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Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What is Read Mapping?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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What is Data Analysis?

“The purpose of computing is [to gain] 

insight, not numbers” 

4

Richard Hamming



What is Genome Analysis?

5https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 
https://www.nature.com/subjects/genomic-analysis



What is Genome Analysis?

6https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 
https://www.nature.com/subjects/genomic-analysis



DNA Testing

7https://www.myheritage.ch/dna https://www.23andme.com/

https://www.myheritage.ch/dna
https://www.23andme.com/


Human Chromosomes (23 Pairs)

8
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Finding SNPs Associated with Complex Trait

Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA 
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SNP: single nucleotide polymorphism

computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies


Genome-Wide Association Study (GWAS)
n Detecting genetic variants associated with phenotypes 

using two groups of people.

11
Manhattan plot

variant with higher frequency in cases than controls

https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 



Similar Association Studies

12
Wainberg+, "Opportunities and challenges for transcriptome-wide 
association studies”, Nature genetics, 2019.

https://www.nature.com/articles/s41588-019-0385-z


SNPs and Personalized Medicine 

13https://opensnp.org/snps/rs12979860



Personalized Medicine for Critically Ill Infants

14Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 
cost of hospitalization”, NPJ Genomic Medicine, 2018

n rWGS can be performed in 2-day (costly) or 5-day time to 

interpretation. 

n Diagnostic rWGS for infants

q Avoids morbidity

q Reduces hospital stay length by 6%-69%

q Reduces inpatient cost by $800,000-$2,000,000.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/


Personalized Medicine in UK

15

“From 2019, all seriously ill children in UK 

will be offered whole genome sequencing 
as part of their care”



Much Larger Structural Variations!

16

AUTISM
Weiss, N Eng J Med 2008
Deletion of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

SCHIZOPHRENIA
McCarthy, Nat Genet 2009
Duplication of 593 kb

UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

Deletion in the short arm 
of chromosome 16 (16p11.2)

Duplication in the short arm 
of chromosome 16 (16p11.2)

CNV: copy number variation



Recommended Reading

17
Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

https://www.nature.com/articles/s41576-019-0180-9
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What is Intelligent Genome Analysis?
n Fast genome analysis

q Real-time analysis?

n Population-scale genome analysis
q Number of analyses per day!

n Using intelligent architectures
q Small specialized HW with less data movement

n DNA is a valuable asset
q Controlled-access analysis

n Avoiding erroneous analysis
q E.g., your father is not your father

19

Bandwidth

Scalability 

Energy-efficiency &

Portability

Privacy

Accuracy



20

Does intelligent genome 
analysis really matter?



Fast Genome Analysis?
n Fast genome analysis in mere seconds using limited 

computational resources (i.e., personal computer or small 
hardware).

21

1997 2015     



Rapid Surveillance of Disease Outbreaks?

22
Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

https://www.nature.com/articles/nature16996


Scalable SARS-CoV-2 Testing

23

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020

https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2


Population-Scale Microbiome Profiling

24https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/


Population-Scale Microbiome Profiling

25https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Goal: What organisms are present in a given 
environment and how abundant are they?

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/


City-Scale Microbiome Profiling

26

Afshinnekoo+, "Geospatial Resolution of Human and 
Bacterial Diversity with City-Scale Metagenomics", Cell 
Systems, 2015

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2


Population-Scale Microbiome Profiling

27
Danko+, "A global metagenomic map of urban microbiomes and antimicrobial resistance", Cell, 2021

https://www.cell.com/cell/fulltext/S0092-8674(21)00585-7


Plague in New York Subway System?

28



Plague in New York Subway System?

29

The findings of Yersinia Pestis in the subway received wide coverage in the lay 
press, causing some alarm among New York residents

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html


Failure of Bioinformatics

30

Living in a microbial world
Charles Schmidt
Nature Biotechnology, volume 35, pages401–403 (2017)
https://www.nature.com/articles/nbt.3868

https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868


Intelligent Architecture?

31
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Intelligent Architecture?

32
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine

https://nanoporetech.com/products/smidgion

https://nanoporetech.com/products/smidgion


Privacy-Preserving Genome Analysis?

33

Alser+, "Can you really anonymize the donors of genomic data in today’s digital 
world?" 10th International Workshop on Data Privacy Management (DPM), 2015.

https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16


Can you Really Anonymize the Donors?

34

Alser+, "Can you really anonymize the donors of genomic data in today’s 
digital world?" 10th International Workshop on Data Privacy Management 
(DPM), 2015.

https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16


Privacy-Preserving DNA Test

35https://nebula.org/whole-genome-sequencing/

https://nebula.org/whole-genome-sequencing/


Achieving Intelligent Genome Analysis?

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?

36
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Genome Analysis

38

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine can read the 
entire content of a genomeNO



Genome Analysis

39

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine can read the 
entire content of a genomeNO

Why?!



