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Freface.

The main purpose of this preface is to =xplain the specification
"Preliminar Version", appearing on the title page of these lecture notes.
They have been prepared under ccnsiderable time pressure, circumstances
under whick I was unable to have my use of the English language corrected
by & native, circumstances under which I was unable first to try out
different methods of presentation. As they stand, I hope that they will
serve their two primary purposes: to give my students a guide as to what
I am telling and to give my Friends and Relations an idea of what I am
doing.

The future fate of this manuscriot, that may prove to be a monograph
in statu nmascendi, will greatly depend an their reactions to it. I am greatly
indebted, in advance, tc any reader who is so xind as to take the trouble
to give his comments, either in the form of suggsstions how the presentation
or the material itself could be improved, or in the form of an appreciation.
From the latter comments T will try to get an idea whether it is worth=wnile
to pursue this effort any further ard to prepare a publication fit for and
agreeable to a wider public.

Already at this stage I should like to express my gratitude to many:
to my cellaborators £.Bran (in particular for his scrutinous screening of
the typed version), to A.N.Habermann, F,J.A,Hendriks, C.Ligtmans and F.A.
Yoorhoeve for many stimulating amd clarifying discussions on the subject
itself, to the Department of Mathematics of the Technological University,
£indhoven, for the opporturmity to spend my time on the problems dealt with
and to lecture on their solutians and also —trivial as it may ssem, this
is nevertheless vitall- for putting at my private disposal a type writer
with a character set in complete accordance with my personal wishes.

E.W.Dijkstra

Department af Mathematics
Technological University
P.0. Box 51%

EINDHOVEN

The Netherlands
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2. Introductien.

These lectures are intended for all those that expect that in their
future activities they will become seriously involved in the problems that
arise in either the design or the more advanced applications of digital
information processing equipment; they are further interded for all thase

that are just interested.

The applications I have in mind are thaose in which the activity of a
computer must include the proper reacting *o a possibly great varisty of
messages that can be sent to it at unpredietable moments, a situation which
Jccurs in process control, traffic comtrol, stock control, banking spplica-
tians, automization of information flow in large organizations, centralized
compdter service and, finally, zll information systems in which a number of

computers are coupled to each other.

The desire to apply computers in the ways sketched sbove has often a
strong ecaoromic motivation, but im these lectures the not unimportant gues—
tion of =fficiency will not be stressed too much. We shsll occupy ourselves
much more with the logical problems which arise, for example, when speed
ratios are unknown, communication possibilities restricted etc. We intend
to do so in order to create a clearer insight inte the origin of ths diffi-
culties we shall meet and inta the nature of our solutions. To decide
whether under given circumstances the application of our techniques is

economically atiractive or not falls outside the scope of these lectures.

I regret that I cennct offer a fully worked out theory, complete with
Greek letter formulae, so to speak. The only thing I can do under the present
circumstances is to offer a variety of problems, together with solutions.

And in discussing these, we can only hope to bring as much system imto it
as we possibly can, to find which concepts are relevant, as we go along.
May everyone that follows we slong this road enjoy the fascination of these

intriguing problems as much as I dol
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1. Orn the Nature of Sequsntial Processes.

Qur problem field proper is the cooperation between two or more ssquential
processes. Before we can enter this field, however, we bave to know guite
clearly what we call "a sequential process". To this preliminary gquestion

the present section is devoted.

I should like to start my elucidation with the comparison of two machines
ta da the same example joh, the one a rnon-seguential machine, the other a

sequential one,

Let us assume that of sach of four quantities, named "3[1]", "a[Z]",
"8[3]" and "8[4]" respectively, the velue is given, Our machine has to process
these values in such a way that, as its reaction, it "tells" us, which of the

four guantities has the largest value. E.g. in the case:
nal1] =7, =al2]=12, a[3]=2, al4]=9"

the answer to be produced is "a[2j" (DI only "2", giving the index value

pointing toc the maximum element).

Note that the desired answer would bhecome incompletely defined if the
set of wvalues were —in grder—- "7, 12, 2, ?2“, for then there is no unique
largest element and the answer “3[2]" would have been az good (6r as bad)
as "a[d}". This is remedied by the further assumption, that af the four

values given, no two are squal.

Remark 1. If the required answer would have been the maximum value
occuring ampng the given ones, then the last restriction would have been
superfluous, for then the answer corresponding ta the value set "7, 12, 2, 121

would have been "12%,

Remark 2. Our restriction "Of the four values no two are equal" is
5till somewhat leosely formulated, for what do we mean by "equal"? In the
processes to be constructed pairs of values will be compared with one another
and what is really meant is, that every two values will be sufficiently
different, so that the comparator will unambiguously decide, which of the

two is the largest cne., In other words, the difference betwsen any two must

be large compared with "the regﬁlving power" of our comparators.
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We chall first construct our non—-segquential machine., When we assume
our given values to be represented by currerts, we cam imagine a comparator
consistirg of a fwo*way switch, the position of which is schematically
controlled by the currents in the coils of electromagnets as in Fig.1 and

Fig.2.

Fig.l. x <y Fig.2. y < «x

When current y is larger thar current x, the left electromagnet pulls
harder than the right one and the swiich switches to the left (Fig.1} and
the input A is connected to output B; if current x is the larger aone, we

shall get the situation (Fig.2) where the input A is connected to output C.

In our diagrams we shall omit the cails and shall represent such a

comparator by a small bax

A
a C

only representing at the top side the imput and at the bottom side the two
outputs. The currents to be lead through the coils are identified in the

guestion written inside the box and the convention is, that the input will
be connected to the right hand side output when the answer to the guestien

is "Yes", to the left hand side output when the answer is "No".

a[1]<a[2] 2

g1}<a€4]l 7 | a[2]<a[¢]l 7 | [al3] <al4] 2]

b 2 o

<+
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Noew we can construct our machine as indicated inm Fig.3. At the output
side we have drawn four indicator lamps, one of which will light up to

indicate the answer.

In Fig.4 we indicate the position of the switches when the value ssat
"7, 12, 2, 9" is applied to it. In the boxes the pesitions of the switches

are indicated, wires not cornnected to the input are drawn bloited.

