implementation. Since this method only requires
probability calculation circuit, its logic circuit is much more sim-
ple and compact to be implemented in memory device than other
methods. However, this method may have a drawback in some
cases. Because it is based on a fixed probability and ignoring DRAM
characteristic, PARA can allow the row-hammering problem to
occur. Incrementing the probability has been suggested internally
to overcome this issue. However, this makes the refresh operation
more frequent, leading to increased power consumption during the
memory operations. Consequently, this might not be an efficient so-
lution to deal with the row-hammering issue in the case of modern
DRAM, which requires low power operation.

2.2 PRoHIT
Another algorithm for mitigating the row-hammering problem is
PRoHIT. Addressing the low reliability concerns in PARA, this
method prioritizes to the victim rows by managing two tables
named as “cold table” and “hot table.”

When a certain row becomes a victim (i.e., when its adjacent row
is accessed), it is inserted to the cold table. On the other hand, if the
corresponding row already exists in the cold table, the controller
promotes the row to the hot table. Since it is promoted from the
cold table, the promoted row has lowest priority in the hot table.
Subsequently, if the row becomes victim again, its priority increases
inside the hot table. Consequently, the victim rowwhich has highest
priority in the hot table is refreshed at every regular row refresh
period (i.e., 7.8 µs [12]). This is one of the main ideas of PRoHIT
which is called as the two table management algorithm.

Additionally, PRoHIT utilizes a probability concept in the table
management algorithm. For instance, when a certain row becomes
a victim, PRoHIT decides whether the insertion/promotion should
be executed based on a fixed probability. Thus, those operations
of PRoHIT may be skipped. This enables PRoHIT to deal with the
data sets whose size is bigger than the cold/hot tables capacity.

The additional refreshes of PRoHIT method are performed at
every auto row refresh period which is fixed to 7.8 µs . The experi-
mental results (details in Section 4) show that this method can result
in huge number of refresh operations because of a short additional
refresh period of 7.8 µs . This leads to a considerable increase in
power consumption.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 02,2020 at 12:41:28 UTC from IEEE Xplore.  Restrictions apply. 



3 PROPOSED METHOD
Fig. 1 illustrates the locality of memory accesses from the three
benchmarks used for evaluation in Section 4. The system config-
uration for the results in Fig. 1 is given in Table. 2. It can be seen
that there are a large number of memory accesses to a few memory
rows. The proposed method exploits this fact of strong memory
access locality.

Fig. 2 describes the overall architecture of the proposed method.
As demonstrated in Fig. 2, not only regular auto refresh command,
but also additional refresh is performed based on a calculated prob-
ability. The bold path in Fig. 2 represents how the proposed method
works inside the conventional memory system. The logic of pro-
posed method decides whether the current victim row should be
refreshed by using the calculated probability. If the victim row is
selected to be refreshed, then its address is sent to the refresh con-
troller which is already implemented in the memory controller.
After that, the refresh controller additionally refresh the victim row
to prevent the row-hammering problem.

Since all row-hammering reduction methods are a time and
power consuming process, it is necessary to determine an efficient
algorithm that minimizes the additional refreshes and still effec-
tively defends DRAM against the row-hammering problem. In fact,
the conventional solutions cannot guarantee to achieve both these
goals at once. The conventional methods, PARA and PRoHIT, have
their own drawbacks of suffering from a low reliability and a high
power consumption, respectively. Hence, this paper proposes a
locality based refresh algorithm to alleviate the row-hammering
problem, which is called mitigating row-hammering based on mem-
ory locality (MRLoc). The proposed algorithm performs a refresh
operation with a dynamically calculated probability considering
the memory locality. As a result, it overcomes the drawbacks of the
conventional row-hammering solutions (i.e., it has a higher reliabil-
ity performance than PARA and a lower power consumption than
PRoHIT). The following subsections describe the basic concept,
queue management and probability calculation of the proposed
method.

