
TWiCe: Preventing Row-hammering by Exploiting Time
Window Counters

Eojin Lee
Seoul National University
ejlee29@scale.snu.ac.kr

Ingab Kang
Seoul National University
igkang@scale.snu.ac.kr

Sukhan Lee
Samsung Eletronics

sh1026.lee@samsung.com

G. Edward Suh
Cornell University

suh@csl.cornell.edu

Jung Ho Ahn
Seoul National University

gajh@snu.ac.kr

ABSTRACT
Computer systems using DRAM are exposed to row-hammer (RH)
attacks, which can flip data in a DRAM row without directly access-
ing a row but by frequently activating its adjacent ones. There have
been a number of proposals to prevent RH, but they either incur
large area overhead, suffer from noticeable performance drop on ad-
versarial memory access patterns, or provide probabilistic protection
with no capability to detect attacks.

In this paper, we propose a new counter-based RH prevention
solution named Time Window Counter (TWiCe) based row refresh,
which accurately detects potential RH attacks only using a small
number of counters with a minimal performance impact. We first
make a key observation that the number of rows that can cause
RH is limited by the maximum values of row activation frequency
and DRAM cell retention time. We calculate the maximum number
of required counter entries per DRAM bank, with which TWiCe
prevents RH with a strong deterministic guarantee. We leverage
pseudo-associative cache design and separate the TWiCe table to
further reduce area and energy overheads. TWiCe incurs no perfor-
mance overhead on normal DRAM operations and less than 0.7%
area and energy overheads over contemporary DRAM devices. Our
evaluation shows that TWiCe makes no more than 0.006% of addi-
tional DRAM row activations for adversarial memory access patterns
including RH attack scenarios.

1 INTRODUCTION
DRAM stores data by controlling the amount of charge per cell ca-
pacitor. Because a cell leaks charge over time, it should be refreshed
periodically (once every refresh window (tREFW)) to retain data [6].
However, row-hammering (RH [26, 31]), a phenomenon that can flip
data in adjacent (victim) rows and cause silent data corruption by
repeatedly activating a specific (aggressor) DRAM row prior to its
refresh window was reported recently. Further studies demonstrated

The work was done when Sukhan Lee was at Seoul National University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322232

that RH can be exploited to compromise real-world systems even
with no software-level vulnerability [1, 36, 45].

In order to mitigate or prevent the RH attacks, recent studies
have proposed multiple protection techniques that refresh potentially
vulnerable rows earlier than its retention time [25, 26, 39, 40, 43].
PARA [26] provides probabilistic protection which can significantly
reduce the probability of RH induced errors by also activating adja-
cent rows with a small probability for each DRAM row activation
(ACTs). The probabilistic scheme is stateless and can be imple-
mented with low complexity. Counter-based protection schemes,
which deterministically refresh the adjacent rows when a row is acti-
vated more than a certain threshold, has also been proposed recently
as an alternative protection approach. The counter-based schemes
ensure that potential victim rows are always refreshed before the RH
threshold is reached. The counter-based schemes also allow explicit
detection of potential attacks, and enable a system to take action,
such as removing/terminating or developing countermeasures for
malware, and penalizing malicious users responsible for the attack.
The previous studies on counter-based protection schemes [9, 39]
pointed out that the performance overhead (the number of added
ACTs) of the probabilistic schemes increases when stronger pro-
tection (lower error probability) is needed or the RH threshold de-
creases, whereas the counter-based schemes only issue additional
ACTs when an attack is detected. Probabilistic and counter-based
schemes provide different trade-offs between complexity and pro-
tection capabilities.

The main challenge in the counter-based protection schemes lies
in reducing the cost of counters that track the number of ACTs.
Because maintaining a counter per row leads to prohibitive costs
if they are kept in memory controllers (MCs), Counter-based Row
Activation (CRA [25]) proposed to cache recently-used counters
within MCs and store the remaining ones in main memory. The
Counter-Based Tree (CBT [39, 40]) scheme proposes to track ACTs
to a group of rows and dynamically adjust the ranges of rows each
counter covers based on row activation frequency. Unfortunately,
both CRA and CBT suffer from noticeable performance degradation
on adversarial memory access patterns due to frequent counter cache
misses and a flurry of refreshes on rows covered by a single counter,
respectively.

To address this challenge, we propose a new counter-based RH
prevention solution, named Time Window Counter (TWiCe) based
row refresh. TWiCe guarantees to refresh victim rows before a RH
threshold is reached only using a limited number of counters, which
is orders of magnitude smaller than the total number of DRAM rows

385

https://doi.org/10.1145/3307650.3322232

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn

populated in the system. TWiCe is based on the key insight that the
maximum number of DRAM ACTs over tREFW is bounded. This
insight enables TWiCe to limit the total number of counters needed
to monitor rows whose ACT counts may go over the protection
threshold. TWiCe allocates a counter entry to a DRAM row only if
the row is actually activated, and periodically invalidates (prunes)
the entries if the corresponding rows are not frequently activated.
Because tREFW is finite and row activation frequency in a DRAM
bank is limited by tRC (row cycle time), there is an upper bound on
the number of ACT counter entries at any given time, leading to a
low area overhead. We analytically derive the number of counters
that are sufficient to monitor all potential aggressor rows. As TWiCe
monitors each row individually, it guarantees a refresh before the
number of ACTs exceeds a RH threshold. We also show that TWiCe
can be further optimized by leveraging pseudo-associative cache
design and reducing the amount of information that need to be kept
in its meta-data table.

Previously, both probabilistic and counter-based RH protection
schemes are proposed to be implemented within MCs. However, this
approach is difficult to realize in practice because modern DRAMs
internally remap DRAM rows. The approach assumes that a MC
knows which DRAM rows are physically adjacent, but it would
be too costly for a MC to store row remapping (replacing a row
including faulty DRAM cells with a spare row) information of all
DRAM devices it controls. To address this problem, we propose a
new DRAM command, named ARR (Adjacent Row Refresh), to
refresh the adjacent rows of an aggressor row because neither MC nor
RCD (register clock driver) knows how DRAM rows are remapped.
To avoid conflict between ARR and normal DRAM operations from
MCs, we propose to provide a feedback path from RCD to MC,
through which the RCD can send a negative acknowledgment signal
when an ARR operation is underway in a DRAM bank.

We also explore the design space of where to place TWiCe, and
carefully distribute the functionality of TWiCe across MCs, RCDs,
and DRAM devices to minimize cost (e.g., area) and performance
impact. We place the TWiCe counter entries (called TWiCe table) in
RCDs because it is more cost-effective than placing them in MCs or
DRAM devices. Placing the TWiCe table in a MC requires that the
TWiCe table is large enough to accommodate the maximum number
of DRAM banks that can be supported by the MC even when a
system only contains much fewer DRAM banks, leading to a waste
of resource in these typical cases. Placing a TWiCe table in each
DRAM device is also wasteful because (around a dozen) devices in
a DRAM rank operate in tandem and hence the TWiCe tables in all
these DRAM devices would perform duplicated functionality.

Our analysis shows that there is no performance overhead on
TWiCe table updates as it can be done concurrently with normal
DRAM operations. The required TWiCe table size is just 2.71 KB
per 1 GB bank, and energy overhead of table updates is less than
0.7% of DRAM activation/precharge energy. Also, our evaluation
shows that TWiCe incurs no additional ACTs due to false positive
detection on the evaluated multi-programmed and multi-threaded
workloads and adds only up to 0.006% more ACTs on adversarial
memory access patterns including RH attack scenarios; thus the
frequency of false positive detection is orders of magnitude lower
than the previous schemes. These results show that precise counter-
based RH protection is viable with low overhead.

Bitline Sense Amp

…

CCELL

CBL

Bitline

Wordline

S
u

b
-w

o
rd

li
n

e
D

ri
v
e

r

Mat

Bank

A

Bank

B

Bank

C

Bank

D

Bank

E

Bank

F

Bank

G

Bank

H

Mat
Row Decoder

Dataline Sense Amp
Column Decoder

Figure 1: The organization of a modern DRAM device.

This paper makes the following key contributions:

• We propose TWiCe, a new counter-based RH prevention
scheme which can protect against RH attacks without false
negatives and with low-cost.

