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Agenda for Today

What is Genome Analysis?
What is Intelligent Genome Analysis?

How we Analyze Genome?
What is Read Mapping?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?
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What 1s Data Analysis?

“The purpose of COIT) putlng is [to gain]
insig ht, not numbers”

Richard Hamming
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What 1s Genome Analysis?

SAFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 5
https://www.nature.com/subjects/genomic-analysis



What 1s Genome Analysis?
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nature researc

nature > subjects > genomic analysis

Genomic analysis EYAtom  EYRSS Feed

Genomic analysis is the identification, measurement or comparison of genomic features
such as DNA sequence, structural variation, gene expression, or regulatory and functional
element annotation at a genomic scale. Methods for genomic analysis typically require high-

throughput sequencing or microarray hybridization and bioinformatics.

SAFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 6
https://www.nature.com/subjects/genomic-analysis
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DNA Testing

HEALTH
.

ANCESTRY
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Welcome to you

Health + Ancestry
Service

$199

* Includes everything in Ancestry +

Traits Service
PLUS

* 10+ Health Predisposition reports*

* 5+ Wellness reports

* 40+ Carrier Status reports* o**
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Human Chromosomes (23 Pairs)
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Finding SNPs Associated with Complex Trait

SNP1 SNP2 Blood Pressure
...ACATGCCGACATTTCATAGGCC... 180
...ACATGCCGACATTTCATAAGCC... 175
...ACATGCCGACATTTCATAGGCC... 170

Individual #4 ...ACATGCCGACATTTCATAAGCC... 165
...ACATGCCGACATTTCATAGGCC... 160
...ACATGCCGACATTTCATAGGCC... 145
...ACATGCCGACATTTCATAAGCC... 140
...ACATGCCGACATTTCATAAGCC... 130
...ACATGTCGACATTTCATAGGCC... 120
...ACATGTCGACATTTCATAAGCC... 120
...ACATGTCGACATTTCATAGGCC... 115
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 110
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 105
...ACATGTCGACATTTCATAAGCC... 100

SNP: single nucleotide polymorphism
SAFARI Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA!©



computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies

Genome-Wide Association Study (GWAS)

= Detecting genetic variants associated with phenotypes
using two groups of people.
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Similar Association Studies

nature |
o e e genetics

Opportunities and challenges for transcriptome-
wide association studies

Michael Wainberg', Nasa Sinnott-Armstrong ©2, Nicholas Mancuso @3, Alvaro N. Barbeira®©*

David A.Knowles ©5¢, David Golan?, Raili Ermel’, Arno Ruusalepp’8, Thomas Quertermous ©°
KeHao®, JohanL. M. Bjorkegren ©819112* Hae Kyung Im©4*, Bogdan Pasaniuc ©31314*,
Manuel A.Rivas ©* and Anshul Kundaje ©"2*

I

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression
datasets to identify gene-trait associations. In this Perspective, we explore properties of TWAS as a potential approach to
prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for
schizophrenia, low-density-lipoprotein cholesterol and Crohn's disease. We explore risk loci where TWAS accurately prioritizes
the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing
of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from
non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths.
Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for
causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths
and limitations of using eQTL datasets to determine causal genes at GWAS loci.

Wainberg+, "Opportunities and challenges for transcriptome-wide

SAFARI association studies”, Nature genetics, 2019. 12



https://www.nature.com/articles/s41588-019-0385-z

SNPs and Personalized Medicine

openSNP Q | Search
P Allele Frequency
SNP rs12979860
A
Basic Information
T
Name rs12979860 h
G
Chromosome 19 49%
W | [o
Position 39248147
-_
Weight of evidence 926 - 0
Links to SNPedia
Title Summary
rs12979860 T/T ~20-25% of such hepatitis ¢ patients respond to treatment
rs12979860 C/C ~80% of such hepatitis ¢ patients respond to treatment
rs12979860 C/T ~20-40% of such hepatitis c patients respond to treatment
13
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Personalized Medicine for Critically Il Infants

= rWGS can be performed in 2-day (costly) or 5-day time to

interpretation.

= Diagnostic rWGS for infants
o Avoids morbidity

o Reduces hospital stay length by 6%-69%
o Reduces inpatient cost by $800,000-$2,000,000.

Article | Open Access | Published: 04 April 2018
Rapid whole-genome sequencing decreases infant

morbidity and cost of hospitalization

Lauge Farnaes, Amber Hildreth, Nathaly M. Sweeney, Michelle M. Clark, §
Chowdhury, Shareef Nahas, Julie A. Cakici, Wendy Benson, Robert H. Ka
Richard Kronick, Matthew N. Bainbridge, Jennifer Friedman, Jeffrey J. Gd

Ding, Narayanan Veeraraghavan, David Dimmock & Stephen F. Kingsmor

npj Genomic Medicine 3, Article number: 10 (2018) | Cite this article

Article | Open Access | Published: 05 May 2020

Clinical utility of 24-h rapid trio-exome sequencing for
critically illinfants

Huijun Wang, Yanyan Qian, Yulan Lu, Qian Qin, Guoping Lu, Guogiang Cheng,
Ping Zhang, Lin Yang, Bingbing Wu I & Wenhao Zhou

npj Genomic Medicine 5, Article number: 20 (2020) | Cite this article

Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and
SAFARI D J q d Y 14

cost of hospitalization”, NPJ Genomic Medicine, 2018



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/

Personalized Medicine in UK

“From 2019, all seriously ill children in uk
will be offered WhOle genome sequencing

as part of their care”

NHS|

National Institute for
Health Research

SAFARI
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Much Larger Structural Variations!

y8°= SCHIZOPHRENIA
McCarthy, Nat Genet 2009

i AUTISM "y
Weiss, N Eng J Med 2008 =
Deletion of 593 kb '

OBESITY
Walters, Nature 2010
Deletion of 593 kb

Jacquemont, Nature 2011
| Duplication of 593 kb

I Deletion in the short arm Duplication in the short arm

l l of chromosome 16 (16p11.2) I ' of chromosome 16 (16p11.2)

SAFARI CNV: copy number variation 10



Recommended Reading

nature reviews genetics

Explore our content v Journal information v

nature > nature reviews genetics > review articles > article

Review Article | Published: 15 November 2019

Structural variation in the sequencing era
Steve S. Ho, Alexander E. Urban & Ryan E. Mills

Nature Reviews Genetics 21, 171-189(2020) | Cite this article
15k Accesses | 16 Citations | 309 Altmetric | Metrics

Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

SAFARI 17
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What 1s Intelligent Genome Analysis?

= Fast genome analysis Bandwidth
Q Real-time analysis?

= Population-scale genome analysis Scalability
Q MNumber of analyses per day!

= Using intelligent architectures Energy-efficiency &
Q Small specialized HW with less data movement Portabil ity

= DNA is a valuable asset Privacy

Q Controlled-access analysis

= Avoiding erroneous analysis Accuracy
Q E£.g., your father is not your father

SAFARI 19



Does intelligent genome
analysis really matter?

SAFARI



Fast Genome Analysis?

Fast genome analysis in mere seconds using limited
computational resources (i.e., personal computer or small
hardware).

TOMORROWLAND
Ny

A

)

SAFARI
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Rapid Surveillance of Disease Outbreaks?

Figure 1: Deployment of the portable genome surveillance system in Guinea.

Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

SAFARI 22


https://www.nature.com/articles/nature16996

Scalable SARS-CoV-2 Testing
medRyiv @ swve

Search
THE PREPRINT SERVER FOR HEALTH SCIENCES

¢ Comments (1)

Swab-Seq: A high-throughput platform for massively scaled up
SARS-CoV-2 testing

Joshua S. Bloom, Eric M. Jones, & Molly Gasperini, “=/ Nathan B. Lubock, Laila Sathe, Chetan Munugala,

A.Sina Booeshaghi, "' Oliver F. Brandenberg, = Longhua Guo, ©=' James Boocock, = Scott W. Simpkins,
Isabella Lin, Nathan LaPierre, Duke Hong,Yi Zhang, Gabriel Oland, Bianca Judy Choe, Sukantha Chandrasekaran,
Evann E. Hilt, ©2) Manish J. Butte, ') Robert Damoiseaux, ‘= Aaron R. Cooper, 2 YiYin, "2 Lior Pachter,

Omai B. Garner, ' Jonathan Flint, ©2' Eleazar Eskin, ©2 Chongyuan Luo, “= Sriram Kosuri, "= Leonid Kruglyak,
Valerie A.Arboleda

doi: https://doi.org/10.1101/2020.08.04.20167874

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020

SAFARI 23



https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2

Population-Scale Microbiome Profiling
1 I E

S A FA R https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 24


https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Populatlon Scale Microbiome Profiling

Goal What organlsms are present in a g|ven
enwronment and how abundant are they?

S A FAR | https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 25



https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Clty—Scale Microbiome Proﬁhng
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N
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Illumina and Qiagen Library Prep | Eukaryota
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MegaBLAST-LCA alignment
[

MetaPhlAN classification Afshinnekoo+, "Geospatial Resolution of Human and
Bacterial Diversity with City-Scale Metagenomics"”, Cell
Figure 1. The Metagenomg of New York City SystemS 20 1 5

4

(A) The five boroughs of NYC include (1) Manhattan (green)

(B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data

entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. 6
(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to

disrarn taxva nresant



https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Population-Scale Microbiome Profiling

Login  Register S

PDF D *
ARTICLE | ONLINE NOW J b

PDF [9 MB]  Figures 4 Save

A global metagenomic map of urban microbiomes and
antimicrobial resistance

David Danko ® - Daniela Bezdan © « Evan E. Afshin « ... Sibo Zhu « Christopher E. Mason 2 % &

mwfl ) 60 Cities
-
4,728 Samples
Published: May 26, 2021 = DOI: https://doi.org/10.1016/j.cell.2021.05.002

e e
A e Extracted Graph-based multi-sample T— Q f__q 8 Trillion bases

The International MetaSUB Consortium « Show all authors « Show footnotes

k-mers sequence index
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1 cantate CRISPR Arrays
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1

Danko+, "A global metagenomic map of urban microbiomes and antimicrobial resistance", Cell, 2021
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https://www.cell.com/cell/fulltext/S0092-8674(21)00585-7

Plague in New York Subway System?

¥ Harvard Health Publishing
HARVARD MEDICAL SCHOOL

Trusted advice for a healthier life

Plague (Yersinia Pestis)

What Is It?

Published: December, 2018

Plague is caused by Yersinia pestis bacteria. It can be a life-threatening infection if not
treated promptly. Plague has caused several major epidemics in Europe and Asia over the
last 2,000 years. Plague has most famously been called "the Black Death" because it can
cause skin sores that form black scabs. A plague epidemic in the 14th century killed more
than one-third of the population of Europe within a few years. In some cities, up to 75% of
the population died within days, with fever and swollen skin sores.

SAFARI 28



Plague in New York Subway System?

. &he New York Eimes
P I ague ( Ye rsii Bubonic Plague in the Subway
System? Don’t Worry About It

What s It?