3.1 Basic Concept
Unlike conventional methods [7, 12], the proposed method calcu-
lates the refresh probability for a victim row based on previous
memory access history. For instance, if a certain row has been ac-
cessed recently, a higher probability is assigned to its corresponding
victim rows adjacent to the accessed one. According to the memory
locality, the recently accessed rows are more likely to be visited
again. Hence, the proposed method tries to avoid a DRAM ham-
mering issue by maintaining a higher refresh probability for the
victim rows adjacent to the recently accessed row. In addition, while
the conventional approaches with a static probability refresh all
victim rows equally including the victims adjacent to rarely visited
rows, the proposed method reduces excessive or useless refresh
operations by lowering the probability assigned to them.

To track the victim row addresses of the recently accessed rows,
the proposed method stores them in a queue. Since a queue is used,
the recently stored victim rows are located in the rear of the queue.

Fig. 3 shows an entire flow of the proposed method. When there
is a row access, one of the victim rows adjacent to the accessed

Figure 2: Overall System of MRLoc

Figure 3: Flowchart of MRLoc
row is selected. After that, the proposed method obtains queue
information by its queue management algorithm. Then it calculates
a refresh probability using that information. The probability de-
termines whether a refresh for the current victim row is needed.
Finally, the queue is updated with the current victim row address.
The same sequence (i.e., from the selection of current victim row
to the queue update) is repeated twice for every memory access
because a single memory access results in two victim rows.

3.2 Queue Management
The proposed method determines the refresh probability consid-
ering the memory locality. To utilize the locality information, the
proposed method stores a history of recent victim rows in a queue.
The queue is managed to extract the memory locality difference
among victim rows in the queue.

The proposed queue management scenarios are illustrated in
Fig. 4 with a queue depth of 5. In Fig. 4(a), there are victim rows
in the queue whose addresses are 0x00ab, 0x0024, 0x001c, 0x00ff
and 0x0004. As can be seen, 0x00ab and 0x0004 are the least and
most recently stored addresses, respectively. Assume that there is a
memory access to 0x00fe. Its neighboring rows, 0x00ff and 0x00fd,
become current victim rows. The proposed method first searches
the addresses in the queue with the current victim row that has
higher address, 0x00ff. In Fig. 4(a), 0x00ff is already stored in the
queue, therefore, the search leads to a queue hit . As it is found at the
second place from the rear, the proposed method finds the queue hit
distance as 2. Subsequently, the queue pops the least recent victim
row (i.e., 0x00ab), shifts up the remaining victim row addresses, and
pushes the current victim row (i.e., 0x00ff). This updates the queue
with the victim rows of 0x0024, 0x001c, 0x00ff, 0x0004, and 0x00ff.
The distance information is used to calculate a refresh probability
and this will be discussed in the next section.

Once the current victim row with higher address has been con-
sidered, the other current victim row, 0x00fd, is considered in the
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(a)

(b)

(c)

Figure 4: Queue Management (a) Queue Hit (b) Queue Miss
(c) More than one corresponding victim rows exist in the
queue
same fashion in Fig. 4(b). After updating the queue in Fig. 4(a), the
proposed method scans the queue to see whether 0x00fd is already
stored in the queue. In this scenario, no corresponding victim row
exists in the queue and this results in a queue miss . For the queue
miss , the proposed method assigns the queue size+1 as the distance.
As the queue size is 5, all queue misses have the distance equal to
the queue size+1, 6. The queue is updated with the entries 0x001c,
0x00ff, 0x0004, 0x00ff, and 0x00fd.

Assume that 0x0100 is accessed next. The current victim row
with higher address, 0x0101 is considered first and this results in a
queue miss thus giving a distance of 6. After the update of 0x0101,
the following addresses 0x00ff, 0x0004, 0x00ff, 0x00fd and 0x0101
are stored in the queue. Then, the other victim row address, 0x00ff,
needs to be taken into account. As shown in Fig. 4(c), there are
two queue hits are found whose distances are 3 and 5, respectively.
Because the proposed method is based on the memory locality, the
distance with a smaller value is chosen. Similar to the other cases,
the current address 0x00ff is also pushed to the queue and the least
recent victim row 0x00ff is removed. Note that a circular queue can
be used to make the shift operation easier.

