
Bit-Exact ECC Recovery (BEER):
Determining DRAM On-Die ECC Functions

by Exploiting DRAM Data Retention Characteristics
Minesh Patel† Jeremie S. Kim‡† Taha Shahroodi† Hasan Hassan† Onur Mutlu†‡

†ETH Zürich ‡Carnegie Mellon University

Increasing single-cell DRAM error rates have pushed DRAM
manufacturers to adopt on-die error-correction coding (ECC),
which operates entirely within a DRAM chip to improve factory
yield. �e on-die ECC function and its e�ects on DRAM relia-
bility are considered trade secrets, so only the manufacturer
knows precisely how on-die ECC alters the externally-visible
reliability characteristics. Consequently, on-die ECC obstructs
third-party DRAM customers (e.g., test engineers, experimental
researchers), who typically design, test, and validate systems
based on these characteristics.

To give third parties insight into precisely how on-die ECC
transforms DRAM error pa�erns during error correction, we
introduce Bit-Exact ECC Recovery (BEER), a new methodol-
ogy for determining the full DRAM on-die ECC function (i.e.,
its parity-check matrix) without hardware tools, prerequisite
knowledge about the DRAM chip or on-die ECC mechanism,
or access to ECC metadata (e.g., error syndromes, parity infor-
mation). BEER exploits the key insight that non-intrusively
inducing data-retention errors with carefully-cra�ed test pat-
terns reveals behavior that is unique to a speci�c ECC function.

We use BEER to identify the ECC functions of 80 real
LPDDR4 DRAM chips with on-die ECC from three major
DRAM manufacturers. We evaluate BEER’s correctness in
simulation and performance on a real system to show that
BEER is e�ective and practical across a wide range of on-die
ECC functions. To demonstrate BEER’s value, we propose and
discuss several ways that third parties can use BEER to improve
their design and testing practices. As a concrete example, we
introduce and evaluate BEEP, the �rst error pro�ling method-
ology that uses the known on-die ECC function to recover the
number and bit-exact locations of unobservable raw bit errors
responsible for observable post-correction errors.
1. Introduction

Dynamic random access memory (DRAM) is the predomi-
nant choice for system main memory across a wide variety of
computing platforms due to its favorable cost-per-bit relative
to other memory technologies. DRAM manufacturers main-
tain a competitive advantage by improving raw storage densi-
ties across device generations. Unfortunately, these improve-
ments largely rely on process technology scaling, which causes
serious reliability issues that reduce factory yield. DRAM
manufacturers traditionally mitigate yield loss using post-
manufacturing repair techniques such as row/column spar-
ing [51]. However, continued technology scaling in mod-
ern DRAM chips requires stronger error-mitigation mecha-
nisms to remain viable because of random single-bit errors
that are increasingly frequent at smaller process technology
nodes [39,76,89,99,109,119,120,124,127,129,133,160]. �erefore,
DRAM manufacturers have begun to use on-die error correction
coding (on-die ECC), which silently corrects single-bit errors

entirely within the DRAM chip [39, 76, 120, 129, 138]. On-die
ECC is completely invisible outside of the DRAM chip, so ECC
metadata (i.e., parity-check bits, error syndromes) that is used
to correct errors is hidden from the rest of the system.

Prior works [60, 97, 98, 120, 129, 133, 138, 147] indicate that
existing on-die ECC codes are 64- or 128-bit single-error cor-
rection (SEC) Hamming codes [44]. However, each DRAM
manufacturer considers their on-die ECC mechanism’s design
and implementation to be highly proprietary and ensures not to
reveal its details in any public documentation, including DRAM
standards [68, 69], DRAM datasheets [63, 121, 149, 158], publi-
cations [76, 97, 98, 133], and industry whitepapers [120, 147].

Because the unknown on-die ECC function is encapsulated
within the DRAM chip, it obfuscates raw bit errors (i.e., pre-
correction errors)1 in an ECC-function-speci�c manner. �ere-
fore, the locations of so�ware-visible uncorrectable errors (i.e.,
post-correction errors) o�en no longer match those of the pre-
correction errors that were caused by physical DRAM error
mechanisms. While this behavior appears desirable from a
black-box perspective, it poses serious problems for third-party
DRAM customers who study, test and validate, and/or design
systems based on the reliability characteristics of the DRAM
chips that they buy and use. Section 2.2 describes these cus-
tomers and the problems they face in detail, including, but not
limited to, three important groups: (1) system designers who
need to ensure that supplementary error-mitigation mecha-
nisms (e.g., rank-level ECC within the DRAM controller) are
carefully designed to cooperate with the on-die ECC func-
tion [40, 129, 160], (2) large-scale industries (e.g., computing
system providers such as Microso� [33], HP [47], and Intel [59],
DRAM module manufacturers [4, 92, 159]) or government enti-
ties (e.g., national labs [131,150]) who must understand DRAM
reliability characteristics when validating DRAM chips they
buy and use, and (3) researchers who need full visibility into
physical device characteristics to study and model DRAM reli-
ability [17, 20, 31, 42, 43, 46, 72, 78–86, 109, 138, 139, 172, 178].

For each of these third parties, merely knowing or reverse-
engineering the type of ECC code (e.g., n-bit Hamming code)
based on existing industry [60, 97, 98, 120, 133, 147] and aca-
demic [129,138] publications is not enough to determine exactly
how the ECC mechanism obfuscates speci�c error pa�erns.
�is is because an ECC code of a given type can have many
di�erent implementations based on how its ECC function (i.e.,
its parity-check matrix) is designed, and di�erent designs lead
to di�erent reliability characteristics. For example, Figure 1
shows the relative probability of observing errors in di�erent
bit positions for three di�erent ECC codes of the same type (i.e.,
single-error correction Hamming code with 32 data bits and

1We use the term “error” to refer to any bit-�ip event, whether observed
(e.g., uncorrectable bit-�ips) or unobserved (e.g., corrected by ECC).

1



6 parity-check bits) but that use di�erent ECC functions. We
obtain this data by simulating 109 ECC words using the EINSim
simulator [2, 138] and show medians and 95% con�dence inter-
vals calculated via statistical bootstrapping [32] over 1000 sam-
ples. We simulate a 0xFF test pa�ern2 with uniform-random
pre-correction errors at a raw bit error rate of 10–4 (e.g., as o�en
seen in experimental studies [17,20,43,46,76,102,109,139,157]).

0 5 10 15 20 25 30
Bit Index in Dataword

0.00

0.02

0.04

Re
la

tiv
e 

Er
ro

r
Pr

ob
ab

ilit
y

Pre-Correction
Post-Correction (ECC Function 0)

Post-Correction (ECC Function 1)
Post-Correction (ECC Function 2)

Figure 1: Relative error probabilities in di�erent bit posi-
tions for di�erent ECC functions with uniform-randomly dis-
tributed pre-correction (i.e., raw) bit errors.

�e data demonstrates that ECC codes of the same type can
have vastly di�erent post-correction error characteristics. �is
is because each ECC mechanism acts di�erently when faced
with more errors than it can correct (i.e., uncorrectable errors),
causing it to mistakenly perform ECC-function-speci�c “correc-
tions” to bits that did not experience errors (i.e., miscorrections,
which Section 3.3 expands upon). �erefore, a researcher or en-
gineer who studies two DRAM chips that use the same type of
ECC code but di�erent ECC functions may �nd that the chips’
so�ware-visible reliability characteristics are quite di�erent
even if the physical DRAM cells’ reliability characteristics are
identical. On the other hand, if we know the full ECC function
(i.e., its parity-check matrix), we can calculate exactly which
pre-correction error pa�ern(s) result in a set of observed er-
rors. Figure 1 is a result of aggregating such calculations across
109 error pa�erns3, and Section 7.1 demonstrates how we can
use the ECC function to infer pre-correction error counts and
locations using only observed post-correction errors.

Knowing the precise transformation between pre- and post-
correction errors bene�ts all of the aforementioned third-party
use cases because it provides system designers, test engineers,
and researchers with a way to isolate the error characteris-
tics of the memory itself from the e�ects of a particular ECC
function. Section 2.2 provides several example use cases and
describes the bene�ts of knowing the ECC function in detail.
While specialized, possibly intrusive methods (e.g., chip tear-
down [66, 164], advanced imaging techniques [48, 164]) can
theoretically extract the ECC function, such techniques are typ-
ically inaccessible to or infeasible for many third-party users.

To enable third parties to reconstruct pre-correction DRAM
reliability characteristics, our goal is to develop a methodol-
ogy that can reliably and accurately determine the full on-die
ECC function without requiring hardware tools, prerequisite
knowledge about the DRAM chip or on-die ECC mechanism, or
access to ECC metadata (e.g., error syndromes, parity informa-
tion). To this end, we develop Bit-Exact ECC Recovery (BEER),
a new methodology for determining a DRAM chip’s full on-die
ECC function simply by studying the so�ware-visible post-
correction error pa�erns that it generates. �us, BEER requires
no hardware support, hardware intrusion, or access to inter-
nal ECC metadata (e.g., error syndromes, parity information).

2Other pa�erns show similar behavior, including RANDOM data.
3Capturing approximately 109 of the 238 ≈ 2.7× 1011 unique pa�erns.

BEER exploits the key insight that forcing the ECC function to
act upon carefully-cra�ed uncorrectable error pa�erns reveals
ECC-function-speci�c behavior that disambiguates di�erent
ECC functions. BEER comprises three key steps: (1) deliber-
ately inducing uncorrectable data-retention errors by pausing
DRAM refresh while using carefully-cra�ed test pa�erns to
control the errors’ bit-locations, which is done by leveraging
data-retention errors’ intrinsic data-pa�ern asymmetry (dis-
cussed in Section 3.2), (2) enumerating the bit positions where
the ECC mechanism causes miscorrections, and (3) using a SAT
solver [28] to solve for the unique parity-check matrix that
causes the observed set of miscorrections.

We experimentally apply BEER to 80 real LPDDR4 DRAM
chips with on-die ECC from three major DRAM manufacturers
to determine the chips’ on-die ECC functions. We describe
the experimental steps required to apply BEER to any DRAM
chip with on-die ECC and show that BEER tolerates observed
experimental noise. We show that di�erent manufacturers ap-
pear to use di�erent on-die ECC functions while chips from
the same manufacturer and model number appear to use the
same on-die ECC function (Section 5.1.3). Unfortunately, our
experimental studies with real DRAM chips have two limita-
tions against further validation: (1) because the on-die ECC
function is considered trade secret for each manufacturer, we
are unable to obtain a groundtruth to compare BEER’s results
against, even when considering non-disclosure agreements
with DRAM manufacturers and (2) we are unable to publish
the �nal ECC functions that we uncover using BEER for con�-
dentiality reasons (discussed in Section 2.1).

To overcome the limitations of experimental studies with
real DRAM chips, we rigorously evaluate BEER’s correctness in
simulation (Section 6). We show that BEER correctly recovers
the on-die ECC function for 115300 single-error correction
Hamming codes4, which are representative of on-die ECC,
with ECC word lengths ranging from 4 to 247 bits. We evaluate
our BEER implementation’s runtime and memory consumption
using a real system to demonstrate that BEER is practical and
the SAT problem that BEER requires is realistically solvable.

To demonstrate how BEER is useful in practice, we propose
and discuss several ways that third parties can leverage the
ECC function that BEER reveals to more e�ectively design,
study, and test systems that use DRAM chips with on-die ECC
(Section 7). As a concrete example, we introduce and evaluate
Bit-Exact Error Pro�ling (BEEP), a new DRAM data-retention
error pro�ling methodology that reconstructs pre-correction er-
ror counts and locations purely from observed post-correction
errors. Using the ECC function revealed by BEER, BEEP infers
precisely which unobservable raw bit errors correspond to ob-
served post-correction errors at a given set of testing conditions.
We show that BEEP enables characterizing pre-correction er-
rors across a wide range of ECC functions, ECC word lengths,
error pa�erns, and error rates. We publicly release our tools as
open-source so�ware: (1) a new tool [1] for applying BEER to
experimental data from real DRAM chips and (2) enhancements
to EINSim [2] for evaluating BEER and BEEP in simulation.

�is paper makes the following key contributions:
1. We provide Bit-Exact ECC Recovery (BEER), the �rst

methodology that determines the full DRAM on-die ECC
function (i.e., its parity-check matrix) without requiring
4�is irregular number arises from evaluating a di�erent number of ECC

functions for di�erent code lengths because longer codes require exponentially
more simulation time (discussed in Section 6.1).

2



hardware tools, prerequisite knowledge about the DRAM
chip or on-die ECC mechanism, or access to ECC metadata
(e.g., error syndromes, parity information).

2. We experimentally apply BEER to 80 real LPDDR4 DRAM
chips with unknown on-die ECC mechanisms from three
major DRAM manufacturers to determine their on-die ECC
functions. We show that BEER is robust to observed experi-
mental noise and that DRAM chips from di�erent manufac-
turers appear to use di�erent on-die ECC functions while
chips from the same manufacturer and model number appear
to use the same function.

3. We evaluate BEER’s correctness in simulation and show
that BEER correctly identi�es the on-die ECC function for
115300 representative on-die ECC codes with ECC word
lengths ranging from 4 to 247 bits.

4. We analytically evaluate BEER’s experimental runtime and
use a real system to measure the SAT solver’s performance
and memory usage characteristics (e.g., negligible for short
codes, median of 57.1 hours and 6.3 GiB memory for rep-
resentative 128-bit codes, and up to 62 hours and 11.4 GiB
memory for 247-bit codes) to show that BEER is practical.

5. We propose and evaluate Bit-Exact Error Pro�ling (BEEP),
a new DRAM data-retention error pro�ling methodology
that uses a known ECC function (e.g., via BEER) to infer
pre-correction error counts and locations. We show that
BEEP enables characterizing the bit-exact pre-correction
error locations across di�erent ECC functions, codeword
lengths, error pa�erns, and error rates.

6. We open-source the so�ware tools we develop for (1) apply-
ing BEER to experimental data from real DRAM chips [1]
and (2) evaluating BEER and BEEP in simulation [2].