Published: December, 2018

Plague is caused by Yersinia
treated promptly. Plague h:
last 2,000 years. Plague has
cause skin sores that form k&
than one-third of the popul

the population died within

In October, riders were not deterred after reports that an Ebola-infected man had ridden
the subway just before he fell ill. Robert Stolarik for The New York Times

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

The findings of Yersinia Pestis in the subway received wide coverage in the lay
press, causing some alarm among New York residents

SAFARI 29
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Failure of Bioinformatics

nature

blot?eel'mologpy

e e
data. Rob Knight, a professor in the department of pediatrics at the

University of California, San Diego, calls this type of error “a failure of
bioinformatics” in that Mason had assumed the gene fragments were

unique to the pathogens, when in fact they can also be detected in other

Living in @ microbial world
Charles Schmidt

Nature Biotechnology, volume 35, pages401-403 (2017)
https://www.nature.com/articles/nbt.3868

SAFARI 3
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Intelligent Architecturer

FPGAs Modern systems

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage

SAFARI 31



Intelligent Architecturer

FPGAs

Modern systems

guencing
Machine

Persistent Memory/Storage

BN -

RESETIFIRa g

(Gehealrbvo;e) GPUs
SAFARI https://nanoporetech.com/products/smidgion 32
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Privacy-Preserving Genome Analysis?

R T ‘.\\ 2 m <

oY .c'@ Matching the Inferring the
@";o demographic data real identity 4
@2 L\ with their - of the Getting the
\ ’ \ correspondences unknown family tree of
in metadata Real identity of the  donor of the the victim.

genetic record’s owner genetic

Victim
o Public records ( ) record. Online, public
e Social media sites genealogical databases
¢ Voter registration forms
ﬁ Inferring the genetic [— ‘

1

information of the known
and unknown members
that may not publish

thei t all
eirgenomes ata Real identity of the
genetic record’s owner
(Victim & Kins)

Downloading the
anonymized records that
contain demographic data

Online, public genetic databases with

anonymized records Unauthorized party

(Adversary)

Fig.5. A completion attack.

Alser+, "Can you really anonymize the donors of genomic data in today’s digital
world?" 10th International Workshop on Data Privacy Management (DPM), 2015.
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https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16

Can you Really Anonymize the Donors?

(Position Paper) Can You Really Anonymize the
Donors of Genomic Data in Today’s Digital World?

Mohammed Alser, Nour Almadhoun, Azita Nouri, Can Alkan, and Erman Ayday

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

Abstract. The rapid progress in genome sequencing technologies leads to avail-
ability of high amounts of genomic data. Accelerating the pace of biomedical break-
throughs and discoveries necessitates not only collecting millions of genetic samples
but also granting open access to genetic databases. However, one growing concern is
the ability to protect the privacy of sensitive information and its owner. In this work,
we survey a wide spectrum of cross-layer privacy breaching strategies to human
genomic data (using both public genomic databases and other public non-genomic
data). We outline the principles and outcomes of each technique, and assess its tech-

nological complexity and maturation. We then review potential privacy-preserving

countermeasure mechanisms for each threat. mﬁm ZU 1 S

Keywords: Genomics, Privacy, Bioinformatics
Vienna, Austria
September 21-22, 2015

Alser+, "Can you really anonymize the donors of genomic data in today’s
digital world?" 10th International Workshop on Data Privacy Management
(DPM), 2015.
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Privacy-Preserving DNA Test

Our DNA Test, Reports, and Technology

v Whole Genome Sequencing. Decode 100% of your DNA with Whole

Genome Sequencing and fully unlock your genetic blueprints.

Privacy First DNA Testing. Begin your journey of discovery without

risking the privacy of your most personal information.

Nebula Research Library. Receive new reports every week that are

based on the latest scientific discoveries.

Genome Exploration Tools. Use powerful, browser-based genome

exploration tools to answer any questions about your DNA.

Deep Genetic Ancestry. Discover more about your ancestry with full Y

chromosome and mitochondrial DNA sequencing and analysis.

Genomic Big Data Access. Download your FASTQ, BAM, and VCF files and

dive deeper into your Whole Genome Sequencing data.

Ready for Diagnostics. Our Whole Genome Sequencing data is of the

highest quality and can be used by physicians and genetic counselors.

SAFARI https:

The future of

health is in

your DNA. ”
V Nebuia C‘?‘ornic S

—
P

30x Whole Genome $299

. Normally $4666
Sequencing DNA Test """ ¥ 7"

A genetic test that decodes 100% of your DNA with
very high accuracy. 30x Whole Genome
Sequencing offers the best value for money and is
the best choice for most people.

100x Whole Genome $999

. Normally $3666
SequenCIng DNA TESt Save 70%!

A genetic test that decodes 100% of your DNA with
extremely high accuracy. 100x Whole Genome
Sequencing is recommended for the discovery of
rare genetic mutations.



https://nebula.org/whole-genome-sequencing/

Achieving Intelligent Genome Analysis?

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?

SAFARI 36
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Genome Analysis

N o machine can read the
entire content of a genome

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......

SAFARI 38




Genome Analysis

>CCT¢
GACC
CATGT
GAAC
ACTA
AAGT,
GAAA

TTGTCZ 2

NO

machine can read the
entire content of a genome

Why?l

CAAG
TCTT
_ATTG
AAAA
ATTT
AAAA
ATGG

LISUSUSEZNGAAA

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTG AAAAAAACTAATTTCTAAG CTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......

SAFARI



Suggested Readings

nature methods

Explore content v  About the journal v  Publish with us v

Published: November 2009

Next-generation sequencing library preparation: simultaneous
fragmentation and tagging using invitro transposition

Fraz Syed &, Haiying Grunenwald & Nicholas Caruccio

Nature Methods 6, i-ii (2009) | Cite this article

16k Accesses | 4 Citations | 5 Altmetric | Metrics

https://www.nature.com/articles/nmeth.f.272
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Suggested Readings

nature biotechnology

Explore content v  About the journal v  Publish with us v

nature > nature biotechnology > review articles > article

Published: 09 October 2008

Next-generation DNA sequencing

Jay Shendure & & Hanlee Ji

Nature Biotechnology 26, 1135-1145 (2008) | Cite this article

149k Accesses | 2645 Citations | 79 Altmetric | Metrics

https://www.nature.com/articles/nbt1486
SAFARI H
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Genome Sequencer 1s a Chopper

-

Genome Analysis Pipeline et (AT TTee=til

(

Genomic Sample Sequencing Machine Reads

CCCCCCTATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

TATATATACGTACTAGTACGT
ACGTTTTTAAAACGTA

TATATATACGTACTAGTACGT

ACGACGGGGAGTACGTACGT

\_

\

Read Mapping | D

J  Genomic Variants

nge :
1x1012 bases
(G| T|

44 hours’

<

e <1000 $

* NovaSeq 6000

SAFARI
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Genome Sequencer 1s a Chopper

Genome Analysis Pipeline il v il 4 )

== Read Mapping |s===p _..u.j

Genomic Sample Sequencing Machine Reads \_ _J/  Genomic Variants

Current sequencing machine provides
small randomized fragments
of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment”, Genome Biology,
2021

SAFARI +



https://arxiv.org/abs/2003.00110

High- Throughput Sequencers

Oxford
Nanopore
PromethlON

Pacific
Biosciences
Sequel Il

lllumina MiSeq

_

g
| Oxford Nanopore MinION
Oxford
Nanopore
I—

SmidgION
lllumina NovaSeq 6000

Pacific Biosciences RS Il
.. and more! All produce data W|th dlfferent properties.

SAFARI M



Oxford

Oxtford Nanopore Sequencers {JNANOPORE

MinlON Mk1B MinlON Mk1C GridlON Mk1 PromethlON 24/48

MinION MinION . PromethION PromethION
Mk1B Mkic  GridION Mki 24 48

Read length

Yield per flow cell

Number of flpw 24 48
cells per device

Yield per device <250 Gb <5.2Tb <10.5Tb

Starting price $49,995 $195,455 $327,455

SAFARI https://nanoporetech.com/products/comparison 45



https://nanoporetech.com/products/comparison

[llumina Sequencers

llumina

| NE

| W
[

iSeq 100 MiniSeq MiSeq NextSeq 550 NextSeq 2000 NovaSeq 6000
Run time 9.5—-19 hrs 4-24 hrs 4-55 hrs 12-30 hrs 24-48 hrs 13-44 hrs
Max. reads 4 million | 25 million | 25 million | 400 million | 1 billion 20 billion
per run
Max. read 2 x 150bp | 2x 150bp | 2 x300bp | 2x 150bp | 2 x 150 bp | 2 x 250
length
Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb
Estimated
orice $19,900 $49,500 | $128,000 | $275,000 | $335,000 | $985,000

46
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https://www.illumina.com/systems/sequencing-platforms.html

How Does Illumina Machine Work?

Optical
Sensor
f i Glass flow
cell surrace

H
_N ‘N—H-----0 P H=N
7\
N 7@ -+ — NH ﬂN_H """" NO
N?/ N Rt >—N\
o o N—H-=eee o &
H

SAFARI
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How Does Illumina Machine Work?

A AAg

A GA CAy c ¢ ¢

ACp ACCA p6Ct G & 7

T

cGc C G GC CTGTTAA

GTG GTTG GATTACC

(T) TGCTAATGCAACGG

. AC ¢ A -

Optical G C G G G e T &
Sensor GGT cT

(A) T

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT

" TTAGTACGTACGT
TACGTACTAAAGTACGT

ATACGTACTAGTACGT
'TTTAAAACGTA

CGTACTAGTACGT

: GGGAGTACGTACGT‘)
K DNA fragment = Read

SAFARI 48
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cell surface




How Does Illumina Machine Work?

A AAg
A GA CAy c ¢ ¢
AC p A C cA AGCT G$T
cGc ©CGGC T G T A A
GT g $ 1"r$ |qé ILT B c C
TG A A A C
— @ AC:(E A/—C—AA—g—G—C—HGS

Check Illumina virtual tour:

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT
i DNA fragment = Read

SAFARI 49


https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

How Does Nanopore Machine Work?

graphene

nanopore'\ l { A
+
[

1% XXX XXX XXX
606000600000 000/A 0000

=
»

Events

Current (A)

Sequence C T ATG .G

= Nanopore is a hano-scale hole (<20nm).

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SAFARI

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html



https://phys.org/news/2013-12-gene-sequencing-future.html

How Does Nanopore Machine Work?

graphene l

nanopore '\ { A
+

Check Nanopore virtual tour:

https://nanoporetech.com/resource-centre/minion-video

measures the the chaﬁge in current
This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SA F AR l Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html



https://phys.org/news/2013-12-gene-sequencing-future.html
https://nanoporetech.com/resource-centre/minion-video

Machine Learning for Nanopore Machine

Wan+

“"Beyond sequencing: machine learning algorithms extract biology
hidden in Nanopore signal data”

Trends in Genetics, October 25, 2021

Trends in

Genetics ¢ CelPress

Beyond seguencing: machine leaming
algorithms extract biology hidden in Nanopore
signal data

Yuk Kei Wan, "2 Christopher Hendra,®' Ploy N. Pratanwanich, '*° and Jonathan Géke @ '°*

SAFARI 22


https://www.cell.com/trends/genetics/pdf/S0168-9525(21)00257-2.pdf

Common Disadvantages!

Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
________ L ATACGTACTAGTACG

ACGTACTAGTACG

AGTACGTACG
ACGTACTAAAGTACG

[ TACGTACTAGTACG
AAAACGTA

GTACTAGTACG

GGGAGTACGTACG

SAFARI >3



Solving the Puzzle

Y
Reference / * .

of

B *
genome / .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI >4


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HTS Sequencing Output

Small pieces of a puzzle Large pieces of a puzzle
short reads (Illumina) long reads (ONT & PacBio)

* ' I
1.

\

Which sequencing technology is the best?