Suggested Readings

40

https://www.nature.com/articles/nmeth.f.272

https://www.nature.com/articles/nmeth.f.272


Suggested Readings

41
https://www.nature.com/articles/nbt1486

https://www.nature.com/articles/nbt1486


Genome Sequencer is a Chopper

42

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

44 hours

1x1012 bases

* NovaSeq 6000

*

*

<1000 $

Read Mapping

Reads



Genome Sequencer is a Chopper

43

Current sequencing machine provides 
small randomized fragments 

of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 
2021

Read Mapping

Reads

https://arxiv.org/abs/2003.00110


… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore 
SmidgION

High-Throughput Sequencers

44

Pacific 
Biosciences 
Sequel II

Oxford 
Nanopore 
PromethION



Oxford Nanopore Sequencers

45https://nanoporetech.com/products/comparison

MinION
Mk1B

MinION 
Mk1C GridION Mk1 PromethION 

24
PromethION

48

Read length > 2Mb > 2Mb > 2Mb > 2Mb > 2Mb

Yield per flow cell 50 Gb 50 Gb 50 Gb 220 Gb 220 Gb

Number of flow 
cells per device 1 1 5 24 48

Yield per device <50 Gb <50 Gb <250 Gb <5.2 Tb <10.5 Tb

Starting price $1,000 $4,990 $49,995 $195,455 $327,455

https://nanoporetech.com/products/comparison


Illumina Sequencers

46

Run time 9.5–19 hrs 4–24 hrs 4–55 hrs 12–30 hrs 24-48 hrs 13-44 hrs

Max. reads 
per run 4 million 25 million 25 million 400 million 1 billion 20 billion

Max. read 
length 2 × 150 bp 2 × 150 bp 2 × 300 bp 2 × 150 bp 2 × 150 bp 2 x 250

Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb

Estimated 
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000

https://www.illumina.com/systems/sequencing-platforms.html

https://www.illumina.com/systems/sequencing-platforms.html


How Does Illumina Machine Work?

47
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How Does Illumina Machine Work?
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Glass flow 
cell surface

A

T
C
A
G
T
A
C
AT

Optical 
Sensor

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read



How Does Illumina Machine Work?
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TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read

Check Illumina virtual tour:
https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html


How Does Nanopore Machine Work?

50

n Nanopore is a nano-scale hole (<20nm).
n In nanopore sequencers, an ionic current passes through the nanopores
n When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
n This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

https://phys.org/news/2013-12-gene-sequencing-future.html


How Does Nanopore Machine Work?

51

n Nanopore is a nano-scale hole (<20nm).
n In nanopore sequencers, an ionic current passes through the nanopores
n When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
n This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

Check Nanopore virtual tour:
https://nanoporetech.com/resource-centre/minion-video

https://phys.org/news/2013-12-gene-sequencing-future.html
https://nanoporetech.com/resource-centre/minion-video


Machine Learning for Nanopore Machine

52

Wan+
“Beyond sequencing: machine learning algorithms extract biology 
hidden in Nanopore signal data”
Trends in Genetics, October 25, 2021

https://www.cell.com/trends/genetics/pdf/S0168-9525(21)00257-2.pdf


Common Disadvantages!

53

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

Regardless the sequencing machine, 
reads still lack information about their order and location

(which part of genome they are originated from) 



Solving the Puzzle

54
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HTS Sequencing Output

55

q 500-2M bp
q high error rate (~15%)

q 100-300 bp
q low error rate (~0.1%)

Large pieces of a puzzle 
long reads (ONT & PacBio)

Small pieces of a puzzle
short reads (Illumina)

Which sequencing technology is the best?

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HiFi Reads (PacBio)

56

Wenger+, "Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome", Nature Biotechnology, 2019

But still very 
expensive!

https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

Long: 10-20 kb
Accurate: 99.8%

https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/


Changes in sequencing technologies 
can render some 

read mapping algorithms irrelevant

57



Read Mapping in 111 pages! 

58

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Looking forward, 
Will we be able to read 

the entire genome sequence?

59
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60



Read Mapping

61

Reference genomeReads
“text format”

DNA Sample
“chemical format”

Subject genome
“text format”

Map reads to a known reference genome with some 
minor differences allowed



Solving the Puzzle

62
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

.FASTA file .FASTQ file

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Cracking the 1st Human Genome Sequence
n 1990-2003: The Human Genome Project (HGP) provides a 

complete and accurate sequence of all DNA base pairs that make 
up the human genome and finds 20,000 to 25,000 human genes.

63

13 years

3.2 x109 

bases

>3x109 $



Three Decades & Yet to be Complete!

64

200 million 
new bases

https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1

27 May 2021

https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1


Obtaining the Human Reference Genome
n GRCh38.p13
n Description: Genome Reference Consortium Human Build 38 

patch release 13 (GRCh38.p13)

n Organism name: Homo sapiens (human)

n Date: 2019/02/28

n 3,099,706,404 bases

n Compressed .fna file (964.9 MB)

n https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

65

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

….

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39


How Long is DNA?

66

Phi X174 virus

5.386 Killo bp

E. coli O157:H7

5.44 Million bp

Homo Sapiens

3.2 Billion bp

Onion, Allium Cepa

16 Billion bp

Paris Japonica

149 Billion bp



Obtaining .FASTQ Files
n https://www.ncbi.nlm.nih.gov/sra/ERR240727

67

https://www.ncbi.nlm.nih.gov/sra/ERR240727


68

Let’s learn
how to map a read



Read Mapping: A Brute Force Algorithm

69

Very expensive! 
O(m2kn)

Reference

Read

m: read length
k: no. of reads
n: reference genome length



Read Mapping in 111 pages! 

70

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Feedback From Our Community!

71https://twitter.com/mealser/status/1435223377644503040

https://twitter.com/mealser/status/1435223377644503040
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Mapping a read is 
similar to querying
the yellow pages!