Fig.4.

We draw the readers attention toc the fact that now cnly the positions
of the three switches that connect output 2 to the input, matter; the reader
is invited to convince himsslf that the position of the other three switches

is indesd immaterial.

It is also good to give a moment attention to see what happens in time
when our machine of Fig.3 is fed with four "value currents", Obviously it
cannot be expected to give the correct answer before the four value currents
are going through the ecils. But one camnot even expect it to indicate the
correct answer as soon as the currents are applied, far the switches must
get into their correct position and this may take some time. Inm other words:
as soon as the currents are applied (simultanenusly or the one after the
other) we must wait a pericd of time ~characteristic for the machine— and
after that the correct answer will be shown at the output side. What bappens
in this waiting time is immaterial, provided that it is Iong erough for all
the switches to find their final positiaon, They may start switching simulta—
neously, the exact order im which they attain their final position is

immaterial and, therefore, we shall not pay any-attention to it any more.

From the legical point of view the switching time can be regarded as
a merker an the time axis: before it the input data have to be supplied,

after it the answer is available.
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In the use of our machine the pregress of time is only reflected in
the ohvious "before -~ after" relation, which tells us, that we cannot expect
an answer before the question has heen properly put. This sequence relation
is so obvigus (and fundamental) that it cannot be regarded as a characteristic
property of our machine. And our machine is therefore called a "non—sequential
machine" to distinguish it from the kind of equipment ~or processes that can

be performed by it— to be described now.

Up till now we have interpreted the diagram of Fig.3 as the (schematic)
picture of a machine to be built in space. But we can interpret this same
diagram ir a very different manner if we place ourselves in the mind of the
electron entering at the top input and wondering where to go. First it
finds itself faced with the question whether "a[1] < a[2]" holds. Having
found the answer ta this question, it can proceed. Depernding on the previous
answer it will enter one of the two boxes "a[1]'< 3[3]“ or "3[2] <:a[3]",
i.e. it will only know what to investigate next, after the first question
has been answered. Hav£:§ found the answer to the question selected from
the second line, it will know which gquestion toc ask from the third line and
having found this last answer it will now know which bulb should start to
glow. Instead of regarding the diagram of Fig.3 as that of a machine, the

parts of which are spread out in space, we have regarded it as rules of

behaviour, to be followed in time.

With respect to our earlier interpretation two differences are highly
significant, In the first interpretation all six comparators started working
simultaneously, although finally only three switch positions matter. In the
second interpretation only three comparisons are actually evaluated -the
wondering electron asks itself three guestions— but the price of this gain
is that they bhave to be performed the one after the other, as the ocutcome
of the previous ane decides what to ask next. In the second interpretation
three questions have to be asked in seguence, the one after the other., The
existence of such an order relation is the distimctive feature of the second
interpretation which in contrast to the first one is therefore called "a

sequential process". We should like to make two remarks.

Remark 3. In actual fact, the three comparisons will each take a
finite amount of time (switching time", "decision time" or, to use the

jargon, "execution time") and as a result the total time taken will at least
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be egual to the sum of these three execution times. We stress once more,
that for many investigations these executions can be regarded a3s ordered
markers on a8 scaleless time axis and that it iIs anly the relative erdering

that matters from this {logical) point of view.

Remark 4. As a small side line we note that the two interpretatians
{call them "simultanesus comparisons” and Yseguential comparisons") are only
extremes. There is a way of, again, only performing three comparisons,
in which two of them can be done independently from orne another, i.e. simuli-
tanecusly; the third cne, however, can only be done, after the other two
have been completed. It can be represented with the aid of & bax in which

two gquestiorns are put and which, as a result, has four possible exits, as

| =<2l a3i<e4lz |
AR NY ] L
a1]<e[3] 7] [s[1]<ele] 7] [dle]<al3] 7] [ale] < 4] 7

T__ ] {

in Fig.b5.

Fig.5.

The tatal time taken will be at least the sum of the comparison execution
times. The process is of the first kind in the sense that the first two
comparisons can be performed simultanecusly, it is of sequenfial nature

as the third comparison can only be selected from the second line when the

first two have both been completed.

We return to our purely sequential interpretation., Knowing that the
diagram is meant for purely sequentisl interpretation we can take advantage
of this circumstance make the description of the "rules of behaviour" more
compact. The idea is, that the two guestions on the second line —only one
of which will he actually asked~ are highly similar: the questions one the
same line only differ in the subscript value of the left operand of the
comparisan, And we may ask ourselves: "Can we map the guestions on the same

linre of Fig.3 on a single guestion 7"

This can be done, but it implies that the part that varies along a

lirme =i.e. the subscript value in the left operand— must be regarded as a
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parameter, the task of which is tc determine which of the cuestions mapped
on each ather Is meant, when its turn o be executed has come. Obvicusly the

value of this parameter must be defined by the past history aof the process.

Such parameters, in which past histary can be candensed far future use
are called "wvariables". To indicate that a new value has toc be assigned to
it we use the so-called assignment operator ":=" (read: "becomes"), a kind
of directed eguality sign which defines the value of the left hand side in

terms of the value af the right hand side.

We hope that the previous paragraph iz sufficient for the reader to
recognize also in the diagram of Fig.6 a set of "rules of behaviour". Our
variable is called "i"; if the reader wonders, why the first guestion, which
is invariably "a[1] <Ia[2j ?" is not writtsn that way, he is kindly requested

to have some patience.

Fig.6

When we have followed the rules of Fig.6 as intended from top till

bottom, the final value of i will identify the maximum value, viz. a[i].

The transition from the scheme of Fig.3 to the one of Fig.6 is a drastic
change, for the last "rules of bebaviour” cam only be interpreted sequentially,
And this is due to the introduction of the variable "i": having only a[1],
a[Z], 3[3] and 3[4] available as values te be compared, the question
“a[i] < (2] 7" is meaningless, unless it is known for which value of "i"

this comparison has to bes made.
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Remark 5. It is somewhat unhappy that the jargon of the trade calls
the thing densted by "i", a varisble, because in normal mathematics, the
concept of a variable is a completely timeless concept., Time has nothing

to do with the "x" in the relatian

"Sin(2 * x) =2 * sin(x) * cos(x)";

if such a variahle ever denctes a wvalue, it denotes "any value".