1 100-300 bp 1 500-2M bp
U low error rate (~0.1%) U high error rate (~15%)

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI >


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HiF1 Reads (PacBio)

o

100%
But still very
expensive!
o
o
=
O
<
80%
0 Read Length (kb) 50

Wenger+, "Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome", Nature Biotechnology, 2019

https://labs.wsu.edu/genomicscore/illumina-sequencing/ 56
SAFARI https://pacbio.gs.washington.edu/



https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

Changes in sequencing technologies
can render some
read mapping algorithms irrelevant

SAFARI >7



Read Mapping in 111 pages!
In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 G enome B | 0O | Ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates
Mohammed Alser'*", Jeremy Rotman®", Dhrithi Deshpande®, Kodi Taraszka®, Huwenbo Shi®’, Pelin Icer Baykal®,
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev®, Benjamin D. Singer'®'"'? Brunilda Balliu',
David Koslicki'*'>'®, Pavel Skums®, Alex Zelikovsky®'”, Can Alkan®'®, Onur Mutlu'**" and Serghei Mangul®""

SAFARI >8


https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Looking forward,
Will we be able to read
the entire genome sequence?

SAFARI
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Agenda for Today

What is Genome Analysis?
What is Intelligent Genome Analysis?

How we Analyze Genome?
What is Read Mapping?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

a Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?

SAFARI

60



Read Mapping

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Refernteyganame
“chemical format” “text format” “text grgmat”

SAFARI o1



Solving the Puzzle

.FASTA file .FASTQ file

Y
Reference / * .

of

genome / o .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Cracking the 15 Human Genome Sequence

= 1990-2003: The Human Genome Project (HGP) provides a
complete and accurate sequence of all DNA base pairs that make
up the human genome and finds 20,000 to 25,000 human genes.

Ntﬂonduuon

= El Hork Cimes ===
1 ?,ze_i\ﬂs;,,gw Bimes == g 2

ttc Code of Human Li eIs Cracked by Scientist G |T| pases

’ The Book of Life

vorerrend & ) srte syt || SHARED SUGCI
‘M*bd' ol ONA "r:.-," ',' chromosemes i our cells,
e AL have been sequenced 1 3
; s ) ears
A adeting y 2 Rivals' Announcem y
et
LG o =g Marks New Medic:
o
& Y| Risksand Al
3 N\ T—— y
o T — By NICHOLAS WADE *
PR il WASHINGTON, June 3 — |
ULl By orcieving the Dase Units. sCentiels Aope 10 ndnrw ment That repeesen
[ bcale the penes and deformng Shew Anclions sacke of hessan seif & nmsnkf
rval of scientists sadd |
S i~

Rps

1uhryh dc:phc«lhrh(
tary script, set nlm rue
that defines N organis

>3x10° $
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Three Decades & Yet to be Complete!

The complete sequence of a human genome

Sergey Nurk, Sergey Koren,Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla Mikheenko, Mitchell R.Vollger,
Nicolas Altemose, Lev Uralsky, Ariel Gershman, Sergey Aganezov, Savannah J. Hoyt, Mark Diekhans,

Glennis A. Logsdon, Michael Alonge, Stylianos E. Antonarakis, Matthew Borchers, Gerard G. Bouffard,

Shelise Y. Brooks, Gina V. Caldas, Haoyu Cheng, Che~ “%-— 7% YAt L oo b - oo d e fee e

Philip C. Dishuck, Richard Durbin, Tatiana Dvorkina COMPLETING THE HUMAN GENOME

Arkarachai Fungtammasan, Erik Garrison, Patrick G Feecarers eve been ling n ncompletely sequenced partscf he
Gabrielle A. Hartley, Marina Haukness, Kerstin How with 3.05 billion DNA base pairs.

Erich D. Jarvis, Peter Kerpedjiev, Melanie Kirsche, M
Valerie V. Maduro, Tobias Marschall, Ann M. McCartn
EugeneW Myers, Nathan D. Olson, Benedict Paten, e S R N s g o R AR

Tamara Potapova, Evgeny |. Rogaey, Jeffrey A. Rosent

Kishwar Shafin, Colin J. Shew, Alaina Shumate, Yumi é 29— e s
Jessica M. Storer, Aaron Streets, Beth A. Sullivan, Fra % BB s f_‘fgfm_', ,,,,,,,,, B e ————
Brian P.Walenz, Aaron Wenger, Jonathan M. D.Woo: § ¢

Samantha Zarate, Urvashi Surti, Rajiv C. McCoy, Me % o T B RS S S TS VR OSSR TGRES
Rachel J. O’Neill, Winston Timp, Justin M. Zook, Mic ¢

Adam M. Phi”ippy 26 - . ..................................................................................................................................
doi: https://doi.org/10.1101/2021.05.26.445798 B R T o B e e B R L e e

2000 2004 2008 2012 2016 2020

27 May 2021

0.3% of sequence might still have errors. Includes X but o s
not Y chromosome. Count excludes mitochondrial DNA. onature

SAFARI https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1 %4



https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1

Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

How Long 1s DNA?

SAFARI 66



Obtaining .FASTQ Files

= https://www.ncbi.nim.nih.gov/sra/ERR240727

= NCBI Resources ¥/ How To ¥

SAFA

SRA [SRA vl

Advanced

0 COVID-19 is an emerging, rapidly evolving situation.
Public health information (CDC) | Research information (NIH) | SARS-CoV-2 data (NCBI) | Prevention and treatment information (HH

Full + Send to: «

ERX215261: Whole Genome Sequencing of human TSI NA20754
1 ILLUMINA (lllumina HiSeq 2000) run: 4.1M spots, 818.7M bases, 387.2Mb downloads

Design: lllumina sequencing of library 6511095, constructed from sample accession SRS001721 for study accession SRP000540. This is part of an
lllumina multiplexed sequencing run (9340_1). This submission includes reads tagged with the sequence TTAGGCAT.

Submitted by: The Wellcome Trust Sanger Institute (SC)

Study: Whole genome sequencing of (TSI) Toscani in Italia HapMap population
PRJNA33847 « SRP000540 « All experiments * All runs

Sample: Coriell GM20754
SAMNO00001273 » SRS001721 « All experiments * All runs
Organism: Homo sapiens

Library:
Name: 6511095
Instrument: lllumina HiSeq 2000
Strategy: WGS
Source: GENOMIC
Selection: RANDOM
Layout: PAIRED
Construction protocol: Standard

Runs: 1 run, 4.1M spots, 818.7M bases, 387.2Mb

Run # of Spots # of Bases Size Published
ERR240727 4,093,747 818.7M 387.2Mb 2013-03-22
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https://www.ncbi.nlm.nih.gov/sra/ERR240727

Let’s learn
how to map a read

SAFARI



Read Mapping: A Brute Force Algorithm

Reference

[ ]
Read

Very expensive!
O(nm¥kn)

m: read length
k: no. of reads
. reference genome length

SAFARI 69



Read Mapping in 111 pages!
In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 G enome B | 0O | Ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates
Mohammed Alser'*", Jeremy Rotman®", Dhrithi Deshpande®, Kodi Taraszka®, Huwenbo Shi®’, Pelin Icer Baykal®,
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev®, Benjamin D. Singer'®'"'? Brunilda Balliu',
David Koslicki'*'>'®, Pavel Skums®, Alex Zelikovsky®'”, Can Alkan®'®, Onur Mutlu'**" and Serghei Mangul®""

SAFARI 7


https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Feedback From Our Community!

“ ﬁ‘ ) James Ferguson

This is awesome! |'ve got my evening reading sorted.

@ Stéphane Le Crom
- 4

Very complete article on the evolution of read
alignment algorithms.

R

|.|d A Svetlana Gorokhova
'ng'

An impressive overview of read alignment methods
over the last three decades

S BContrerasMoreira
s

Buen hilo de repaso sobre la evolucidn de los algoritmos de alineamiento de
secuencias a medida que ha mejorado la tecnologia de secuenciacién

SAFARI https://twitter.com/mealser/status/1435223377644503040



https://twitter.com/mealser/status/1435223377644503040

Mapping a read is
similar to querying
the yellow pages!

SAFARI



Similar to Searching Yellow Pages!

‘“\\ \X‘

= Step 1: Get the page number from the book’
index using a small portion of the name (e.q., 1st
letter).

H

= Step 2. Retrieve the page(s).

""{\e

’,’
A%

\ = Step 3: Match the full name & get the phone
number.

Faam

SAFARI 73
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Matching Fach Read with Reference Genome

.FASTA file:

>NG 008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCT ITCATTGACATTTAAACTCTGGGGCAGG TG 2AACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCC( CCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTARAAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TC{CCGAGTGT_:AAAAGTAGCAJ crcCTA I CCAGTCCEGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTARAAGCCACTCGCGACCGCGARAAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTC. .CGCTTGGGAAAG
TcCGTACCCGCGCCTIE 2 2GACACCCTGCCGCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCAAAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGAAAGACGC

FASTQ file:

@HWI-EAS209 0006 FC706VJ:5:58:5894:21141#ATCACG/1
T . TAAATC T TTAGAT NG N NNNNNNNTAG
+HWI-EAS209 0006 FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf feed] ] Ba ~ [YBBBBBBBBBBRTT
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Step 1: Indexing the Reference Genome

I-_f__-

reference genome

SAFARI
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Popular Indexing Technique

Hashing is the most popular
indexing technique for
read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
Genome Biology, 2021
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https://arxiv.org/abs/2003.00110

Step 1: Indexing the Reference Genome

\ reference genome
\
‘\ Seed=k-mer
\ .
“ee e . 1] 9 ] 16 | 30

Index the first
seed at location 1

2 7 60

5 12

4 10 18 32

6 | 14
*.

seed location at the
reference genome

o

SAFARI 7



Genome Index Properties

The index is built only once for each reference.

Seeds can be overlapping, non-overlapping, spaced,
adjacent, non-adjacent, minimizers, compressed, ...

Tool Version Index Size Ind_e xing
Time
mrFAST 2.2.5 16.5 GB 20.00 min
minimap2 0.12.7 7.2 GB 3.33 min
BWA-MEM 0.7.17 4.7 GB 49.96 min

SAFARI

*Human genome = 3.2 GB
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Performance of Human Genome Indexing

60 .
v 50 — g .
= E o 30
24 o §
O 30 2 20 ' '
E S
gl o
a 1 = 10
O

0 — TR —

Hashing BWT-FM Other Suffix Hashing -BWT-FM . Other Suffix
Indexing algorithm Indexing algorithm

Mapper

RMAP
Bowtie
BWA
GSNAP
SMALT
LAST
SNAP
Bowtie2
Subread
HISATZ2
minimap2

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,

Genome Biology, 2021

SAFARI
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https://arxiv.org/abs/2003.00110

Step 2: Query the Index Using Read Seeds

seeds

. .
- ' -~
L4 -
E L -
- .
. .
o .
- e
A' ‘

read 1: ccTAGIATAIRERCTATACET T

read 2. TATcT}acdiackacT Ak cc

read 3: ceqreThTAEN AcT ARG T
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Step 2: Query the Index Using Read Seeds

,Se?dS\ ________ /seed location list \
V PP e KRR E
A A
- 2 7 | 60
read 1: ccTAGIATAIRERCTATACET T -
[ e[ 3 [5 12
read 2. TATTcTfacdTAckAcT Ak cc B> < [0]n6]
_J-—» 6 14,5\
read 3: GCC@T seed location at the

reference genome /

X ¢ « X
1 9 |16 | 30

seed from location list from index data structure

read 1 X v x
2 7 60

X 4 7
> 3|5 [ 12|
.- 3

reference genome

SAFARI
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Step 2: Query the Index Using Read Seeds
Seeds seed Iocatlon st )
L .