3.3 Probability Calculation
The proposedmethod considers the memory locality in determining
a refresh probability. As explained in the previous section, the
proposed method obtains the distance from queue hit or queue

miss based on the memory locality. Then the information is used
for refresh probability calculation.

The proposed refresh probability equation is composed of two
major terms, a base probability and aweiдht . The base probability
denotes the minimum refresh probability and the weiдht gives a
result of weight calculation which uses a queue hit ormiss distance
to reflect the memory locality. The following equation is proposed
for refresh probability calculation:

p′ = p + α × (L − d + 1) (1)
p′ denotes the proposed refresh probability which is referred to

as a weiдhted probability in this paper. p is the base probability,
which is obtained from conventional methods as a static probability.
d is a queue hit/miss distance determined by the proposed queue
management algorithm. L is the queue depth and α is used as a
weiдht constant reflecting that how much of the memory locality
is taken into consideration. In theweiдht term, 1 is added to make
p′ to p when queue miss occurs. The initial values of the equation
constants are denoted in Table. 1.

Table 1: Initial Values of the Equation Constants

Parameter Value

p [7] 0.0005
α (empirical) 0.00005
L (empirical) 15

Once theweiдhted probability is calculated, the proposedmethod
performs the additional refresh operations based on p′ which is
dynamically assigned reflecting the memory locality. The victim
row that has a higher locality gives a short queue hit distance re-
sulting in a higher refresh probability and vice versa for the victim
rows with low locality. Hence, theweiдhted probability by the pro-
posed method tries to optimize the additional refreshes for DRAM
hammering issues by reflecting the memory locality.

4 EVALUATION
To address the row-hammering problem, it is inevitable to per-
form the additional refresh operations. Hence, in comparing the
row-hammering solutions, it is necessary to analyze how much
of the row-hammering reduction is achieved (i.e., reliability) and
how many additional refresh operations are needed (i.e., power
consumption). This section evaluates the proposed method along
with the two conventional solutions, PARA and PRoHIT.

Table 2: Simulated System Configuration

Parameter Value

CPU clock 3.4 GHz
Number of CPUs 1
memory type DDR3-1066
memory size 2 GB
l1i cache size 8 kB
l1d cache size 8 kB
l2 cache size 512 kB

the number of instructions 1000000000
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Figure 5: Performance Evaluation (a) Row Hammering Reduction (b) Additional Refresh (c) Row Hammering Reduction per
Refresh

4.1 Evaluation Setup
To evaluate the performance of the proposed method, different
experiments are performed with gem5 CPU Simulator [3] and 22
benchmark programs, 5 from PARSEC 3.0 [2] and 17 from SPEC
CPU2006 [4]. The simulation configuration is given in Table 2.

A total of 1 billion instructions are simulated which are relatively
large enough to observe the memory locality from the benchmark
programs [12]. The regular refresh period is set to 7.8 µs and 64ms
for the row and total memory, respectively.

Like the most of programs in reality, it is necessary to obtain the
highly memory-intensive traces. Hence, an acceleration mode [12]
is used in the simulation. It helps a single-core system to mimic the
multi-core system with a high clock frequency. Assuming that N
instructions are executed in one refresh cycle, it is clear that 60N
instructions are processed in 60 refresh cycles. Therefore, this mode
reflects an extreme system which has a higher clock frequency than
the simulation configuration given in Table 2.

4.2 Results
This paper compares two conventional solutions and the proposed
method, to examine its advantages over the other approaches.

• PARA-X describes the PARA [7] method which uses a fixed
probability as X. This paper adopts PARA-0.001. It is the
same probability used in PRoHIT [12] for comparison.

• PRoHIT[12] is a conventional solution that uses the hot/cold
tables and a probabilistic method.

• MRLoc is the proposed method which exploits the memory
locality andweiдhted probability to optimize the additional
refreshes.

In order to investigate the performance of the proposed method,
the aforementioned indicators (i.e., a row-hammering reduction and
additional refreshes) should be measured. The former defines the
reliability of a solution, and the latter shows the power efficiency.