2. Challenges of Unknown On-Die ECCs
�is section discusses why on-die ECC is considered propri-

etary, how its secrecy causes di�culties for third-party con-
sumers, and how the BEER methodology helps overcome these
di�culties by identifying the full on-die ECC function.
2.1. Secrecy Concerning On-Die ECC

On-die ECC silently mitigates increasing single-bit errors
that reduce factory yield [39, 76, 89, 99, 109, 119, 120, 124, 127,
129, 133, 160]. Because on-die ECC is invisible to the external
DRAM chip interface, older DRAM standards [68, 69] place
no restrictions on the on-die ECC mechanism while newer
standards [70] specify only a high-level description for on-die
ECC to support new (albeit limited) DDR5 features, e.g., on-die
ECC scrubbing. In particular, there are no restrictions on the
design or implementation of the on-die ECC function itself.

�is means that knowing an on-die ECC mechanism’s de-
tails could reveal information about its manufacturer’s factory
yield rates, which are highly proprietary [23, 55] due to their
direct connection with business interests, potential legal con-
cerns, and competitiveness in a USD 45+ billion DRAM mar-
ket [143, 170]. �erefore, manufacturers consider their on-die
ECC designs and implementations to be trade secrets that they
are unwilling to disclose. In our experience, DRAM manufac-
turers will not reveal on-die ECC details under con�dentiality
agreements, even for large-scale industry board vendors for
whom knowing the details stands to be mutually bene�cial.5

5Even if such agreements were possible, industry teams and academics
without major business relations with DRAM manufacturers (i.e., an over-
whelming majority of the potentially interested scientists and engineers) will
likely be unable to secure disclosure.

�is raises two challenges for our experiments with real
DRAM chips: (1) we do not have access to “groundtruth” ECC
functions to validate BEER’s results against and (2) we cannot
publish the �nal ECC functions that we determine using BEER
for con�dentiality reasons based on our relationships with the
DRAM manufacturers. However, this does not prevent third-
party consumers from applying BEER to their own devices,
and we hope that our work encourages DRAM manufacturers
to be more open with their designs going forward.6

2.2. On-Die ECC’s Impact on�ird Parties
On-die ECC alters a DRAM chip’s so�ware-visible reliability

characteristics so that they are no longer determined solely by
how errors physically occur within the DRAM chip. Figure 1
illustrates this by showing how using di�erent on-die ECC func-
tions changes how the same underlying DRAM errors appear
to the end user. Instead of following the pre-correction error
distribution (i.e., uniform-random errors), the post-correction
errors exhibit ECC-function-speci�c shapes that are di�cult to
predict without knowing precisely which ECC function is used
in each case. �is means that two commodity DRAM chips with
di�erent on-die ECC functions may show similar or di�erent
reliability characteristics irrespective of how the underlying
DRAM technology and error mechanisms behave. �erefore,
the physical error mechanisms’ behavior alone can no longer
explain a DRAM chip’s post-correction error characteristics.

Unfortunately, this poses a serious problem for third-party
DRAM consumers (e.g., system designers, testers, and re-
searchers), who can no longer accurately understand a DRAM
chip’s reliability characteristics by studying its so�ware-visible
errors. �is lack of understanding prevents third parties from
both (1) making informed design decisions, e.g., when building
memory-controller based error-mitigation mechanisms to com-
plement on-die ECC and (2) developing new ideas that rely on
on leveraging predictable aspects of a DRAM chip’ reliability
characteristics, e.g., physical error mechanisms that are funda-
mental to all DRAM technology. As error rates worsen with
continued technology scaling [39, 76, 86, 89, 90, 99, 119, 120, 124,
127,129,133], manufacturers will likely resort to stronger codes
that further distort the post-correction reliability characteris-
tics. �e remainder of this section describes three key ways in
which an unknown on-die ECC function hinders third-parties,
and determining the function helps mitigate the problem.
Designing High-Reliability Systems. System designers of-
ten seek to improve memory reliability beyond that which the
DRAM provides alone (e.g., by including rank-level ECC within
the memory controllers of server-class machines or ECC within
on-chip caches). In particular, rank-level ECCs are carefully
designed to mitigate common DRAM failure modes [21] (e.g.,
chip failure [129], burst errors [29, 116]) in order to correct as
many errors as possible. However, designing for key failure
modes requires knowing a DRAM chip’s reliability characteris-
tics, including the e�ects of any underlying ECC function (e.g.,
on-die ECC) [40,160]. For example, Son et al. [160] show that if
on-die ECC su�ers an uncorrectable error and mistakenly “cor-
rects” a non-erroneous bit (i.e., introduces a miscorrection), the
stronger rank-level ECC may no longer be able to even detect
what would otherwise be a detectable (possibly correctable)
error. To prevent this scenario, both levels of ECC must be care-
fully co-designed to complement each others’ weaknesses. In

6While full disclosure would be ideal, a more realistic scenario could be
more �exible on-die ECC con�dentiality agreements. As recent work [35]
shows, security or protection by obscurity is likely a poor strategy in practice.

3



general, high-reliability systems can be more e�ectively built
around DRAM chips with on-die ECC if its ECC function and
its e�ects on typical DRAM failure modes are known.
Testing, Validation, and �ality Assurance. Large-scale
computing system providers (e.g., Microso� [33], HP [47], In-
tel [59]), DRAM module manufacturers [4, 92, 159], and gov-
ernment entities (e.g., national labs [131, 150]) typically per-
form extensive third-party testing of the DRAM chips they
purchase in order to ensure that the chips meet internal per-
formance/energy/reliability targets. �ese tests validate that
DRAM chips operate as expected and that there are well-
understood, convincing root-causes (e.g., fundamental DRAM
error mechanisms) for any observed errors. Unfortunately, on-
die ECC interferes with two key components of such testing.
First, it obfuscates the number and bit-exact locations of pre-
correction errors, so diagnosing the root cause for any observed
error becomes challenging. Second, on-die ECC encodes all
wri�en data into ECC codewords, so the values wri�en into
the physical cells likely do not match the values observed
at the DRAM chip interface. �e encoding process defeats
carefully-constructed test pa�erns that target speci�c circuit-
level phenomena (e.g., exacerbating interference between bit-
lines [3,79,123]) because the encoded data may no longer have
the intended e�ect. Unfortunately, constructing such pa�erns
is crucial for e�cient testing since it minimizes the testing time
required to achieve high error coverage [3, 51]. In both cases,
the full on-die ECC function determined by BEER describes
exactly how on-die ECC transforms pre-correction error pat-
terns into post-correction ones. �is enables users to infer
pre-correction error locations (demonstrated in Section 7.1)
and design test pa�erns that result in codewords with desired
properties (discussed in Section 7.2).
Scienti�c Error-Characterization Studies. Scienti�c error-
characterization studies explore physical DRAM error mecha-
nisms (e.g., data retention [42, 43, 46, 74, 75, 78–81, 109, 139, 157,
172, 173], reduced access-latency [16, 17, 20, 37, 83–85, 102, 104],
circuit disturbance [35, 79, 81, 86, 90, 135, 136]) by deliberately
exacerbating the error mechanism and analyzing the resulting
errors’ statistical properties (e.g., frequency, spatial distribu-
tion). �ese studies help build error models [20,31,43,83,94,104,
157, 178], leading to new DRAM designs and operating points
that improve upon the state-of-the-art. Unfortunately, on-die
ECC complicates error analysis and modeling by (1) obscuring
the physical pre-correction errors that are the object of study
and (2) preventing direct access to parity-check bits, thereby
precluding comprehensive testing of all DRAM cells in a given
chip. Although prior work [138] enables inferring high-level
statistical characteristics of the pre-correction errors, it does
not provide a precise mapping between pre-correction and
post-correction errors, which is only possible knowing the full
ECC function. Knowing the full ECC function, via our new
BEER methodology, enables recovering the bit-exact locations
of pre-correction errors throughout the entire ECC word (as we
demonstrate in Section 7.1) so that error-characterization stud-
ies can separate the e�ects of DRAM error mechanisms from
those of on-die ECC. Section 7 provides a detailed discussion
of several key characterization studies that BEER enables.
3. Background

�is section provides a basic overview of DRAM, coding
theory, and satis�ability (SAT) solvers as pertinent to this
manuscript. For further detail, we refer the reader to com-
prehensive texts on DRAM design and operation [17–20, 45,

54, 61, 64, 65, 77, 102, 103, 106, 111, 153–155, 180], coding the-
ory [25,53,108,115,122,146,148], and SAT solvers [8,24,28,30].
3.1. DRAM Cells and Data Storage

A DRAM chip stores each data bit in its own storage cell using
the charge level of a storage capacitor. Because the capacitor is
susceptible to charge leakage [26, 42, 90, 95, 109, 110, 138, 139,
169], the stored value may eventually degrade to the point of
data loss, resulting in a data-retention error. During normal
DRAM operation, a refresh operation restores the data value
stored in each cell every refresh window (tREFw), e.g., 32ms or
64ms [67–69, 109, 110, 139], to prevent data-retention errors.

Depending on a given chip’s circuit design, each cell may
store data using one of two encoding conventions: a true-cell
encodes data ‘1’ as a fully-charged storage capacitor (i.e., the
CHARGED state), and an anti-cell encodes data ‘1’ as a fully-
discharged capacitor (i.e., the DISCHARGED state). Although
a cell’s encoding scheme is transparent to the rest of the system
during normal operation, it becomes evident in the presence of
data-retention errors because DRAM cells typically decay only
from their CHARGED to their DISCHARGED state as shown
experimentally by prior work [26, 90, 95, 109, 110, 138, 139].
3.2. Studying DRAM Errors

Deliberately inducing DRAM errors (e.g., by violating de-
fault timing parameters) reveals detailed information about
a DRAM chip’s internal design through the resulting errors’
statistical characteristics. Prior works use custom memory
testing platforms (e.g., FPGA-based [46]) and commodity
CPUs [6, 57] (e.g., by changing CPU con�guration registers
via the BIOS [56]) to study a variety of DRAM error mecha-
nisms, including data-retention [26, 90, 95, 109, 110, 138, 139],
circuit timing violations [17, 83–85, 102, 104], and RowHam-
mer [86, 90, 125, 126, 135, 136]. Our work focuses on data-
retention errors because they exhibit well-studied properties
that are helpful for our purposes:
1. �ey are easily induced and controlled by manipulating the

refresh window (tREFw) and ambient temperature.
2. �ey are repeatable [139, 163] and their spatial distribution

is uniform random [7, 43, 84, 138, 157].
3. �ey fail unidirectionally from the CHARGED state to the
DISCHARGED state [26, 90, 95, 109, 110, 138, 139].

O�-DRAM-Chip Errors. So�ware-visible memory errors
o�en occur due to failures in components outside the DRAM
chip (e.g., sockets, buses) [119]. However, our work focuses on
errors that occur within a DRAM chip, which are a serious and
growing concern at modern technology node sizes [39, 76, 89,
99,119,120,124,127,129,133,160]. �ese errors are the primary
motivation for on-die ECC, which a�empts to correct them
before they are ever observed outside the DRAM chip.
3.3. On-Die ECC and Hamming Codes

As manufacturers continue to increase DRAM storage den-
sity, unwanted single-bit errors appear more frequently [39,41,
50, 76, 89, 99, 105, 114, 119, 120, 128, 129, 133, 138, 151, 161, 162]
and reduce factory yield. To combat these errors, manufactur-
ers use on-die ECC [39, 76, 120, 128, 129, 133, 138], which is an
error-correction code implemented directly in the DRAM chip.

Figure 2 shows how a system might interface with a memory
chip that uses on-die ECC. �e system writes k-bit datawords
(d) to the chip, which internally maintains an expanded n-bit
representation of the data called a codeword (c), created by
the ECC encoding of d. �e stored codeword may experience
errors, resulting in a potentially erroneous codeword (c′). If
more errors occur than ECC can correct, e.g., two errors in a

4



single-error correction (SEC) code, the �nal dataword read out
a�er ECC decoding (d′) may also contain errors. �e encoding
and decoding functions are labeled Fencode and Fdecode .

codeword (c)dataword (d)

d0 d1 d2 d3 … p0 p1 p2 …d0 d1 d2 d3 …

error(s)

Fdecode (c´)

Fencode (d)

codeword´ (c´)

d0 d1 d2 d3 …

dataword´ (d´)

ECC Encoder

ECC Decoder´ ´ ´ ´ ´ ´ ´ ´ ´´ ´

MEMORY CHIP
d0 d1 d2 d3 … p0 p1 p2 …

SYSTEM

DRAM 
BUS

Figure 2: Interfacing a memory chip that uses on-die ECC.
For all linear codes (e.g., SEC Hamming codes [44]), Fencode

and Fdecode can be represented using matrix transformations.
As a demonstrative example throughout this paper, we use
the (7, 4, 3) Hamming code [44] shown in Equation 1. Fencode
represents a generator matrix G such that the codeword c is
computed from the dataword d as c = G · d.

Fencode = GT =
[1 0 0 0 1 1 1

0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

]
Fdecode = H =

[1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

]
(1)

Decoding. �e most common decoding algorithm is known as
syndrome decoding, which simply computes an error syndrome
s = H · c′ that describes if and where an error exists:
• s = 0: no error detected.
• s 6= 0: error detected, and s describes its bit-exact location.
Note that the error syndrome computation is unaware of the
true error count; it blindly computes the error syndrome(s)
assuming a low probability of uncorrectable errors. If, however,
an uncorrectable error is present (e.g., deliberately induced
during testing), one of three possibilities may occur:
• Silent data corruption: syndrome is zero; no error.
• Partial correction: syndrome points to one of the errors.
• Miscorrection: syndrome points to a non-erroneous bit.
When a nonzero error syndrome occurs, the ECC decoding
logic simply �ips the bit pointed to by the error syndrome,
potentially exacerbating the overall number of errors.
Design Space. Each manufacturer can freely select Fencode and
Fdecode functions, whose implementations can help to meet a set
of design constraints (e.g., circuit area, reliability, power con-
sumption). �e space of functions that a designer can choose
from is quanti�ed by the number of arrangements of columns
of H. �is means that for an n-bit code with k data bits, there
are

(2n–k–1
n

)
possible ECC functions. Section 4.2 formalizes this

space of possible functions in the context of our work.
3.4. Boolean Satis�ability (SAT) Solvers

Satis�ability (SAT) solvers [8, 24, 28, 30, 38, 140] �nd possi-
ble solutions to logic equation(s) with one or more unknown
Boolean variables. A SAT solver accepts one or more such
equations as inputs, which e�ectively act as constraints over
the unknown variables. �e SAT solver then a�empts to deter-
mine a set of values for the unknown variables such that the
equations are satis�ed (i.e., the constraints are met). �e SAT
solver will return either (1) one (of possibly many) solutions
or (2) no solution if the Boolean equation is unsolvable.
4. Determining the ECC Function

BEER identi�es an unknown ECC function by systematically
reconstructing its parity-check matrix based on the error syn-
dromes that the ECC logic generates while correcting errors.
Di�erent ECC functions compute di�erent error syndromes
for a given error pa�ern, and by constructing and analyzing
carefully-cra�ed test cases, BEER uniquely identi�es which
ECC function a particular implementation uses. �is section
describes how and why this process works. Section 5 describes
how BEER accomplishes this in practice for on-die ECC.