Fach time, however, that a variable in 2 sequential process is used
—such as "i" in ”a[i]"- it denotes & very specific value, viz. the last
value assigned to it, and nothing else! As long as no new value is assigned

toc a variable, it derotss a constarmt value!

I am, however, only too hesitart to coin new terms: firstly it would
make this monograph unintendedly pretentious, secondly I feel that the
(fashionable!) coining of new terms often adds as much to the confusion in
one way as it removes in the other. I shall therefore stick to the term

"yariable®.

Remark 6. One may well ask, what we are actually doing, when we
introduce a variahle without specifying, for instance, 2 domain for it,
i.e. a set of values which is guaranteed to compriss all its future actual

values. We shall not pursue this any further here.

Now we are going to subjsct our scheme to a next transformation. In
Fig.3 we have "wrapped up" the lines, now we are going to wrap up the scheme
of Fig.6 in the-other direction, an operation to wich we are invited by the
repetitive nature of it and which can be performed at the price of a nmext

variable, "j" say.

a[i] <aly] 7

i= j

Fig.7
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The charge is & dramatic one, for the fact that the original problem
was to idertify the maximum value ameng four given values is no longer
reflected in the "topology" of the rules of hehaviour: in Fig.7 we anly
find the number "4" mentioned once. By introducing ancther variable, say
"n", and replacing ths "4" in Fig.7 by "n" we have suddenly the rules of
behaviour to identify the maximum occurring among the n elements 5[1},
al2],..0ve.., a[n] and this practically only for the price that before

application, the variable n must be put to its proper value.

I called the change a dramatic ore, for now we have not only given
rules of behaviour which rust be interpreted seguentially —this was already
the case with Fig.6— but we have devised a single mechanism for identifying
the maximum value among any number of given elements, whereas our original
nan—sequential machine could only be built for & previcusly well—-defined
number of elements. We have mapped our comparisons in time instead of in
space, and if we wish to compare the two methods, it is as if the sequential
machine "externds itself" in terms of Fig.3 as the need arises. It is our
last transition which displays the sequential processes in their full

glory.

The technical term for what we have called "rules of behaviour" is an
algorithm or a program. {It is not customary to call it "a sequential program"
although this name would be fully cDrrect.) Equipment able ta fellow such
rules, "to execute such a program is called "a general purpose seguential
computer” ar "computer" for short; what happens during such a program

execution is called "a sequential process".

There is a commonly accepted technique of writing algorithms without
the need of such pictures as we have used, viz. ALGOL 60 ("ALGOL" being
short for Algorithmic Language). For a detailed discussion of ALGOL 60
I must refer the reader to thes existing literature. We shall use it in

future, whenever convenient for our purposes.

For the sake of illustration we shall describe the algarithm of Fig.7

(but for "a" instead of M4") by a sequence of ALGOL statements:



EwDi?% - 9

back: if j # n tren

begin ji= 3+ 1

ij_a[iJ <ia{jj then 1i:= j;

qate back
end"
The first two statements: "i:=1; j:= 1" are -1 hope- self-explanatory.

Then comes "back:™, a so~called label, used to identify this place in the
pragram. Then comes "if j # n then", a so~called conditional clause., If the
conditlion exprzssed by it is satisfied, the followirg statement will be
performed, otherwise it will be skipped. (Anather example of it can ke found
two lines lower.) When the extent of the program which may have to b= skipped
presents itself primarily as a ssguence of more tham one statement, then ane
puts the so-called statement brackets "begin" and "end" sround this secuence,
thersby making it into a single statement as far as its surroundings are
concerned. (This is entirely aralogous to the effect of parentheses in
algebraic formulae, such as "a ¥ {b + c)" where the parenthesis pair indicates
that the whole expression contained within it is to be taken as factor.) The
last statement "goto back" means that the process should be continued at the
point thus labeled; it does exactly the same thing far us as the upward

leading lime of Fig.7.
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2. Loosely Cannected Processes.

The subject matter aof this monagraph is the cooperatior between lgossly
connected sequentisl processes and this section will be devoted to a thorough
discussior of a simple, but representative problem, in crder to give the

reader saome feeling for thke problems in this area.

In the previouys section we have described ihe nature of a singls
sequential process, performing its sequence of actions autonamously, i.e.

independeni of its surroundings as saon as it has been started.

when two or mare of such processes have to coopsrate with each ather,
they must be cornected, i.e. they must be abie o communicate with =zach otrer
in order teo excharngs information, As we shall =ee below, the praperties of

these means of intercommunication play a vital role.

Furthermore, we have stipulated that the processes should be connected
loosely; by this we mean that apart from the {rare) moments of explicit
intercommunicetion, the individual processes themselves ares to he regarded
as completely independent of sach other. In particulsr we disallow any
sssumption about the relative speeds of the different processes. (Such an
assumption —say"processes ge@red to the same clock™- could be regarded as
implicit intercommunication.) This indepsndence of speed ratios is in strict
aceordance with our appreciation of the single sequential process: its anly
essential feature is, that its elementary steps are performed in sequence.
If we prefer to cbserve the performance with a chronometer in our hand, we
may do so, but the procsss itself remains remarkably unaffected by this

ohservation.