For the first indicator, the row-hammering reduction is defined
as a difference between the frequency of row-hammering problems
without solution and with solution. This paper selects the row-
hammering threshold as 2000, then considers the row-hammering
problem occurs if a certain row has become a victim row more
than threshold value (i.e, 2000) in one refresh period. Hence, the
row-hammering reduction denotes the protection strength against
row-hammering that measures the reliability performance of row-
hammering solution. Fig. 5(a) illustrates the row-hammering re-
duction simulated by 22 benchmarks. For convenience, this paper
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normalizes the evaluation results of PARA and PRoHIT using MR-
Loc as a baseline.

According to Fig. 5(a), it is clear that the proposed method shows
1.72 times better performance on average than PARA-0.001 for
all benchmarks. Although the average performance is 1.09 times
better in MRLoc as compared to PRoHIT, PRoHIT shows higher
reliability in nine benchmarks, such as blackscholes , x264, astar ,
bzip2, calculix , дromacs , lbm. omnetpp, soplex . Since the proposed
method is based on thememory locality, it may not bemuch efficient
for those few benchmarks that have low memory locality. On the
other hand, the proposed method shows higher performance in the
other benchmarks with an overall row-hammering reduction than
PRoHIT.

In fact, it is not enough to define the performance of the row-
hammering solution only with the row-hammering reduction. The
other critical performance measuring factor is the number of addi-
tional refresh operations. In case of PRoHIT, it might look efficient
in reliability performance without considering power issue for a
few benchmarks. Since its reliability comes from the relatively high
number of refreshes, the power aspect of PRoHIT is worse than
PARA and MRLoc. Fig. 5(b) illustrates the ratio of the number of
additional refreshes between PARA and PRoHIT relative to MRLoc.
This result is obtained from normalizing the number of additional
refreshes of PARA-0.001 and PRoHIT using MRLoc as a baseline.
According to Fig. 5(b), the number of additional refreshes (i.e., ex-
cessive power consumption) of PARA and PRoHIT is 1.08 times and
7.66 times bigger than that of MRLoc, respectively. As can be seen
in Fig. 5(b), PRoHIT executes much more additional refreshes than
PARA and MRLoc due to the short refresh period of 7.8 µs . Thus,
PRoHIT has higher chances to perform additional refreshes than
PARA and MRLoc, so that it leads to a high power consumption
problem.

To compare the performance properly, the previous two indi-
cators, row-hammering reduction and the number of additional
refreshes, should be considered together. Hence, this paper suggests
a new indicator which is the ratio of the previous two performance
evaluation factors (i.e., RH reduction per refresh). Fig. 5(c) illus-
trates the details of the performance between PARA, PRoHIT, and
MRLoc based on the proposed indicator using MRLoc as a baseline.
According to Fig. 5(c), the average performance of MRLoc is 1.82
times and 7.78 times higher than PARA and PRoHIT, respectively.
It is clear that the performance of MRLoc is highly improved when
the row-hammering reduction and additional refreshes are con-
sidered together. Consequently, comparing to PARA and PRoHIT,
MRLoc obtains the advantage of both high row-hammering reduc-
tion (i.e., reliability enhancement) and less additional refreshes (i.e.,
decreased power consumption).

5 CONCLUSION
Row-hammering is a critical reliability problem in DRAM. Several
methods exist to address this problem such as PARA and PRoHIT. In
fact, these methods are more preferred than counter-based because
of their low area overhead. However, those have some drawbacks in
reliability and power consumption aspects, respectively. This paper
proposes a novel method which exploits memory access locality
to improve over naive probabilistic approaches. By managing a

circular queue, the proposed method stores the address of previous
victim rows, and then uses them to optimize the refresh probability
at every queue hit . Based on the memory locality, MRLoc can in-
crease row-hammering reduction by 1.72 times compared to PARA
and 1.09 times compared to PRoHIT. Also, the number of additional
refreshes of PARA and PRoHIT is 1.08 times and 7.66 times larger
than that of MRLoc, respectively. Moreover, the performance of the
proposed method is 1.82 times better than PARA and 7.78 times
better than PRoHIT based on the row-hammering reduction per
additional refresh. In conclusion, the proposed method achieves
both high reliability and low power operation than conventional
methods.
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