4.1. Disambiguating Linear Block Codes
DRAM ECCs are linear block codes, e.g., Hamming

codes [44] for on-die ECC [60, 97, 98, 120, 129, 133, 138, 147],
BCH [9, 49] or Reed-Solomon [145] codes for rank-level
ECC [26, 87], whose encoding and decoding operations are
described by linear transformations of their respective inputs
(i.e., G and H matrices, respectively). We can therefore deter-
mine the full ECC function by independently determining each
of its linear components.

We can isolate each linear component of the ECC function
by injecting errors in each codeword bit position and observing
the resulting error syndromes. For example, an n-bit Hamming
code’s parity-check matrix can be systematically determined
by injecting a single-bit error in each of the n bit positions: the
error syndrome that the ECC decoder computes for each pat-
tern is exactly equal to the column of the parity-check matrix
that corresponds to the position of the injected error. As an
example, Equation 2 shows how injecting an error at position
2 (i.e., adding error pa�ern e2 to codeword c) extracts the cor-
responding column of the parity-check matrix H in the error
syndrome s. By the de�nition of a block code, H · c = 0 for all
codewords [27, 53], so e2 isolates column 2 of H (i.e., H∗,2).

s = H · c′ = H · (c + e2) = H ·

c +


0010000


 = 0 + H∗,2 = H∗,2 (2)

�us, the entire parity-check matrix can be fully determined
by testing across all 1-hot error pa�erns. Cojocar et al. [26]
use this approach on DRAM rank-level ECC, injecting errors
into codewords on the DDR bus and reading the resulting error
syndromes provided by the memory controller.
4.2. Determining the On-Die ECC Function

Unfortunately, systematically determining an ECC function
as described in Section 4.1 is not possible with on-die ECC
for two key reasons. First, on-die ECC’s parity-check bits
cannot be accessed directly, so we have no easy way to inject
an error within them. Second, on-die ECC does not signal
an error-correction event or report error syndromes (i.e., s).
�erefore, even if specialized methods (e.g., chip teardown [66,
164], advanced imaging techniques [48,164]) could inject errors
within a DRAM chip package where the on-die ECC mechanism
resides,7 the error syndromes would remain invisible, so the
approach taken by Cojocar et al. [26] cannot be applied to
on-die ECC. To determine the on-die ECC function using the
approach of Section 4.1, we �rst formalize the unknown on-
die ECC function and then determine how we can infer error
syndromes within the constraints of the formalized problem.
4.2.1. Formalizing the Unknown ECC Function. We as-
sume that on-die ECC uses a systematic encoding, which means
that the ECC function stores data bits unmodi�ed. �is is a
reasonable assumption for real hardware since it greatly sim-
pli�es data access [181] and is consistent with our experimen-
tal results in Section 5.1.2. Furthermore, because the DRAM
chip interface exposes only data bits, the relative ordering of
parity-check bits within the codeword is irrelevant from the
system’s perspective. Mathematically, the di�erent choices of
bit positions represent equivalent codes that all have identical
error-correction properties and di�er only in their internal
representations [146, 148], which on-die ECC does not expose.
�erefore, we are free to arbitrarily choose the parity-check

7Such methods may reveal the exact on-die ECC circuitry. However, they
are typically inaccessible to or infeasible for many third-party consumers.

5



bit positions within the codeword without loss of generality.
If it becomes necessary to identify the exact ordering of bits
within the codeword (e.g., to infer circuit-level implementa-
tion details), reverse-engineering techniques based on physical
DRAM error mechanisms [73, 104] can potentially be used.

A systematic encoding and the freedom to choose parity-
check bit positions mean that we can assume that the ECC
function is in standard form, where we express the parity-check
matrix for an (n, k) code as a partitioned matrix Hn–k×n =
[Pn–k×k|In–k×n–k]. P is a conventional notation for the sub-
matrix that corresponds to information bit positions and I is an
identity matrix that corresponds to parity-check bit positions.
Note that the example ECC code of Equation 1 is in standard
form. With this representation, all codewords take the form
c1×n = [d0d1…dk–1|p0p1…pn–k–1], where d and p are data and
parity-check symbols, respectively.
4.2.2. Identifying Syndromes Using Miscorrections.
Given that on-die ECC conceals error syndromes, we develop
a new approach for determining the on-die ECC function that
indirectly determines error syndromes based on how the ECC
mechanism responds when faced with uncorrectable errors.
To induce uncorrectable errors, we deliberately pause normal
DRAM refresh operations long enough (e.g., several minutes
at 80◦C) to cause a large number of data-retention errors (e.g.,
BER > 10–4) throughout a chip. �ese errors expose a signif-
icant number of miscorrections in di�erent ECC words, and
the sheer number of data-retention errors dominates any un-
wanted interference from other possible error mechanisms
(e.g., particle strikes [117]).

To control which data-retention errors occur, we write
carefully-cra�ed test pa�erns that restrict the errors to speci�c
bit locations. �is is possible because only cells programmed
to the CHARGED state can experience data-retention errors as
discussed in Section 3.2. By restricting pre-correction errors
to certain cells, if a post-correction error is observed in an
unexpected location, it must be an artifact of error correction,
i.e., a miscorrection. Such a miscorrection is signi�cant since
it: (1) signals an error-correction event, (2) is purely a func-
tion of the ECC decoding logic, and (3) indirectly reveals the
error syndrome generated by the pre-correction error pa�ern.
�e indirection occurs because, although the miscorrection
does not expose the raw error syndrome, it does reveal that
whichever error syndrome is generated internally by the ECC
logic exactly matches the parity-check matrix column that
corresponds to the position of the miscorrected bit.

�ese three properties mean that miscorrections are a re-
liable tool for analyzing ECC functions: for a given pre-
correction error pa�ern, di�erent ECC functions will gener-
ate di�erent error syndromes, and therefore miscorrections,
depending on how the functions’ parity-check matrices are
organized. �is means that a given ECC function causes
miscorrections only within certain bits, and the locations of
miscorrection-susceptible bits di�er between functions. �ere-
fore, we can di�erentiate ECC functions by identifying which
miscorrections are possible for di�erent test pa�erns.
4.2.3. Identifying Useful Test Patterns. To construct a
set of test pa�erns that su�ce to uniquely identify an ECC
function, we observe that a miscorrection is possible in a
DISCHARGED data bit only if the bit’s error syndrome can be
produced by some linear combination of the parity-check ma-
trix columns that correspond to CHARGED bit locations. For ex-
ample, consider the 1-CHARGED pa�erns that each set one data

bit to the CHARGED state and all others to the DISCHARGED
state. In these pa�erns, data-retention errors may only oc-
cur in either (1) the CHARGED bit or (2) any parity-check bits
that the ECC function also sets to the CHARGED state. With
these restrictions, observable miscorrections may only occur
within data bits whose error syndromes can be created by some
linear combination of the parity-check matrix columns that
correspond to the CHARGED cells within the codeword.

As a concrete example, consider the codeword of Equation 3.
C and D represent that the corresponding cell is programmed
to the CHARGED and DISCHARGED states, respectively.

c =
[
D D C D | D C C

]
(3)

Because only CHARGED cells can experience data-retention er-
rors, there are 23 = 8 possible error syndromes that correspond
to the unique combinations of CHARGED cells failing. Table 1
illustrates these eight possibilities.

Pre-Correction Error Syndrome Post-Correction
Error Pattern Outcome[
0 0 0 0 | 0 0 0

]
0 No error[

0 0 0 0 | 0 0 1
]

H∗,6 Correctable[
0 0 0 0 | 0 1 0

]
H∗,5 Correctable[

0 0 0 0 | 0 1 1
]

H∗,5 + H∗,6 Uncorrectable[
0 0 1 0 | 0 0 0

]
H∗,2 Correctable[

0 0 1 0 | 0 0 1
]

H∗,2 + H∗,5 Uncorrectable[
0 0 1 0 | 0 1 0

]
H∗,2 + H∗,6 Uncorrectable[

0 0 1 0 | 0 1 1
]

H∗,2 + H∗,5 + H∗,6 Uncorrectable
Table 1: Possible data-retention error patterns, their syn-
dromes, and their outcomes for the codeword of Equation 3.

A miscorrection occurs whenever the error syndrome of an
uncorrectable error pa�ern matches the parity-check matrix
column of a non-erroneous data bit. In this case, the column’s
location would then correspond to the bit position of the mis-
correction. However, a miscorrection only reveals information
if it occurs within one of the DISCHARGED data bits, for only
then are we certain that the observed bit �ip is unambiguously
a miscorrection rather than an uncorrected data-retention er-
ror. �erefore, the test pa�erns we use should maximize the
number of DISCHARGED bits so as to increase the number of
miscorrections that yield information about the ECC function.

To determine which test pa�erns to use, we expand upon
the approach of injecting 1-hot errors described in Section 4.1.
Although we would need to write data to all codeword bits in
order to test every 1-hot error pa�ern, on-die ECC does not
allow writing directly to the parity-check bits. �is leads to
two challenges. First, we cannot test 1-hot error pa�erns for
which the 1-hot error is within the parity-check bits, which
means that we cannot di�erentiate ECC functions that di�er
only within their parity-check bit positions. Fortunately, this
is not a problem because, as Section 4.2.1 discusses in detail, all
such functions are equivalent codes with identical externally-
visible error-correction properties. �erefore, we are free to
assume that the parity-check matrix is in standard form, which
speci�es parity-check bits’ error syndromes (i.e., In–k×n–k) and
obviates the need to experimentally determine them.

Second, writing the k bits of the dataword with a single
CHARGED cell results in a codeword with an unknown number
of CHARGED cells because the ECC function independently
determines the values of remaining n – k parity-check bits.
As a result, the �nal codeword may contain anywhere from
1 to n – k + 1 CHARGED cells, and the number of CHARGED
cells will vary for di�erent test pa�erns. Because we cannot
directly access the parity-check bits’ values, we do not know

6



which cells are CHARGED for a given test pa�ern, and there-
fore, we cannot tie post-correction errors back to particular
pre-correction error pa�erns. Fortunately, we can work around
this problem by considering all possible error pa�erns that a
given codeword can experience, which amounts to examin-
ing all combinations of errors that the CHARGED cells can
experience. Table 1 illustrates this for when the dataword
is programmed with a 1-CHARGED test pa�ern (as shown in
Equation 3). In this example, the encoded codeword contains
three CHARGED cells, which may experience any of 23 possible
error pa�erns. Section 5.1.3 discusses how we can accomplish
testing all possible error pa�erns in practice by exploiting the
fact that data-retention errors occur uniform-randomly, so test-
ing across many di�erent codewords provides samples from
many di�erent error pa�erns at once.
4.2.4. Shortened Codes. Linear block codes can be either of
full-length if all possible error syndromes are present within
the parity-check matrix (e.g., all 2p – 1 error syndromes for a
Hamming code with p parity-check bits, as is the case for the
code shown in Equation 1) or shortened if one or more informa-
tion symbols are truncated while retaining the same number
of parity-check symbols [27, 53]. �is distinction is crucial for
determining appropriate test pa�erns because, for full-length
codes, the 1-CHARGED pa�erns identify the miscorrection-
susceptible bits for all possible error syndromes. In this case,
testing additional pa�erns that have more than one CHARGED
bit provides no new information because any resulting error
syndromes are already tested using the 1-CHARGED pa�erns.

However, for shortened codes, the 1-CHARGED pa�erns may
not provide enough information to uniquely identify the ECC
function because the 1-CHARGED pa�erns can no longer test
for the missing error syndromes. Fortunately, we can recover
the missing information by reconstructing the truncated error
syndromes using pairwise combinations of the 1-CHARGED
pa�erns. For example, asserting two CHARGED bits e�ectively
tests an error syndrome that is the linear combination of the
bits’ corresponding parity-check matrix columns. �erefore, by
supplementing the 1-CHARGED pa�erns with the 2-CHARGED
pa�erns, we e�ectively encompass the error syndromes that
were shortened. Section 6.1 evaluates BEER’s sensitivity to
code length, showing that the 1-CHARGED pa�erns are in-
deed su�cient for full-length codes and the {1,2}-CHARGED
pa�erns for shortened codes that we evaluate with dataword
lengths between 4 and 247.
5. Bit-Exact Error Recovery (BEER)

Our goal in this work is to develop a methodology that reli-
ably and accurately determines the full ECC function (i.e., its
parity-check matrix) for any DRAM on-die ECC implementa-
tion without requiring hardware tools, prerequisite knowledge
about the DRAM chip or on-die ECC mechanism, or access to
ECC metadata (e.g., error syndromes, parity information). To
this end, we present BEER, which systematically determines
the ECC function by observing how it reacts when subjected
to carefully-cra�ed uncorrectable error pa�erns. BEER imple-
ments the ideas developed throughout Section 4 and consists
of three key steps: (1) experimentally inducing miscorrections,
(2) analyzing observed post-correction errors, and (3) solving
for the ECC function.