I warn the reader that my consistent refusal to make any assumptions
about the speed ratios will at first sight appear as 2 mean trick to make
things more difficult than they already are. I feel, however, fully justi-
fied in my refusal. Firstly, we may have to cope with situations in which,
indeed, very little is krown about the speeds. For instance, part of the
system may be a manually operated input staticn, another part of the system
might he such, that it can be stopped externally for any pericd of time,

thus reducing its speed temporarily toc zero. Secondly —and this is much more



EwD123 — 11

impartant= wnen we think that we can rely upon certain speed ratios, we
shall discover that we have been "pound foolish and penry wise". True that
certain mechanisms can be made simpler under the assumption of speed ratio
restrictions. The verification, bowever, that such an assumption is always
justified, is in general extremely tricky and the task to make, in a relisble
manner, a well behaved structurs out of many interlinked comporents is
seriously aggravated when such "analogue intarfersnces" have to be taken
into accourt as well. (For ome thing: it will make the proper working a
rather unstable eguilibrium, sensitive to any change in the different
speeds, as may easily arise by replacement of a component by another —say,
replacement of a line printer by & faster model- or reprogramming of a

certain portion, )

2.1. A Simple Example.

After these introductory remarks I shall discuss the first problem.

We consider two seguential processes, "process 1" and "process 2", which
for our purposes can be regarded as cyclic. In each cycle & sg-called "criti-
cal section" asccurs, critical in the sense that the processes have to he
constructed in such & way, that at any momant at most one of the two is
engaged in its critical section. In grder to effectueats this mutual exclusion
the twc processes have access te a number of commen varisbles. We postulate,
that imspecting the present value of such = common varisble and assigning a
new value to such a common variable are to be regarded as indivisible, non-—
interfering actiors. [.e. when the two processes assign & new value to the
same common variahle M"simultansausly", then the assignments are to be regarded
as done the ome after the other, the final value of the variable will be one
of the two values assigned, but never a "mixturs" of the two. Similarly, when
one process inspects the value of a common variable "simultaneously" with
the assignment to it by the other one, then the first process will find

gither the old or the new value, but nesver & mixture,

For our purposes ALGOL 6C as it stands is rot suited, as ALGOL 60
has been designed to describe ane single sequential process. We therefore

propose the following extension to enable us to describe parallellism of

execution. When a sequence of statements —separated by semicclons as usual
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in ALGCL 60~ is surrcunded by the special statement bracket pair "parbegin®
and "parend", this is to be interpreted as parallel execution of the can-
stituent statements. The whole construction ~let us call it "a parallel
compound"= can be regarded as a statement. Initiation of a parallel compound
implies simultaneous initiation of all its constituent statements, its
execution is completed after the completion of the execution of all its

constituent statements. E.g.:

"begin S51; parbegin 52; 53; 34 persnd; S5 end"

(in which 51,52, 53. 54 and 55 are used to indicate statements} means that
after the completion of S1, the statements 52, 5% ard 54 will be executed
in parallel, and only when they ars all finished, then the execution of

statemert 55 will be initiated.

With the above conventions we can describe pur first solution:

"begin integer turn; turn:= 1;

psrbegin
process 1: begin U1: if turn = 2 then goto L1;

critical section 1;
turn:i= 2;
remainder of cycle !; goto L1
end;
process 2: begin L2: ;j tern = 1 then goto L2Z;
critical section 2;
turni= 1;

remainder of cycle 2; goto L2

parend

end" .

{Note for the inexperienced ALGDL 60 reader. After "begin" in the first
line we find the so-called declarstion "integer turn", thereby sticking to
the rule of ALGOL 60 that program text is not allowed to refer to variables
without having introduced them with the aid of a declaraticn. As this
declaration occurs after the "begin" of the outermost statement bracket
pair it means that far the whole duration of the program @ variable has

been intreduced that will only take om integer values and to which the

program text can refer by means of the name "turn".)
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The two processes communicate with sach other via the common integer
"turn", the value of which indicates which of the two processes is the first
to perform {or rather: to finish) its critical section. From the pragram it
is clear that after the first assignment, ths only possible wvalues of the
variable "turn" are 1 and 2. The condition for process 2 to enter its
critical section is that it finds at some moment "turn # v, i.e. Mturn = 2",
But the only way in which the variable "zurn" can get this value is by the
agsignment "turn:i= 2" in process 1. As process 1 performs this assignment
anly at the completion of its critical section, process 2 can only initiate
its critical section after the completion of critical section 1. And critical
section 1 could indeed be initiated, because the initial condition "turn = 17
implied "turn # 2", so that the potential wait cycle, labeled L1, was
initially imactive. After the assignment "turni:i= 2" the roles of the two
processes are interchanged. (N.B. It is assumed that “he orly references tco

the variable "turn™ are the anes explicitly shown in the program.)

Our solution, though correct, is, however, unnecessarily restrictive:
after the completion of critical section 1, the value of the variable "turn"
becomes "2", and it must be =1 again, before the next entrance into critical
section 1. As a result the only admissible succession of critical sections
is the strictly alternating one "1,2,1,2,1,2,%,.....", in other words, the
two processes are synchronirzed. In aorder to stress explicitly that this is
not the kind of soluticn we wanted, we impose the further conditiorn "If one
of the processes is stopped well outside its critical section, this is not
allowed to lead to potential blocking of the other process.". This makes

our previous solution unacceptable and we have to look for another.

Our second effort works withk two integers "ci® and “e2", where c© = O / 1
respectively will indicate that the corresponding process in inside / outside

its eritical section respectively. We may try the following construction:
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"begin integer cl, c2;

parbegin
rocess 1: begin L1: if c2 = 0 ztherm goto L1;
P negia N fer goto

cl:= O
critical section 1;
clz= 13
remeinder of cycle 1; goto LI
end;
process 2: hegin L2: if <1 = 0 then goto L2;
ce:= Oy
critical section 2;
cZi= 1
remzinder of cycls 2; goto L2

parend

end"

The first assignments set both c's = 1, in accordance with the fact
that tHe processes are started cutside their critical sections. Durimg the
entire execution of critical section 1 the relation "cl = O" holds and the
first line of process 2 is effectively s wait "Wait as long as procsss 1 is
in its critical section.". The trial solution gives indeed some protection
against simultameity of critical section execution, but is, alas, too simple,
because it is wrong. Let first process ! find that c2 = 1; let process 2
inspect ¢! immedistely afterwards, then it will (still) fing cl = 1. Both
processes, having found that the other is not in its critical section, will

conclude that they can enter their own section safely!