• We distribute the functionality of TWiCe across different
main memory components (MCs, RCDs, and DRAM devices)
considering the massive amount of row remapping informa-
tion and the (in)frequency of RH attack induced refreshes.

• We optimize TWiCe by leveraging pseudo-associative cache
design and separating TWiCe table to reduce area and energy
overheads.

2 BACKGROUND
A modern server typically manages trillions of DRAM bits for main
memory owing to technology scaling [8, 37, 42]. This enables un-
precedented benefits to applications with diverse performance and
capacity requirements. At the same time, however, the finer fab-
rication technology entails a number of challenges on organizing
and operating a main memory system because the massive num-
ber of DRAM cells should be hierarchically structured for high
area efficiency (to lower cost) and more cells become faulty (either
permanently or intermittently) due to process variation and manu-
facturing imperfection [7, 12, 44]. This section reviews the details
of the main memory organization and operations, which must be
considered when designing a solution for row-hammering (RH).

2.1 DRAM Device Organization
A server includes dozens to hundreds of DRAM devices. A DRAM
device consists of billions of cells, each comprised of an access
transistor and a capacitor [15, 24]; the amount of charge in the
capacitor represents data: either zero or one (see Figure 1). Cells
in a DRAM device are grouped into multiple (typically around 16
these days) banks. A bank is further divided into thousands of mats
structured in two dimensions. A group of mats that share global
wordlines (WLs) and hence operate together is called a subarray.
Within a mat, cells are again organized in two dimensions; cells
that are aligned in a row share a local WL and the ones aligned in a
column share a bitline (BL) to increase area efficiency.

A DRAM device periodically refreshes each cell within retention
time called tREFW (refresh window). Because a cell discharges
(leaks) slowly but steadily, data is lost unless DRAM periodically
performs a refresh operation to restore the charge to a cell capacitor.

386

TWiCe: Preventing Row-hammering by Exploiting Time Window Counters ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

DRAM

Device

MC

DIMM DIMM

DIMM DIMM

MC

DIMM DIMM

DIMM DIMM

…

DQ Command, address, CLK

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device
DRAM

Device

Multiple

Channels

RCD

8 8 8 8 8 8 8 8

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

Multiple

Ranks

8

DRAM

Device

Figure 2: The organization of a conventional main memory system. Each MC can populate multiple DIMMs, and each DIMM consists
of one or a few ranks. Each rank has several DRAM devices which operate in tandem.

As the number of rows per bank increases continuously to provide
higher DRAM capacity, a modern DRAM bank refreshes not a single
row but a set of rows per auto-refresh operation. The number of rows
refreshed per auto-refresh increases over time; so does its duration
called tRFC (refresh command time) performing an auto-refresh
operation. The interval between two auto-refresh operations, called
tREFI (refresh interval), is tREFW

#o f rowsets . However, the recent discovery
of row-hammering (RH), which will be further explored in Section 3,
shows that just periodically refreshing DRAM rows is insufficient.

2.2 Sparing DRAM Rows to Combat Reliability
Challenges

Wire pitch gets finer, and storage cells become smaller as fabrication
technology advances. This exacerbates the impact of process varia-
tion and manufacturing imperfection, increasing the probability of
functional and timing failures of storage devices. DRAM devices
are no exception [7].

Therefore, faulty DRAM cells are corrected using various tech-
niques. Replacing a row or a column of a DRAM bank with faulty
cells with another fault-free row or column (row/column sparing)
is a conventional method, which has been employed in commodity
DRAM devices [12]. Another method which is gaining momentum
in fixing faulty DRAM cells is in-DRAM ECC [7], which corrects
up to a few errors in a block of bits (called codeword) through error
correcting codes using parity bits in addition to data bits. In this
paper, we focus on more traditional row sparing method, which also
influences main memory DRAM organization and operations.

Each DRAM bank is equipped with spare rows and columns
that can replace faulty rows, columns, and cells. These spare
rows/columns are set up as follows. During the test phase of DRAM
device fabrication, test equipment identifies the locations of faulty
cells. A repair algorithm calculates and assigns target spare rows
and columns for the faulty cells, columns, and rows to efficiently
leverage these spares. The information pairing the addresses of a
faulty row/column and the corresponding target one (called remap-
ping hereafter) is stored in a one-time programmable memory, such
as electrical fuses within a DRAM device [12].

The locations of malfunctioning DRAM cells are different for
individual DRAM devices; hence it is reasonable to place the cell
repair functionality within DRAM devices. An important implication
of this row sparing is that due to this remapping, the rows whose
index numbers differ by one in a DRAM bank is not necessarily
physically adjacent within a DRAM device.

2.3 Main Memory Subsystem Organization
As depicted in Figure 2, a conventional main memory system con-
sists of a group of memory controllers (MCs). One MC handles
one or a few memory channels. A channel is connected to a small
number (typically fewer than four) of dual-inline memory modules
(DIMMs). Each module consists of a few ranks, each having several
DRAM devices. All DRAM devices within a rank operate in tandem.

Modern servers have dozens of cores per CPU socket and multiple
MCs to provide enough main memory bandwidth to the cores [8, 37].
Also, the emergence of virtual machines and containers demands
large main memory capacity per CPU; and hence typically mul-
tiple DIMMs are connected to a memory channel. Therefore, the
command and address (CA) signals from a MC through one of
its memory channels have to be broadcasted to dozens of DRAM
devices, imposing a huge channel load in driving these signals.

To mitigate this signal integrity problem, the CA signals and op-
tionally data signals from a MC are buffered within a modern DIMM
but outside of DRAM devices of the module. The separate buffer
device is called a register clock driver (RCD [21]). A registered
DIMM (RDIMM [20]) only repeats CA signals, reducing the load
from a MC, with additional latency tPDM (propagation delay). A
load-reduced DIMM (LRDIMM [19]) repeats both CA and data sig-
nals; the data signals can be repeated in the same RCD chip (DDR3)
or in the separate devices (called data buffers in DDR4).

2.4 How Main Memory Operates
An MC receives an access (read or write) request with an accompa-
nying address, translates the address into a tuple of (memory channel,
rank, bank, row, column), and generates one or more DRAM com-
mands to serve the request. The number of DRAM commands per
request and the timing of each command depend on the internal
states of a MC (including other requests stored in the request queue)
and various timing constraints. Because conventional memory in-
terfaces, such as DDR [17], GDDR [16], and LPDDR [18], adopt a
primary-secondary (master-slave) communication model, only a MC
generates commands within a memory channel and it knows when
the DRAM devices it controls reply data, owing to the synchronous
nature of the interface.

If the target bank of a request does not have an active row (BLs
being precharged to VDD⁄2), an activate command (ACT) is issued
and a high voltage level is applied to the global WL (whose target
row is specified by the physical address of the request), enabling BL
sense amplifiers (BLSAs) to detect and latch the data stored in the

387

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn

target row within tRCD (row access to column access delay). The
data of the target column latched in the BLSAs are transferred to
the I/O pads of the corresponding DRAM device through the global
dataline, which takes tCL after a read command (RD) is issued (the
data transfer direction is flipped for a write command (WR)). In
the course of an activation process, the voltage level of the selected
cells is first changed close to VDD⁄2 as they share charges with BLs
whose capacitance is much larger than that of a DRAM cell, but is
then restored to either VDD or ground after tRAS because BLSAs
amplify the voltage level.

If the target bank has an active row which is the same as the target
row, ACT is omitted, and hence the data can be accessed faster. If
the currently active row of the target bank is different from the target
row, the row must be deactivated first; the voltage level of BLs must
be set to VDD⁄2 by sending a precharge command (PRE), which takes
tRP (row precharge time) after which the (next) target row is ready
to be activated.

Each DRAM bank processes these command sequences indepen-
dently. However, the frequency of issuing ACTs to a DRAM device
is limited by tRRD (minimum time between any two ACTs) and
tFAW (minimum interval between a group of four ACTs). Within
a DRAM bank, tRC (minimal time between two ACTs to the same
bank) limits the frequency of row activation.

The row address (index) from a MC may target one with faulty
DRAM cells. A comparator within a DRAM device identifies this
address and replaces it with a spare row before the row decoder
decodes the incoming row address. This remapping breaks the tie
between logical (index being offset by one) and physical adjacency
(and hence interfering with each other due to capacitive coupling) of
DRAM rows.