�is section describes each of these steps in detail in the con-
text of experiments using 32, 20, and 28 real LPDDR4 DRAM
chips from three major manufacturers, whom we anonymize
for con�dentiality reasons as A, B, and C, respectively. We

perform all tests using a temperature-controlled infrastruc-
ture with precise control over the timings of refresh and other
DRAM bus commands.
5.1. Step 1: Inducing Miscorrections

To induce miscorrections as discussed in Section 4.2.3, we
must �rst identify the (1) CHARGED and DISCHARGED encod-
ings of each cell and (2) layout of individual datawords within
the address space. �is section describes how we determine
these in a way that is applicable to any DRAM chip.
5.1.1. Determining CHARGED and DISCHARGED States.
We determine the encodings of the CHARGED and
DISCHARGED states by experimentally measuring the
layout of true- and anti-cells throughout the address space
as done in prior works [90, 95, 138]. We write data ‘0’ and
data ‘1’ test pa�erns to the entire chip while pausing DRAM
refresh for 30 minutes at temperatures between 30 – 80◦C.
�e resulting data-retention error pa�erns reveal the true-
and anti-cell layout since each test pa�ern isolates one of
the cell types. We �nd that chips from manufacturers A and
B use exclusively true-cells, and chips from manufacturer
C use 50%/50% true-/anti-cells organized in alternating
blocks of rows with block lengths of 800, 824, and 1224 rows.
�ese observations are consistent with the results of similar
experiments performed by prior work [138].
5.1.2. Determining the Layout of Datawords. To deter-
mine which addresses correspond to individual ECC datawords,
we program one cell per row8 to the CHARGED state with all
other cells DISCHARGED. We then sweep the refresh window
tREFw from 10 seconds to 10 minutes at 80◦C to induce un-
correctable errors. Because only CHARGED cells can fail, post-
correction errors may only occur in bit positions corresponding
to either (1) the CHARGED cell itself or (2) DISCHARGED cells
due to a miscorrection. By sweeping the bit position of the
CHARGED cell within the dataword, we observe miscorrec-
tions that are restricted exclusively to within the same ECC
dataword. We �nd that chips from all three manufacturers use
identical ECC word layouts: each contiguous 32B region of
DRAM comprises two 16B ECC words that are interleaved at
byte granularity. A 128-bit dataword is consistent with prior
industry and academic works on on-die ECC [97, 98, 120, 138].
5.1.3. Testing With 1,2-CHARGED Patterns. To test each of
the 1- or 2-CHARGED pa�erns, we program an equal number of
datawords with each test pa�ern. For example, a 128-bit data-
word yields

(128
1
)

= 128 and
(128

2
)

= 8128 1- and 2-CHARGED
test pa�erns, respectively. As Section 4.2.3 discusses, BEER
must identify all possible miscorrections for each test pa�ern.
To do so, BEER must exercise all possible error pa�erns that
a codeword programmed with a given test pa�ern can expe-
rience (e.g., up to 210 = 1024 unique error pa�erns for a (136,
128) Hamming code using a 2-CHARGED pa�ern).

Fortunately, although BEER must test a large number of error
pa�erns, even a single DRAM chip typically contains millions
of ECC words (e.g., 224 128-bit words for a 16 Gib chip), and we
simultaneously test them all when we reduce the refresh win-
dow across the entire chip. Because data-retention errors occur
uniform-randomly (discussed in Section 3.2), every ECC word
tested provides an independent sample of errors. �erefore,
even one experiment provides millions of samples of di�erent
error pa�erns within the CHARGED cells, and running multiple

8We assume that ECC words do not straddle row boundaries since accesses
would then require reading two rows simultaneously. However, one cell per
bank can be tested to accommodate this case if required.

7



experiments at di�erent operating conditions (e.g., changing
temperature or the refresh window) across multiple DRAM
chips9 dramatically increases the sample size, making the prob-
ability of not observing a given error pa�ern exceedingly low..
We analyze experimental runtime in Section 6.3.

Table 2 illustrates testing the 1-CHARGED pa�erns using
the ECC function given by Equation 1. �ere are four test
pa�erns, and Table 2 shows the miscorrections that are pos-
sible for each one assuming that all cells are true cells. For
this ECC function, miscorrections are possible only for test
pa�ern 0, and no pre-correction error pa�ern exists that can
cause miscorrections for the other test pa�erns. Note that,
for errors in the CHARGED-bit positions, we cannot be certain
whether a post-correction error is a miscorrection or simply
a data-retention error, so we label it using ‘?’. We refer to the
cumulative pa�ern-miscorrection pairs as a miscorrection pro-
�le. �us, Table 2 shows the miscorrection pro�le of the ECC
function given by Equation 1.

1-CHARGED Pattern ID 1-CHARGED Pattern Possible Miscorrections(Bit-Index of CHARGED Cell)
3 [D D D C] [– – – ?]
2 [D D C D] [– – ? –]
1 [D C D D] [– ? – –]
0 [C D D D] [? 1 1 1]

Table 2: Example miscorrection pro�le for the ECC function
given in Equation 1.

To obtain the miscorrection pro�le of the on-die ECC func-
tion within each DRAM chip that we test, we lengthen the
refresh window tREFw to between 2 minutes, where uncor-
rectable errors begin to occur frequently (BER ≈ 10–7), and
22 minutes, where nearly all ECC words exhibit uncorrectable
errors (BER≈ 10–3), in 1 minute intervals at 80◦C. During each
experiment, we record which bits are susceptible to miscor-
rections for each test pa�ern (analogous to Table 2). Figure 3
shows this information graphically, giving the logarithm of
the number of errors observed in each bit position (X -axis)
for each 1-CHARGED test pa�ern (Y -axis). �e data is taken
from the true-cell regions of a single representative chip from
each manufacturer. Errors in the CHARGED bit positions (i.e.,
where Y = X ) stand out clearly because they occur alongside
all miscorrections as uncorrectable errors.

0 32 64 96 12
7

0

32

64

96
127

1-
CH

AR
GE

D 
Pa

tte
rn

 ID
(C

HA
RG

ED
 B

it 
In

de
x)

A

0 32 64 96 12
7

Bit Index Within ECC Dataword

B

0 32 64 96 12
7

C

Rarely-Observed Error Frequently-Observed Error
BER 0 BER 10 3

Figure 3: Errors observed in a single representative chip from
each manufacturer using the 1-CHARGED test patterns, show-
ing that manufacturers appear to use di�erent ECC functions.

�e data shows that miscorrection pro�les vary signi�cantly
between di�erent manufacturers. �is is likely because each
manufacturer uses a di�erent parity-check matrix: the possi-
ble miscorrections for a given test pa�ern depend on which
parity-check matrix columns are used to construct error syn-
dromes. With di�erent matrices, di�erent columns combine to
form di�erent error syndromes. �e miscorrection pro�les of

9Assuming chips of the same model use the same on-die ECC mechanism,
which our experimental results in Section 5.1.3 support.

manufacturers B and C exhibit repeating pa�erns, which likely
occur due to regularities in how syndromes are organized in
the parity-check matrix, whereas the matrix of manufacturer A
appears to be relatively unstructured. We suspect that manufac-
turers use di�erent ECC functions because each manufacturer
employs their own circuit design, and speci�c parity-check ma-
trix organizations lead to more favorable circuit-level tradeo�s
(e.g., layout area, critical path lengths).

We �nd that chips of the same model number from the same
manufacturer yield identical miscorrection pro�les, which (1)
validates that we are observing design-dependent data and
(2) con�rms that chips from the same manufacturer and prod-
uct generation appear to use the same ECC functions. To
sanity-check our results, we use EINSim [2, 138] to simulate
the miscorrection pro�les of the �nal parity-check matrices we
obtain from our experiments with real chips, and we observe
that the miscorrection pro�les obtained via simulation match
those measured via real chip experiments.
5.2. Step 2: Analyzing Post-Correction Errors

In practice, BEER may either (1) fail to observe a possible
miscorrection or (2) misidentify a miscorrection due to unpre-
dictable transient errors (e.g., so� errors from particle strikes,
variable-retention time errors, voltage �uctuations). �ese
events can theoretically pollute the miscorrection pro�le with
incorrect data, potentially resulting in an illegal miscorrection
pro�le, i.e., one that does not match any ECC function.

Fortunately, case (1) is unlikely given the sheer number of
ECC words even a single chip provides for testing (discussed
in Section 5.1.3). While it is possible that di�erent ECC words
throughout a chip use di�erent ECC functions, we believe that
this is unlikely because it complicates the design with no clear
bene�ts. Even if a chip does use more than one ECC function,
the di�erent functions will likely follow pa�erns aligning with
DRAM substructures (e.g., alternating between DRAM rows or
subarrays [83, 91]), and we can test each region individually.

Similarly, case (2) is unlikely because transient errors occur
randomly and rarely [141] as compared with the data-retention
error rates that we induce for BEER (> 10–7), so transient error
occurrence counts are far lower than those of real miscorrec-
tions that are observed frequently in miscorrection-susceptible
bit positions. �erefore, we apply a simple threshold �lter to
remove rarely-observed post-correction errors from the mis-
correction pro�le. Figure 4 shows the relative probability of ob-
serving a miscorrection in each bit position aggregated across
all 1-CHARGED test pa�erns for a representative chip from
manufacturer B. Each data point is a boxplot that shows the
full distribution of probability values, i.e., min, median, max,
and interquartile-range (IQR), observed when sweeping the re-
fresh window from 2 to 22 minutes (i.e., the same experiments
described in Section 5.1.3).

We see that zero and nonzero probabilities are distinctly sep-
arated, so we can robustly resolve miscorrections for each bit.
Furthermore, each distribution is extremely tight, meaning that
any of the individual experiments (i.e., any single component
of the distributions) is suitable for identifying miscorrections.
�erefore, a simple threshold �lter (illustrated in Figure 4) dis-
tinctly separates post-correction errors that occur near-zero
times from miscorrections that occur signi�cantly more o�en.
5.3. Step 3: Solving for the ECC Function

We use the Z3 SAT solver [28] (described in Section 3.4)
to identify the exact ECC function given a miscorrection pro-
�le. To determine the encoding (Fencode) and decoding (Fdecode)

8



0 16 32 48 64 80 96 112 127
Bit Index in ECC Word

0.000
0.005
0.010
0.015
0.020
0.025

M
isc

or
re

ct
io

n
Pr

ob
ab

ilit
y 

M
as

s Example Threshold (1e-3)

Figure 4: Relative probability of observing a miscorrection in
each bit position aggregated across all 1-CHARGED test patterns
for a representative chip of manufacturer B. �e dashed line
shows a threshold �lter separating zero and nonzero values.

functions, we express them as unknown generator (G) and
parity-check (H) matrices, respectively. We then add the fol-
lowing constraints to the SAT solver for G and H:
1. Basic linear code properties (e.g., unique H columns).
2. Standard form matrices, as described in Section 4.2.1.
3. Information contained within the miscorrection pro�le (i.e.,

pa�ern i can(not) yield a miscorrection in bit j).
Upon evaluating the SAT solver with these constraints, the
resulting G and H matrices represent the ECC encoding and
decoding functions, respectively, that cause the observed mis-
correction pro�le. To verify that no other ECC function may
result in the same miscorrection pro�le, we simply repeat the
SAT solver evaluation with the additional constraint that the
already discovered G and H matrices are invalid. If the SAT
solver �nds another ECC function that satis�es the new con-
straints, the solution is not unique.

To seamlessly apply BEER to the DRAM chips that we test,
we develop an open-source C++ application [1] that incorpo-
rates the SAT solver and determines the ECC function corre-
sponding to an arbitrary miscorrection pro�le. �e tool ex-
haustively searches for all possible ECC functions that satisfy
the aforementioned constraints and therefore will generate the
input miscorrection pro�le. Using this tool, we apply BEER to
miscorrection pro�les that we experimentally measure across
all chips using refresh windows up to 30 minutes and temper-
atures up to 80◦C. We �nd that BEER uniquely identi�es the
ECC function for all manufacturers. Unfortunately, we are un-
able to publish the resulting ECC functions for con�dentiality
reasons as set out in Section 2.1. Although we are con�dent in
our results because our SAT solver tool identi�es a unique ECC
function that explains the observed miscorrection pro�les for
each chip, we have no way to validate BEER’s results against
a groundtruth. To overcome this limitation, we demonstrate
BEER’s correctness using simulation in Section 6.1.
5.4. Requirements and Limitations

Although we demonstrate BEER’s e�ectiveness using both
experiment and simulation, BEER has several testing require-
ments and limitations that we review in this section.
Testing Requirements
• Single-level ECC: BEER assumes that there is no second level

of ECC (e.g., rank-level ECC in the DRAM controller) present
during testing.10 �is is reasonable since system-level ECCs
can typically be bypassed (e.g., via FPGA-based testing or
disabling through the BIOS) or reverse-engineered [26], even
in the presence of on-die ECC, before applying BEER.

10We can potentially extend BEER to multiple levels of ECC by extending
the SAT problem to the concatenated code formed by the combined ECCs and
constructing test pa�erns that target each level sequentially, but we leave this
direction to future work.

• Inducing data-retention errors: BEER requires �nding a re-
fresh window (i.e., tREFw) for each chip that is long enough to
induce data-retention errors and expose miscorrections. For-
tunately, we �nd that refresh windows between 1-30 minutes
at 80◦C reveal more than enough miscorrections to apply
BEER. In general, the refresh window can be easily modi-
�ed (discussed in Section 3.2), and because data-retention
errors are fundamental to DRAM technology, BEER applies
to all DDRx DRAM families regardless of their data access
protocols and will likely hold for future DRAM chips, whose
data-retention error rates will likely be even more promi-
nent [39, 76, 89, 99, 109, 119, 120, 129, 133, 160].

Limitations
• ECC code type: BEER works on systematic linear block codes,

which are commonly employed for latency-sensitive main
memory chips since: (i) they allow the data to be directly ac-
cessed without additional operations [181] and (ii) stronger
codes (e.g., LDPC [36], concatenated codes [34]) cost consid-
erably more area and latency [11, 132].

• No groundtruth: BEER alone cannot con�rm whether the
ECC function that it identi�es is the correct answer. How-
ever, if BEER �nds exactly one ECC function that explains
the experimentally observed miscorrection pro�le, it is very
likely that the ECC function is correct.

• Disambiguating equivalent codes: On-die ECC does not ex-
pose the parity-check bits, so BEER can only determine
the ECC function to an equivalent code (discussed in Sec-
tions 4.2.1 and 4.2.3). Fortunately, equivalent codes di�er
only in their internal metadata representations, so this limi-
tation should not hinder most third-party studies. In general,
we are unaware of any way to disambiguate equivalent codes
without accessing the ECC mechanism’s internals.