Similar to Searching Yellow Pages!

73

n Step 1: Get the page number from the book’s 
index using a small portion of the name (e.g., 1st 
letter).

n Step 2: Retrieve the page(s).

n Step 3: Match the full name & get the phone 
number.



Matching Each Read with Reference Genome

74

.FASTA file:

.FASTQ file:



Step 1: Indexing the Reference Genome

75

?



Popular Indexing Technique 

76

Hashing is the most popular 
indexing technique for 

read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


Step 1: Indexing the Reference Genome

77

Index the first 
seed at location 1

Seed=k-mer
(string of length k)



Genome Index Properties
n The index is built only once for each reference.

n Seeds can be overlapping, non-overlapping, spaced, 
adjacent, non-adjacent, minimizers, compressed, …

78

Tool Version Index Size* Indexing 
Time

mrFAST 2.2.5 16.5 GB 20.00 min

minimap2 0.12.7 7.2 GB 3.33 min

BWA-MEM 0.7.17 4.7 GB 49.96 min
*Human genome = 3.2 GB



Performance of Human Genome Indexing 

79

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

Mapper

https://arxiv.org/abs/2003.00110


Step 2: Query the Index Using Read Seeds
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Step 2: Query the Index Using Read Seeds
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Step 2: Query the Index Using Read Seeds

83

We can query the Hash table with 
substrings from reads to quickly find a list 

of possible mapping locations



Step 3: Sequence Alignment (Verification)
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Step 3: Sequence Alignment (Verification)
n Edit distance is defined as the minimum number of edits 

(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.

o - - r g a n i z a t i o n
o p e r - - - - - a t i o n

o - - r g a n i z a t i o n
o p e r - a - - - - t i o n

o r g a n i z a t i o n
t r - a n s l a t i o n

o r g a n - i z a t i o n
t r - a n s l - a t i o n

o r g a n i z - a t i o n
t r - a n - s l a t i o n

Ref
Read

Ref
Read

Ref
Read

Ref
Read

Ref
Read

organization x operation organization x translation

match
deletion
insertion
mismatch

86

Edit distance = 7

Edit distance = 4



Popular Algorithms for Sequence Alignment

Smith-Waterman remains 
the most popular algorithm 

since 1988

Hamming distance is 
the second most popular technique 

since 2008
87

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


An Example of Hash Table Based Mappers

n + Guaranteed to find all mappings à very sensitive
n + Can tolerate up to e errors

88

https://github.com/BilkentCompGen/mrfast

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


Performance of Read Mapping
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Mapper

Mapper

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


The Need for Speed

90

Mapper

Did we realize the need for 
faster genome analysis?

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


Read Mapping
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Reference genomeReads
“text format”

DNA Sample
“chemical format”

Subject genome
“text format”

Map reads to a known reference genome with some 
minor differences allowed



Metagenomics Analysis
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Reference 
Database

Reads
“text format”

genetic material recovered 
directly from environmental 

samples

Reads from different unknown donors at sequencing 
time are mapped to many known reference genomes



Genomics vs. Metagenomics

94

Genomics

Metagenomics



More on Metagenomic Profiling: Metalign
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Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
“Metalign: efficient alignment-based metagenomic profiling via containment min 
hash” Genome Biology, September 2020.
[Talk Video (7 minutes) at ISMB 2020]
[Source code]

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://www.youtube.com/watch?v=dh3RHrkbaZA
https://github.com/nlapier2/Metalign


Check Also CAMI II Paper
F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson,
Mohammed Alser, and others
“Critical Assessment of Metagenome Interpretation - the second 
round of challenges”
bioRxiv, 2021
[Source Code]

96

https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://github.com/CAMI-challenge/second_challenge_evaluation


Check Also MiCoP

97

Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu, 
David Koslicki & Eleazar Eskin
“MiCoP: microbial community profiling method for detecting viral and fungal organisms 
in metagenomic samples” 
BMC Genomics, June 2019.
[Source code]

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://github.com/smangul1/MiCoP


Challenges in Read Mapping
n Need to find many mappings of each read

n Need to tolerate variances/sequencing errors in each read

n Need to map each read very fast (i.e., performance is 
important, life critical in some cases)

n Need to map reads to both forward and reverse strands

98https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1



Revisiting the Puzzle

99
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Reference Genome Bias

100Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humans of 
African descent” Nature genetics, 2019.

“African pan-genome contains ~10% more DNA 
bases than the current human reference genome”

https://www.nature.com/articles/s41588-018-0273-y


Time to Change the Reference Genome

101

“Switching to a consensus reference would offer important 
advantages over the continued use of the current reference with 

few disadvantages”
Ballouz+, "Is it time to change the reference genome?", Genome Biology, 2019

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4


GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGA 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

Analysis is Bottlenecked in Read Mapping!!
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Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603


Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What is Read Mapping?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
103



104

What makes 
read mapping 
a bottleneck? 