We have been too optimistic, we must play a safer game, Let us invert,
at the beginning of the parallel processes, the Inspecticn of the "c" of tke

other and the setting of the own "c". We then get the construction:
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"begin integer e, c2;

cli= 13 cl:= 1;
parbegin
process 1: begin Al: cl:= O
L1: if <2 =0 then goto L1;
critical secticn 1
cli= 1;
remainder of cycle 1; goto Al
&nd;
process 2: begin A2: cZ:= O
L2: if <t =0 then goto L2
critical section 2;
c2:=1;

remainder of cycle 2; goto A2

parend

end" .

It is worth while to verify that this soluticn is at least completely
safe, Let us focus our attenmtian uﬁ the moment that process 1 finds 2 =1
and therefore decides to enter its critical section. At this moment we can
conclude

1) that the relation "ct = OY already holds and will continue to hold
until process 1 has completed the execution of its critical section,

2) that, as "c2 = 1" holds, process 2 is well cutside its critical
section, which it cannot enter as long as "el = O" holds, i.e. as long
as process 1 is =till engaged in its critical section.

Thus the mutual exclusion is imdeed guaranteed.

But this solutian, ales, must also be rejected: in its safety measures
it hag been too drastic, for it contains the danger of definite mutual
blocking. When after the assignment "cl:= Q" but yet before the inspection
of c2 (both by process 1) process 2 performs the assignment "c2:= O", then
both processes have arrived at label L1 ar L2 respectively and both relations
"el = 0" and "c2 = O" hold, with the result that both processes will wait

upon each other until eternity. Therefore alsoc this solution must be rejected.
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It was 0K to set one's own "c" befnore inspecting the "c" af tke ather,
but it was wraong to stick to one's owr cesetiing and just toc wait, This is

(samewhat) remedied in the followilng construction:

"begin dirteger ci, cZ;

parkbegin
pracess f: begin Li1: cl:= C;
if e2 =0 then
begin cl:= 15 goto L1 end;

critical sectiaon 13

cl:i=1;
remainder of cycle 1; gotio L1
end;
process 2: begin L2: c2:= O
if ¢t =0 then
begin cZ2:= 1; goto L2 end;
critical section 2;
c2:i= 1;
remainder of cycle 2; goto L2

parend

end" .

This construction is as safe as the previocus one and, when the assignments
"oli= O" and "c2:= 0" are performed "simultaneously" it will not necessarily
iead to mutual blocking ad infinitum, because both processes will reset their
own "ec" back to 1 before restarting the entry rites, thereby enabling the
other process to catch the opportunity. But our principles ferce us to reject
also this solution, for the refusal to make any assumptions asbout the speed
ratio implies that we have to catesr for =211 speeds, and the last sclution
admits the speeds to be so carefully adjusted that the processes inspect
the other's "c" only in those perionds of time that its value is = 0. To make
clear that we reject such sclutions that only work with some luck, we state
our next reguirement: "If the two processes are sbout to enter their critical
sections, it must be impossible to devise for them such finite speeds, that

the decision which one of the two 1s the first to enter its critical section

is postponed until eternity.".
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In passing we note, that the solution just reiscted is guite acceptable
in everyday life. E.g., when two peaple are talking aver the t=lephone and
they are suddenly disconnected, as a rule both fry to reestablish the connec—
tion. They both dial ard if they get the signal "Number Engaged",'they out
down the recsiver and, if not already called, they try "=come" seconds lsater,
0f course, this may coincide with the next effort of the other party, but as
a rule the connection is reestablished succesfully after very few trials.

In our mechanical circumstances, however, we cannot accept this pattern of

bshaviour: our parties might very well be identicall

Quits a collectiorn af trial solutions have been shown to be incorrect
and at some moment people that had played with the problem started to doubt
whether it could be solved at all. To the Dutch mathematician Th.J.Dekker
thz cr=dit is due for the first correct solution. It is, in fact, a mixture
af our previous efforts: it uses the "safe sluice" of our last constructiaons,
together with the integer "turn™ of the first one, but only to resalve
the indeterminsteness when rieither of the two immediately succeeds. The

initial value of "turn®™ could have been 2 as well.

"begin integer cl, c2, turn;

cli='1; e2:=1; turn:i= 1;
parbegin
process T: begin Al: cl:i= O
it: if c2 =0 then

begin if turm =1 then gote L1;
cli= 1
Bi: if turn = 2 then gcto B1;

goto Al
&nd;
critical section 1;
turn:= 2; cl:= 1;
remasinder of cycle 1; goto Al
end;
pracess 2: begin A2: c2:= §;
L2: if cl =0 then

begin if turn = 2 then goto i2;

then goto Bé;

t
n
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h
-
s
H
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critical section 23
4

turnm:= 1; c2:= 1;

remainder of cycie 2; gota A2

parend

end"

We shall now prove the correctness of this solution. Jur first ohser—
vation is that =sach process only operates on its own "c". As a result process
1 inspects "c2" only while "cl = O", it will only enter its critical section
providsa it finds "c? = 1"; for process 2 the anslogous ohservation can be

made .

In short, we recognize the safe sluice of our last constructions and the
solution is safe in the sense that the iwo processes can never be in their
critical sections simultameously. The second part of the proof has to show
that in case of doubt the decision which of the two will be the first to
enter cannot be postponed until eternity. Now we should pay some attenticon
to the integer "turn™: we nots that assigament to this variable only occurs
at the end -or, if you wish: as part- of critical sections and therefore we
we can regard the variable "turn® as a constant during this decision process.
Suppose that "turn = 1", Then process 1 can only cycle via L7, that is with
*ct = O" and only as long &3 it finds "c2 = O". But if "turn = 1" then
process 2 can only cycle viaz B2, but this state implies "c2 = 1", sc that
process 1 cannot and is hound to enter its critical section. For "turn = 2%
the mirrored reasoning applies. As third and final part of the proof we
ohserve that stopping, say, process 1 in "remainder of cyecle 1" will not
restrict process 2: the relatien "¢l = 1% will then hold and process 2 can
enter its critical section gaily, gquite independent of the current value of
"turn™. And this completes the proof of the correctness of Dekker's solution.
Those readers that fail to appreciate its ingenuity are kindly asked to
realize, that for them I have prepared the ground by means of a carefully

selected set of rejected constructionms.
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2.2. The Germeralized Mutual Exclusiaon Problemr.