3 EXISTING ROW-HAMMER PROTECTION
AND THEIR LIMITATIONS

Row-hammering (RH) is a DRAM reliability challenge, which has
gained significant public attention due to its security implications. A
number of architectural solutions have been proposed to prevent RH,
including probabilistic protection schemes, which enforce an ACT
on a row to occasionally accompany activating the adjacent rows,
and deterministic protection schemes, which count the number of
ACTs to DRAM rows. However, deterministic protection schemes
that use counters suffer from substantial performance penalties on
adversarial memory access patterns. Both probabilistic and counter-
based schemes also rely on the assumption that a MC knows the
physical adjacency information of all the DRAM rows it controls,
which is not feasible or cost-effective in practice. These limitations
necessitate a new solution for RH.

3.1 Row-hammering (RH)
RH is an attack that exploits the phenomenon that repeated acti-
vations to a specific (aggressor) DRAM row cause bit flips in its
adjacent (victim) rows before the victim rows reach their retention
time limits (tREFW), which is publicly reported by Kim et al. in
2014 [26]. RH effectively reduces DRAM cell retention time de-
pending on access patterns, making data preservation difficult. Park
et al. [34] explained the root cause of this RH. They found out that

during a row activation and precharge operation, a portion of elec-
trons in the chosen WL flows into the cells of the adjacent rows
with a low probability. Repeated activation and precharge operations
make the number of electrons passed surpass a certain threshold,
causing the data to be flipped.

Then, studies have shown that RH can be exploited to compro-
mise real-world systems without software vulnerability [1, 36, 45].
Flip Feng Shui [36] accesses a co-hosted virtual machine in an
unauthorized way through a combined use of memory deduplica-
tion (identifying an RSA public key) and RH (flipping the key).
Drammer [45] takes control of a mobile device running Android
by performing RH attacks on specific parts of the device’s mem-
ory. These attacks highlight the importance of providing adequate
solutions to RH.

3.2 Row-hammer (RH) Threshold
In order to avoid errors from row-hammering, a DRAM row needs
to be refreshed before adjacent rows are activated too many times.
Similar to the DRAM refresh window, we expect a DRAM vendor
to provide a new parameter, named a row-hammer (RH) threshold,
which specifies the maximum number of ACTs on the adjacent rows
within an interval of tREFW before a row needs to be refreshed.
The DRAM vendor ensures that a row will not have an error before
its RH threshold is reached similar to ensuring that the DRAM
retention time is longer than the refresh window. While exceeding
the RH threshold does not mean there will be an RH error, there is
no guarantee on reliability once the threshold is exceeded. Therefore,
the job of a system designer is to ensure that each row is refreshed
before it exceeds the RH threshold, which is expected to decrease
going forward with further technology scaling [46].

3.3 Previous RH Solutions
Previous architectural solutions against the RH attack can be catego-
rized into two groups: counter-based and probabilistic RH protection
schemes. As the likelihood of RH increases after a large number
of ACTs are sent to a DRAM row, a naı̈ve counter-based solution
would record the number of ACTs for each row and refresh a victim
row once the ACT count exceeds the RH threshold. However, this
scheme requires a counter per DRAM row, leading to prohibitive
costs especially if the counters are kept in MCs because a MC covers
more than millions of DRAM rows. Counter-based Row Activation
(CRA [25]) counts ACTs for all DRAM rows, but stores only the
ACT counts for frequently activated rows in caches located at MCs
and all remaining counters in DRAM.

CBT [39, 40] reduces the number of counters by having each
counter track ACTs to a group of rows. The group size is deter-
mined dynamically based on the ACT frequency to the group; a
counter covers a small number of hot (frequently activated) rows or
a large number of cold rows. The counters in CBT are organized as
a non-uniform binary tree, where each counter at the same tree level
(distance from the root) covers the same number of DRAM rows.
Initially, CBT uses only one counter to track the number of ACTs for
all DRAM rows together. Once the count exceeds a threshold, two
child counters at the next tree level are used, each counting the ACTs
to the half of the DRAM rows covered by the parent. The children

388

TWiCe: Preventing Row-hammering by Exploiting Time Window Counters ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 1: Comparing TWiCe with previous row-hammer prevention/mitigation solutions.

CRA [25] CBT [39, 40] PARA [26] TWiCe

Primary location MC MC MC RCD
Performance drop on typical memory access patterns Small Smaller Small No
Performance drop on adversarial memory access patterns High High Small Smaller
Possibility of RH attack detection Yes Yes No Yes

are initialized to the value of the parent. CBT repeats this process
until all counters are used up, and resets the tree every tREFW.

To reduce counter overhead, another counter-based approach that
uses system performance counters [11, 38] has been proposed. It
monitors the last level cache (LLC) misses and regards unusually
frequent LLC misses as a row-hammer attack. However, it requires
an action for preventing row-hammering whenever there are frequent
LLC misses, resulting in substantial performance overhead.

In addition to the counter-based protection schemes, previous
studies also proposed probabilistic protection schemes. For example,
PARA [26] activates adjacent DRAM rows with a low probability
whenever a row is precharged. By adjusting the probability, PARA
can choose a trade-off point between the level of protection against
RH attacks and performance and energy overhead. PRoHIT [43]
extends PARA with a history table to activate the adjacent rows of
more frequently activated rows with a higher probability.

3.4 Limitations of the Previous RH Solutions
Even if the previous proposals advanced the state-of-the-art against
the RH attacks compared to the naı̈ve counter-based scheme, they
suffer from the following shortcomings. Counter-based approaches
can provide strong protection with no false negative by identifying
all rows whose ACT counts exceed a threshold value, but they can
suffer from system performance degradation due to superfluous
DRAM operations on adversarial memory access patterns.

In the case of CRA, counter-cache misses amplify main memory
accesses. Similar to other caches, the counter cache within a MC
is not effective if memory access patterns do not exhibit enough
locality (being adversarial to the cache). Especially in random ac-
cess workloads, the number of ACTs is nearly doubled, which can
seriously degrade the system performance.

CBT may generate bursts of DRAM refreshes due to false pos-
itives depending on memory access patterns. Because one counter
often covers multiple DRAM rows, all rows within a group, in-
cluding ones that are not heavily activated, need to be refreshed
together when the total number of ACTs for the group (as many
as half the number of rows in a bank) exceeds the threshold. This
flurry of refreshes incur a spike in memory access latency, which
hurts latency-critical workloads [23, 29], degrading their overall
system performance. Moreover, when a parent counter is split into
children, ACTs are counted twice because the two child counters are
initialized with the value of one parent counter.

PARA and PRoHIT can significantly reduce the probability of
an RH-induced error with low performance and energy overhead.
Yet, the protection is probabilistic in nature; while the probability
is quite small, there is a non-zero probability that a victim row is
not refreshed after reaching its RH threshold. The previous studies

on counter-based protection schemes [9, 39] point out that the per-
formance overhead (# of added ACTs) of the probabilistic schemes
increases when stronger protection (a lower error probability) is
needed or if the RH threshold decreases. The counter-based scheme
can be a more cost-effective solution if a system designer wants
to ensure that the RH threshold is never exceeded similar to the
way that today’s refresh mechanisms deterministically refresh a row
within the refresh window. PARA and PRoHIT are also oblivious
to the RH attack; while they reduce the probability of RH errors,
they cannot pinpoint when and where an attack attempt is made. By
contrast, the counter-based schemes explicitly detect an RH attack,
and enables a system to take action such as removing/terminating or
developing countermeasures for malware, and penalizing malicious
users responsible for the attack. For probabilistic schemes, attackers
can easily avoid refreshes for a victim row if they can predict the
output of a random number generator. In that sense, it is important
to ensure that the random numbers are unpredictable, possibly using
true random number generators (RNGs) rather than pseudo RNGs.

All previous techniques are proposed to be implemented within
MCs, but this is not necessarily ideal for combatting the RH attack
due to the following reasons. They assume that MCs know physical
adjacency among rows, possibly by obtaining the mapping infor-
mation between logical and physical rows from DRAM devices.
However, due to inevitable remapping of DRAM rows as described
in Section 2.2, it is costly to know the remapping information. For
example, the single-cell failure rate (SCF) of a DRAM device is
projected to be around or surpass 10−5 in sub-20nm DRAM process
technologies [7]. In this case, if one MC populates DRAM capacity
of 64 GB, it should retain more than 5 million remapping informa-
tion to know the physical adjacency of the entire rows it controls. It
is impractical or highly costly to have all of this information in each
MC.