A Tsunami of Sequencing Data

105

A Tera-scale increase in sequencing production in the past 25 years



Lack of Specialized Compute Capability

106

Specialized Machine
for Sequencing

General-Purpose Machine
for Analysis

FAST                 SLOW



Today’s Computing Systems
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CORE 0

CORE 2 CORE 3

L2 CACHE 1

L2 CACHE 2

L2 CACHE 3

DRAM MEMORY 
CONTROLLER

Storage (SSD/HDD) MicroprocessorMain Memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical 
design of an electronic computing instrument,” 1946.

von Neumann model, 1945
where the CPU can access data stored in an off-chip 
main memory only through power-hungry bus



The Problem

Data analysis 
is performed 

far away from the data

108



Data Movement Dominates Performance

109

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

n Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

✻ Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
★ Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
☆ Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160x-800x more 
energy compared to performing an addition operation  



Read Mapping Execution Time

110

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

KSW2
45%

Seed 
Chaining

16%

Sorting 
Seeds
29%

Collect 
Matching 

Seeds
8%

Collect Minimizers
2%

>60%
of the read mapper’s 

execution time is spent 
in sequence alignment

minimap2



N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Sequence Alignment in Unavoidable

n Quadratic-time dynamic-
programming algorithm

etc

Processing row (or column) after another
etc

n Data dependencies limit the 
computation parallelism

etc

WHY?!

NETHERLANDS x SWITZERLAND
NETHERLANDS x S
NETHERLANDS x SW
NETHERLANDS x SWI
NETHERLANDS x SWIT
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE
NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND 

Enumerating all possible prefixes
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N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Sequence Alignment in Unavoidable

n Quadratic-time dynamic-
programming algorithm

n Data dependencies limit the 
computation parallelism

n Entire matrix is computed 
even though strings can be 
dissimilar.

Enumerating all possible prefixes

Processing row (or column) after another

Number of differences is computed only at the backtraking step.
112



Computational Cost is Mathematically Proven

113https://arxiv.org/abs/1412.0348

https://arxiv.org/abs/1412.0348


Large Search Space for Mapping Location

of candidate locations 
have high dissimilarity 

with a given read

98% 

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G
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Computing System

115

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Richard Feynman, "There's Plenty of Room at the Bottom: An Invitation 
to Enter a New Field of Physics”, a lecture given at Caltech, 1959.

Leiserson+, "There’s plenty of room at the Top: What will drive 
computer performance after Moore’s law?", Science, 2020

Data

Image source: https://science.sciencemag.org/content/368/6495/eaam9744

https://www.youtube.com/watch?v=4eRCygdW--c
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744


Software & Hardware Optimizations

116

for i in xrange(4096):
for j in xrange(4096):
for k in xrange(4096):
C[i][j] += A[i][k] * B[k][j]

Implementation Running time (s) Absolute speedup

Python 25,552.48 1x
Java 2,372.68 11x

C 542.67 47x
Parallel loops 69.80 366x

Parallel divide and conquer 3.80 6,727x
plus vectorization 1.10 23,224x
plus AVX intrinsics 0.41 62,806x

Leiserson+, "There’s plenty of room at the Top: What will drive 
computer performance after Moore’s law?", Science, 2020

Multiplying Two 4096-by-4096 Matrices

https://science.sciencemag.org/content/368/6495/eaam9744


FASTQ Parsing

117https://github.com/lh3/biofast

https://github.com/lh3/biofast


We need intelligent algorithms 
and intelligent architectures

that handle data well

118



Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What is Read Mapping?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
119



Accelerating Read Mapping

120
Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.

https://arxiv.org/pdf/2008.00961.pdf


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
121



Our Contributions

122

GateKeeper [Bioinformatics’17]

MAGNET [AACBB’18]

Shouji [Bioinformatics’19]

SneakySnake [Bioinformatics’20]GenASM [MICRO 2020]

SneakySnake [IEEE Micro’21]

Specialized Pre-alignment Filtering 
Accelerators (GPU, FPGA) 

GRIM-Filter [BMC Genomics’18]

GateKeeper-GPU [arXiv’21]

Near-memory/In-memory 
Pre-alignment Filtering

Near-memory Sequence Alignment

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GenASM [MICRO 2020]



Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
123



FastHASH
n Goal: Reducing the number of seed (k-mer) locations.

q Heuristic (limits the number of mapping locations for each 
seed).

q Supports exact matches only.

124



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

125

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read

Reference genomeValid mapping Invalid mapping



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

n Observation 2 (Cheap k-mers)
q Key insight: Some k-mers are cheaper to verify than others 

because they have shorter location lists (they occur less 
frequently in the reference genome)

q Key Idea: Read mapper can choose the cheapest k-mers and 
verify their locations

126



Cheap K-mer Selection
n occurrence threshold = 500

127

AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read

314

1231

4414

9219

4 loc.

338

…

…

…

…

1K loc.

376

…

…

…

…

2K loc.

326

1451

2 loc.

350

1470

2 loc.

388

…

…

…

…

1K loc.

Previous work needs 
to verify:

3004 locations

FastHASH verifies only:

8 locations

Locations

Number of Locations

Cheapest 3 k-mers
Expensive 3 k-mers



FastHASH Conclusion
n Problem: Existing read mappers perform poorly in mapping 

billions of short reads to the reference genome, in the 
presence of errors

n Observation: Most of the verification calculations are 
unnecessary à filter them out

n Key Idea: To reduce the cost of unnecessary verification
q Select Cheap and Adjacent k-mers.

n Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings

128



More on FastHASH

n Download source code and try for yourself
q Download link to FastHASH

129

http://mrfast.sourceforge.net/


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
130



Pre-alignment Filtering Technique

Sequence Alignment is expensive

Our goal is to reduce the need for dynamic 
programming algorithms

131



Key Idea

132

Genomic Strings

Similar 
Strings

Dissimilar 
Strings

Find number and location 
of differences?