6. BEER Evaluation
We evaluate BEER’s correctness in simulation, SAT solver

performance on a real system, and experimental runtime ana-
lytically. Our evaluations both (1) show that BEER is practical
and correctly identi�es the ECC function within our simulation-
based analyses, and (2) provide intuition for how the SAT prob-
lem’s complexity scales for longer ECC codewords.
6.1. Simulation-Based Correctness Evaluation

We simulate applying BEER to DRAM chips with on-die
ECC using a modi�ed version of the EINSim [2, 138] open-
source DRAM error-correction simulator that we also publicly
release [2]. We simulate 115300 single-error correction Ham-
ming code functions that are representative of those used for
on-die ECC [60, 97, 98, 120, 129, 133, 138, 147]: 2000 each for
dataword lengths between 4 and 57 bits, 100 each between
58 and 120 bits, and 100 each for selected values between 121
and 247 bits because longer codes require signi�cantly more
simulation time. For each ECC function, we simulate induc-
ing data-retention errors within the 1-, 2-, and 3-CHARGED11

test pa�erns according to the data-retention error properties
outlined in Section 3.2. For each test pa�ern, we model a real
experiment by simulating 109 ECC words and data-retention
error rates ranging from 10–5 to 10–2 to obtain a miscorrection
pro�le. �en, we apply BEER to the miscorrection pro�les and
show that BEER correctly recovers the original ECC functions.

Figure 5 shows how many unique ECC functions BEER �nds
when using di�erent test pa�erns to generate miscorrection

11We include the 3-CHARGED pa�erns to show that they fail to uniquely
identify all ECC functions despite comprising combinatorially more test pat-
terns than the combined 1- and 2-CHARGED pa�erns.

9



pro�les. For each dataword length tested, we show the mini-
mum, median, and maximum number of solutions identi�ed
across all miscorrection pro�les. �e data shows that BEER
is always able to recover the original unique ECC function
using the {1,2}-CHARGED con�guration that uses both the 1-
CHARGED and 2-CHARGED test pa�erns. For full-length codes
(i.e., with dataword lengths k ∈ 4, 11, 26, 57, 120, 247, …) that
contain all possible error syndromes within the parity-check
matrix by construction, all test pa�erns uniquely determine
the ECC function, including the 1-CHARGED pa�erns alone.

4 8 16 32 64 128 256
Dataword Length (k)

100

101

102

Nu
m

be
r o

f U
ni

qu
e

EC
C 

Fu
nc

tio
ns 1-CHARGED

2-CHARGED
3-CHARGED
{1,2}-CHARGED

Figure 5: Number of ECC functions that match miscorrection
pro�les created using di�erent test patterns.

On the other hand, the individual 1-, 2-, and 3-CHARGED pat-
terns sometimes identify multiple ECC functions for shortened
codes, with more solutions identi�ed both for (1) shorter codes
and (2) codes with more aggressive shortening. However, the
data shows that BEER o�en still uniquely identi�es the ECC
function even using only the 1-CHARGED pa�erns (i.e., for
87.7% of all codes simulated) and always does so with the {1,2}-
CHARGED pa�erns. �is is consistent with the fact that short-
ened codes expose fewer error syndromes to test (discussed
in Section 4.2.3). It is important to note that, even if BEER
identi�es multiple solutions, it still narrows a combinatorial-
sized search space to a tractable number of ECC functions
that are well suited to more expensive analyses (e.g., intrusive
error-injection, die imaging techniques, or manual inspection).

While our simulations do not model interference from tran-
sient errors, such errors are rare events [141] when compared
with the amount of uncorrectable data-retention errors that
BEER induces. Even if sporadic transient errors were to occur,
Section 5.2 discusses in detail how BEER mitigates their impact
on the miscorrection pro�le using a simple thresholding �lter.
6.2. Real-System Performance Evaluation

We evaluate BEER’s performance and memory usage using
ten servers with 24-core 2.30 GHz Intel Xeon(R) Gold 5118
CPUs [58] and 192 GiB 2666 MHz DDR4 DRAM [68] each. All
measurements are taken with Hyper-�reading [58] enabled
and all cores fully occupied. Figure 6 shows overall runtime
and memory usage when running BEER with the 1-CHARGED
pa�erns for di�erent ECC code lengths on a log-log plot along
with the time required to (1) solve for the ECC function (“Deter-
mine Function”) and (2) verify the uniqueness of the solution
(“Check Uniqueness”). Each data point gives the minimum,
median, and maximum values observed across our simulated
ECC functions (described in Section 6.1). We see that the total
runtime and memory usage are negligible for short codes and
grow as large as 62 hours and 11.4 GiB of memory for large
codes. For a representative dataword length of 128 bits, the
median total runtime and memory usage are 57.1 hours and
6.3 GiB, respectively. At each code length where we add an
additional parity-check bit, the runtime and memory usage
jump accordingly since the complexity of the SAT evaluation
problem increases by an extra dimension.

�e total runtime is quickly dominated by the SAT solver

4 8 16 32 64 128 256
Dataword Length (k)

10 2
100
102
104
106

Ti
m

e 
(s

)

Total Runtime
Check Uniqueness
Determine Function(s)
Memory Usage

101

102

103

104

M
em

or
y 

Us
ag

e 
(M

iB
)

Figure 6: Measured BEER runtime (le� y-axis) and memory
usage (right y-axis) for di�erent ECC codeword lengths.

checking uniqueness, which requires exhaustively exploring
the entire search space of a given ECC function. However, sim-
ply determining the solution ECC function(s) is much faster,
requiring less than 2.7 minutes even for the longest codes eval-
uated and for shortened codes that potentially have multiple
solutions using only the 1-CHARGED pa�erns. From this data,
we conclude that BEER is practical for reasonable-length codes
used for on-die ECC (e.g., k = 64, 128). However, our BEER
implementation has room for optimization, e.g., using dedi-
cated GF(2) BLAS libraries (e.g., LELA [52]) or advanced SAT
solver theories (e.g., SMT bitvectors [10]), and an optimized
implementation would likely improve performance, enabling
BEER’s application to an even greater range of on-die ECC
functions. Section 7.3 discusses such optimizations in greater
detail. Nevertheless, BEER is a one-time o�ine process, so it
need not be aggressively performant in most use-cases.
6.3. Analytical Experiment Runtime Analysis

Our experimental runtime is overwhelmingly bound by wait-
ing for data-retention errors to occur during a lengthened re-
fresh window (e.g., 10 minutes) while interfacing with the
DRAM chip requires only on the order of milliseconds (e.g.,
168 ms to read an entire 2 GiB LPDDR4-3200 chip [69]). �ere-
fore, we estimate total experimental runtime as the sum of the
refresh windows that we individually test. For the data we
present in Section 5.1.3, testing each refresh window between
2 to 22 minutes in 1 minute increments requires a combined
4.2 hours of testing for a single chip. However, if chips of the
same model number use the same ECC functions (as our data
supports in Section 5.1.3), we can reduce overall testing latency
by parallelizing individual tests across di�erent chips. Further-
more, because BEER is likely a one-time exercise for a given
DRAM chip, it is su�cient that BEER is practical o�ine.
7. Example Practical Use-Cases

BEER empowers third-party DRAM users to decouple the
reliability characteristics of modern DRAM chips from any
particular on-die ECC function that a chip implements. �is
section discusses �ve concrete analyses that BEER enables. To
our knowledge, BEER is the �rst work capable of inferring this
information without bypassing the on-die ECC mechanism.
We hope that end users and future works �nd more ways to
extend and apply BEER in practice.
7.1. BEEP: Pro�ling for Raw Bit Errors

We introduce Bit-Exact Error Pro�ling (BEEP), a new data-
retention error pro�ling algorithm enabled by BEER that infers
the number and bit-exact locations of pre-correction error-
prone cells when given a set of operating conditions that cause
uncorrectable errors in an ECC word. To our knowledge, BEEP
is the �rst DRAM error pro�ling methodology capable of iden-
tifying bit-exact error locations throughout the entire on-die
ECC codeword, including within the parity bits.

10



7.1.1. BEEP: Inference Based on Miscorrections. Because
miscorrections are purely a function of the ECC logic (discussed
in Section 4.2.2), an observed miscorrection indicates that a
speci�c pre-correction error pa�ern has occurred. Although
several such pa�erns can map to the same miscorrection, BEEP
narrows down the possible pre-correction error locations by
using the known parity-check matrix (a�er applying BEER)
to construct test pa�erns for additional experiments that dis-
ambiguate the possibilities. At a high level, BEEP cra�s test
pa�erns to reveal errors as it incrementally traverses each
codeword bit, possibly using multiple passes to capture low-
probability errors. As BEEP iterates over the codeword, it
builds up a list of suspected error-prone cells.

BEEP comprises three phases: 1 cra�ing suitable test pat-
terns, 2 experimental testing with cra�ed pa�erns, and 3
calculating pre-correction error locations from observed mis-
corrections. Figure 7 illustrates these three phases in an exam-
ple where BEEP pro�les for pre-correction errors in a 128-bit
ECC dataword. �e following sections explain each of the three
phases and refer to Figure 7 as a running example.
7.1.2. Cra�ing Suitable Test Patterns. Conventional
DRAM error pro�lers (e.g., [22, 46, 71, 79, 81, 95, 104, 109, 110,
139, 165, 169]) use carefully designed test pa�erns that induce
worst-case circuit conditions in order to maximize their cov-
erage of potential errors [3, 123]. Unfortunately, on-die ECC
encodes all data into codewords, so the intended so�ware-level
test pa�erns likely do not maintain their carefully-designed
properties when wri�en to the physical DRAM cells. BEEP
circumvents these ECC-imposed restrictions by using a SAT
solver along with the known ECC function (via BEER) to cra�
test pa�erns that both (1) locally induce the worst-case cir-
cuit conditions and (2) result in observable miscorrections if
suspected error-prone cells do indeed fail.

Without loss of generality, we assume that the worst-case
conditions for a given bit occur when its neighbors are pro-
grammed with the opposite charge states, which prior work
shows to exacerbate circuit-level coupling e�ects and increase
error rates [3, 5, 79, 93, 107, 109, 123, 130, 144, 156, 166]. If the
design of a worst-case pa�ern is not known, or if it has a di�er-
ent structure than we assume, BEEP can be adapted by simply
modifying the relevant SAT solver constraints (described be-
low). To ensure that BEEP observes a miscorrection when a
given error occurs, BEEP cra�s a pa�ern that will su�er a mis-
correction if the error occurs alongside an already-discovered
error. We express these conditions to the SAT solver using the
following constraints:
1. Bits adjacent to the target bit have opposing charge states.
2. One or more miscorrections is possible using some combi-

nation of the already-identi�ed data-retention errors.
Several such pa�erns typically exist, and BEEP simply uses the
�rst one that the SAT solver returns (although a di�erent BEEP
implementation could test multiple pa�erns to help identify

low-probability errors). Figure 7 1 illustrates how such a test
pa�ern appears physically within the cells of a codeword: the
target cell is CHARGED, its neighbors are DISCHARGED, and
the SAT solver freely determines the states of the remaining
cells to increase the likelihood of a miscorrection if the tar-
get cell fails. If the SAT solver fails to �nd such a test pa�ern,
BEEP a�empts to cra� a pa�ern using constraint 2 alone, which,
unlike constraint 1, is essential to observing miscorrections.
Failing that, BEEP simply skips the bit until more error-prone
cells are identi�ed that could facilitate causing miscorrections.
We evaluate how successfully BEEP identi�es errors in Sec-
tion 7.1.4, �nding that a second pass over the codeword helps
in cases of few or low-probability errors.
7.1.3. Experimental Testing with Cra�ed Patterns. BEEP
tests a pa�ern by writing it to the target ECC word, induc-
ing errors by lengthening the refresh window, and reading
out the post-correction data. Figure 7 2 shows examples of
post-correction error pa�erns that might be observed during
an experiment. Each miscorrection indicates that an uncor-
rectable number of pre-correction errors exists, and BEEP uses
the parity-check matrix H to calculate their precise locations.
�is is possible because each miscorrection reveals an error syn-
drome s for the (unknown) erroneous pre-correction codeword
c′ that caused the miscorrection. �erefore, we can directly
solve for c′ as shown in Equation 4.

s = H ∗ c′ = c′0 ·H∗,0 + c′1 ·H∗,1 + … + c′n ·H∗,n (4)
�is is a system of equations with one equation for each of n–k
unknowns, i.e., one each for the n – k inaccessible parity bits.
�ere is guaranteed to be exactly one solution for c′ since the
parity-check matrix always has full rank (i.e., rank(H) = n – k).
Since we also know the original codeword (c = Fencode(d) =
G·d), we can simply compare the two (i.e., c⊕c′) to determine
the bit-exact error pa�ern that led to the observed miscorrection.
Figure 7 3 shows how BEEP updates a list of learned pre-
correction error locations, which the SAT solver then uses to
construct test pa�erns for subsequent bits. Once all bits are
tested, the list of pre-correction errors yields the number and
bit-locations of all identi�ed error-prone cells.
7.1.4. Evaluating BEEP’s Success Rate. To understand how
BEEP performs in practice, we evaluate its success rate, i.e.,
the likelihood that BEEP correctly identi�es errors within a
codeword. We use a modi�ed version of EINSim [2] to perform
Monte-Carlo simulation across 100 codewords per measure-
ment. To keep our analysis independent of any particular
bit-error rate model, we subdivide experiments by the number
of errors (N ) injected per codeword. In this way, we can �exibly
evaluate the success rate for a speci�c error distribution using
the law of total probability over the N s.

Number of Passes. Figure 8 shows BEEP’s success rate
when using one and two passes over the codeword for di�erent
codeword lengths. Each bar shows the median value over the

Test Bit[0]Generate Test Paern

Test for Miscorrections …

Learn Pre-Correction Errors

136-bit Codeword

Calculate With 
ECC Function

Run Experiments

C
ra


 T
es

t 
P

a


er
n

 
U

si
n

g 
S

A
T

 S
o

lv
er

C
D
-

CHARGED cell
DISCHARGED cell
Free for SAT solver to choose

M
-

Miscorrection observed
No error observed

E
?