The problew of section 2.1 has a netural gensralizatior: given N cyclic
processes, gach with e critical sectiorm, can we construct them in such a way,
that at any moment at most one of them is engaged in its critical section?

We assume the same means of intercommunication avsilable, i.e. & set aof
cammonly accessible variables, Furthermore our soluticon has to satisfy the
same requirements, that stopping one process well outside its critical section
may in no way restrict the freedom of the others, and that if more than ane
process 1s about to enter its critical section, it must be impossible to
devise for them such finite speeds, that the decision which ormez aof them is

the first one to enter ils criticsl section, can be postponed until sternity.

In order to be shle to describe the solution in ALGOL 60, we need the
concept of the array. In section 2.} we had to introduce a "c" for each of
the two processes and we did so by declaring

"integer cl, c2".

Instead of enumerating the gquantities, we can declare -under the assumption

that "N™ bas a well defined positive value-

"intsger array C[1 : N]"

which means, that st one stroke we have introduced N integers, accessible

under the names "c[subscript}“,

where "subscript" might take the values 1, 2, +vev.., N

The next new ALGOL 6C feature we shall use iz the so-called "for clause",

which we shall use in the following form:
"for j:= 1 step 1 until N do statement S

and which enables us to express repetition of "statement S" quite conveniently.
In principle, the for clause implies that "“statement 5" will be exscuted N
times, with "ji" in succession = 1, = 2, veueeny = Mo (We have added "in
principle", for via a goto statement as constituent part of statement S

i

and leading out of it, the repetition cen be ended earlier.)

Finally we need the logical operator that in this monogreph is denoted

by "and". We have met the conditional clause in the form;
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"if conditisn then statement”

We shall now meet:

~

"if condition 1 and condition 2 tken statement ®

mesning that stetement 5 will 3nly be executed if M™gonditiom 1M and "conditian
2" are both satisfied. (Once more we zhould like to stress that this monaogreps
is nat an ALGOL 60 programming manual: the above —losse!= explanations of
ALGOL &0 have only been introduced to make this monograph as self-contained

as possible,)}

Witk the notational =zids just sketched we carm describe our solution

for fixed N as follows.

The owverall structure is:

1

"begin  integer array b, C[O : N3

integer turn;
for turn:= O step ! wntil N da

begin b[turn]:: 1 c[turn]:: 1 end;
turn:= O:
parbegin
process 1: hegin...... werreaaan taaaen end;
process Z: hagin....... eeaaaaa veeesaEnd;
process N: begin......... Crieeeaas .. .Bnd
parend

end™

The first declaration imtroduces two arrays with N + 1 elements sach,
the next declaration introduces a singls integer "turn". In the following
for clause this variable "turn" is used to tzke on the successive values
1 2, Byeaean., N, 30 that the two arrays aze initizlized with all elemerts
= 1. Then "turn" is sat = O (i.e. none of the processes, numbered from 1

onwards, is privileged). After this the N processes are started simultaneously,

The N processes are all similar. The structure of the i-th process is

25 follows (1 <i< N) :



EwD12% — 21

"process i: begin  integer j;

Ai: b[i]:: O
Li: if tuoon # i then

begin c{i]:: 13

if b[turn] = 1 then turm:= i;
goto Li

end;

c[i]:: 0

for ji= | step | until N do

begin if i £ i and c[i) = 0O then gotn Li end;

critical secticn i;
turni= O3 c[ili= 13 bli]:= 15
remainder of cycle 1; goto Ai

end”

Remark. The description of the N individual processes starts with = declaration
"integer j". According to the rules of ALGOL &0 this means that each process

introduces its own, private integer "j" (a so-called "lozal quantity™).

We leave the proaf to the reader. [t has to show again:
1) that at any moment at most one of the processes is engaged in its
critieal section
2} that the decision whick of tke processes is the first to enter its
critical section cannot be postponed until eternity
2} that stopping a process in its "remainder of cycle" has no effect

upon the others.

Of these parts, the second one is the most difficult ane. {(Hint: as soon
as one aof the processes has performed the assignment "turn:= i", noc new
pracesses can decide to assign their number to turn before a critical section
has been completed. Mind that two processes can decide "simultaneously" to

assign their i-value to turnl)

(Remark, that can be skipped at first reading.}
The program just described inspects the valus of "b[turn]" where both
the array "b" and the integer "turn® are in common store. We have stated

that inspecting a single variable is an indivisible sction and inspecting
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"b[turﬂ]” can therefore anly mean: inspect the value of "turn", and if this

happers to be = 5, well, then inspect ”b[B]”. Or, ir more explicit ALGOL:

"orecess i: begin integer j, ki

ki= turn; if blk] = 1 ther........ ",

implyirg that by the time that "b[k]" is inspected, "turn" may already have
a value different fraom the corrent one of "k™.

Without the stated limitaticns in communiceting with the commocn staore, a
possible interpretation of "the value of b[turn}" would have been "the value
of the element of the array b as inaicated by the current value af turn”,
In so=-called uniprogramming -i.e. & singls seguential process opsrating

on guartities lacal to it— thz two interpretetions arz equivalent. In
multiprogramming, where other active processes may access and change the
same common information, the two interprecaticons make a grsat differsrce!
In particular for the reader with extensive experience in unipreocgramming
-this remark has been inserted as an indication of the subtleties of the

games we are playing.

2.%5. A Linguistic Interluds.

{This section may be skipped at first reading.)

In section 2.2. we described the cocpsration of N processes; in the
overall structure we used a vertical sequence of dots betwesen the brackets
"parbegin™ and "parend”. This is nothing but a lcose formalism, suggesting
to the human reader how to compose in our notation a set of N cooperating
sequential processes, under the condition that the value of N has been fixed
beforehand. It is = suggestion for the canstruction of 3, 4 or 5071 cooperating
processes, it does nat give & formal description of N such cooperating processes
in which N occurs as a parameter, i.e. it is not a8 description, valid for amy

value of N,
it is the purpose af this sectian to show that the cancept of the
so—called "recursive procedure" af ALGOL 60 caters for this. This concept

will be sketched briefly.