Ignore them if the number 
of differences exceeds a 

threshold.

EXPE
NSIV

E!



1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

Ideal Filtering Algorithm 

133

Step 2

Query 
the 

Index

Step 3

Read 
Alignment



GateKeeper

134

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


GateKeeper
n Key observation:

q If two strings differ by E edits, then every bp match can be 

aligned in at most 2E shifts. 

n Key idea:
q Compute “Shifted Hamming Distance”: AND of 2E+1 Hamming 

vectors of two strings, to identify invalid mappings 

n Uses bit-parallel operations that nicely map to FPGA architectures

n Key result:
q GateKeeper is 90x-130x faster than SHD (Xin et al., 2015) and 

the Adjacency Filter (Xin et al., 2013), with only a 7% false 

positive rate

q The addition of GateKeeper to the mrFAST mapper (Alkan et 

al., 2009) results in 10x end-to-end speedup in read mapping
135



Hamming Distance (∑⊕)

136

I S T A N B U L

I S T A N B U L

8 matches 0 mismatches3 matches 5 mismatches

To cancel the effect of a 
deletion, we need to shift 
in the right direction

Edit = 1 Deletion



I S T N B U L

Shifted Hamming Distance (Xin+ 2015) 

137

7 matches 1 mismatches

XOR

XOR
AND

Edit = 1 Deletion

I S T N B U L0 0 0 1

1 1 1 0 0 0 0

1 1 1

0   0   0   1   0   0   0   0Count 
1’s

I S T A N B U L



GateKeeper Walkthrough

138

Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

--- Masks after amendment ---

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000AND Mask :

 Alignment :
Needleman-Wunsch

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.

Independent vectors can be processed in parallel using 
hardware technologies
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A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate1 2

Read Alignment
Slow & Zero False Positives3

Billions of Short Reads

Hardware Acceleratorx1012
mappings

x103
mappings

Low Speed & High Accuracy
Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our Solution: GateKeeper

Alignment 
Filter

st1
FPGA-based 

Alignment Filter.



AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d)
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Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

• (2E+1)*(ReadLength) 5-input LUT. 

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 10 101 10 0 11 1 1 000 1 0 0 1 0
Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 11 111 11 1 1 11 00 0 11 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input
LUT

• E right-shift registers (length=ReadLength)
• E left-shift registers (length=ReadLength)
• (2E+1) * (ReadLength) 2-XOR operations.

• (2E)*(ReadLength) 2-AND 
operations.

• (ReadLength/4) 5-input LUT.
• !"#$ReadLength-bit counter.

1001X

X1001



Virtex-7 FPGA Layout 
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The LUTs in 7 series 
FPGAs can be 
configured as either a 
6-input LUT with one 
output, or as two 5-
input LUTs with 
separate outputs

“7 Series FPGAs Configurable Logic Block”, User Guide, Xilinx 2016

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf


GateKeeper Accelerator Architecture
n Maximum data throughput =~13.3 billion bases/sec
n Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

n Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers
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Preprocessing Host (CPU)

input reads 
(.fastq)

reference 
genome (.fasta)

Read 
Encoder

read pairs 
(mrFAST 
output)

GateKeeper 
Processing 

Core #1

GateKeeper 
Processing 

Core #N. . .  .
. . .  .

Read Controller

Mapping ControllerFIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments
(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 
(CPU/FPGA)GateKeeper

PCIe

PCIe

Input stream 
of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

A



FPGA Chip Layout
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42
.5

m
m

42.5mm

GateKeeper: 17.6%, PCIe Controller, RIFFA, and IO: 5%

GateKeeper 
Logic Cells

PCIe 
Controller, 

RIFFA, and IO

300 bp

E=15



GateKeeper: Speed & Accuracy Results
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90x-130x faster filter 
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate
than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online 
github.com/BilkentCompGen/GateKeeper

https://github.com/BilkentCompGen/GateKeeper


GateKeeper Conclusions

n FPGA-based pre-alignment greatly speeds up read mapping
q 10x speedup of a state-of-the-art mapper (mrFAST)

n FPGA-based pre-alignment can be integrated with the 
sequencer
q It can help to hide the complexity and details of the FPGA
q Enables real-time filtering while sequencing
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More on SHD (SIMD Implementation)
n Download and test for yourself 
n https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

150

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


More on GateKeeper
n Download and test for yourself 

https://github.com/BilkentCompGen/GateKeeper

151

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping”, Bioinformatics, 2017.

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
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Can we do better? Scalability?



Shouji (障子)

159

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Shouji

160

n Key observation:
q Correct alignment always includes long identical subsequences. 
q Processing the entire mapping at once is ineffective for hardware 

design.
n Key idea:

q Use overlapping sliding window approach to quickly and 
accurately find all long segments of consecutive zeros.

n Key result:
q Shouji on FPGA is up to three orders of magnitude faster than its 

CPU implementation.
q Shouji accelerates best-performing CPU read aligner Edlib 

(Bioinformatics 2017) by up to 18.8x using 16 filtering units that 
work in parallel.

q Shouji is 2.4x to 467x more accurate than GateKeeper 
(Bioinformatics 2017) and SHD (Bioinformatics 2015).
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

1
1
1
4
1
2
1

search window # 1 search window # 5

0
0

0
0

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector

1
1

3
1

0
2

0
0

0
1

0

0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

search window # 1 search window # 5

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector 0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Sliding Window Size
n The reason behind the selection of the window size is due 

to the minimal possible length of the identical subsequence 
that is a single match (e.g., such as `101').
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Hardware Implementation
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m

m

m

Text . . . . . .