’’’’’’ 1 16 | 30

We can query the Hash table with
substrings from reads to quickly find a list
of possible mapping locations

seed location at the
reference genome J

reac

read 3: Gccd €

X v « X
> 1 [ 9| 16 ] 30 |
seed from location list from index data structure
read 1 X 7 x
2 7 60
X «
> 3| 5 [ 12|

reference genome

SAFARI 83



Step 3: Sequence Alignment (Verttication)

CGTTAGTCTA
oloJoflolololofo|lo|o]fo
Cclo|2|2]2|2]2|2]2|2|2]2
Clo|2]3|3[3]|3|3|3|4/4]d4
Tlo|2|3|5]5|5|5|5]|5]|6]6
T o233 |s|2|7|7]|7|7|7]|7
Alo|3 3579999 9]9
Glo|2[4 s |79 ufr|mn||n
Tlo|2]4 6|79 f13{3[13]13
Alo|2]4 6|79 |1n|13]14]14]15
T o204 6|89 |11]|13]14]16]16

.bam/.sam file contains
necessary alignment
information (e.g., type,
location, and number of
each edit)

SAFARI
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Step 3: Sequence Alignment (Verttication)

Edit distance is defined as the minimum number of edits

(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organiz.ation
Read ation Read tr-an-s.ation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-anII-ation

Edit distance = 7

Ref organization
match )
deletion Read tr-anslation

~ insertion Edit distance = 4

mismatch
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Popular Algorithms for Sequence Alignment

Smith-Waterman remains
the most popular algorithm
since 1988

Hamming distance is

the second most popular technique
since 2008

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
SA FAR' Genome BiOIOgy, 2021 87



https://arxiv.org/abs/2003.00110

An Example of Hash Table Based Mappers

= + Guaranteed to find a/ mappings = very sensitive
= + Can tolerate up to eerrors

nature
genetICS https://github.com/BilkentCompGen/mrfast

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'?, Jeffrey M Kidd!, Tomas Marques-Bonet!?, Gozde Aksay', Francesca Antonaccil,

Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!»2

Alkan+, "Personalized copy number and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.

SAFARI 58



https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Performance of Read Mapping

a
80
2 60
=
e}
&
© 40
E
- 20
&
RMAP Bowtie BWA GSNAP SMALT LAST SNAP Bowtie2 Subread HISAT2 minimap2
2008 2009 2009 2010 2010 2011 2011 2012 2013 2019 2019
o Mappef

. <>

35
3 <4
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Alser+, "Technology dictates algorithms: Recent developments in read alignment",
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https://arxiv.org/abs/2003.00110

The Need for Speed

Did we realize the need for
faster genome analysis?

Mapper
Moore's Law ° RMAP
e Bowtie
60 ° BWA
—_ e GSNAP
v 50 . e SMALI
A LAST
ational Human Genome O ¢
m:e;earcthlnsﬁtutg _C 40 ® SNAP
R
genome.gov/sequencingcosts 0) 30 & BO\Nt|e2
E e Subread
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 fewei 20 ol HISAT2
E ® minimap2
O 10
0 8-t puton.
Before 2013 2013 and later

Year of publication

Alser+, "Technology dictates algorithms: Recent developments in read alignment",
SAFARI Genome Biology, 2021 90



https://arxiv.org/abs/2003.00110

Read Mapping

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Refernteyganame
“chemical format” “text format” “text grgmat”

SAFARI )2



Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s (
directly from environmental N
samples Reads Reference
“text format” Database

SAFARI



Genomics vs. Metagenomics

Metagenomics
- ol
Y ol

- o

‘.
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More on Metagenomic Profiling: Metalign

Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
“Metalign: efficient alignment-based metagenomic profiling via containment min

hash” Genome Biology, September 2020.
[Talk Video (7 minutes) at ISMB 2020]

[Source code]

B BMC Part of Springer Nature

Genome Biology

Home About Articles Submission Guidelines

Software | Open Access | Published: 10 September 2020

Metalign: efficient alignment-based metagenomic
profiling via containment min hash

Nathan LaPierre &, Mohammed Alser, Eleazar Eskin, David Koslicki & & Serghei Mangul

Genome Biology 21, Article number: 242 (2020) | Cite this article
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://www.youtube.com/watch?v=dh3RHrkbaZA
https://github.com/nlapier2/Metalign

Check Also CAMI II Paper

F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson,
Mohammed Alser, and others
“Critical Assessment of Metagenome Interpretation - the second

round of challenges”
bioRxiv, 2021

[Source Code]

Critical Assessment of Metagenome Interpretation - the second round of
challenges

F. Meyer, A. Fritz, Z.-L. Deng, "= D. Koslicki, A. Gurevich, G. Robertson, M. Alser, D. Antipov, ‘& F. Beghini,
D. Bertrand, J. . Brito, C.T. Brown, J. Buchmann, A. Bulug, B. Chen, R. Chikhi, PT. Clausen, A. Cristian,
P.W. Dabrowski,A. E. Darling, R. Egan, E. Eskin, E. Georganas, E. Goltsman, M.A. Gray, L. H. Hansen, S. Hofmeyr,
P.Huang, L. Irber, H. Jia, T. S. Jergensen, S. D. Kieser, T. Klemetsen, A. Kola, M. Kolmogorov, A. Korobeynikoy, . Kwan,
N. LaPierre, & C. Lemaitre, C. Li,A. Limasset, F. Malcher-Miranda, S. Mangul,V. R. Marcelino, C. Marchet, P. Marijon,
D. Meleshko, D. R. Mende, A. Milanese, N. Nagarajan, . Nissen, S. Nurk, L. Oliker, L. Paoli, “=/ P. Peterlongo,
V. C.Piro,].S. Porter, S. Rasmussen, E. R. Rees, K. Reinert, B. Renard, E. M. Robertsen, ©2' G. L. Rosen,
H.-). Ruscheweyh,V. Sarwal, ©) N. Segata, "’ E. Seiler; L. Shi, =" F. Sun, ¥ S. Sunagawa, S. J. Serensen, A. Thomas,
C.Tong, “& M.Trajkovski, =/ . Tremblay, G. Uritskiy, “ R.Vicedomini, Zi.Wang, Zhe.Wang, "= Zho.Wang,
A.Warren, N. P.Willassen, K.Yelick, R.You, G. Zeller, Z. Zhao, S. Zhu, . Zhu, R. Garrido-Oter, P. Gastmeier,
S.Hacquard, S. HauBler, A. Khaledi, F. Maechler, "2/ F. Mesny, 0 S. Radutoiu, P. Schulze-Lefert, N. Smit, 2 T. Strowig,
A.Bremges, A. Sczyrba, & A. C. McHardy

° °
doi: https://doi.org/10.1101/2021.07.12.451567 b l O RX lv
96
SA FAR' THE PREPRINT SERVER FOR BIOLOGY


https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://github.com/CAMI-challenge/second_challenge_evaluation

Check Also MiCoP

Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu,
David Koslicki & Eleazar Eskin

“MiCoP: microbial community profiling method for detecting viral and fungal organisms
in metagenomic samples’

BMC Genomics, June 2019.

[Source code]

K BMC Part of Springer Nature

BMC Genomics

Research | Open Access | Published: 06 June 2019

MiCoP: microbial community profiling method for
detecting viral and fungal organisms in
metagenomic samples

Nathan LaPierre, Serghei Mangul &4, Mohammed Alser, Igor Mandric, Nicholas C. Wu, David Koslicki
& Eleazar Eskin

BMC Genomics 20, Article number: 423 (2019) | Cite this article
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https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://github.com/smangul1/MiCoP

Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
—)—

_(—

SAFAR’ https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1 5 08



Revisiting the Puzzle

ww.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-seqguencing/

SAFARI 7


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reterence Genome Bias

nature genetics

Letter | Open Access | Published: 19 November 2018

Assembly of a pan-genome from deep
sequencing of 910 humans of African
descent

Rachel M. Sherman &, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30-35(2019) | Cite this article

“African pan-genome contains ~10% more DNA
bases than the current human reference genome”

SAFAR| Sherman+, "Assembly of a pan-genome from deep sequencing of 910 humangpf
African descent” Nature genetics, 2019.



https://www.nature.com/articles/s41588-018-0273-y

Time to Change the Reference Genome

I Genome Biology

Home About Articles Submission Guidelines

Opinion | Open Access | Published: 09 August 2019
Is it time to change the reference genome?

Sara Ballouz, Alexander Dobin & Jesse A. Gillis

Genome Biology 20, Article number: 159 (2019) | Cite this article

12k Accesses | 11 Citations | 45 Altmetric | Metrics

“Switching to a consensus reference would offer important
advantages over the continued use of the current reference with

few disadvantages”
SAFAR| Ballouz+, "Is it time to change the reference genome?", Genome Biology, 201901



https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4

Analysis 1s Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 ‘

Read Mapping = Others

71%

SA FARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-1T02
processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Agenda for Today

What is Genome Analysis?
What is Intelligent Genome Analysis?

How we Analyze Genome?
What is Read Mapping?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

a Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?

SAFARI
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What makes
read mapping
a bottleneck?

SAFARI



A Tsunami of Sequencing Data

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons 1990 Kilo = 1,000

Bacterial genomes 1995  Mega = 1,000,000

Human genome 2000 Giga = 1,000,000,000

Human microbiome 2005  Tera=1,000,000,000,000

50K Microbiomes 2015  Peta=1,000,000,000,000,000

what is expected for the next 15 years ? (a Giga?)

200K Microbiomes 2020 Exa= 1,000,000,000,000,000,000

1M Microbiomes 2025  Zetta = 1,000,000,000,000,000,000,000 s°:rr°ei:des

Earth Microbiome 2030 Yotta = 1,000,000,000,000,000,000,000,000 -
Efficient indexing of k-mer presence and abundance in sequencing datasets Rayan Chikhi, VanBUG seminar 2020
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Lack of Spectalized Compute Capability

Specialized Machine General-Purpose Machine
for Sequencing for Analysis
FAST SLOW

SAFARI 106



Today’s Computing Systems

von Neumann model, 1945

where the CPU can access data stored in an off-chip
main memory only through power-hungry bus
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SAFARI Burks, Goldstein, von Neumann, “Preliminary discussion of the logical 107

design of an electronic computing instrument,” 1946.