We have seen, how after "begin" declarations could occur in order to
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introduce and to name either single varibles (by snumeration of their names
or whole ordered szts of wvariables (uiz. in the array declaretion). With

the so—called "procedure declaration"” we can define and name a ceriain
action; such an action may then be invoked by using its name as = statement,

thereby supplying the parameters, to which ths action should be applied.

As an 1illustraticn we tonszider the following ALGOL &0 program:

"begin integer a, b;

procedure square(u, vis integer u, v;
begin u:i= v * v end;
L: square(s, 3); squars(b, a); square(e, b}

end"

In the first line the integer named "a" and "b" ars declsred. The next
line declares the procesduyre named "square", cperating on two parameters,
which are specified to ke single integers (and no%, say, complete a;rays).
This lime is talled “the procedure heading™. The immediately following
statement ~the so—-called "procedure body"-— describes by definition the
action named: in the third line —in which the bracket pair "begin....znd"
is superfluous— it is told that the action of "square" is to assign to the
first parameter the sgquare of the value of the second onme. Then, labeled "™,
comes the first statement. Before its execution the values of both M"a"v and
"ht* are undefined, after its execution "a = 9", After the execution of ths
next statement, the value of "B" is therefore = 81, after the execution of

the last statement, the value of "a" is =6561, the value of "b"™ is still = &7.

In the previous example the procedure mechanism was essentially introduced
as a means for abreviatiom, @ means for asvoiding to have to write down the

"body" three times, although we could have done so quite easily:

"begin integer a, b;

Ly at= 3 % 3; hi=a * a; ai= b ¥ b

end".

When the body is much more ceomplicated than in this example, a program

along the latter lines tends indeed to be much more lengthy.
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This techrique of "substituting for the call the appropriate version
of the body" is, however, no longer possibls as soan as the procedure is a
so-~called recursive one, i.e. may call itself. It is then, that the procedurs

really enlarges the expressive power of the programming language.

A simple example might illustrate the recursive procedure. The greatest
common divisor of two given natural numbsrs is
1) if they have the same value equal to this value
2) if they have different values esqual to the greatest commen divisor of the
smallest of the two and their difference.
In other wards, if the greatest common divisor is not trivial (first case)
the problem is replaced by finding the greatest common divisor of two

smaller numbers.

{In the following program the inserticn "value v, w;" can be skipped by the
reader as being irrelevant for our present purposes; it indicates that for
the parameters listed the body is only interested in the numericzl value

of the actual parameter, as supplied by the call.)

"begin integer a;
procedure GCD(u, V, W) value v, w; intsger u, v, w;
begin if v = w then ui= v
2lse
begin if v < w then GCD(u, v, w = v)
elsse GCD(U, Vo oW, w)
End;
GcD{a, 12, %3)

end"

(In this example the more elabarate form of the conditional statement
is used, wviz.:

"if condition then statement 1 else statement 2",

meaning that if "condition" is satisfied,"statement 1" will be executed and
"statement 2" will be skipped, and that if "candition" is not satisfied,

"statemsnt 1" will be skipped and "statement 2" will be executed.)

The reader is invited to follow the pattern of calls of GCD and to

see, how the varisble "a" becomes = 3% he is also invited to convince
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himself of the fact that the (dynamic} pattern of calls depends on the
parameters supolied and that the substitution technique -replace call by

body— &s applied in the previous example weuld lead to difficulties here.

We shall now write 2 program to perform a matrix * vector multiplication
in which
1) the crder of the M scalar ¥ scalar products to be summed is indeed
prescribed (the rows of the mairix will be scanned from left to right)

2) the N rows of the matrix can be processed in parallel.

{Where we do not wish to impose the restrictiom of puresly integer values,
we have used to declarator "real" instead of the declarator "integer"; fur-—
thermore we Fave introduced an array with two subscipts inm a, we hope,

abvious manner.)

It is assumed that, upon entry of this block of program, the integers

"M and YN" have positive wvalues.

"begin real array matrix[? t N, 1o M];

real array vectorf? : MJ;
real array product[1 : N];

procedure rmwmult(k); value k; integer k;

begin if k > 0 then

parbegin
begin real s; integer j;
si= O3

for ji= 1 gtep | until M do
si= s + matrix[k, 3] * vector[§ ]
product[k]:: s
Eend;
rownult(k = 1)

parend

PECEL Y

rowmult(N);

end"
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%. The Mutual Exclusiorn Problem Revisited.

We return ta the problem of mutusl exclusion in time of critical secticrs,
gs introduced in sectior 2.1 and generalized in section 2.2. This section
deals with a more efficiert tecknigue for sclving this problem; only efter
having dorne so, we have adequate means for the description of examples, with
which I hope to convince the reader cf the rathe: fundamental importance
of thke mutual exclusion problem. In other werds, I must appesl to the patiercs
of the wondering reader (suffering, as I am, from the sequential nature of

human cDmmunicaticnl)

%.1. The Need for a More Realistic Soiution.

The solution given in sec*ion 2.2 is interesting in as far as it shows
that the restricted means of communication provided are, from a theoretical
point of view, sufficient to sclve the problem. From other points of view,

which are just as dear to my heart, it is hopelessly inadequate.

To start with, it gives rise to & rather cumbersome description af the
individual processes, in which 1t is all but tramsperent that the owverall
betaviour is in accordance with ths conceptually so simple requirement of
the mutual exclusion, In other words, inm some way or another this solution
is a tremendous mystification. Let us try to isclate in cur minds in which
respect this solution represents indeed a mystification, for this investigatior

could give the clue:tc improvement.

Let us take the period of time during which one of the processes is in
its critical section. We all know, that during that period, no cther processes
can enter their critical section and that, if they want to do so, they have to
wait until the current critical section execution has been completed. For the
remainder of that period hardly any activity is required from them: they have

to wait anyhow, and as far as we are concerned "they could go to slesep”.