0's 
Counter

SLIDER 
bit-vector

m search windows for processing 
sequences of length m characters

Pattern

Edit 
distance 
threshold

42
.5

m
m

42.5mm

   SLIDER logic slices
   PCIe controller

Filtering Unit

4
4

Search 
Window m

2E+1 diagonals

4 . . .

. . .

4
4

Search 
Window m-1

2E+1 diagonals

4 . . .

. . .
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Search Window 1

2E+1

≥ m-E?

1: similar
0: dissimilar

Step 1 Step 2 Step 3

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

• Counting is performed concurrently for all bit-vectors and all 
sliding windows in a single clock cycle using multiple 4-input 
LUTs.



More on Shouji
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Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

Download and test for yourself 
https://github.com/CMU-SAFARI/Shouji

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://github.com/CMU-SAFARI/Shouji


Specialized Hardware for Pre-alignment Filtering

166

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment 
Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

Dot plot, dot matrix 
(Lipman and Pearson, 1985)



SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches 

n Key idea:
q Approximate edit distance calculation is similar to Single Net 

Routing problem in VLSI chip
VLSI chip layout



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3



SneakySnake Walkthrough

170

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

EN
TR

AN
CE

EX
IT



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

3

EX
IT

210

0
0
4
0
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0
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1
0
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0
1
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0
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SneakySnake Walkthrough
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Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build
and it can be done on-the-fly!

EN
TR

AN
CE

EX
IT

3



FPGA Resource Analysis

n FPGA resource usage for a single filtering unit of GateKeeper, 
Shouji, and Snake-on-Chip for a sequence length of 100 and 
under different edit distance thresholds (E).
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Key Results of SneakySnake
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q SneakySnake is up to four orders of magnitude more accurate 
than Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17)

q Using short reads, SneakySnake accelerates Edlib
(Bioinformatics’17) and Parasail (BMC Bioinformatics’16) by
n up to 37.7× and 43.9× (>12× on average), on CPUs 
n up to 413× and 689× (>400× on average) with FPGA/GPU 

acceleration

q Using long reads, SneakySnake accelerates Parasail and KSW2 by 
140.1× and 17.1× on average, respectively, on CPUs



Data Movement Dominates Performance
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MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

n Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

✻ Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
★ Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
☆ Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160x-800x more 
energy compared to performing an addition operation  



Read Mapping & Filtering in Memory

We need to design 
mapping & filtering algorithms 
that fit processing-in-memory

178



Processing Using Memory

179https://www.youtube.com/watch?v=HNd4skQrt6I

https://www.youtube.com/watch?v=HNd4skQrt6I


Processing Using Memory II

180https://www.youtube.com/watch?v=k56x2qcaXWY

https://www.youtube.com/watch?v=k56x2qcaXWY


Processing Near Memory

181https://www.youtube.com/watch?v=kpgLmX9sdcI

https://www.youtube.com/watch?v=kpgLmX9sdcI


Using Real PIM System

182https://www.youtube.com/watch?v=TuVw_SKaTCo

https://www.youtube.com/watch?v=TuVw_SKaTCo


Near-memory Pre-alignment Filtering
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


Near-memory SneakySnake
n Problem: Read Mapping is heavily bottlenecked by data 

movement from main memory

n Solution: Perform read mapping near where data resides (i.e., 
near-memory)

n We carefully redesigned the accelerator logic of SneakySnake 
to exploit near-memory computation capability on modern 
FPGA boards with high-bandwidth memory
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Heterogeneous System: CPU+FPGA

185

POWER9 AC922

HBM-based AD9H7 board 

CAPI2
Source: AlphaData

Source: IBM

Source: AlphaData

DDR4-based AD9V3 board

We evaluate two POWER9+FPGA systems:
1. HBM-based AD9H7 board: Xilinx Virtex Ultrascale+™ XCVU37P-2
2. DDR4-based AD9V3 board: Xilinx Virtex Ultrascale+™ XCVU3P-2

FPGA + HBM on the same package substrate



Key Results of Near-memory SneakySnake
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Near-memory pre-alignment filtering improves performance
and energy efficiency by 27.4× and 133×, respectively, 
over a 16-core (64 hardware threads) IBM POWER9 CPU



More on SneakySnake [Bioinformatics 2020]
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Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment 
Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GRIM-Filter
n Key observation: FPGA and GPU accelerators are Heavily 

bottlenecked by Data Movement.

n Key idea: exploiting the high memory bandwidth and the logic layer of 
3D-stacked memory to perform highly-parallel filtering in the DRAM 
chip itself.

n Key results: 
q We propose an algorithm called GRIM-Filter
q GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on 

average) faster than FastHASH filter (BMC Genomics’13) across real 
data sets.

q GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted 
pairs than FastHASH filter (BMC Genomics’13) across real data sets.
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GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter: Bitvectors

Reference
Genome
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AAAAC
exists in 
bin 1

CCCCT
doesn’t 
exist in 
bin 1

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) 
in the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall 

within a single bin



GRIM-Filter: Bitvectors

Storing all bitvectors
requires !" ∗ $ bits
in memory, 
where 
t = number of bins 
&
n = token length.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter: Checking a Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare
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More on GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GenCache
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Nag, Anirban, et al. "GenCache: Leveraging In-Cache Operators for Efficient 
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.

https://www.cs.utah.edu/~rajeev/pubs/micro19a.pdf


GenCache
n Key observation: State-of-the-art alignment accelerators are still 

bottlenecked by memory.

n Key ideas: 
q Performing in-cache alignment + pre-alignment filtering by enabling 

processing-in-cache using previous proposal, ComputeCache
(HPCA’17).

q Using different Pre-alignment filters depending on the selected edit 
distance threshold.

n Results: 
q GenCache on CPU is 1.36x faster than GenAx (ISCA 2018). 