The Problem

Data analysis
IS performed
far away from the data

SAFARI 108



Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

Y
ot

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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Read Mapping Execution Time

Collect Minimizers
2%
Collect
Matching
Seeds

>60%

Sorting
Seeds

of the read mapper’s e
execution time is spent
in sequence alighment

Seed
Chaining
16%

minimap2

ONT FASTAQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

SAFARI 1o




Sequence Alignment in Unavoidable

» Quadratic-time dynamic-
programming algorithm WHY?! NJE[TH[E[R[L][A[N[D]S]

Enumerating all possible prefixes

S
W
NETHERLANDS X SWITZERLAND I
™ NETHERLANDS x S !
NETHERLANDS x SW z
NETHERLANDS x SWI E
NETHERLANDS X SWIT R
NETHERLANDS X SWITZ L
NETHERLANDS x SWITZE A
NETHERLANDS x SWITZER N
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA
NETHERLANDS X SWITZERLAN

NETHERLANDS x SWITZERLAND

SAFARI t



Sequence Alignment in Unavoidable

» Quadratic-time dynamic-

programming algorithm N[ E[T[H[E[R[L[A[N]D]S
_ _ _ 0|1/2|3|4|5/6|7|8]|9/10[11
Enumerating all possible prefixes Sl 1121312151678 9 1010
W(2|/2/23|4|5|6|7/8|9]|10/11
1/3/3|3|3|4(5/6|7|8/|9/10[11
» Data dependencies limit the Tl4/4/4/3/4/5/6 78 91011
computation parallelism 21515/5/4/4)5]6]7]8]9]10}11
_ E|6|(6|(5/5/5/4|5|/6[7[8|910
Processing row (or column) after another rl 7171 6lelelsi@lslel718lo
L|8|8|7|7|7|6|5|4/5/6|7]|8
Al9|9/8|8|8|7|6|5/4/5|6]|7
» Entire matrix is computed N110/9191919181716]5 4] 5
. D|(11/10/10|10(10|/9 |8 |7 |6 | 5| 4§ 5
even though strings can be
dissimilar.
Number of differences is computed only at the backtraking step.
112
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Computational Cost 1s Mathematically Proven

Search...

arXiv.org > cs > arXiv:1412.0348

Help | Advanced

Computer Science > Computational Complexity

[Submitted on 1 Dec 2014 (v1), last revised 15 Aug 2017 (this version, v4)]

Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false)

Arturs Backurs, Piotr Indyk

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for the
problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(nz_‘s) for some constant 6 > 0, then the satisfiability of
conjunctive normal form formulas with N variables and M clauses can be solved in time
MOMRU=ON 4r 3 constant € > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.

SAFARI https://arxiv.org/abs/1412.0348 113
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Large Search Space for Mapping Location

CCTATAATACG

OOP—HP—HP>-HO>O

Read

AIignment',."/ of candidate locations
' have high dissimilarity
with a given read

Reference Genome

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)
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Computing System

Leiserson+, "There’s plenty of room at the Top: What will drive

computer performance after Moore’s law?", Science, 2020

The Top
Technology 01010011 01100011
01101001 01100101 @
01101110 01100011
01100101 00000000
Software Algorithms Hardware architecture
Opportunity Software performance New algorithms Hardware streamlining
engineering
Examples Removing software bloat New problem domains Processor simplification

Tailoring software to
hardware features

New machine models

Domain specialization

Data

Problem

Algorithm

Program/Language

Runtime System
(VM, OS, MM)

ISA (Architecture)

~— TheBottom

for example, semiconductor technology

Microarchitecture

Logic

Devices

Electrons

Richard Feynman, "There's Plenty of Room at the Bottom: An Invitation
to Enter a New Field of Physics”, a lecture given at Caltech, 1959.

SA F A R l Image source: https://science.sciencemag.org/content/368/6495/eaam9744
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https://www.youtube.com/watch?v=4eRCygdW--c
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744

Multiplying Two 4096-by-4096 Matrices - -
for i in xrange(4096): 1 2 3 7 8 58
for j ir.1 xrange (4096) : [4 5 6] X|9 10| = [ :l
for.k J:n xrang§(4096): . 11 12_1
C[1][J] += A[1][k] * B[k][]J] -
Implementation Running time (s) Absolute speedup
Python 25,552.48 1x
Java 2,372.68 11x
C 542.67 47X
Parallel loops 69.80 366x
Parallel divide and conquer 3.80 6,727X
plus vectorization 1.10 23,224x
plus AVX intrinsics 0.41 62,806x

Leiserson+, "There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?", Science, 2020

SAFARI 16



https://science.sciencemag.org/content/368/6495/eaam9744

FASTQ Parsing

Program
facnt_rs2_needletail.rs
facnt_c1_kseq.c
faent_cr1_klib.cr
fgent_nim1_klib.nim
fqent_jl_klib.jl
fgcnt_js1_k8.js
fgcnt_gol.go
faent_lual_klib.lua
facnt_py2_rfq.py

facnt_py2_rfq.py

Language  tgzip (S)  tpiain (S)
Rust 9.3 0.8
C 9.7 1.4
Crystal 9.7 1.5
Nim 10.5 2.3
Julia 1.2 2.9
Javascript 17.5 9.4
Go 19.1 2.8
LuaJIT 28.6 27.2
PyPy 28.9 14.6
Python 42.7 19.1

Comments

needletail; fasta/4-line fastq
multi-line fasta/fastq

kseq.h port

kseq.h port

kseq.h port

kseq.h port

4-line only

partial kseq.h port

partial kseq.h port

partial kseq.h port

SAFARI

https://github.com/Ih3/biofast 17



https://github.com/lh3/biofast

We need intelligent algorithms
and intelligent architectures
that handle data well

SAFARI



Agenda for Today

What is Genome Analysis?
What is Intelligent Genome Analysis?

How we Analyze Genome?
What is Read Mapping?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

a Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?

SAFARI
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Accelerating Read Mapping

Genome Analysis Pipeline 4 N
Read
! — AU Mapping Pz
— = gEoo
Genomic Sample Sequencing Machine Reads Genomic Variants
@ Indexing © Pre-Alignment Filtering © sequence Alignment
Reference Genome A7 N Read
wan ?-\\\G‘ ?,\\\e‘ ?_\\\e‘ 8 —
Read & ] Dynamic
-_ :’-,- N B Programming
k-mers “ma — @ L | (DP) Matrix
k-mer 2 — \_M 3 ] l=.
locations Locating — 8 m: EE
1,4,6 = Output
3,512 | common k-mers — ] l. l=
A W (PN a0 $ 3
00 e | Y Ref;fence subse « SAM file (alignment score, edit
€ : quences extracted . : d .
: . | ateach common k-mer location Il distance, type and location of each echt)‘
. . Accelerating ) .
Accelerating Indexing Pre-Alignment Filtering Accelerating Alignment
p - ( g-gram filtering )
Reducing
___ thenumberofseeds ) (* Ppigeonhole principle )

Reducing data movement ) (| Base counting )
. during indexing )

( Sparse DP )

Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.
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https://arxiv.org/pdf/2008.00961.pdf

Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 121



Our Contributions

Near-memory/In-memory Specialized Pre-alignment Filtering
Pre-alignment Filtering Accelerators (GPU, FPGA)

GRIM-Filter [BMC Genomics'18] GateKeeper [Bioinformatics'17]
GenASM [MICRO 2020] MAGNET [AACBB’18]
SneakySnake [IEEE Micro'21] ~~"‘\ Shouji [Bioinformatics'19]
\
\ =
Near-memory Sequence Alignment \  GateKeeper-GPU [arXiv'21]
N \ . .,
GenASM [MICRO 2020] J \\ \| SneakySnake [Bioinformatics’20]
(. \
- (N
i I "N
{ \ 4

Zin

Sequencing Machine Storage

(SSD/HDD) Main Memory Microprocessor
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Ongoing Directions

Seed Filtering Technique:
o Goal: Reducing the number of seed (k-mer) locations.

Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 123



FastHASH

= Goal: Reducing the number of seed (k-mer) locations.

o Heuristic (limits the number of mapping locations for each
seed).

o Supports exact matches only.

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/S1/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists
AAAAAAA\A&A\ACEC_JCC_CC_CCC_JU [TTTTTTTTT | read
Valid mapping Invalid mapping Relerence genome
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Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists

Observation 2 (Cheap k-mers)

o Key insight: Some k-mers are cheaper to verify than others
because they have shorter location lists (they occur less
frequently in the reference genome)

o Key Idea: Read mapper can choose the cheapest k-mers and
verify their locations

SAFARI 126



Cheap K-mer Selection

= occurrence threshold = 500 read
326 338 350 376 388
Cafions1 1470
2 loc. 2 loc.
Nﬂmber of Logatijuns——_
Cheapest 3 k-mers 1K loc. 2K loc. 1K loc.
Expensive 3 k-mers
Previous work needs FastHASH verifies only:

to verify:
» 8 locations

3004 locations
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FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
billions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: To reduce the cost of unnecessary verification
o Select Cheap and Adjacent k-mers.

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings
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More on FastHASH

= Download source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/S1/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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http://mrfast.sourceforge.net/

Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:
o Goal: Reducing the number of /nvalid mappings (>E).

Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 130



Pre-alignment Filtering Technique

Sequence Alignment is expensive

Our goal is to reduce the need for dynamic
programming algorithms
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Key Idea

L Genomic Strings J

p

of differences exceeds a
threshold.

o

Ignore them if the number

)

o

Find number and location

of differences?

\*5\\\}"\/ \
e om
I 4 I

)

SAFARI
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Ideal Filtering Algorithm

Step 3

Read
Alignment

1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

SAFARI 133



GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser &, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ¥, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

SAFARI
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

GateKeeper

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2 £ shifts.

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2£+1 Hamming
vectors of two strings, to identify invalid mappings
Uses bit-parallel operations that nicely map to FPGA architectures

Key result:

o GateKeeper is 90x-130x faster than SHD (Xin et al., 2015) and
the Adjacency Filter (Xin et al., 2013), with only a 7% false
positive rate

o The addition of GateKeeper to the mrFAST mapper (Alkan et
al., 2009) results in 10x end-to-end speedup in read mapping
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Hamming Distance (D€

D)

3 matches

5 mismatches

Edit = 1 Deletion
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Shifted Hamming Distance (Xin+ 2015)

| [|S|IT[A[IN[/B||U|]|L
XOR - ! E i i i E E Edit = 1 Deletion
\ 4 \ 4 [
g :
O(|O}JO[1{J1]/1)1}) = XOR
AND<
1(/1({/1]]0[/0}/0|/0

C°““t{ooo1oooo

7 matches

1 mismatches
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GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000 11011010010101
l1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000

2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001 11000111101100

3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011 11010111001000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000000000000000000000

11101101001010
10111011101111
11101110111110

155 Our goal to track the diagonally consecutive matches in the
il neighborhood map.

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : | ILEEEEIIT LEEEEEREREEE FPEEEEEEE PP EEEEEE P EEE PR PR s PR

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
CTATAATACG CTATAATACG
4
Al A jeas
C |- C 0
T T 0
A A 0
T T 0
A A 04 0
T T 0
A A 0
C C 0
G G :

Our goal to track the diagonally consecutive matches in the
neighborhood map.
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
4
A A e
‘ 0
T T 0
A A 0
T T 0
A A 04 0

Independent vectors can be processed in parallel using
hardware technologies

SAFARI 140



Our Solution: GateKeeper

st

Alignment WY
Filter ke o - 74 FPGA-based
Alignment Filter.

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x103

mappings
- oo

x1012

ATATATACG ]
3ACGGGGAGTA A

DOPAPAP-HOD>

E High throughput DNA Read Pre-Alignment Filtering Read Alignment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

| « (2E)*(ReadLength) 2-AND
operations.

* (ReadlLength/4) 5-input LUT.

log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NERS 101 > 111 & 1001 »> 1111

 E right-shift registers (length=ReadLength)
« E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operations.