Known error
Unknown

1

2

3 …E ? ? ? ? ?? ?? E

Test Bit[1]

…E ? ? ? ?? ?? E

…CD - - - - -D

E

Test Bit[135]

…E ? ? ?? ?? E

… CD- - -- -

E

-

E

(Optional) Repeat 
for Second Pass to Find 
Low-Probability Errors

Begin

…C D - - - - - -- - - - - -

136-bit Codeword

128-bit Dataword

ECC Words with Different 
Pre-Correction Error Paerns

…- - -- -- --
…- M- -- -- -

…- M - -- -- -

New Error Identified

…- -- -- --M
…- - -- -- - -

…- M- - -- -- …- -- -- --M
…- -- -- - -M

…-M - - --- -

Pre-Correction 
Error Locations

To Test Bit[0]

Figure 7: Example of running BEEP on a single 136-bit ECC codeword to identify locations of pre-correction errors.

11



100 codewords with an error bar showing the 5th and 95th per-
centiles. �e data shows that BEEP is highly successful across
all tested error counts, especially for longer 127- and 255-bit
codewords that show a 100% success rate even with a single pass.
Longer codewords perform be�er in part because BEEP uses
one test pa�ern per bit, which means that longer codes lead
to more pa�erns. However, longer codewords perform be�er
even with comparable test-pa�ern counts (e.g., 2 passes with
31-bit vs 1 pass with 63-bit codewords) because longer code-
words simply have more bits (and therefore, error syndromes)
for the SAT solver to consider when cra�ing a miscorrection-
prone test pa�ern. On the other hand, miscorrection-prone
test pa�erns are more di�cult to construct for shorter codes
that provide fewer bits to work with, so BEEP fails more o�en
when testing shorter codes.

2 3 4 5
0%

25%
50%
75%

100%

BE
EP

 S
uc

ce
ss

 R
at

e

10 15 20 25

1 Pass 2 Passes

31-Bit Codeword 63-Bit Codeword 127-Bit Codeword 255-Bit Codeword

Number of Errors Injected per Codeword
Figure 8: BEEP success rate for 1 vs. 2 passes and di�erent
codeword lengths and numbers of errors injected.

Per-Bit Error Probabilities. Figure 9 shows how BEEP’s
success rate changes using a single pass when the injected
errors have di�erent per-bit probabilities of error (P[error]).
�is experiment represents a more realistic scenario where
some DRAM cells probabilistically experience data-retention
errors. We see that BEEP remains e�ective (i.e., has a near-100%
success rate) for realistic 63- and 127-bit codeword lengths,
especially at higher bit-error probabilities and error counts.
BEEP generally has a higher success rate with longer codes
compared to shorter ones, and for shorter codewords at low
error probabilities, the data shows that BEEP may require more
test pa�erns (e.g., multiple passes) to reliably identify all errors.

2 3 4 5
0%

25%
50%
75%

100%

BE
EP

 S
uc

ce
ss

 R
at

e

10 15 20 25

31-Bit Codeword 63-Bit Codeword 127-Bit Codeword

P[error] = 1.0 P[error] = 0.75 P[error] = 0.5 P[error] = 0.25

Number of Errors Injected per Codeword
Figure 9: BEEP success rate for di�erent single-bit error prob-
abilities using di�erent ECC codeword lengths for di�erent
numbers of errors injected in the codeword.

It is important to note that, while evaluating low error prob-
abilities is demonstrative, it represents a pessimistic scenario
since a real DRAM chip exhibits a mix of low and high per-bit
error probabilities.12 Although any error-pro�ling mechanism
that identi�es errors based on when they manifest might miss

12Patel et al. [139] provide a preliminary exploration of how per-bit er-
ror probabilities are distributed throughout a DRAM chip, but formulating a
detailed error model for accurate simulation is beyond the scope of our work.

low-probability errors,13 the data shows that BEEP is resilient
to low error probabilities, especially for longer, more realis-
tic codewords. �erefore, our evaluations demonstrate that
BEEP e�ectively enables a new pro�ling methodology that uses
the ECC function determined by BEER to infer pre-correction
errors from observed post-correction error pa�erns.
7.1.5. Other DRAM Error Mechanisms. Although we
demonstrate BEEP solely for data-retention errors, BEEP can
potentially be extended to identify errors that occur due to
other DRAM error mechanisms (e.g., stuck-at faults, circuit
timing failures). However, simultaneously diagnosing multiple
error models is a very di�cult problem since di�erent types
of faults can be nearly indistinguishable (e.g., data-retention
errors and stuck-at-DISCHARGED errors). Pro�ling for arbi-
trary error types is a separate problem from what we tackle in
this work, and we intend BEEP as a simple, intuitive demon-
stration of how knowing the ECC function is practically useful.
�erefore, we leave extending BEEP to alternative DRAM error
mechanisms to future work.
7.2. Other Use-Cases that Bene�t from BEER

We identify four additional use cases for which BEER mit-
igates on-die ECC’s interference with third-party studies by
revealing the full ECC function (i.e., its parity-check matrix).
7.2.1. Combining Error Mitigation Mechanisms. If the
on-die ECC function is known, a system architect can design
a second level of error mitigation (e.g., rank-level ECC) that
be�er suits the error characteristics of a DRAM chip with on-
die ECC. Figure 1 provides a simple example of how di�erent
ECC functions cause di�erent data bits to be more error-prone
even though the pre-correction errors are uniformly distributed.
�is means that on-die ECC changes the DRAM chip’s so�ware-
visible error characteristics in a way that depends on the par-
ticular ECC function it employs. If the on-die ECC function
is known, we can calculate the expected post-correction error
characteristics14 and build an error model that accounts for the
transformative e�ects of on-die ECC. Using this error model,
the system architect can make an informed decision when
selecting a secondary mitigation mechanism to complement
on-die ECC. For example, architects could modify a traditional
rank-level ECC scheme to asymmetrically protect certain data
bits that are more prone to errors than others as a result of on-
die ECC’s behavior [95, 174]. In general, BEER enables system
designers to be�er design secondary error-mitigation mech-
anisms to suit the expected DRAM reliability characteristics,
thereby improving overall system reliability.
7.2.2. Cra�ing Targeted Test Patterns. Several DRAM
error mechanisms are highly pa�ern sensitive, including
RowHammer [86, 90, 125, 126], data-retention [43, 78, 79, 81, 88,
109, 110, 139], and reduced-access-latency [17, 20, 83, 102, 104].
Di�erent test pa�erns a�ect error rates by orders of magni-
tude [79–81, 86, 100, 109, 139] because each pa�ern exercises
di�erent static and dynamic circuit-level e�ects. �erefore, test
pa�erns are typically designed carefully to induce the worst-
case circuit conditions for the error mechanism under test (e.g.,
marching ‘1’s [3, 46, 109, 123, 139]). As Section 7.1.2 discusses
in greater detail, on-die ECC restricts the possible test pa�erns
to only the ECC function’s codewords. Fortunately, the SAT-

13Patel et al. [139] increase error coverage by exacerbating the bit-error
probability, and their approach (REAPER) can be used alongside BEEP to help
identify low-probability errors.

14By assuming a given data value distribution, e.g., �xed values for a pre-
dictable so�ware application, uniform-random data for a general system.

12



solver-based approach that BEEP uses to cra� test pa�erns
generalizes to cra�ing targeted test pa�erns for these error
mechanisms also.
7.2.3. Studying Spatial Error Distributions. Numerous
prior works [17, 20, 83, 90, 104, 136, 157] experimentally study
the spatial distributions of errors throughout the DRAM chip
in order to gain insight into how the chip operates and how its
performance, energy, and/or reliability can be improved. �ese
studies rely on inducing errors at relatively high error rates so
that many errors occur that can leak information about a de-
vice’s underlying structure. With on-die ECC, studying spatial
error distributions requires identifying pre-correction errors
throughout the codeword, including within the inaccessible
parity bits. BEEP demonstrates one possible concrete way by
which BEER enables these studies for chips with on-die ECC.
7.2.4. Diagnosing Post-Correction Errors. A third-party
tester may want to determine the physical reason(s) behind
an observed error. For example, a system integrator who is
validating a DRAM chip’s worst-case operating conditions may
observe unexpected errors due to an unforeseen defect (e.g.,
at a precise DQ-pin position). Unfortunately, on-die ECC ob-
scures both the number and locations of pre-correction errors,
so the observed errors no longer provide insight into the un-
derlying physical error mechanism responsible. Using BEEP,
such errors can be more easily diagnosed because the revealed
pre-correction errors directly result from the error mechanism.
7.3. Extensions and Future Work

Our work demonstrates that on-die ECC is not an insur-
mountable problem for third-party system design and testing.
To further explore how tools like BEER can help clarify a DRAM
chip’s core reliability characteristics, we identify several ways
in which future studies can build upon our work. We believe
these are promising directions to explore and will further fa-
cilitate studying the reliability characteristics of current and
future devices with on-die ECC.
Extension to Other Devices. BEER theoretically applies to
any memory device that uses a linear block code in which
we can exploit data-dependent errors (e.g., CHARGED-to-
DISCHARGED) to control which miscorrections occur. A con-
crete example is DRAM with rank-level ECC, where BEER
can be applied as is.15 However, BEER may be extensible to
other memory devices (e.g., Flash memory [11–14,112,113,118],
STT-MRAM [62, 96, 182], PCM [101, 142, 152, 177], Race-
track [137, 179], RRAM [134, 171, 176]) if its core principles can
be adapted for their error models and ECC functions. �ese
memories all exhibit reliability challenges that BEER can help
third-party scientists and engineers be�er tackle and overcome.
Further Constraining the SAT Problem. We believe there
are several ways to further constrain the SAT problem, includ-
ing (i) prioritizing more likely hardware ECC implementations,
(ii) adding additional SAT constraints for obvious or trivial
cases, and (iii) further constraining the set of test pa�erns.
Improving SAT Solver E�ciency. Our implementations of
BEER and BEEP express ECC arithmetic (e.g., GF(2) matrix op-
erations, SAT constraints) using simple Boolean logic equations.
An optimized implementation that leverages native GF(2) BLAS
libraries (e.g., LELA [52]) and advanced SAT solver theories
(e.g., SMT bitvectors [10]) could drastically improve BEER’s
performance, enabling BEER for a wider variety of ECC func-
tions. Taking this a step further, future work could reformulate

15�ere may be no need to infer error syndromes from miscorrections if the
CPU directly exposes them [26].

BEER’s SAT problem mathematically in order to directly solve
for the parity-check matrix that can produce a given miscor-
rection pro�le. Such an approach could identify the solution
signi�cantly faster than using a SAT solver to perform a brute-
force exploration of the entire solution space.
8. Related Work

To our knowledge, this is the �rst work to (i) determine the
full on-die ECC function and (ii) recover the number and bit-
exact error locations of pre-correction errors in DRAM chips
with on-die ECC without any insight into the ECC mechanism
or any hardware modi�cation. We distinguish BEER from
related works that study on-die ECC, techniques for reverse-
engineering DRAM ECC functions, and DRAM error pro�ling.
On-Die ECC. Several works study on-die ECC [15,40,129,138],
but only Patel et al. [138] a�empt to identify pre-correction er-
ror characteristics without bypassing or modifying the on-die
ECC mechanism. Although Patel et al. [138] statistically infer
high-level characteristics about the ECC mechanism and pre-
correction errors, their approach has several key limitations
(discussed in Section 1). BEER overcomes these limitations
and identi�es (1) the full ECC function and (2) the bit-exact
locations of pre-correction errors without requiring any pre-
requisite knowledge about the errors being studied.
Determining ECC Functions. Prior works reverse-engineer
ECC characteristics in Flash memories [167, 168, 175], DRAM
with rank-level ECC [26], and on-die ECC [138]. However,
none of these works can identify the full ECC function by
studying data only at the external DRAM chip interface because
they either require (1) examining the encoded data [167, 168,
175], (2) injecting errors directly into the codeword [26], or (3)
knowing when an ECC correction is performed and obtaining
the resulting error syndrome [26]. On-die ECC provides no
insight into the error-correction process and does not report if
or when a correction is performed.
DRAM Error Pro�ling. Prior work proposes many DRAM
error pro�ling methodologies [17, 20, 26, 37, 42, 43, 46, 74, 75,
78–80, 83–86, 90, 95, 102, 104, 109, 110, 138, 139, 141, 157, 169, 172,
173]. Unfortunately, none of these approaches are capable
of identifying pre-correction error locations throughout the
entire codeword (i.e., including within parity-check bits).
9. Conclusion

We introduce Bit-Exact Error Recovery (BEER), a new
methodology for determining the full DRAM on-die ECC func-
tion (i.e., its parity-check matrix) without requiring hardware
support, prerequisite knowledge about the DRAM chip or on-
die ECC mechanism, or access to ECC metadata (e.g., parity-
check bits, error syndromes). We use BEER to determine the
on-die ECC functions of 80 real LPDDR4 DRAM chips and show
that BEER is both e�ective and practical using rigorous simu-
lations. We discuss �ve concrete use-cases for BEER, including
BEEP, a new DRAM error pro�ling methodology capable of
inferring exact pre-correction error counts and locations. We
believe that BEER takes an important step towards enabling
e�ective third-party design and testing around DRAM chips
with on-die ECC and are hopeful that BEER will enable many
new studies going forward.
Acknowledgments

We thank the SAFARI Research Group members for the
valuable input and stimulating intellectual environment they
provide, Karthik Sethuraman for his expertise in nonparametric
statistics, and the anonymous reviewers for their feedback.

13



References
[1] “BEER Source Code,” h�ps://github.com/CMU-SAFARI/BEER.
[2] “EINSim Source Code,” h�ps://github.com/CMU-SAFARI/EINSim.
[3] R. D. Adams, High Performance Memory Testing: Design Principles,

Fault Modeling and Self-Test. Springer SBM, 2002.
[4] ADATA, “ADATA XPG DDR4 O�cially Validated by AMD as

AM4/Ryzen Compatible,” ADATA, Tech. Rep., 2017.
[5] Z. Al-Ars, S. Hamdioui, and A. J. van de Goor, “E�ects of Bit Line

Coupling on the Faulty Behavior of DRAMs,” in VTS, 2004.
[6] AMD, “AMD Opteron 4300 Series Processors,” 2018.
[7] S. Baek, S. Cho, and R. Melhem, “Refresh Now and �en,” in TC, 2014.
[8] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “nu-Z: An Optimizing

SMT Solver,” in TACAS, 2015.
[9] R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting

Binary Group Codes,” Information and Control, 1960.
[10] R. Brummayer and A. Biere, “Boolector: An E�cient SMT Solver

for Bit-Vectors and Arrays,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2009.