GenCache in cache is 5.26x faster than GenAx.
q GenCache chip has 16.4% higher area, 34.7% higher peak power, 

and 15% higher average power than GenAx.
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GenCache’s Four Phases

200



Throughput Results
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Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
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GenASM Framework [MICRO 2020]
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lightning Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Near-memory GenASM Framework
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n Our goal: Accelerate approximate string matching (ASM) by 
designing a fast and flexible framework, which can accelerate 
multiple steps of genome sequence analysis.

n Key ideas: Exploit the high memory bandwidth and the logic layer of 
3D-stacked memory to perform highly-parallel ASM in the DRAM chip 
itself.

n Modify and extend Bitap1,2, ASM algorithm with fast and simple 
bitwise operations, such that it now:
q Supports long reads 
q Supports traceback
q Is highly parallelizable

n Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.



Key Results of the GenASM Framework

(1) Read Alignment
n 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

n 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

n 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

n 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering
n 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
n 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

n 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)
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Conclusion on Our Contributions
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GateKeeper [Bioinformatics’17]

MAGNET [AACBB’18]

Shouji [Bioinformatics’19]

SneakySnake [Bioinformatics’20]GenASM [MICRO 2020]

SneakySnake [IEEE Micro’21]

Specialized Pre-alignment Filtering 
Accelerators (GPU, FPGA) 

GRIM-Filter [BMC Genomics’18]

GateKeeper-GPU [arXiv’21]

Near-memory/In-memory 
Pre-alignment Filtering

Near-memory Sequence Alignment

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GenASM [MICRO 2020]



Conclusion on Ongoing Directions

n Read alignment can be substantially accelerated using 
computationally inexpensive and accurate pre-alignment 
filtering algorithms designed for specialized hardware.

n All the three directions are used by mappers today, but 
filtering has replaced alignment as the bottleneck.

n Pre-alignment filtering does not sacrifice any of the aligner 
capabilities, as it does not modify or replace the alignment 
step.

218



219

What else can be done?
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

.FASTA file .FASTQ file

What if we got a new version of 
the reference genome?

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


AirLift [Kim+, arXiv 2021]
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Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed 
Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu
"AirLift: A Fast and Comprehensive Technique for Translating Alignments between 
Reference Genomes", arXiv, 2021
[Source Code]
[Online link at arXiv]

https://arxiv.org/pdf/1912.08735.pdf
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf


AirLift
n Key observation: Reference genomes are updated frequently. 

Repeating read mapping is a computationally expensive workload.

n Key idea: Update the mapping results of only affected reads 
depending on how a region in the old reference relates to another 
region in the new reference. 

n Key results: 
q reduces number of reads that needs to be re-mapped to new 

reference by up to 99%
q reduces overall runtime to re-map reads by 6.94x, 208x, and 

16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions
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More Details on AirLift
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Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed 
Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu
"AirLift: A Fast and Comprehensive Technique for Translating Alignments between 
Reference Genomes", arXiv, 2021
[Source Code]
[Online link at arXiv]

https://arxiv.org/pdf/1912.08735.pdf
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf


Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What is Read Mapping?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
226
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Adoption of
hardware accelerators

in genome analysis



Bioinformatics: Reviewer #6 (Dec. 2016)
I have a major concern with the work that is actually
not a problem with the manuscript at all. Specifically, I
have the concern that there has been little to no adoption of
previous specialized hardware solutions related to improving
the speed of alignment. While there has been considerable
work in this area (which the authors do an admirable job of
citing), it does not seem that these hardware-based solutions
have gained any type of real traction in the community, as the
vast majority of alignment is still performed on “regular” CPUs,
where the extent of hardware acceleration is the adoption of
specific SIMD or vectorized instructions. While I don’t think
that this practical concern should preclude publication of the
current work, it is something worth considering (what, if any,
of the proposed improvements to the SHD filter could be
“back-ported” to a software-only solution).
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Our Response
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Our Response (cont’d)
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Dream 
and, they will come

231

Computing landscape is very different from 10-20 years ago



Illumina DRAGEN Bio-IT Platform (2018)
n Processes whole genome at 30x coverage in ~25 minutes 

with hardware support for data compression

232

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html


NVIDIA Clara Parabricks (2020)

233https://developer.nvidia.com/clara-parabricks

GPU board(s) A University of Michigan’s startup in 
2018 and joined NVIDIA in 2020

https://developer.nvidia.com/clara-parabricks
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Computing
is Still Bottlenecked by 