~ ™

Hammmg mask

I 5-input

D LI{T LI : i

| l l
IC0111100011.10001111 1111110001&10

Hamming mask after amending

E » (2E+1)*(ReadlLength) 5-input LUT.
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Virtex-7 FPGA Layout
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The LUTs in 7 series
FPGAs can be
configured as either a
6-input LUT with one
output, or as two 5-
input LUTs with
separate outputs
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> Slice(1)

Switch
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Slice(0)
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I

f

[

UG474_c1_01_071910

Figure 1-1: Arrangement of Slices within the CLB

Table 2-1: Logic Resources in One CLB

Arithmetic and

- - (1) . N (1)
Carry Chains Distributed RAM Shift Registers

Slices | LUTs | Flip-Flops

2 8 16 2 256 bits 128 bits
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GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) EAIignment Verification

(CPU/FPGA)

ornnrnnrnnnns s , ..................... GateKeeper ,,

Read Controller

read#1 read#N

ACTATAATACG

read pairs

(MIFAST 1q #
output) b

Encoder EI¥ oo1

DOP>AP>PAP>PHA0>0

’ K Input stream :
. : of binary pairs GateKeeper EEEEE GateKeeper
—ll == B Processing Processing
fir b e eyt o fir b e eyt o E Core #1 » n n n Core #N
- E Accepted Alignments

input reads  reference '

(fastq) genome (.fasta) + (correct & false positives)

*Imap#ﬂj [ Tmap #N]|

PCie

GateKeeper
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FPGA Chip Layout
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper
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GateKeeper Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing
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More on SHD (SIMD Implementation)

= Download and test for yourself
= https://qithub.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560
doi: 10.1093/bioinformatics/btu856

Original Paper OXFORD

Advance Access Publication Date: 10 January 2015

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford?, Can Alkan** and Onur Mutlu®*
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More on GateKeeper

= Download and test for yourself
https://qithub.com/BilkentCompGen/GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser ¢, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu %, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping”, Bioinformatics, 2017.
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https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

Can we do better? Scalability?
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Shouji (& 7-)

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>*
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, *Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/biocinformatics/btz234
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Shouyt

Key observation:

o Correct alignment always includes long identical subsequences.

o Processing the entire mapping at once is ineffective for hardware
design.

Key idea:

o Use overlapping sliding window approach to quickly and
accurately find all long segments of consecutive zeros.

Key result:

o Shouji on FPGA is up to three orders of magnitude faster than its
CPU implementation.

o Shouji accelerates best-performing CPU read aligner Edlib
(Bioinformatics 2017) by up to 18.8x using 16 filtering units that
work in parallel.

o Shouji is 2.4x to 467x more accurate than GateKeeper
SAF l&%i?informatics 2017)and SHD (Bioinformatics 2015).
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Building the
Neighborhood Map

Finding all common
subsequences
(diagonal segments of
consecutive zeros)
shared between two
given sequences.

© G N & 1 & W N R -

S XN N
N = O

Storing it @ Shouji Bit-vector

J 1 2 3 4 5 6 7 8 9 10 11 12
G| G | T|G|C|A|G | A|G Cc T C

G| O oM QY

o[> 0 md

TIM N 0 LR

6| o [0y ¥y 0

A N 1] 0

G A 0,10

A 1101/ 1

G 0|10 1|1

T 110110/ 1

T 10101101

G 1ol 1] 1]1

T 11101

0

0

0

1

0

0

0

0

1

0

1

ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,

https://doi.org/10.1093/bioinformatics/btz234
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Shouji Walkthrough

j 1 2 3 4 6 7 8 9 10 11 12
Building the i G|G|T |6 AlG A|G|Cc |T|cC
Nelzas 1 /6 |0f0o|1]0
- B 216 |0f0|1]0
|4 —1 3T 1101 1
416 |0f0|1]0 10
5 1A 111 0[1]0
6 | G 10 11010
7 | A 1 of1]0]|1] 1
8 |G 11010 1] 1
9 | T 11111101
10T 1111110/ 1
11 | G 110111
2|7 1110 1
Storing it @SSRS R tor ojfojof[oj1r|O0f[OjO|O|21]|0]1

ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Sliding Window Size

The reason behind the selection of the window size is due
to the minimal possible length of the identical subsequence
that is a single match (e.g., such as 101").

0.6
52.86%

0.45
i)
&
a
g 03
<
3 17.30%
L

0.15

3.680/0 1100/0
0 »
1 2 3 4

Window Size (bits)
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Hardware Implementation
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Mote on Shouyjt

Download and test for yourself
https://github.com/CMU-SAFARI/ShOUji  ,umedes 2 1

doi: 10.1093/bioinformatics/btz234
Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>*
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, “Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Specialized Hardware for Pre-alignment Filtering

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, 2020.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

SneakySnake: a fast and accurate universal genome pre-
alignment filter for CPUs, GPUs and FPGAs

Mohammed Alser ™, Taha Shahroodi, Juan Gomez-Luna, Can Alkan ™, Onur Mutlu ==

Bioinformatics, btaal015, https://doi.org/10.1093/bioinformatics/btaal015
Published: 26 December2020 Article history v
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https://doi.org/10.1093/bioinformatics/btaa1015

SneakySnake

= Key observation:

o Correct allgnment iS a sequence of non overlappmg long matches.

ek
" g 1 'zqm -,

=atee s ) "-.": /'s.:'..

sa

T. ophioglossoides scaffolds
| &

— - *.. - Dot plot, dot matrix
= EEEREEEET mm,@! (Lipman and Pearson, 1985)
{ { i i { { i { s i S

2 inflatun—q scaffolds
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SneakySnake

= Key observation:
o Correct alignment is a sequence of non-overlapping long matches
= Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip

QAWIf{ﬁﬁﬂﬂ‘ﬁ%|mﬁ@j@ ,

08000008600 ll?l_,

Neuron(JU)

A
5
3-, '
~ 1

OMpréssor

nductive coupled
W jransceiyer
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

Given two genomic sequences, a
reference sequence R[1...m] and a query sequence Q[1...m], and an E
edit distance threshold E, we calculate the entry Z[i, j| of the chip maze,
where 1 <4 < (2E+ 1) and 1 < 5 < m, as follows:

3

0, if i=E+1, Q[j]= R[],
. . )0, if 1<i<E, Q[j—1i]=R[],
2151 = 0, ifi>E+1, Q[j+i—E—1]=R[j], 1)
1

, otherwise

column 1 2 3 4 5 6 7 8 9 10 11 12

3" Upper Diagonal

2 Upper Diagonal

I’ Upper Diagonal

Main Diagonal

I’" Lower Diagonal

2" Lower Diagonal

el B el ey B Nl W
el B0 B Bl By B
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1
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SneakySnake Walkthrough

Finding the Optimal Routing Path

Building Neighborhood Map

I*" Upper Diagc

Main Diagon

ENTRANCE

I’ Lower Diagq
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SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build - 3
and it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3

Ll
O
=
=
—
=
L
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FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,
Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register | No. of Filtering Units

GateKeeoer 2 0.39% 0.01% 16
P 5 0.71% 0.01% 16

Shouii 2 0.69% 0.08% 16
) 5 1.72% 0.16% 16

. 2 0.68% 0.16% 16
Snake-on-Chip 5 1.42% 0.34% 16
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Key Results of SneakySnake

a SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics’'19) and GateKeeper (Bioinformatics'17)

o Using short reads, SneakySnake accelerates Edlib
(Bioinformatics'17) and Parasail (BMC Bioinformatics’16) by

up to 37.7x and 43.9x (>12x on average), on CPUs

up to 413x and 689x (>400x on average) with FPGA/GPU
acceleration

o Using long reads, SneakySnake accelerates Parasail and KSW2 by
140.1x and 17.1x on average, respectively, on CPUs
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Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

Y
ot

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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Processing Using Memoty

Computer Architecture
Lecture 6a;: RowHammer &

Secure and Reliable Memory 11

Prof. Onur Mutlu
ETH Zirich
Fall 2021
15 October 2021

© ETH ZURICH D-ITET
Computer Architecture - Lecture 6: Processing using Memory (Fall 2021)

721 views * Streamed live on Oct 15, 2021 75 26 CJ o0 > SHARE =+ SAVE
@ Onur MutIu.Lectures SUBSCRIBED r‘\
P S 19.6K subscribers S

SAFARI https://www.youtube.com/watch?v=HNd4skQrt61 17
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Processing Using Memory 11

Computer Architecture
Lecture 7: Processing using Memory 11

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zlrich
Fall 2021
21 October 2021

Computer Architecture - Lecture 7: Processing using Memory Il (Fall 2021)

558 views * Streamed live on Oct 21, 2021 75 28 CF 0 > SHARE =+ SAVE
@ Onur MutlulLectures SUBSCRIBED f“
> 19.6K subscribers =

SAFARI https://www.youtube.com/watch?v=k56x2qcaXWY 180
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Processing Near Memory

Computer Architecture

Lecture 8: Processing near Memory

\

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zlrich
Fall 2021
22 October 2021

Computer Architecture - Lecture 8: Processing near Memory (Fall 2021)

759 views * Streamed live on Oct 22, 2021 75 33 CGF 0 > SHARE =+ SAVE
@ Onur MutlulLectures SUBSCRIBED f“
> 19.6K subscribers =

SAFARI https://www.youtube.com/watch?v=kpglLmX9sdcI 181
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Using Real PIM System

Juan Gomez L... sy,

Computer Architecture
Lecture 9a: Real PIM Systems:
UPMEM Case Study

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2021
28 October 2021

Computer Architecture - Lecture 9: Real PIM Systems: UPMEM Case Study (Fall 2021)

137 views * Streamed live 5 hours ago 5 11 G0 > SHARE =+ SAVE
@ Onur MutlulLectures SUBSCRIBED f“
> 19.6K subscribers =

SAFARI https://www.youtube.com/watch?v=TuVw_SKaTCo 182
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Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.

[Source Code]

nilLk

FPGA Compu( ng

Previous Next
i= Table of Contents

Past Issues

Home / Magazines / IEEE Micro / 2021.04

IEEE Micro

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH Zrich, Zirich, Switzerland

Mohammed Alser, ETH Zirich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland
Juan Gomez-Luna, ETH Zlrich, Zurich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zirich, Switzerland
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Near-memory SneakySnake

= Problem: Read Mapping is heavily bottlenecked by data
movement from main memory

= Solution: Perform read mapping near where data resides (i.e.,
near-memory)

= We carefully redesigned the accelerator logic of SneakySnake
to exploit near-memory computation capability on modern
FPGA boards with high-bandwidth memory
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Heterogeneous System: CPU+FPGA

We evaluate two POWER9+FPGA systems:
1. HBM-based AD9H7 board: Xilinx Virtex Ultrascale+™ XCVU37P-2
2. DDR4-based AD9V3 board: Xilinx Virtex Ultrascale+™ XCVU3P-2

HBM-based AD9HY7 board
FPGA + HBM on the same package substrate s Spvias it 50

AN

= M

Source: IBM

POWERY9 AC922

AOM

T ] -

Source: AlphaData

DDR4-based AD9V3 board
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Key Results of Near-memory SneakySnake
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More on SneakySnake [Bioinformatics 2020)]

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, 2020.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

SneakySnake: a fast and accurate universal genome pre-
alignment filter for CPUs, GPUs and FPGAs

Mohammed Alser ™, Taha Shahroodi, Juan Gomez-Luna, Can Alkan ™, Onur Mutlu ==

Bioinformatics, btaal015, https://doi.org/10.1093/bioinformatics/btaal015
Published: 26 December2020 Article history v
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https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

BMC Genomics

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan & & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses | 39 Citations | 9 Altmetric | Metrics
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

GRIM-Filter

Key observation: FPGA and GPU accelerators are Heavily
bottlenecked by Data Movement.

Key idea: exploiting the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel filtering in the DRAM
chip itself.