[11] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Character-
ization, Mitigation, and Recovery In Flash-Memory-Based Solid-State
Drives,” Proc. IEEE, 2017.

[12] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-
Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery,”
Inside Solid State Drives, 2018.

[13] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Pa�erns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis,”
in DATE, 2012.

[14] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and
K. Mai, “Error Analysis and Retention-Aware Error Management for
NAND Flash Memory,” in ITJ, 2013.

[15] S. Cha et al., “Defect Analysis and Cost-E�ective Resilience Architec-
ture for Future DRAM Devices,” in HPCA, 2017.

[16] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson,
N. Wehn, and K. Goossens, “Exploiting Expendable Process-Margins
in DRAMs for Run-Time Performance Optimization,” in DATE, 2014.

[17] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li,
G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding Latency Varia-
tion in Modern DRAM Chips: Experimental Characterization, Analysis,
and Optimization,” in SIGMETRICS, 2016.

[18] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim,
and O. Mutlu, “Improving DRAM Performance by Parallelizing Re-
freshes with Accesses,” in HPCA, 2014.

[19] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. �reshi, and O. Mutlu,
“Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray
Data Movement in DRAM,” in HPCA, 2016.

[20] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Cha�erjee,
A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Un-
derstanding Reduced-Voltage Operation in Modern DRAM Devices:
Experimental Characterization, Analysis, and Mechanisms,” in SIG-
METRICS, 2017.

[21] H.-M. Chen, S.-Y. Lee, T. Mudge, C.-J. Wu, and C. Chakrabarti,
“Con�gurable-ECC: Architecting a Flexible ECC Scheme to Support
Di�erent Sized Accesses in High Bandwidth Memory Systems,” TC,
2018.

[22] K.-L. Cheng, M.-F. Tsai, and C.-W. Wu, “Neighborhood Pa�ern-
Sensitive Fault Testing and Diagnostics for Random-Access Memories,”
TCAD, 2002.

[23] B. R. Childers, J. Yang, and Y. Zhang, “Achieving Yield, Density and Per-
formance E�ective DRAM at Extreme Technology Sizes,” in MEMSYS,
2015.

[24] A. Cima�i, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico, “Sat-
is�ability Modulo �e �eory of Costs: Foundations and Applications,”
in TACAS, 2010.

[25] G. C. Clark Jr and J. B. Cain, Error-Correction Coding for Digital Com-
munications. Springer SBM, 2013.

[26] L. Cojocar, K. Razavi, C. Giu�rida, and H. Bos, “Exploiting Correcting
Codes: On the E�ectiveness of ECC Memory Against Rowhammer
A�acks,” in S&P, 2019.

[27] D. J. Costello and S. Lin, Error Control Coding: Fundamentals and
Applications. Prentice Hall, 1982.

[28] L. De Moura and N. Bjørner, “Z3: An E�cient SMT Solver,” in TACAS,
2008.

[29] T. J. Dell, “A White Paper on the Bene�ts of Chipkill-Correct ECC for
PC Server Main Memory,” IBM Microelectronics Division, 1997.

[30] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken, “Minimum Satisfying
Assignments for SMT,” in CAV, 2012.

[31] N. Edri, P. Meinerzhagen, A. Teman, A. Burg, and A. Fish, “Silicon-
Proven, Per-Cell Retention Time Distribution Model for Gain-Cell
Based eDRAMs,” IEEE TOCS, 2016.

[32] B. Efron, “Bootstrap Methods: Another Look at the Jackknife,” in
Breakthroughs in Statistics, 1992.

[33] S. Field, “Microso� Azure uses Error-Correcting Code Memory for
Enhanced Reliability and Security,” h�ps://azure.microso�.com/en-
us/blog/microso�-azure-uses-error-correcting-code-memory-for-
enhanced-reliability-and-security, 2015.

[34] G. D. Forney, “Concatenated Codes,” MIT Press, 1965.
[35] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giu�rida,

H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target
Row Refresh,” in IEEE S&P, 2020.

[36] R. G. Gallager, “Low density parity check codes,” Ph.D. dissertation,
Massachuse�s Institute of Technology, 1963.

[37] F. Gao, G. Tziantzioulis, and D. Wentzla�, “ComputeDRAM: In-
Memory Compute using O�-the-Shelf DRAMs,” in MICRO, 2019.

[38] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satis�ability
Solvers,” Foundations of Arti�cial Intelligence, 2008.

[39] S.-L. Gong, J. Kim, and M. Erez, “DRAM Scaling Error Evaluation
Model Using Various Retention Time,” in DSN-W, 2017.

[40] S.-L. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, “DUO:
Exposing On-Chip Redundancy to Rank-Level ECC for High Reliabil-
ity,” in HPCA, 2018.

[41] B. Gu, T. Coughlin, B. Maxwell, J. Gri�th, J. Lee, J. Cordingley, S. John-
son, E. Karaginiannis, and J. Ehmann, “Challenges and Future Direc-
tions of Laser Fuse Processing in Memory Repair,” Proc. Semicon China,
2003.

[42] T. Hamamoto, S. Sugiura, and S. Sawada, “Well Concentration: A Novel
Scaling Limitation Factor Derived From DRAM Retention Time and
Its Modeling,” in IEDM, 1995.

[43] T. Hamamoto, S. Sugiura, and S. Sawada, “On the Retention Time
Distribution of Dynamic Random Access Memory (DRAM),” in TED,
1998.

[44] R. W. Hamming, “Error Detecting and Error Correcting Codes,” in Bell
Labs Technical Journal, 1950.

[45] H. Hassan, M. Patel, J. S. Kim, A. G. Yağlıkçı, N. Vijaykumar, N. M.
Ghiasi, S. Ghose, and O. Mutlu, “CROW: A Low-Cost Substrate for
Improving DRAM Performance, Energy E�ciency, and Reliability,” in
ISCA, 2019.

[46] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko,
D. Lee, O. Ergin, and O. Mutlu, “So�MC: A Flexible and Practical Open-
Source Infrastructure for Enabling Experimental DRAM Studies,” in
HPCA, 2017.

[47] Hewle�-Packard Development Company, L.P., “Why Buy HP �ali�ed
Memory?” Hewle�-Packard Development Company, L.P., Tech. Rep.,
2011, 3rd Edition.

[48] M.-J. Ho, “Method of Analyzing DRAM Redundancy Repair,” 2003, uS
Patent 6,573,524.

[49] A. Hocquenghem, “Codes Correcteurs D’erreurs,” Chi�res, 1959.
[50] S. Hong, “Memory Technology Trend and Future Challenges,” in IEDM,

2010.
[51] M. Horiguchi and K. Itoh, Nanoscale Memory Repair. Springer SBM,

2011.
[52] B. Hovinen, “Ge�ing Started with LELA,” h�p://www.singular.uni-

kl.de/lela/tutorial.html, 2011.
[53] W. C. Hu�man and V. Pless, Fundamentals of Error-Correcting Codes.

Cambridge University Press, 2003.
[54] K. Iniewski, Nano-Semiconductors: Devices and Technology. CRC

Press, 2011.
[55] Integrated Circuit Engineering Corporation, Cost E�ective IC Manu-

facturing, 1997.
[56] Intel Corporation, “Intel Extreme Memory Pro-

�le (Intel XMP) DDR3 Technology,” 2009,
h�p://www.intel.com/content/www/us/en/chipsets/extreme-
memory-pro�le-ddr3-technology-paper.html.

[57] Intel Corporation, “Mobile 4th Generation Intel Core Processor Family,”
2015.

[58] Intel Corporation, “Intel Xeon Gold 5118 Processor,” 2020,
h�ps://ark.intel.com/content/www/us/en/ark/products/120473/intel-
xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html.

[59] Intel Corporation, “Platform Memory Validation,” h�ps://www.intel.
com/content/www/us/en/platform-memory/platform-memory.html,
2020.

[60] Intelligent Memory, “IM ECC DRAM with Integrated Error Correcting
Code,” 2016, Product Brief.

14

https://github.com/CMU-SAFARI/BEER
https://github.com/CMU-SAFARI/EINSim
https://azure.microsoft.com/en-us/blog/microsoft-azure-uses-error-correcting-code-memory-for-enhanced-reliability-and-security
https://azure.microsoft.com/en-us/blog/microsoft-azure-uses-error-correcting-code-memory-for-enhanced-reliability-and-security
https://azure.microsoft.com/en-us/blog/microsoft-azure-uses-error-correcting-code-memory-for-enhanced-reliability-and-security
http://www.singular.uni-kl.de/lela/tutorial.html
http://www.singular.uni-kl.de/lela/tutorial.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://www.intel.com/content/www/us/en/platform-memory/platform-memory.html
https://www.intel.com/content/www/us/en/platform-memory/platform-memory.html


[61] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-Optimizing
Memory Controllers: A Reinforcement Learning Approach,” in ISCA,
2008.

[62] T. Ishigaki, T. Kawahara, R. Takemura, K. Ono, K. Ito, H. Matsuoka,
and H. Ohno, “A Multi-Level-Cell Spin-Transfer Torque Memory with
Series-Stacked Magnetotunnel Junctions,” in VLSI, 2010.

[63] ISSI, “8Gb (x16 x 2 Channel) Mobile LPDDR4/LPDDR4X,” 2020.
[64] K. Itoh, VLSI Memory Chip Design. Springer Science & Business

Media, 2013, vol. 5.
[65] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.

Morgan Kaufmann, 2010.
[66] D. James, “Silicon Chip Teardown to the Atomic Scale–Challenges

Facing the Reverse Engineering of Semiconductors,” Microscopy and
Microanalysis, 2010.

[67] JEDEC, DDR3 SDRAM Speci�cation, 2008.
[68] JEDEC, DDR4 SDRAM Speci�cation, 2012.
[69] JEDEC, “Low Power Double Data Rate 4 (LPDDR4) SDRAM Speci�ca-

tion,” JEDEC Standard JESD209–4B, 2014.
[70] JEDEC, DDR5 SDRAM Speci�cation, 2020.
[71] N. K. Jha and S. Gupta, Testing of Digital Systems. Cambridge Univer-

sity Press, 2003.
[72] S. Jin, J.-H. Yi, Y. J. Park, H. S. Min, J. H. Choi, and D. G. Kang, “Modeling

of Retention Time Distribution of DRAM Cell Using a Monte-Carlo
Method,” in IEDM, 2004.

[73] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn, “Reverse Engineer-
ing of DRAMs: Row Hammer with Crosshair,” in MEMSYS, 2016.

[74] M. Jung, C. Weis, N. Wehn, M. Sadri, and L. Benini, “Optimized Active
and Power-Down Mode Refresh Control in 3D-DRAMs,” in VLSI-SoC,
2014.

[75] M. Jung, É. Zulian, D. M. Mathew, M. Herrmann, C. Brugger, C. Weis,
and N. Wehn, “Omi�ing Refresh: A Case Study for Commodity and
Wide I/O DRAMs,” in MEMSYS, 2015.

[76] U. Kang, H.-s. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and
J. S. Choi, “Co-Architecting Controllers and DRAM to Enhance DRAM
Process Scaling,” in �e Memory Forum, 2014.

[77] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design:
Fundamental and High-Speed Topics. John Wiley & Sons, 2007.

[78] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu,
“�e E�cacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

[79] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An E�cient System-Level
Technique to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[80] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A
Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM,” in IEEE CAL, 2016.

[81] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu,
“Detecting and Mitigating Data-Dependent DRAM Failures by Exploit-
ing Current Memory Content,” in MICRO, 2017.

[82] D.-H. Kim, S. Cha, and L. S. Milor, “AVERT: An Elaborate Model for
Simulating Variable Retention Time in DRAMs,” Microelectronics Reli-
ability, 2015.

[83] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing
DRAM Access Latency by Exploiting the Variation in Local Bitlines,”
in ICCD, 2018.

[84] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “�e DRAM Latency PUF:
�ickly Evaluating Physical Unclonable Functions by Exploiting the
Latency-Reliability Tradeo� in Modern Commodity DRAM Devices,”
in HPCA, 2018.

[85] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe:
Using Commodity DRAM Devices to Generate True Random Numbers
With Low Latency And High �roughput,” in HPCA, 2019.

[86] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of
Modern Devices and Mitigation Techniques,” in ISCA, 2020.

[87] J. Kim, M. Sullivan, S. Lym, and M. Erez, “All-Inclusive ECC: �orough
End-to-End Protection for Reliable Computer Memory,” in ISCA, 2016.

[88] K. Kim and J. Lee, “A New Investigation of Data Retention Time in
Truly Nanoscaled DRAMs,” in EDL, 2009.

[89] S.-H. Kim et al., “A Low Power and Highly Reliable 400Mbps Mobile
DDR SDRAM With On-Chip Distributed ECC,” in ASSCC, 2007.

[90] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping Bits in Memory Without Accessing �em: An
Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[91] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting
Subarray-Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[92] Kingston Technology Corporation, “Kingston Testing Overview,”
Kingston Technology Corporation, Tech. Rep., 2012.

[93] Y. Konishi, M. Kumanoya, H. Yamasaki, K. Dosaka, and T. Yoshihara,
“Analysis of Coupling Noise Between Adjacent Bit Lines in Megabit
DRAMs,” JSSC, 1989.

[94] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanel-
lopoulos, and O. Mutlu, “EDEN: Enabling Energy-E�cient, High-
Performance Deep Neural Network Inference Using Approximate
DRAM,” in MICRO, 2019.

[95] K. Kra�, C. Sudarshan, D. M. Mathew, C. Weis, N. Wehn, and M. Jung,
“Improving the Error Behavior of DRAM by Exploiting its Z-Channel
Property,” in DATE, 2018.

[96] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an Energy-E�cient Main Memory Alternative,”
in ISPASS, 2013.

[97] N. Kwak et al., “A 4.8 Gb/s/pin 2Gb LPDDR4 SDRAM with Sub-100µA
Self-Refresh Current for IoT Applications,” in ISSCC, 2017.