Data Movement



Adoption Challenges of Hardware Accelerators
n Accelerate the entire read mapping process rather than its 

individual steps (Amdahl’s law)

n Reduce the high amount of data movement
q Working directly on compressed data
q Filter out unlikely-reused data at the very first component of the 

compute system

n Develop flexible hardware architectures that do NOT 
conservatively limit the range of supported parameter 
values at design time

n Adapt existing genomic data formats for hardware 
accelerators or develop more efficient file formats
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Adoption Challenges of Hardware Accelerators

n Maintaining the same (or better) accuracy/sensitivity of the 
output results of the software version
q Using heuristic algorithms to gain speedup!

n High hardware cost

n Long development life-cycle for FPGA platforms
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Did we Achieve Our Goal?
n Fast genome analysis in mere seconds using limited 

computational resources (i.e., personal computer or small 
hardware).
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1997 2015     



Open Questions

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?
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Pushing Towards New Architectures

239
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Cerebras’s Wafer Scale Engine (2019)

240

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip

n 400,000 cores 

NVIDIA TITAN V

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


TESLA Full Self-Driving Computer (2019)

241

n ML accelerator: 260 mm2, 6 billion transistors, 
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

n Two redundant chips for better safety.
https://youtu.be/Ucp0TTmvqOE?t=4236

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://youtu.be/Ucp0TTmvqOE?t=4236
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


Where is Read Mapping Going Next?

Will 100% accurate genome-long 
reads alleviate/eliminate the need for 

read mapping?

242

Think about metagenomics, pan-genomics, ...



Lecture Conclusion
n System design for bioinformatics is a critical problem

q It has large scientific, medical, societal, personal implications

n This lecture is about accelerating a key step in bioinformatics: 
genome sequence analysis
q In particular, read mapping

n Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis

n We cover various recent ideas to accelerate read mapping
q A journey since September 2006

243



Key Takeaways
n Population-scale analyses are not an easy task

n You need to consider many things in designing a new 
system + have good intuition/insight into ideas/tradeoffs

n But, it is fun and can be very rewarding/impactful

n And, enables a great future
q It has large scientific, medical, societal, personal implications

n Very hot topic for graduate studies and research!

244



Key Conclusion

Most speedup comes from 

parallelism enabled by 

novel architectures and algorithms

245



Acknowledgments

n Many colleagues and collaborators
q Damla Senol Cali, Jeremie Kim, Hasan Hassan, Can Firtina, 

Juan Gómez Luna, Hongyi Xin, …
n Funders:

q NIH and Industrial Partners (Alibaba, AMD, Google, Facebook, 
HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, 
Qualcomm, Rambus, Samsung, Seagate, VMware)

n All papers, source code, and more are at:
q https://people.inf.ethz.ch/omutlu/projects.htm

246

Onur Mutlu, ETH Zurich    Can Alkan, Bilkent University     Serghei Mangul, USC

https://people.inf.ethz.ch/omutlu/projects.htm


Work With Us

n If you are already a student at ETH and are interested in 
doing research with SAFARI research group on similar 
topics, Talk to me:

q ALSERM@ethz.ch
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Openings @ SAFARI
n We are hiring enthusiastic and motivated students and 

researchers at all levels.

n Join us now:

248

safari.ethz.ch/apply

https://safari.ethz.ch/apply/


Recommended Readings
n Jones, Neil C. and Pavel Pevzner. “An introduction to 

bioinformatics algorithms,” MIT press, 2004.
n Mäkinen, Veli, Djamal Belazzougui, Fabio Cunial, and 

Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.
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Read Mapping in 111 pages! 

250

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Detailed Analysis of Tackling the Bottleneck

251

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” 
IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


Near-memory Pre-alignment Filtering

252

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


More on Accelerating Genome Analysis ...

253

n Mohammed Alser,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Talk at RECOMB 2021, Virtual, August 30, 2021.
[Slides (pptx) (pdf)]
[Talk Video (27 minutes)]
[Related Invited Paper (at IEEE Micro, 2020)]

https://www.youtube.com/watch?v=RzurItt3nNA
https://www.recomb2021.org/
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pdf
https://www.youtube.com/watch?v=RzurItt3nNA
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


More on Intelligent Genome Analysis …
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n Mohammed Alser,
"Computer Architecture - Lecture 8: Intelligent Genome Analysis"
ETH Zurich, Computer Architecture Course, Lecture 8, Virtual, 15 October 2021.
[Slides (pptx) (pdf)]
[Talk Video (2 hour 54 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

https://www.youtube.com/watch?v=ygmQpdDTL7o
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pdf
https://www.youtube.com/watch?v=ygmQpdDTL7o
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


More on Fast Genome Analysis …
n Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hour 37 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]
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https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


Detailed Lectures on Genome Analysis
n Computer Architecture, Fall 2020, Lecture 3a

q Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=5

n Computer Architecture, Fall 2020, Lecture 8
q Intelligent Genome Analysis (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxU

z7xRPS-wisBN&index=14

n Computer Architecture, Fall 2020, Lecture 9a
q GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=XoLpzmN-

Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 

n Accelerating Genomics Project Course, Fall 2020, Lecture 1
q Accelerating Genomics (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL

gwiDRQDTyId
256https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures


Prior Research on Genome Analysis (1/2)
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n Alser+, "Technology dictates algorithms: Recent developments in read 
alignment", Genome Biology, 2021.

n Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-
Alignment Filter for CPUs, GPUs, and FPGAs.", Bioinformatics, 2020.

n Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate 
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