Moreover, because MCs control a varying number of DRAM
devices and there is a huge variation in the DRAM capacity, previ-
ous proposals that are implemented within MCs must support the
worst case (e.g., the maximum number of DRAM rows that one
MC may control). For the counter-based approaches, this means that
the counters must be provisioned assuming the maximum possible
number of rows. Because the actual main memory capacity can be
much lower than the maximum depending on workloads, this often
leads to a waste of resources. Table 1 summarizes the properties and
limitations of the existing solutions.

4 TWICE: TIME WINDOW COUNTER BASED
RH PREVENTION

In order to prevent RH precisely with low cost, we propose a new
counter-based RH mitigation solution named TWiCe (Time Window

389

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn

Table 2: Definition and typical values for TWiCe.

Term Definition Typical value

tREFW refresh window 64 ms
tREFI refresh interval 7.8 µs
tRFC refresh command time 350 ns
tRC ACT to ACT interval 45 ns
thRH RH detection threshold 32,768
thPI pruning interval threshold 4
maxact max # of ACTs during PI 165
maxli f e max life of a row in PI 8,192

Counters). Based on the insight that the number of DRAM ACTs
over tREFW is bounded, TWiCe prevents RH with a small number
of counters.

4.1 Bounding Counters without Missing RH
Aggressor Candidates

Naı̈vely dedicating a counter per DRAM row would be prohibitively
expensive because the number of necessary counter entries is propor-
tional to ever-growing memory capacity. For example, if the main
memory capacity of a system is 1 TB and a DRAM page size is 8
KB, more than 100M counters are needed. The number of counter
entries can be reduced in theory as not all DRAM rows can be si-
multaneously susceptible to the RH attack. A row is refreshed every
tREFW . This resets the number of electrons that could be piled up
due to the RH attack. Therefore, if the RH attack on a row is spread
over a duration spanning multiple tREFW , only the number of ACTs
a row experiences within tREFW from its physically adjacent rows
matters. If this number surpasses the RH threshold (Nth), data in the
corresponding row may be flipped.

The maximum frequency of row ACTs is limited. On a DRAM
bank, the minimum interval between any two ACTs is tRC (bank
cycle time), limiting the maximum number of ACTs within the
retention time of a row (tREFW) to tREFW

tRC . Assuming that a row
activation affects two adjacent (victim) rows, at most 2×tREFW

tRC×Nth
rows

experience the RH attack within tREFW . Applying typical values on
modern DRAM chips (tRC = 48 ns, tREFW = 64 ms) and Nth value
reported in [26] (Nth = 139K), only up to 20 rows can be exposed
to the RH attack from a bank in the duration of tREFW . Therefore,
we can decrease the number of counter entries by detecting the rows
that have the potential to be RH aggressors and only counting the
ACTs to those rows, which is a key idea of TWiCe.

4.2 TWiCe: Time Window Counter
TWiCe guarantees protection against the RH attack by precisely
counting ACTs for individual DRAM rows, but has low overhead
because the counts are kept only for frequently activated DRAM
rows. The number of necessary counters can be bounded because
the DRAM interface limits the maximum frequency of row ACTs,
and the ACT count only needs to be tracked within a refresh window
(tREFW). We further reduce the number of counters in TWiCe by
periodically removing (pruning) the counts for the rows that are
activated infrequently. We refer to this time window period as a

Logic (adder, shifter, comparator)

valid

0

1

row_addr

0x5A…

...
act_cnt

23

life

6

TWiCe

1 0x23… 2 1

1 0x93… 32,765 200

Table

…

Figure 3: The organization of TWiCe. Each table entry holds
valid bit, row addr, act cnt, and li f e. An entry is inserted when
a new row is activated and invalidated when pruned or re-
freshed after thRH is reached.

pruning interval (PI). We can mathematically show that the ACT
counts for such infrequently activated rows are unnecessary for
an RH protection guarantee and that TWiCe guarantees to prevent
RH attacks. The parameters and example values for TWiCe are
summarized in Table 2; we illustrate TWiCe with DRAM whose
tREFW , tREFI, and tRC are 64 ms, 7.8 µs, and 45 ns, respectively.

TWiCe consists of a counter table and counter logic (Figure 3).
Each counter table entry contains row addr, act cnt, valid bit, and
li f e. act cnt records the number of ACTs to the target row addr.
valid bit indicates whether the entry is valid. li f e indicates the
number of consecutive pruning intervals (PIs), for which the entry
stays valid in the table.

We define two threshold values, one to identify RH (thRH) and
the other to detect aggressor candidates (thPI). Similar to other
counter-based approaches, TWiCe refreshes adjacent rows if act cnt
exceeds thRH . thPI determines whether an entry should be kept
as an aggressor candidate after each PI. We set the PI to match
the auto-refresh interval (tREFI) to hide the latency of checking
the table entries by performing the operation in parallel with an
auto-refresh. As each row is refreshed once every refresh window
(tREFW), the number of ACTs to a row must exceed thRH within
tREFW for a successful RH attack. Thus, the average number of
ACTs to an aggressor row over a refresh interval (tREFI) must
exceed thRH

tREFW/tREFI . We set thPI to be this value. For the DRAM
parameters that we use, tREFW = 64 ms and tREFI = 7.8 µs, thPI
is 4 and the maximum number of pruning intervals over a refresh
window (maxli f e) is 8,192.

TWiCe operates as follows (see Figure 4). 1) TWiCe receives
a DRAM command and address pair. 2) For each DRAM ACT,
TWiCe allocates an entry in the counter table if the entry for the
row does not already exist, and increments the counter (act cnt)
by one. 3) If act cnt reaches thRH , TWiCe refreshes the adjacent
rows of the entry and deallocates the entry. 4) After each pruning
interval (PI = tREFI), each entry in the TWiCe table is checked and
removed if act cnt < thPI × li f e. In other words, a row is considered
to be an aggressor candidate only if the average number of ACTs
over tREFI is equal to or greater than thPI . This step enables the
counter table size to be bounded. For the remaining entries, life is
incremented by one.

390

TWiCe: Preventing Row-hammering by Exploiting Time Window Counters ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

CMD/ADDR ACT/0xF0 ACT/0xC0 Time

valid row_addr act_cnt life

1 0x50 32,767 3

1 0xC0 7 2

0

0 0xA0 2 1
…

valid row_addr act_cnt life

1 0x50 32,767 3

1 0xC0 7 2

0

1 0xF0 1 1
…

ACT/0x50

valid row_addr act_cnt life

1 0x50 32,767 3

1 0xC0 8 2

0

1 0xF0 1 1
…

Auto-refresh

valid row_addr act_cnt life

0 0x50 32,768 3

1 0xC0 8 2

0

1 0xF0 1 1
…

valid row_addr act_cnt life

0 0x50 32,768 3

1 0xC0 8 3

0

0 0xF0 1 1
…

① Address not found.

New entry inserted.

② Address found.

act_cnt incremented.

③ thRH reached.

Victim rows refreshed.

④ Table updated

during auto-refresh.

Figure 4: TWiCe operation example. The DRAM command/address and changes in TWiCe are colored blue and red, respectively.
1○ When the target address of ACT is not found, a new entry is inserted. 2○ When found, act cnt is incremented by 1. 3○ If act cnt

reaches thRH , the victim rows are refreshed and the entry is invalidated. 4○ During an auto-refresh, the table is updated; the aggressor
candidates’ li f e is increased by 1, while others are pruned.

4.3 Proof of RH Prevention
Here, we show that the number of ACTs to each row over a refresh
window cannot exceed the RH threshold without being detected by
TWiCe. Let us first consider the maximum number of ACTs to a
row over tREFW when the row is not tracked by the TWiCe table
(countnot−tracked). Because TWiCe keeps a row in its counter table
if act cnt ≥ thPI × li f e, countnot−tracked must be less than thPI ×
li f e. Given the maximum value of li f e over the refresh window is
tREFW ⁄tREFI and thPI is thRH

tREFW/tREFI , countnot−tracked can be expressed
as:

countnot−tracked < thPI ×
tREFW
tREFI

= thRH (1)

In other words, if a row is activated thRH times or more within a
refresh window, it will be in the counter table.