Key results:
o We propose an algorithm called GRIM-Filter

o GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on
average) faster than FastHASH filter (BMC Genomics’13) across real
data sets.

o GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted
pairs than FastHASH filter (BMC Genomics'13) across real data sets.

SAFARI 189



GRIM-Filter in 3D-Stacked DRAM

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

Row R—1: TTTTT

o)
Q
>
~

Bitvector for bin 2
Bitvector for bin t—1

Bitvector for bin 0
Bitvector for bin 1

-] —

s Vault
) i
Logic Layer N

= Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

= The layout of bitvectors in a bank enables filtering many

bins in parallel
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GRIM-Filter: Bitvectors

Reference
Genome

C AAAAA
AAAAC
AAAAG
AAAAT

CCCCT
tokens < '

GCATG

TTGCA

TTTTT

bin1
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA eee

by

OO -

— AAAAC
exists in
bin 1

bin3

o Represent each bin with a bitvector
that holds the occurrence of all
permutations of a small string (token)
in the bin

a To account for matches that straddle
bins, we employ overlapping bins

= A read will now always completely fall
within a single bin
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GRIM-Filter: Bitvectors

bin bin
Reference : 3
Genome "AAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA -
bin,
bl b2
CAAAAA | 1 AAAAA | O
AAAAC 1 AAAAC 1
AAAAG 0 AAAAG 0
AAAAT 0 ) .
. . AGAAA 1
CCCCT | 1 ) .
. . GAAAA 1
tokens < _ _ _ _ e o o
GACAG 1
GCATG | 1 GCATG 1
TTGCA 1
WTTTTT 0 TTTTT 0

Storing all bitvectors
requires 4™ x t bits
in memory,

where

t = number of bins
&

n = token length.

For bin size ~200,
and n =5,
memory footprint
~3.8 GB
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA ... CGAG g Read bitvector forbin_num(x)

o Get tokens ¢

TN Tt > 1
e Rl > 0
~~__ ~~. 1 Sum Compare
e TN 5%
e S.o S~<_ Mo -+ = Threshold?
" ~ e 1
tokens\ * TN 1 Nf/ NES
N .
T 1 Discard Send to
0 Read Mapper
o Match tokens to bitvector for Sequence
0 Alignment
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More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

BMC Genomics

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan & & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses | 39 Citations | 9 Altmetric | Metrics
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

GenCache

GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment

Anirban Nag C. N. Ramachandra Rajeev Balasubramonian
anirban@cs.utah.edu ramgowda@cs.utah.edu rajeev@cs.utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah
Ryan Stutsman Edouard Giacomin Hari Kambalasubramanyam
stutsman@cs.utah.edu edouard.giacomin@utah.edu hari.kambalasubramanyam@utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah

Pierre-Emmanuel Gaillardon
pierre-
emmanuel.gaillardon@utah.edu
University of Utah
Salt Lake City, Utah

Nag, Anirban, et al. "GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.
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https://www.cs.utah.edu/~rajeev/pubs/micro19a.pdf

GenCache

Key observation: State-of-the-art alignment accelerators are still
bottlenecked by memory.

Key ideas:

o Performing in-cache alignment + pre-alignment filtering by enabling
processing-in-cache using previous proposal, ComputeCache
(HPCA'17).

o Using different Pre-alignment filters depending on the selected edit
distance threshold.

Results:

o GenCache on CPU is 1.36x faster than GenAx (ISCA 2018).
GenCache in cache is 5.26x faster than GenAx.

o GenCache chip has 16.4% higher area, 34.7% higher peak power,
and 15% higher average power than GenAx.
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GenCache’s Four Phases

Phase 1 Phase 2 Phase 3 Phase 4
0 ERRORS 1 ERROR 2-5 ERRORS 6+ ERRORS
Seed Solver: Seed Solver: Seed Solver: Seed Solver:
MIN SEARCH MIN SEARCH HOBBES SMEM
Operations: ) Operations: _). Operations: __) Operations:
HD SHD SHD C MYERS B
MYERS B SWA
48 MB REF 48 MB REF SWA
20 MB BLOOM 20 MB BLOOM 40 MB REF 24 MB REF
4 MB INDEX 8 MB INDEX 32 MB INDEX 48 MB INDEX

Figure 7: Four phases in the new alignment algorithm that
exploits in-cache operators.

SAFARI

200



Throughput Results

Throughput (KReads/s)

5000

0000 I
5000

'm m B B

GenM e MB)GC (326‘:'?2\* U’“asmgclc lP“aég\ ?%\Oom filter)

Figure 9: Throughput improvement of GenCache (Hardware
& Software).
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Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 204




GenASM Framework [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lightning Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bingol¥  Can Firtina® Lavanya Subramanian’ Jeremie S. Kim®!
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan’ Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs Y Bilkent University =~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of Illinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Near-memory GenASM Framework

Our goal: Accelerate approximate string matching (ASM) by
designing a fast and flexible framework, which can accelerate
multiple steps of genome sequence analysis.

Key ideas: Exploit the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel ASM in the DRAM chip
itself.

Modify and extend Bitapl2, ASM algorithm with fast and simple

bitwise operations, such that it now:

o Supports long reads

o Supports traceback

o Is highly parallelizable

Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Key Results of the GenASM Framework

(1) Read Alignment

= 116x speedup, 37x less power than Minimap2 (state-of-the-art SW)

= 111x speedup, 33x less power than BWA-MEM (state-of-the-art SW)

= 3.9x better throughput, 2.7x less power than Darwin (state-of-the-art HW)

= 1.9x better throughput, 82% less logic power than GenAX (state-of-the-art HW)

(2) Pre-Alignment Filtering
= 3.7x speedup, 1.7x less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
m 22-12501x speedup, 548-582x |less power than Edlib (state-of-the-art sw)

= 9.3-400x speedup, 67x less power than ASAP (state-of-the-art HW)
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Conclusion on Our Contributions

Near-memory/In-memory Specialized Pre-alignment Filtering
Pre-alignment Filtering Accelerators (GPU, FPGA)

GRIM-Filter [BMC Genomics'18] GateKeeper [Bioinformatics'17]
GenASM [MICRO 2020] MAGNET [AACBB’18]
SneakySnake [IEEE Micro'21] ~~"‘\ Shouji [Bioinformatics'19]
\
\ =
Near-memory Sequence Alignment \  GateKeeper-GPU [arXiv'21]
N \ . .,
GenASM [MICRO 2020] J \\ \} SneakySnake [Bioinformatics’20]
Vo
!
{ \4

Main Memory Microprocessor
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Conclusion on Ongoing Directions

Read alignment can be substantially accelerated using
computationally inexpensive and accurate pre-alignment
filtering algorithms designed for specialized hardware.

All the three directions are used by mappers today, but
filtering has replaced alignment as the bottleneck.

Pre-alignment filtering does not sacrifice any of the aligner
capabilities, as it does not modify or replace the alignment

step.
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What else can be done?
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What if we got a new version of
the reference genome?

[FASTA file [FASTQ file
‘
i l
.-l
‘{

|
Reference / 5 * ¢
genome / .
Reads ‘

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

AirlLift [Kim+, arXiv 2021]

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed
Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu

"AirLift: A Fast and Comprehensive Technique for Translating Alignments between
Reference Genomes", arXiv, 2021

[Source Code]

[Online link at arXiv]

RESEARCH

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim!, Can Firtinal, Meryem Banu Cavlak?, Damla Senol Cali3, Nastaran Hajinazarl"”,
Mohammed Alser!, Can Alkan? and Onur Mutlu!23*
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https://arxiv.org/pdf/1912.08735.pdf
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf

Airlift

Key observation: Reference genomes are updated frequently.
Repeating read mapping is a computationally expensive workload.

Key idea: Update the mapping results of only affected reads
depending on how a region in the old reference relates to another
region in the new reference.

Key results:

a reduces number of reads that needs to be re-mapped to new
reference by up to 99%

o reduces overall runtime to re-map reads by 6.94x, 208x, and
16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions

Constant Region Updated Region
Retired Region New Region
Old Reference e
/ / / //
/ // /
/ // / //

New Reference o

Fig. 2. Reference Genome Regions.

SAFARI 223



More Details on AirLift

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed
Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu

"AirLift: A Fast and Comprehensive Technique for Translating Alignments between
Reference Genomes", arXiv, 2021

[Source Code]

[Online link at arXiv]

RESEARCH

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim!, Can Firtinal, Meryem Banu Cavlak?, Damla Senol Cali3, Nastaran Hajinazarl"”,
Mohammed Alser!, Can Alkan? and Onur Mutlu!23*
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https://arxiv.org/pdf/1912.08735.pdf
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf

Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What is Read Mapping?
s What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?
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Adoption of
hardware accelerators
IN genome analysis
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Bioinformatics: Reviewer #6 (Dec. 20106)

I have a major concern with the work that is actually
not a problem with the manuscript at all. Specifically, I
have the concern that there has been little to no adoption of
previous specialized hardware solutions related to improving
the speed of alignment. While there has been considerable
work in this area (which the authors do an admirable job of
citing), it does not seem that these hardware-based solutions
have gained any type of real traction in the community, as the
vast majority of alignment is still performed on “reqgular” CPUs,
where the extent of hardware acceleration is the adoption of
specific SIMD or vectorized instructions. While I don’t think
that this practical concern should preclude publication of the
current work, it is something worth considering (what, if any,
of the proposed improvements to the SHD filter could be
“back-ported” to a software-only solution).
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Our Response

We see the reviewer’s point, but we do not believe this should be held against the research in the area of FPGA-based
acceleration of read mapping in particular or genomics in general. It always takes time to adopt a “new” or “different”
hardware technology since it requires investment into the hardware infrastructure. The main challenges/barriers that
limit the popularity of FPGAs in the genomics field are the high cost, design effort, and development time. Due to the
fact that the deliverable of such projects is normally a hardware product, researchers tend to commercialize their
research with startup companies and engage themselves with industrial collaborators, as we describe below. Today,
the cost structure of FPGAs is changing because major cloud infrastructures (e.g., by Microsoft Azure and Amazon
AWS) offer FPGAs as core engines of the infrastructure. Therefore, we believe the benefits of FPGA-based
acceleration has become available to many more folks in the community, especially with the open-source release of
such FPGA-accelerated solutions. To increase adoption, we have decided to release our source code for GateKeeper.
It is available on https://github.com/BilkentCompGen/GateKeeper.

Some examples of the research groups that commercialize their research and promote FPGA-based or even cloud-
based products for genomics are as follows:

http://www.timelogic.com/catalog/775

http://www.gidel.com/HPC-RC/HPC-Applications.asp

http://www.edicogenome.com/dragen bioit platform/the-dragen-engine-2/
http://www.bcgsc.ca/platform/bioinfo/software/XpressAlign/releases/1.0
https://www.sevenbridges.com/amazon/
http://www.falcon-computing.com/index.php/solutions/falcon-genomics-solutions/
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Our Response (cont’d)

It is also important to emphasize that the necessity of designing a mapper on hardware is currently steering the field
towards more personalized medicine. Hardware-accelerated mappers (using various platforms such as SIMD, GPUs,
and FPGAs) are becoming increasingly popular as they can be potentially directly integrated into sequencing machines
(the lllumina sequencer, for example, includes an FPGA chip inside it
https://support.illumina.com/content/dam/illumina-support/documents/downloads/software/hiseq/hcs_2-0-
12/installnotes _hcs2-0-12.pdf ), such that we have a single machine that can perform both sequencing and mapping
(Lindner, et al., Bioinformatics 2016). This approach has two benefits. First, it can hide the complexity and details of
the underlying hardware from users who are not necessarily aware about FPGAs (e.g., biologists and
mathematicians). Second, it allows a significant reduction in total genome analysis time by starting read mapping
while still sequencing. Hence, an end user or researcher in genomics might not directly deal with the “pre-alignment
on FPGA” or “mapper on FPGA”, but they might purchase a sequencer that performs pre-alignment and alignment
using FPGAs inside. As such, one potential target of our research is to influence the design of more intelligent
sequencing machines by integrating GateKeeper inside them.