[98] H.-J. Kwon et al., “An Extremely Low-Standby-Power 3.733 Gb/s/pin
2Gb LPDDR4 SDRAM for Wearable Devices,” in ISSCC, 2017.

[99] S. Kwon, Y. H. Son, and J. H. Ahn, “Understanding DDR4 in Pursuit of
In-DRAM ECC,” in ISOCC, 2014.

[100] M. Lanteigne, “How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware,” Tech. Rep., 2016.

[101] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in ISCA, 2009.

[102] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and
O. Mutlu, “Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case,” in HPCA, 2015.

[103] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous
Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at
Low Cost,” in TACO, 2016.

[104] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun,
G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-Induced Latency
Variation in Modern DRAM Chips: Characterization, Analysis, and
Latency Reduction Mechanisms,” in SIGMETRICS, 2017.

[105] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Archi-
tecture,” in HPCA, 2013.

[106] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu,
“Decoupled Direct Memory Access: Isolating CPU and IO Tra�c by
Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[107] Y. Li, H. Schneider, F. Schnabel, R. �ewes, and D. Schmi�-Landsiedel,
“DRAM Yield Analysis and Optimization by a Statistical Design Ap-
proach,” in CSI, 2011.

[108] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications, 2004.

[109] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experi-
mental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Pro�ling Mechanisms,” in ISCA, 2013.

[110] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” in ISCA, 2012.

[111] H. Luo, T. Shahroodi, H. Hassan, M. Patel, A. Giray Yağlıkçı, L. Orosa,
J. Park, and O. Mutlu, “CLR-DRAM: A Low-Cost DRAM Architecture
Enabling Dynamic Capacity-Latency Trade-O�,” in ISCA, 2020.

[112] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch:
Improving 3D NAND Flash Memory Device Reliability by Exploiting
Self-Recovery and Temperature Awareness,” in HPCA, 2018.

[113] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3D
NAND Flash Memory Lifetime by Tolerating Early Retention Loss and
Process Variation,” SIGMETRICS, 2018.

[114] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,
B. Khessib, K. Vaid, and O. Mutlu, “Characterizing Application Memory
Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-
Reliability Memory,” in DSN, 2014.

[115] F. J. MacWilliams and N. J. A. Sloane, �e �eory of Error-Correcting
Codes. Elsevier, 1977.

[116] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of
Multi-Bit So� Error Events in Advanced SRAMs,” in IEDM, 2003.

[117] T. C. May and M. H. Woods, “Alpha-Particle-Induced So� Errors in
Dynamic Memories,” TED, 1979.

[118] J. Meza et al., “A Large-Scale Study of Flash Memory Errors in the
Field,” in SIGMETRICS, 2015.

[119] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in
Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field,” in DSN, 2015.

[120] Micron Technology Inc., “ECC Brings Reliability and Power E�ciency
to Mobile Devices,” Micron Technology Inc., Tech. Rep., 2017.

15



[121] Micron Technology, Inc., “Mobile LPDDR4 SDRAM,” 2018.
[122] T. K. Moon, Error Correction Coding: Mathematical Methods and Algo-

rithms. John Wiley & Sons, 2005.
[123] I. Mrozek, Multi-Run Memory Tests for Pa�ern Sensitive Faults.

Springer, 2019.
[124] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in

IMW, 2013.
[125] O. Mutlu, “�e RowHammer Problem and Other Issues we may Face

as Memory Becomes Denser,” in DATE, 2017.
[126] O. Mutlu and J. Kim, “RowHammer: A Retrospective,” in TCAD, 2019.
[127] O. Mutlu and L. Subramanian, “Research Problems and Opportunities

in Memory Systems,” in SUPERFRI, 2014.
[128] P. J. Nair, D.-H. Kim, and M. K. �reshi, “ArchShield: Architectural

Framework for Assisting DRAM Scaling by Tolerating High Error
Rates,” in ISCA, 2013.

[129] P. J. Nair, V. Sridharan, and M. K. �reshi, “XED: Exposing On-Die
Error Detection Information for Strong Memory Reliability,” in ISCA,
2016.

[130] Y. Nakagome, M. Aoki, S. Ikenaga, M. Horiguchi, S. Kimura,
Y. Kawamoto, and K. Itoh, “�e Impact of Data-Line Interference Noise
on DRAM Scaling,” in JSSC, 1988.

[131] NASA, “NASA NEPP Program Memory Technology - Testing, Anal-
ysis, and Roadmap,” h�ps://radhome.gsfc.nasa.gov/radhome/papers/
radecs05 sc.pdf, 2016.

[132] Y. Nishi and B. Magyari-Kope, Advances in Non-Volatile Memory and
Storage Technology. Woodhead Publishing, 2019.

[133] T.-Y. Oh et al., “A 3.2Gbps/pin 8Gb 1.0V LPDDR4 SDRAM with In-
tegrated ECC Engine for Sub-1V DRAM Core Operation,” in ISSCC,
2014.

[134] S. Pal, S. Bose, W.-H. Ki, and A. Islam, “Design of Power-and Variability-
Aware Nonvolatile RRAM Cell Using Memristor as a Memory Element,”
J-EDS, 2019.

[135] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root Cause
Analysis for Active-Precharge Hammering Fault In DDR3 SDRAM
Under 3× Nm Technology,” Microelectronics Reliability, 2016.

[136] K. Park, D. Yun, and S. Baeg, “Statistical Distributions of Row-
Hammering Induced Failures in DDR3 Components,” Microelectronics
Reliability, 2016.

[137] S. Parkin and S.-H. Yang, “Memory on the Racetrack,” Nature Nan-
otechnology, 2015.

[138] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and Mod-
eling On-Die Error Correction in Modern DRAM: An Experimental
Study Using Real Devices,” in DSN, 2019.

[139] M. Patel, J. S. Kim, and O. Mutlu, “�e Reach Pro�ler (REAPER): En-
abling the Mitigation of DRAM Retention Failures via Pro�ling at
Aggressive Conditions,” in ISCA, 2017.

[140] M. R. Prasad, A. Biere, and A. Gupta, “A Survey of Recent Advances
in SAT-based Formal Veri�cation,” STTT, 2005.

[141] M. K. �reshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “AVATAR:
A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,”
in DSN, 2015.

[142] M. K. �reshi, V. Srinivasan, and J. A. Rivers, “Scalable High Perfor-
mance Main Memory System Using Phase-change Memory Technol-
ogy,” in ISCA, 2009.

[143] QY Research, “Global DRAM Market Professional Survey Re-
port,” h�ps://garnerinsights.com/Global-DRAM-Market-Professional-
Survey-Report-2019, 2019.

[144] M. Redeker, B. F. Cockburn, and D. G. Ellio�, “An Investigation Into
Crosstalk Noise in DRAM Structures,” in MTDT, 2002.

[145] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” SIAM, 1960.

[146] T. Richardson and R. Urbanke, Modern Coding �eory. Cambridge
University Press, 2008.

[147] R. Rooney and N. Koyle, “Micron DDR5 SDRAM: New Features,” Mi-
cron Technology Inc., Tech. Rep., 2019.

[148] R. M. Roth, Introduction to Coding �eory. Cambridge University
Press, 2006.

[149] Samsung Electronics, “Mobile DRAM Stack Speci�cation (LPDDR4),”
2018.

[150] Sandia National Laboratories, “Fabriation, Testing, and Validation
Capabilities,” h�ps://www.sandia.gov/mesa/fabrication/index.html#
tab-9, 2020.

[151] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild:
a Large-Scale Field Study,” in SIGMETRICS, 2009.

[152] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-Level-Cell Phase Change
Memory: Toward an E�cient and Reliable Memory System,” in ISCA,
2013.

[153] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM
Bulk Data Copy and Initialization,” in MICRO, 2013.

[154] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A.
Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory
Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology,” in MICRO, 2017.

[155] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv preprint arXiv:1905.09822, 2019.

[156] S. M. Seyedzadeh, D. Kline Jr, A. K. Jones, and R. Melhem, “Mitigating
Bitline Crosstalk Noise in DRAM Memories,” in ISMS, 2017.

[157] C. G. Shirley and W. R. Daasch, “Copula Models of Correlation: A
DRAM Case Study,” in TC, 2014.

[158] SK Hnyix, “366ball FBGA Speci�cation 32Gb LPDDR4 (x16, 4 Channel),”
2015.

[159] SMART Modular Technologies, “SMART Press Release 415,” SMART
Modular Technologies, Tech. Rep., 2017.

[160] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H. Ahn, “CiDRA:
A cache-Inspired DRAM resilience architecture,” in HPCA, 2015.

[161] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems: �e
Good, the Bad, and the Ugly,” in ASPLOS, 2015.

[162] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,”
in SC, 2012.

[163] S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: An Intrinsically Recon-
�gurable DRAM PUF for Device Authentication in Embedded Systems,”
in CASES, 2016.

[164] R. Torrance and D. James, “�e State-of-the-Art in IC Reverse Engi-
neering,” in CHES, 2009.

[165] A. J. Van de Goor, Testing Semiconductor Memories: �eory and Practice.
John Wiley & Sons, Inc., 1991.

[166] A. J. Van De Goor and I. Schanstra, “Address and Data Scrambling:
Causes and Impact on Memory Tests,” in DELTA, 2002.

[167] J. P. van Zandwijk, “A Mathematical Approach to NAND Flash-
Memory Descrambling and Decoding,” Digital Investigation, 2015.

[168] J. P. van Zandwijk, “Bit-Errors as a Source of Forensic Information in
NAND-Flash Memory,” Digital Investigation, 2017.

[169] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Place-
ment in DRAM (RAPID): So�ware Methods for �asi-Non-Volatile
DRAM,” in HPCA, 2006.

[170] Veri�ed Market Research, “Global DRAM Market By Application,
By Technology, By Memory, By Competitive Landscape, By Geo-
graphic Scope And Forecast,” h�ps://www.veri�edmarketresearch.
com/product/global-dram-market-size-and-forecast-to-2025, 2019.

[171] M. Wang, N. Deng, H. Wu, and Q. He, “�eory Study and Implementa-
tion of Con�gurable ECC on RRAM Memory,” in NVMTS, 2015.

[172] C. Weis, M. Jung, P. Ehses, C. Santos, P. Vivet, S. Goossens, M. Koedam,
and N. Wehn, “Retention Time Measurements and Modelling of Bit
Error Rates of Wide I/O DRAM in MPSoCs,” in DATE, 2015.

[173] C. Weis, M. Jung, O. Naji, C. Santos, P. Vivet, and A. Hansson, “�ermal
Aspects and High-Level Explorations of 3D Stacked DRAMs,” in ISVLSI,
2015.

[174] W. Wen, M. Mao, X. Zhu, S. H. Kang, D. Wang, and Y. Chen, “CD-ECC:
Content-Dependent Error Correction Codes for Combating Asymmet-
ric Nonvolatile Memory Operation Errors,” in ICCAD, 2013.

[175] J. Wise, “Reverse Engineering a NAND Flash Device Management Al-
gorithm,” h�ps://joshuawise.com/projects/ndfrecovery#ecc recovery,
2014.

[176] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal–Oxide RRAM,” Proc. IEEE, 2012.

[177] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE,
2010.

[178] D. S. Yaney, C.-Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson, “A
Meta-Stable Leakage Phenomenon in DRAM Charge Storage-Variable
Hold Time,” in IEDM, 1987.

[179] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang, and J. Shu, “Hi-Fi Playback: Tolerating Position Errors
in Shi� Operations of Racetrack Memory,” in ISCA, 2015.

[180] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-DRAM:
A High-Bandwidth and Low-Power DRAM Architecture from the
Rethinking of Fine-Grained Activation,” in ISCA, 2014.

[181] X. Zhang, VLSI Architectures for Modern Error-Correcting Codes. CRC
Press, 2015.

[182] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-Level Cell
STT-RAM: Is it Realistic or Just a Dream?” in ICCAD, 2012.

16

https://radhome.gsfc.nasa.gov/radhome/papers/radecs05_sc.pdf
https://radhome.gsfc.nasa.gov/radhome/papers/radecs05_sc.pdf
https://garnerinsights.com/Global-DRAM-Market-Professional-Survey-Report-2019
https://garnerinsights.com/Global-DRAM-Market-Professional-Survey-Report-2019
https://www.sandia.gov/mesa/fabrication/index.html#tab-9
https://www.sandia.gov/mesa/fabrication/index.html#tab-9
https://www.verifiedmarketresearch.com/product/global-dram-market-size-and-forecast-to-2025
https://www.verifiedmarketresearch.com/product/global-dram-market-size-and-forecast-to-2025
https://joshuawise.com/projects/ndfrecovery#ecc_recovery

	Introduction
	Challenges of Unknown On-Die ECCs
	Secrecy Concerning On-Die ECC
	On-Die ECC's Impact on Third Parties

	Background
	DRAM Cells and Data Storage
	Studying DRAM Errors
	On-Die ECC and Hamming Codes
	Boolean Satisfiability (SAT) Solvers

	Determining the ECC Function
	Disambiguating Linear Block Codes
	Determining the On-Die ECC Function
	Formalizing the Unknown ECC Function
	Identifying Syndromes Using Miscorrections
	Identifying Useful Test Patterns
	Shortened Codes


	Bit-Exact Error Recovery (BEER)
	Step 1: Inducing Miscorrections
	Determining CHARGED and DISCHARGED States
	Determining the Layout of Datawords
	Testing With 1,2-CHARGED Patterns

	Step 2: Analyzing Post-Correction Errors
	Step 3: Solving for the ECC Function
	Requirements and Limitations

	BEER Evaluation
	Simulation-Based Correctness Evaluation
	Real-System Performance Evaluation
	Analytical Experiment Runtime Analysis

	Example Practical Use-Cases
	BEEP: Profiling for Raw Bit Errors
	BEEP: Inference Based on Miscorrections
	Crafting Suitable Test Patterns
	Experimental Testing with Crafted Patterns
	Evaluating BEEP's Success Rate
	Other DRAM Error Mechanisms

	Other Use-Cases that Benefit from BEER
	Combining Error Mitigation Mechanisms
	Crafting Targeted Test Patterns
	Studying Spatial Error Distributions
	Diagnosing Post-Correction Errors

	Extensions and Future Work

	Related Work
	Conclusion