If a row is in the counter table, its ACT count while being con-
sidered as an aggressor candidate (counttracked) is less than thRH if
no RH attack is detected. The activations to this row, while it was
not considered as an aggressor candidate, may not be included in the
counter table, yet this value is bounded by countnot−tracked , which is
less than thRH . As explained above, both counttracked and the inval-
idated counts countnot−tracked should be less than thRH . Therefore,
the maximum number of ACTs to a row over tREFW without being
detected as an aggressor (countcombined) is

countcombined = countnot−tracked + counttracked

< 2 · thRH
(2)

According to a previous study [26], a row needs to experience
139K or more ACTs on its neighbor rows within tREFW to have a bit
flip (Nth). Considering that a row has two adjacent rows in general
(double-side RH), the actual threshold to detect an aggressor is its
half, 69K. In order to ensure that countcombined does not exceed this
threshold, 69K, thRH should be less than half of 69K (or one-fourth
of Nth. In this study, we set thRH to be 32,768.

4.4 Counter Table Size
In TWiCe, we assume that there is a counter table per DRAM bank.
To calculate the required table size (the number of counter entries),
we define a new term maxact , the maximum number of ACTs in a
DRAM bank during tREFI. Because the ACT-to-ACT interval in
a bank is tRC and rows cannot be activated during tRFC, maxact

is (tREFI − tRFC)/tRC. With tREFI of 7.8 µs and tRC of 45 ns,
maxact is 165. DRAM devices with fewer rows per bank lead to
smaller tRFC and higher maxact . Yet, because tREFI ≫ tRFC,
maxact only changes slightly.

The table size should be set based on the worst case when the table
has the largest number of valid entries. The valid entries fall into two
categories: (1) entries newly inserted in the current PI, and (2) entries
identified as aggressor candidates in the previous PIs. The number
of new entries is bounded by maxact . The number of surviving
entries is maximized when the counter entries with the smallest li f e
survive the most. For example, consider the entries whose li f e is 2.
Because li f e of these entries in the previous PI is 1, the maximum
number of entries with li f e = 2 is maxact

1×thPI
. This happens when the

maximum number of ACTs (maxact) are equally distributed across
maxact
1×thPI

distinct rows in the previous PI. New entries with fewer
than thPI ACTs are invalidated at the end of the PI. Similarly, the
maximum number of entries whose li f e is n can be calculated as

maxact
(n−1)×thPI

. Thus, the total number of counter entries can be bounded

by maxact · (1+∑
maxli f e
n=1

1
n×thPI

). Moreover, the number of entries
must be an integer, so {maxact %((n−1)× thPI)} of ACTs, which
are left after filling ((n− 1)× thPI) counters at li f e of n, can be
used for entries with li f e of n+1. The maximum number of entries
per TWiCe table is 553, while the total number of rows per bank is
131,072 for the parameters in Table 2. Therefore, the required table
size is reduced by more than two orders of magnitude compared to
the number of DRAM rows in a bank, which is comparable to other
counter-based approaches.

5 ARCHITECTING TWICE
TWiCe can be implemented in multiple ways by placing its counter
table and RH detection logic in a MC, a DRAM device, or an RCD.
In this section, we discuss this design space and describe how we
modify MC, RCD, and DRAM devices to support TWiCe in main
memory systems. This section also introduces a new Adjacent Row
Refresh (ARR) command that is necessary to deal with row remap-
ping within DRAM devices.

5.1 Location of TWiCe Table
TWiCe needs one table per DRAM bank. A certain class of systems,
such as mobile devices, has a fixed number of DRAM banks whereas
another class of systems, such as servers, could have a varying

391

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn

Memory
Controller DRAM

TWiCe
Register Clock Driver

DQ/DQS (Data / Data Strobe I/O) bus

Control
LogicBuffer TWiCe

Table CA bus CA bus

Nack

ARR

Nack

Figure 5: The microarchitecture of TWiCe. TWiCe table is im-
plemented in a register clock driver (RCD). A path from an
RCD to its master memory controller is modified to send nega-
tive acknowledgment (nack) signals. A new command called ad-
jacent row refresh (ARR) is sent to DRAM devices from RCD
through the repeated command and address (CA) bus when the
row address specified in ACT is identified as an RH aggressor.

number of banks in their life time. As a result, if we locate a TWiCe
table in a MC, the number of TWiCe tables must be large enough
to accommodate the largest number of DRAM banks the MC might
support, not the actual number of DRAM banks in a system. For
example, a MC, which could populate a maximum of four 2-rank
DIMMs with 16 banks per rank, must be designed with TWiCe
tables that support up to 128 banks. If this MC controls only one
1-rank DIMM with 16 banks, TWiCe tables for the 112 banks are
unused and hence wasted.

Implementing the TWiCe table within each DRAM device is also
wasteful when a DRAM rank consists of multiple DRAM devices.
All DRAM devices within a memory rank operate in tandem, hence
making each DRAM device count the number of ACTs from the
MC would be a duplication of effort. Placing the TWiCe counters
in an RCD would provide a per-DIMM protection, avoiding table
size over-provisioning, and count the number of ACTs at a per-bank
level, eliminating redundant information. Therefore, in this paper,
we investigate placing the TWiCe table in an RCD.

5.2 Augmenting DRAM Interface with a New
Adjacent Row Refresh (ARR) Command

As we explained in Section 2.2, row remapping occurs within DRAM
devices, but neither MC nor RCD knows this DRAM row remapping
information or can efficiently hold all the information internally.
Therefore, an RCD should not compute adjacent rows and send the
computed addresses explicitly to DRAM devices.

Instead, the RCD should just send a command to DRAM de-
vices notifying that the row of a bank which was just activated are
recognized as an RH aggressor row. Hence, we add a new DRAM
command ARR (Adjacent Row Refresh) which asks the DRAM
devices to refresh the physically adjacent rows of the row just being
activated (through up to two pairs of ACTs and PREs within the
devices). When TWiCe detects an RH aggressor row and the RCD
equipped with TWiCe receives a precharge command (PRE) to the
aggressor row, the RCD sends ARR to the DRAM devices instead
of PRE and waits for 2×tRC+ tRP to allow the DRAM to refresh
the (up to two) physically adjacent rows and return the bank to a
precharged state. DRAM devices receiving an ARR command cal-
culate the physical addresses of the adjacent rows (considering the

row remapping) during the precharge operation of the aggressor row
and then refresh them.1

We also propose to provide a feedback path from an RCD to a
MC for sending negative acknowledgment information. Updating a
TWiCe table is asynchronous to normal DRAM operations because
the update happens when the corresponding bank performs an auto-
refresh operation, not accepting any normal DRAM command, such
as RD, WR, ACT, and PRE. Therefore, MCs do not need to know
about a TWiCe table update as long as the update can be performed
within tRFC (which is analyzed in Section 7.1).

By contrast, because an RCD with TWiCe sends ARR right after
a row being recognized as an RH aggressor is precharged, one of
normal DRAM operations from a MC to the RCD might head to
the DRAM bank that is still performing ARR, leading to a conflict.
Conventional DRAM interfaces assume that a MC is a master, a sole
device which generates commands and expects the other devices
(here DRAM devices) to process the commands without any internal
delay mechanism. Fortunately, ARR commands are issued very
rarely, at most one in 32,768 ACTs as analyzed in Section 4.3. Hence,
we propose to have an RCD return a negative acknowledgment (nack)
signal to the master MC when a conflict occurs. We can leverage
already existing feedback path indicating that a command from a
MC might fail (e.g., alert n in DDR4 [21]). The RCD can return this
signal back to the MC until it finishes the ARR if it receives normal
commands to the bank performing ARR. The RCD also sends the
nack signal back to the MC while performing an ARR command
if there is an ACT command to the rank which includes the bank
performing ARR. Because of the additional ACTs performed from
ARR, the number of ACTs recognized by the MC and the actual
number of ACTs performed in a DRAM rank may differ, which can
lead to a violation of the tFAW timing constraint of the DRAM if
not careful. Blocking every ACT to the rank during ARR addresses
this problem. While the approach is conservative, it has a minimal
impact on system performance because the ARR commands are only
issued infrequently, at most once when the number of ACTs reaches
the RH threshold. The evaluation results in Section 7.2 show that
this blocking has no performance overhead except for actual RH
attacks because general workloads invoke no ARR. Similar to the
case of handling an address signal parity bit error in DDR4, a MC
can resend the command that was just blocked.