In fact, we believe GateKeeper is very suitable to be used as part of a sequencer as it provides a complete pre-
alignment system that includes many processing cores, where all processing cores work in parallel to provide
extremely fast filtering. We believe such a fast approach can make sequencers more intelligent and attractive.
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Dream
and, they will come

Computing landscape is very different from 10-20 years ago
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[lumina DRAGEN Bio-IT Platform (2018)

= Processes whole genome at 30x coverage in ~25 minutes
with hardware support for data compression

LR LI LR L R LR L e
'

E q:rﬂ
D 5]

N TURRA IS Y ‘ U A

hoptmoee
- - e L T
S e ® MBI

31
= |

L i
L . L ¥
- L

i FPGA board(s)
{

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html
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https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html

NVIDIA Clara Parabricks (2020)

A University of Michigan’s startup in
2018 and joined NVIDIA in 2020

GPU board(s)

PERFORMANCE COMPARISON

~ mlir = ( Carnndarv An
{ mline End-to-End Secondary Analys

1,200 minutes

‘ ‘ 52 minutes 35 minutes 23 minutes

—
CPU/GATK 8X T4 8X V100 8X A100

SAFARI https://developer.nvidia.com/clara-parabricks 233
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Computing
is Still Bottlenecked by
Data Movement
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Adoption Challenges of Hardware Accelerators

Accelerate the entire read mapping process rather than its
individual steps (Amdahl’s law)

Reduce the high amount of data movement
o Working directly on compressed data

o Filter out unlikely-reused data at the very first component of the
compute system

Develop flexible hardware architectures that do NOT
conservatively limit the range of supported parameter
values at design time

Adapt existing genomic data formats for hardware
accelerators or develop more efficient file formats
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Adoption Challenges of Hardware Accelerators

= Maintaining the same (or better) accuracy/sensitivity of the
output results of the software version

o Using heuristic algorithms to gain speedup!

= High hardware cost

= Long development life-cycle for FPGA platforms
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Did we Achieve Our Goal?

Fast genome analysis in mere seconds using limited
computational resources (i.e., personal computer or small
hardware).

TOMORROWLAND
Ny

A

)
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Open Questions

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?
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Pushing Towards New Architectures

FPGAS

Modern systems

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage
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Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip

= 400,000 cores

NVIDIA TITAN V

VDI
T TAIWAN 1723A1

PFBY62.M00" &0
GV100-895-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

SAFARI onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich 240



https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

TESLA Full Selt-Driving Computer (2019)

= ML accelerator: 260 mm?, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.
htt s://youtu.be/Ucp0TTmvqOE?t=4236

AT

Iih..----- _ﬂ

SAFARI onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich


https://youtu.be/Ucp0TTmvqOE?t=4236
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

Where is Read Mapping Going Next?

Will 100% accurate genome-long
reads alleviate/eliminate the need for
read mapping?

Think about metagenomics, pan-genomics, ...
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Lecture Conclusion

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This lecture is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We cover various recent ideas to accelerate read mapping
a A journey since September 2006
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Key Takeaways

Population-scale analyses are not an easy task

You need to consider many things in designing a new
system + have good intuition/insight into ideas/tradeoffs

But, it is fun and can be very rewarding/impactful

And, enables a great future
o It has large scientific, medical, societal, personal implications

Very hot topic for graduate studies and research!
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Key Conclusion

Most speedup comes from
parallelism enabled by

novel architectures and algorithms
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Work With Us

If you are already a student at ETH and are interested in
doing research with SAFARI research group on similar

topics, 1alk to me:

o ALSERM@ethz.ch
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Openings (@ SAFARI

We are hiring enthusiastic and motivated students and
researchers at all levels.

1oin us now: Safari.ethz.ch/apply

Elh.
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Recommended Readings

= Jones, Neil C. and Pavel Pevzner. “An introduction to
bioinformatics algorithms,” MIT press, 2004.

= Makinen, Veli, Djamal Belazzougui, Fabio Cunial, and
Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.

Veli Makinen, Djamal Belazzougui,

AN INTRODUCTION TO Fabio Cunial and Alexandru |. Tomescu
BIOINFORMATICS ALGORITHMS
GENOME-SCALE
ALGORITHM

DESIGN

BIOLOGICAL SEQUENCE ANALYSIS IN THE
ERA OF HIGH-THROUGHPUT SEQUENCING
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Read Mapping in 111 pages!
In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 G enome B | 0O | Ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates
Mohammed Alser'*", Jeremy Rotman®", Dhrithi Deshpande®, Kodi Taraszka®, Huwenbo Shi®’, Pelin Icer Baykal®,
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev®, Benjamin D. Singer'®'"'? Brunilda Balliu',
David Koslicki'*'>'®, Pavel Skums®, Alex Zelikovsky®'”, Can Alkan®'®, Onur Mutlu'**" and Serghei Mangul®""
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https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Detailed Analysis of Tackling the Bottleneck

Mohammed Alser, Ziilal Bingdl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,

Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey”

IEEE Micro, August 2020.

o ., s

IEEE Micro

@
I‘h Home / Magazines / IEEE Micro / 2020.05

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

Machine Learning for Systems
Mini-Theme: Biology and Systems Interactions.

;‘;:: Authors
- Mohammed Alser, ETH Zirrich
P > Zulal Bingol, Bilkent University
Previous Next Damla Senol Cali, Carnegie Mellon University
Jeremie Kim, ETH Zurich and Carnegie Mellon University
i= Table of Contents Saugata Ghose, University of lllinois at Urbana—-Champaign and Carnegie Mellon University

Can Alkan, Bilkent University
Onur Mutlu, ETH Zurich, Carnegie Mellon University, and Bilkent University

Past Issues
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Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.

[Source Code]

nilLk

FPGA Compu( ng

Previous Next
i= Table of Contents

Past Issues

Home / Magazines / IEEE Micro / 2021.04

IEEE Micro

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH Zrich, Zirich, Switzerland

Mohammed Alser, ETH Zirich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland
Juan Gomez-Luna, ETH Zlrich, Zurich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zirich, Switzerland
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https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM

More on Accelerating Genome Analysis ...

Mohammed Alser,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Talk at RECOMB 2021, Virtual, August 30, 2021.
[Slides (pptx) (pdf)]

[Talk Video (27 minutes)]

[Related Invited Paper (at IEEE Micro, 2020)]

Our Contributions

Near-memory/In-memory Specialized Pre-alignment Filtering
Pre-alignment Filtering Accelerators (GPU, FPGA)

GRIM-Filter [BMC Genomics"18] | GateKeeper [Bioinformatics'17]

SneakySnake [IEEE Micro'21] MAGNET [AACBB'18]

GenASM [MICRO 2020] Shouji [Bioinformatics'19]

GateKeeper-GPU [arXiv'21]

SneakySnake [Bioinformatics'20]

(t#) Premieres in 23 hours

Set reminder i i
October 5, 4:30 PM ﬁ - Main Memory Microprocessor

20

Accelerating Genome Analysis: A Primer on an Ongoing Journey - RECOMB 2021 talk by
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https://www.youtube.com/watch?v=RzurItt3nNA
https://www.recomb2021.org/
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pdf
https://www.youtube.com/watch?v=RzurItt3nNA
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Intelligent Genome Analysis ...

Mohammed Alser,

"Computer Architecture - Lecture 8: Intelligent Genome Analysis"
ETH Zurich, Computer Architecture Course, Lecture 8, Virtual, 15 October 2021.
[Slides (pptx) (pdf)]

[Talk Video (2 hour 54 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Our Solution: GateKeeper

FPGA-based
Alignment Filter.

x1012 N o\ x103

mappings g mappings

=)

E] High throughput DNA 3 Read Pre-Alignment Filtering = Read Alignment
q ing (HTS) technologi D Fast & Low False Positive Rate LZJ Slow & Zero False Positives

108

FrEY
P Pl o 20858/2:5418 - GateKeeper > oOm@m % (= 1] »

Q ETHZENTRUM
Computer Architecture - Lecture 8: Intelligent Genome Analysis (ETH Ziirich, Fall 2020)
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https://www.youtube.com/watch?v=ygmQpdDTL7o
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pdf
https://www.youtube.com/watch?v=ygmQpdDTL7o
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Fast Genome Analysis ...

Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

A U

Onur Mutlu - Invited Lecture @Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey

566 views * Premiered Feb 6, 2021 |. 31 0 SHARE SAVE

S A ‘ A R ' e e anavTics | EpiTvipEo 255
«T>



https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

Detailed Lectures on Genome Analysis

Computer Architecture, Fall 2020, Lecture 3a
o Introduction to Genome Sequence Analysis (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=CrRb32v7S]c&list=PL5Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=5

Computer Architecture, Fall 2020, Lecture 8
o Intelligent Genome Analysis (ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=ygmQpdDTL70&list=PL5Q2s0XY2Zi9xidyIgBxU
z7xXRPS-wisBN&index=14

Computer Architecture, Fall 2020, Lecture 9a

o GenASM: Approx. String Matching Accelerator (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=XoLpzmN-
Pas&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=15

Accelerating Genomics Project Course, Fall 2020, Lecture 1

o Accelerating Genomics (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=rgjl8ZylL sAg&list=PL5Q2s0XY2Zi9E2bBVAgCqgL
gwiDRQDTyId
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https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures

Prior Research on Genome Analysis (1/2)

= Alser+, "Technology dictates algorithms: Recent developments in read
alignment", Genome Biology, 2021.

= Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-
Alignment Filter for CPUs, GPUs, and FPGAs.", Bioinformatics, 2020.

= Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate
String Matching Acceleration Framework for Genome Sequence Analysis",
MICRO 2020.

= Kim+, "AirLift: A Fast and Comprehensive Technique for Translating
Alignments between Reference Genomes", arXiv, 2020

= Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”,
IEEE Micro, 2020.
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https://arxiv.org/abs/2003.00110
https://arxiv.org/pdf/1910.09020.pdf
https://arxiv.org/abs/2009.07692
https://arxiv.org/abs/1912.08735
https://arxiv.org/pdf/2008.00961.pdf

Prior Research on Genome Analysis (2/2)

Firtina+, “Apollo: a sequencing-technology-independent, scalable and
accurate assembly polishing algorithm”, Bioinformatics, 2019.

Alser+, “Shouiji: a fast and efficient pre-alignment filter for sequence
alignment”, Bioinformatics 20109.

Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies”, BMC Genomics, 2018.

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

Alser+, "MAGNET: understanding and improving the accuracy of
genome pre-alignment filtering”, IPSI Transaction, 2017.
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https://academic.oup.com/bioinformatics/article-abstract/36/12/3669/5804978
https://doi.org/10.1093/bioinformatics/btz234
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4460-0
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://arxiv.org/pdf/1707.01631.pdf

Computer Architecture
Lecture 10:
Intelligent Genome Analysis

Dr. Mohammed Alser
Y @mealser

ETH Zurich
Fall 2021
29 October 2021
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