6 OPTIMIZING TWICE
6.1 Pseudo-associative TWiCe
A straightforward implementation would be making the table fully
associative (fa-TWiCe). The fully-associative implementation is
feasible as the minimal interval between counter updates is dozens
of nanoseconds and the update is not in the critical path of DRAM
accesses. Still, in case of TWiCe against RH, a more energy-efficient
implementation is desired compared to fa-TWiCe with 553 ways. A
set-associative design looks appealing at a first glance, but it suffers
from performance degradation for access patterns that thrash sets
because a row that is being evicted from the table needs to trigger
refreshes for security.

1 The newly proposed ARR command can also be directly used by MC to avoid the
need to know the row remapping information within the DRAM devices.

392

TWiCe: Preventing Row-hammering by Exploiting Time Window Counters ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

valid row_addr act_cnt life

1 0x00 5 2

1 0x10 10 2

1 0x20 7 2

1 0x30 2 1

valid row_addr act_cnt life

1 3 1

1 0x11 4 1

1 0x60 8 2

1 0x40 4 1

2 1 0 0 0 0

valid row_addr act_cnt life

10x01 2 1

1 0x12 1 1

0

0 0 0

valid row_addr act_cnt life

1 0x03 11 2

0

0

0 0 0

0 1 2 30 1 2 30 1 2 30 1 2 3set

SB indicator

Target Address: 0x50

set 0 set 1 set 2 set 3

① Search for

the target row

in the preferred

set.

② If ① fails, search for the target row in

the next set with non-zero SB indicator.

② Continue until the

target row is found.
③ If the row is found,

act_cnt is increased.

0x02

④ If the row is not found, a new

entry is inserted to an available set.

01 0x50 1  2 1

Figure 6: Exemplar pseudo-associative TWiCe (pa-TWiCe) operations with a target row address of ‘0x50’ whose preferred set is 0.
Each set has set-borrowing (SB) indicators which count the number of entries used by other sets.

We address this problem by leveraging a pseudo-associative cache
design [13] and call it pseudo-associative TWiCe (pa-TWiCe). Each
DRAM row is mapped to a preferred set of pa-TWiCe (see Figure 6).
A set has set-borrowing (SB) indicators, each counting entries used
by another set. For a table with N sets, each set has N−1 SB indica-
tors. pa-TWiCe records a row ACT as follows: 1) it probes the target
address in the preferred set. 2) If 1) fails, it checks the non-preferred
sets with their SB indicators for the preferred set being non-zero.
3) If the target row is found, the act cnt of that entry is increased
by one. 4) If 2) fails, an entry is inserted into a set (preferably to
the preferred set) and the corresponding SB indicator is increased
by one if needed. When an entry is invalidated, the SB indicator
value is decreased by one. pa-TWiCe is inferior to fa-TWiCe in the
worst-case for latency and energy efficiency when all the sets must
be checked. However, because both preferred and non-preferred sets
can be checked within tRC, there is no performance overhead. Also,
pa-TWiCe can greatly save energy in common cases when checking
the preferred set is enough.

6.2 Separating TWiCe table
We can further reduce the TWiCe table size by dividing a table
into two sub-tables each with different entry types. Not every entry
needs to have a 15-bit act cnt that can count up to thRH of 32,768.
The entries in TWiCe can be divided into the ones inserted in the
current PI and the survivors from the previous PIs. Because the only
entries with an act cnt value of four or more can survive from the
previous PIs, the number of entries whose act cnt value can be four
or more does not surpass the sum of the maximum number of entries
surviving from the previous PIs and entries whose act cnt are four
or more in the current PI. The former is 388 (553−maxact), and
the latter is 41 (maxact

4). Therefore, we design the TWiCe table with
429 conventional entries with 15-bit act cnt and 124 entries with
2-bit act cnt. A new TWiCe entry is first inserted to the 2-bit act cnt
entry sub-table, if the just activated row is not in the TWiCe table,
then it is moved to the sub-table with 15-bit act cnt entries when
activated four times. With this optimization, TWiCe table needs 13%
less storage compared to the baseline design without any latency
penalty.

Table 3: Timing and energy in operating TWiCe and DRAM
devices.

Timing Energy
(ns) (nJ)

fa-TWiCe
ACT count 3 0.082
Table update 140 0.663

pa-TWiCe
ACT cnt (preferred set) 6 0.037
ACT cnt (all sets) 24 0.313
Table update 130 0.474

DRAM
ACT+PRE (tRC) 45 [17] 11.49 [30]
Refresh/bank (tRFC) 350 [17] 132.25 [30]

7 ANALYSIS AND EVALUATION
7.1 Overhead Analysis
We analyzed the area, energy, and performance overhead of our
proposals using SPICE simulations based on 45 nm FreePDK li-
brary [33]. We designed fa-TWiCe as four banks of content address-
able memory (CAM) and SRAM, and pa-TWiCe as 64-way SRAM.
We set tREFW , tREFI, tRC, and thRH as 64 ms, 7.8 µs, 45 ns, and
32,768, respectively. We set thPI and maxact to 4 and 165. Also, we
set the number of rows per bank to 131,072.

Area overhead: TWiCe incurs negligible area overhead. Each en-
try in a TWiCe table needs 6 bytes, including (1, 17, 15, 13) bits
for (valid bit, row addr, act cnt, li f e). We designed valid bit and
row addr as CAM for concurrent searching, and act cnt and li f e
as SRAM to save area and energy. It can be optimized by reducing
the size of act cnt in a subset of the entries according to Section 6.2.
According to Section 6.2, 429 entries with 15-bit act cnt and 124 en-
tries with 2-bit act cnt are needed per table, which translates to 2.71
KB per 1 GB DRAM bank. For 64-way pa-TWiCe, set-borrowing
(SB) indicators are added. pa-TWiCe consists of 9 64-way sets, each
with 8 SB indicators, leading to a mere 54-byte increase.

Performance overhead: TWiCe incurs no performance overhead
while performing TWiCe table updates. TWiCe operations are per-
formed in parallel with normal DRAM activation and auto-refresh

393

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn

0.0%
0.1%
0.2%
0.3%
0.4%

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

P
A

R
A

-0
.0

01
P

A
R

A
-0

.0
02

C
B

T
-2

56
T

W
iC

e

SPECrate
(Avg)

mix-high mix-blend FFT MICA PageRank RADIX Average

R
el

a
tiv

e
#

 o
f a

d
di

tio
n

a
l A

C
T

s

(a) Multi-programmed and multi-threaded workloads

0%

2%

4%

6%

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

S1 S2 S3

R
e

la
tiv

e

o
f a

d
di

tio
n

a
l A

C
T

s

(b) Synthetic workloads

Figure 7: The relative number of additional ACTs of PARA-0.001, PARA-0.002, CBT-256, and TWiCe compared to the number of
normal ACTs on multi-programmed and multi-threaded workloads (multi-programmed SPEC CPU2006, multi-threaded SPLASH-
2X, GAP-BS, and MICA applications) and synthetic workloads (S1, S2, and S3). TWiCe does not incur additional ACTs on the multi-
programmed, multi-threaded, S1 and S2 workloads and incurs only 0.006% additional ACTs on S3 (RH attack scenario) workload.
PARA-0.001 and PARA-0.002 produce additional ACTs of 0.1% and 0.2% on average, respectively. CBT-256 generates up to 4.82%
additional ACTs on S2 workload.

Table 4: Default parameters of the simulated system.

Resource Value

Number of cores, MCs 16, 2
Per core:

Freq, issue/commit width 3.6 GHz, 4/4 slots
Issue policy Out-of-Order
L1 I/D $, L2 $ 16 KB, 128 KB private
L1, L2, L3 $ line size 64 B
Hardware (linear) prefetch On

L3 $ 16 MB shared
Per memory controller (MC):

of channels, Req Q 2 Ch, 64 entries
Baseline module type DDR4-2400
Capacity/rank, bandwidth 16 GB, 19.2 GB/s
Scheduling policy PAR-BS [32]
DRAM page policy Minimalist-open [22]

operations. Our simulation results show that the count time of fa-
TWiCe is 3 ns, which is much less than tRC (Table 3). We structured
TWiCe entries into four banks to reduce the time for table updates.
The table update of fa-TWiCe with concurrent access to all banks
takes 140 ns and can be performed during an auto-refresh, which
takes 350 ns (tRFC). For DRAM devices with smaller tRFC, we can
speed up the table update of fa-TWiCe by populating more banks.
pa-TWiCe requires 6 ns for accessing single counter set and 24 ns
for entire sets, which is still shorter than tRC. pa-TWiCe updates the
table faster than fa-TWiCe due to higher parallelism with nine sets
rather than four banks. In theory, TWiCe may have false positives
and issue more ACTs than necessary because thRH is set conser-
vatively. However, the impact of the false positives is negligible in
practice because every false positive requires thRH ACTs but incurs
mere two additional ACTs as shown in Section 7.2.

Energy overhead: TWiCe requires minimal additional energy as
quantified in Table 3. As an ACT count operation accompanies

DRAM activation and precharge operations, its overhead of fa-
TWiCe is only 0.7% on modern DDR4 [30]. Compared to per-bank
auto-refresh energy during tRFC, table update overhead is 0.5%.
pa-TWiCe achieves even lower overhead, because counting a pre-
ferred set and table update requires 55% and 71% lower energy
than fa-TWiCe, respectively. We show the worst-case overhead for
non-preferred sets. However, throughput the multi-programmed and
multi-threaded workload simulations specified in Section 7.2, we
found that the counters for all rows remained in their preferred sets.
Our analysis is based on 45 nm process; if designed with the latest
processes, the energy overhead would be even smaller.

7.2 Performance Overhead
We evaluated how many additional refreshes TWiCe generates to
prevent RH through simulation. We modeled a chip-multiprocessor
system by modifying McSimA+ [3] with default parameters summa-
rized in Table 4. The system consists of 16 out-of-order cores with
a 3.6 GHz operating frequency and 2 memory channels. Each MC
is connected to 2 ranks of DDR4-2400 modules and has 64 request
queue entries. Each rank has 16 banks. We used DRAM timing pa-
rameters and TWiCe thresholds in Table 2. We used minimalist-open
DRAM page policy [22].

Simulations were run using multi-programmed and multi-
threaded workloads. We used the SPEC CPU2006 benchmark
suite [10] for multi-programmed workloads. Using Simpoint [41],
we extracted and used the most representative 100M instructions
per application. We used 29 of SPECrate and 2 of mixed multi-
programmed workloads. Each SPECrate workload consists of 16
copies of one application. In order to make the mixed workloads,
we measured the memory access per kilo-instructions (MAPKI)
of each application and classified nine most memory intensive ap-
plications as spec-high (mcf, milc, leslie3d, soplex, GemsFDTD,
libquantum, lbm, sphinx3, and omnetpp). We then made a mix-high
multi-programmed workload consisting of the spec-high applica-
tions and a mix-blend workload which consists of 16 random SPEC
CPU2006 applications regardless of MAPKI. MICA [28] (multi-
threaded key-value store), PageRank from GAP benchmark suite [5],

394

TWiCe: Preventing Row-hammering by Exploiting Time Window Counters ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

and RADIX and FFT from SPLASH-2X [35] were used for multi-
threaded workloads.

We also used synthetic workloads (S1, S2, and S3) to produce
more controlled situations. S1 injects random access sequences
constantly. S2 represents an adversarial memory access pattern for
CBT, which keeps accessing a half of entire DRAM rows of a bank
until all CBT counters split and then repeatedly accesses the other
half after all counters are allocated (described in Section 3.4). S3 is a
typical RH attack, which repeatedly accesses only one DRAM row.

Figure 7 shows the relative number of additional ACTs (caused
by ARRs in the case of TWiCe) compared to the number of normal
ACTs. We compared TWiCe with previous solutions. PARA-0.001
and PARA-0.002 are PARA refreshing adjacent rows with a proba-
bility of 0.001 and 0.002, respectively. CBT-256 is CBT with 256
counters per bank. We used a threshold of 32K and 11 sub-thresholds
for CBT-256, the values that were used in evaluating CBT [40].

All solutions generate less than 0.3% of additional ACTs to pre-
vent RH on the evaluated multi-programmed and multi-threaded
workloads. Because the memory access patterns of these work-
loads do not actually cause an RH attack, the additional ACTs
on these workloads are due to false positives. TWiCe generated
no additional ACTs on all multi-programmed and multi-threaded
workloads. PARA-0.001, PARA-0.002, and CBT-256 produced ad-
ditional ACTs of 0.1%, 0.2%, and 0.05% on average, respectively.

TWiCe also rarely generates additional ACTs on the synthetic
workloads. It only generates additional ACTs of 0.006% on S3, and
still does not make additional ACTs on S1 and S2. PARA-0.001
and PARA-0.002 shows 0.1% and 0.2% additional ACTs on S1,
S2 and S3, respectively. By contrast, CBT-256 generates additional
ACTs much more frequently on these synthetic workloads. Espe-
cially on S2 whose access pattern is adversarial to CBT in particular,
it requires additional ACTs of 4.82%. For S3, which represents an
RH attack pattern, CBT-256 requires 0.39% of additional ACTs.
Because the number of rows that the last level (level 11) counter in
CBT-256 [40] should track is 131,072 / 211−1 = 217 / 210 = 128,
it has to refresh 128 rows for every 32K ACTs. Therefore, the fre-
quency of false positive detection by TWiCe is orders of magnitude
lower than that by the previous RH prevention schemes on adversar-
ial memory access patterns.

8 RELATED WORK
The previous RH solutions were analyzed in Section 3. Here, we
briefly compare TWiCe, which extended our proposals [27], with
other studies extending an RCD and with proposals providing mech-
anisms for refreshing victim rows.

RCD: There have been studies augmenting an RCD for various
purposes. MCDIMM [2] uses a demux register in an RCD to divide
a command and address bus to multiple virtual channels, each re-
ceiving distinct commands. Chameleon [4] modifies an RCD to sup-
port near-DRAM acceleration implemented in data buffers, which
conventionally just repeat data signals from DRAM. DrMP [47]
integrates a small table in an RCD in order to cache mapping vectors
which record row segments with lower access latency values from
each DRAM device. In this paper, we propose to place a TWiCe
table, which is used to prevent RH, within an RCD.

TRR: Modern LPDDR4 [18] and DDR4 [17] provide a target
row refresh (TRR) mode to facilitate refreshing victim rows. If
the number of ACTs to the target row exceeds a threshold (MAC),
DRAM enters a TRR mode, and then a MC can send three pairs of
ACT/PRE commands to the target row. However, there is no detail
on how to count the number of ACTs to each row and how to get
the adjacent row addresses in a MC. Intel supports pseudo TRR to
mitigate RH on DDR3 [14], however also without disclosing details
of how to identify aggressor rows. TWiCe fills this gap.

9 CONCLUSION
We proposed TWiCe, a new counter-based hardware solution to
combat DRAM row-hammering (RH). TWiCe precisely tracks the
number of ACTs to each DRAM row with a small number of coun-
ters and provides strong protection; adjacent rows are guaranteed
to be refreshed before the number of ACTs exceeds a RH thresh-
old. The precise protection is possible with low overhead because
tracking the number of ACTs only to a small subset of frequently
activated DRAM rows is sufficient. To exceed the RH threshold
within a refresh window, a row must be frequently activated, but as
the total number of DRAM row ACTs over a period is limited by the
DRAM interface, the maximum number of rows that can be activated
frequently, and thereby row-hammered, is bounded. We analytically
derive the number of counters that can guarantee precise protection
from the RH attack. We distribute the functionality of TWiCe among
a MC, RCDs, and DRAM devices, achieving an efficient implemen-
tation. We further reduce the area and energy overhead of TWiCe
by leveraging a pseudo-associative cache design and separating the
TWiCe table. Our analysis shows that TWiCe incurs less than 0.7%
area/energy overhead on modern DRAM devices and it is free of
false positive detection on all the evaluated workloads except no
more than 0.006% of additional ACTs on adversarial memory access
patterns including RH attack scenarios.

ACKNOWLEDGMENTS
This research was supported in part by the NRF of Korea grant (NRF-
2017R1A2B2005416) and by the R&D program of MOTIE/KEIT
(10077609).

REFERENCES
[1] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin. 2017. When

Good Protections Go Bad: Exploiting Anti-DoS Measures to Accelerate Rowham-
mer Attacks. In IEEE HOST.

[2] Jung Ho Ahn, Jacob Leverich, Robert S. Schreiber, and Norman P. Jouppi. 2008.
Multicore DIMM: an Energy Efficient Memory Module with Independently Con-
trolled DRAMs. IEEE CAL 8, 1 (2008).

[3] Jung Ho Ahn, Sheng Li, Seongil O, and Norman P. Jouppi. 2013. McSimA+: A
Manycore Simulator with Application-level+ Simulation and Detailed Microarchi-
tecture Modeling. In ISPASS.

[4] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
2016. Chameleon: Versatile and Practical Near-DRAM Acceleration Architecture
for Large Memory Systems. In MICRO.

[5] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark
Suite. arXiv preprint arXiv:1508.03619 (2015).

[6] Ishwar Bhati, Mu-Tien Chang, Zeshan Chishti, Shih-Lien Lu, and Bruce Jacob.
2016. DRAM Refresh Mechanisms, Penalties, and Trade-offs. IEEE Trans.
Comput. 65, 1 (2016).

[7] Sanguhn Cha, Seongil O, Hyunsung Shin, Sangjoon Hwang, Kwangil Park,
Seong Jin Jang, Joo Sun Choi, Gyo Young Jin, Young Hoon Son, Hyunyoon
Cho, Jung Ho Ahn, and Nam Sung Kim. 2017. Defect Analysis and Cost-Effective
Resilience Architecture for Future DRAM Devices. In HPCA.

395

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn

[8] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha
Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. 2017.
Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Skylake.
IEEE Micro 37, 2 (2017).

[9] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. 2015. A Run-time
Memory Hot-row Detector. http://apt.cs.manchester.ac.uk/projects/ARMOR/
RowHammer/.

[10] John L. Henning. 2007. SPEC CPU2006 Memory Footprint. Computer Architec-
ture News 35, 1 (2007).

[11] Nishad Herath and Anders Fogh. 2015. These are Not Your Grand Daddys CPU
Performance Counters - CPU Hardware Performance Counters for Security. Black
Hat Briefings (2015).

[12] Masashi Horiguchi and Kiyoo Itoh. 2013. Nanoscale Memory Repair. Springer
Publishing Company, Incorporated.

[13] Michael Huang, Jose Renau, Seung-Moon Yoo, and Josep Torrellas. 2001. L1
Data Cache Decomposition for Energy Efficiency. In ISLPED.

[14] Intel. 2017. Xeon Processor E5 v3 Product Family: Specification Update.
[15] Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory Systems: Cache,

DRAM, Disk. Morgan Kaufmann Publishers Inc.
[16] JEDEC. 2009. Graphic Double Data Rate 5 (GDDR5) Specification.
[17] JEDEC. 2012. DDR4 SDRAM Standard. JESD79-4B.
[18] JEDEC. 2014. Low Power Double Data Rate 4 (LPDDR4). JESD209-4B.
[19] JEDEC. 2015. 288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-

2400/PC4-2666/PC4-3200 DDR4 SDRAM Load Reduced DIMM Design Specifi-
cation.

[20] JEDEC. 2015. 288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-
2400/PC4-2666/PC4-3200 DDR4 SDRAM Registered DIMM Design Specifica-
tion.

[21] JEDEC. 2016. DDR4 Registering Clock Driver. JESD82-31.
[22] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. 2011. Minimalist

Open-page: A DRAM Page-mode Scheduling Policy for the Many-core Era. In
MICRO.

[23] Harshad Kasture and Daniel Sanchez. 2016. TailBench: A Benchmark Suite and
Evaluation Methodology for Latency-Critical Applications. In IISWC.

[24] Brent Keeth, R. Jacob Baker, Brian Johnson, and Feng Lin. 2007. DRAM Circuit
Design: Fundamental and High-Speed Topics (2nd ed.). Wiley-IEEE Press.

[25] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. 2015. Architectural
Support for Mitigating Row Hammering in DRAM Memories. IEEE CAL 14, 1
(2015).

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In ISCA.

[27] Eojin Lee, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. 2018. TWiCe: Time
Window Counter Based Row Refresh to Prevent Row-Hammering. IEEE Com-
puter Architecture Letters 17, 1 (2018), 96–99.

[28] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In NSDI.

[29] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
ISCA.

[30] Micron. 2016. DDR4 SDRAM System-Power Calculator.
[31] Ornur Mutlu and Jeremie S Kim. 2019. RowHammer: A Retrospective. arXiv

preprint arXiv:1904.09724 (2019).
[32] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-Aware Batch Scheduling:

Enhancing both Performance and Fairness of Shared DRAM Systems. In ISCA.
[33] NCSU. 2011. FreePDK45. https://www.eda.ncsu.edu/wiki/FreePDK45:Contents.
[34] Kyungbae Park, Chulseung Lim, Donghyuk Yun, and Sanghyeon Baeg. 2016.

Experiments and Root Cause Analysis for Active-precharge Hammering Fault
in DDR3 SDRAM Under 3× nm Technology. Microelectronics Reliability 57
(2016).

[35] PARSEC Group. 2011. A Memo on Exploration of SPLASH-2 Input Sets. Prince-
ton University (2011).

[36] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack.
In USENIX Security Symposium.

[37] Satish Kumar Sadasivam, Brian W Thompto, Ron Kalla, and William J Starke.
2017. IBM Power9 Processor Architecture. IEEE Micro 37, 2 (2017).

[38] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges. Black Hat 15 (2015).

[39] Mohammad Seyedzadeh, Alex Jones, and Rami Melhem. 2018. Mitigating Word-
line Crosstalk using Adaptive Trees of Counters. In ISCA.

[40] Seyed M Seyedzadeh, Alex K Jones, and Rami Melhem. 2017. Counter-Based
Tree Structure for Row Hammering Mitigation in DRAM. IEEE CAL (2017).

[41] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically Characterizing Large Scale Program Behavior. In ASPLOS.

[42] Teja Singh, Alex Schaefer, Sundar Rangarajan, Deepesh John, Carson Henrion,
Russell Schreiber, Miguel Rodriguez, Stephen Kosonocky, Samuel Naffziger, and
Amy Novak. 2018. Zen: An Energy-Efficient High-Performance × 86 Core. IEEE
Journal of Solid-State Circuits 53, 1 (2018).

[43] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making
DRAM Stronger Against Row Hammering. In DAC.

[44] Young Hoon Son, Sukhan Lee, Seongil O, Sanghyuk Kwon, Nam Sung Kim, and
Jung Ho Ahn. 2015. CiDRA: A Cache-inspired DRAM Resilience Architecture.
In HPCA.

[45] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cris-
tiano Giuffrida. 2016. Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In ACM CCS.

[46] Thomas Yang and Xi-Wei Lin. 2019. Trap-Assisted DRAM Row Hammer Effect.
IEEE Electron Device Letters 40, 3 (2019), 391–394.

[47] Xianwei Zhang, Youtao Zhang, Bruce R. Childer, and Jun Yang. 2017. DrMP:
Mixed Precision-Aware DRAM for High Performance Approximate and Precise
Computing. In PACT.

396

http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Device Organization
	2.2 Sparing DRAM Rows to Combat Reliability Challenges
	2.3 Main Memory Subsystem Organization
	2.4 How Main Memory Operates

	3 Existing Row-hammer Protection and Their Limitations
	3.1 Row-hammering (RH)
	3.2 Row-hammer (RH) Threshold
	3.3 Previous RH Solutions
	3.4 Limitations of the Previous RH Solutions

	4 TWiCe: Time Window Counter based RH Prevention
	4.1 Bounding Counters without Missing RH Aggressor Candidates
	4.2 TWiCe: Time Window Counter
	4.3 Proof of RH Prevention
	4.4 Counter Table Size

	5 Architecting TWiCe
	5.1 Location of TWiCe Table
	5.2 Augmenting DRAM Interface with a New Adjacent Row Refresh (ARR) Command

	6 Optimizing TWiCe
	6.1 Pseudo-associative TWiCe
	6.2 Separating TWiCe table

	7 Analysis and Evaluation
	7.1 Overhead Analysis
	7.2 Performance Overhead

	8 Related Work
	9 Conclusion
	References