Our solution dees not reflect this at =2l11: we keep the processes busy
setting and inspecting common variabhles all the time, as if no price has to
be paid for this activity. But if our implementation -i.e. the ways in which

or the means by which these processes are carried out~ is such, that "sleesping”
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is a less expensive activity than this busy way of waiting, then we are
fully justified {now alsc from an ecomomic point af view) to call our

solution misleading.

In present day computers, theres are at least two ways in which this
active way of waiting cam be very expensive. Let me sketch them briefly.
These computers have two distinct parts, usually called "the processor™ and
"the store". The processor is the active part, in which the arithmetic and
logical operations are performed, it is "active and small"; in the store,
which is "passive and large" resides at any moment the information, which
is not processed at that very moment but only kept there for future reference.
In the total computational process information is trarsported from store to
processor as s00n as it has to play an active role, the irnformation in store

can be changed by transportatiorn in the inverse direction.

Such a computer is a very flexible tool for the implementation aof
sequential processes. Even a computer with only one single processor can
be used to implement a number of concurrent sequential processes. From
a macroscopic point of view it will seem, as though all these processes
are carried out simultaneously, 8 more closer inspection will reveal,
however, that at any "microscopic" moment the processor helps along only
one single program, and the overall picturs ornly results, because at
well chosen maments the processor will switch aver from one process to
amother. In such an implementation the different processes share the same
processor and activity of one of the processes (i.e. a non—zero speed) will
imply a zsrp speed for the others and it is then undesirsble, that precious

processor time is consumed by processes, which cannot go on anyhow.

Apart from processor sharinmg, the store sharing could make the unnecessary

activity of a waiting process undesirable. Let us assume that inspection of

or assigrnment to a "common variable" implies ithe agcess to an information

unit -a SD;EallEd "word"— in a ferrite core store. Access to = word in a

core stDrErtakes a finite time and for technical reasons only one word can

be accessed at a time. When more than one active process may wish access to
words of the same core store, the usual arrangement is that in the case of
immanent coincidence, the storage access requests from the different active

processes are granted according te a built in priority rule: the lower

priority process is automatically held up. {The iiterature refers to this
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situatian when it describes "a commurication chanrel stealing a memary
cycle from the DrDCESSDr.) The resuit is that frequent inspection of
common variables may slow down the process, the local guantities of which

are stored irn the same core store.

3,2, The Synchronizing Primitives.

The origin of the complications, which lsad to such intricate solutions
as the one described in section 2.2 is the fact that the indivisible accesses
to common vari;BlES are azlways "one-way information traffic": anm individual
process can either assign a new value or imspect a current value. Such an
inspection itself, however, leaves no trace for the other processss and the
consequence is that, when a process want to react to the current value of a
comman variable, its value may be changsd by the other processes between
the moment of its imspection amd the following effectuation of the reactian
to it. In other words: the previous set of communication facilities must be

regarded as inadequate for the problem at hand and we should laok for better

adapted alternatives.

Such an alfernative is given by introducing
a) amang the common variasbles special purpose integers, which we shall call
"semaphoresh.
b) among the repertoire of actions, from which the individual processes have
to be constructed, two new primitives, which we call the "P-operation®
and the "V-operation" respectively. The latter operations always operate
upon a semaphore and represent the only way in which the comcurrent processes

may access the semaphores.

The semaphores are essentially non-negative integers; when only used
to solve the mutual exclusion problem, the range of their values will even
be restricted to "O" and "i". It is the merit of the Dutch physicist and
computer designer Drs.C.3.5cholten to have demonstrated a considerable field
of applicability for semaphores that can also take on larger values. Whan
there is a need for distinetion, we shall talk about "binary semaphores" and

"general semaphores" respectively. The definition of the P=- and V=-operation
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that I shall give naw, is insensitive to this distictiaon.

Definition. The V-operation is an operation with one argument, which must

be the identification of a semaphare, (If "SiM and "S2" denate semaphores,
we can write "V{51)" and "V(SE]“.) Its function is te increase the value of
its argument semaphore by 1; this increase is to be regarded as zn indivisible

cperatian,

Nots, that this last sentence makes "V(51)" inequivalent to "Sl:= S1 + 17,
For suppose, that two processes A and B both contain the statement "V(51)"
and that both should like to perform this statement at a moment when, say,
"S1 = 6". Execluding interference with 51 from other processes, A and B will
perform their V-operations in an unspecified order —at least: cutside our
control= and after the completion of the second V-operation the final value
of 51 will be = 8. If 51 had mot been a semaphore but just am ordinary common
integer, and if processes A and B had cantained the statement "S1:= 51 + 1"
instead of the V=~gperationm on 51, then the followirg could happen. Process
& evaluates "S1 + 1" and computes "7"; before effecting, however, the assignment
of this new value, process B has reached the same stage and also evaluates
"1 + 1", computing "7". Therszafter both processes assign the value "7" to
S1 and ore of the desired increases has hsen lost. The requiremsnt of the
"indivisible operation" is meant to exclude this pccurrence, when the V-

operation is used.

Definition. The P-operation is an operation with one argumemt, which must

be the identification of a semaphbore. (If "S1" and "S52" denote semaphores,
we can write "P(51)" and "P{32)",) Its function is %o decrease the value of
its argument semaphore by 1 as soon as the resulting value would be non-
negative. The completion of the P-operation —~i.e. the decisicn that this is
the appropriate moment toc effectuste the decrease and the subsequent decrease

itself- is to be regarded as an indivisible operatian.

It is the P-pperation, which represents the potential delay, viz. when
a process initiates a P-operation on a semaphare, that at that moment is
= 0, in that case this P-opperation cannot be completed until another process
has performed a V-operation on the same semaphore and has given it the value

™®, At that momermt, more tham one process may have initiated a P-operation
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on that very same semaphore. The clause that completion of a P-operation is
an indivisible action means that when the semaphore has got the value "M,
only one of the initiated P-uperations on it is allowed to be completed.

Which ane, egain, is left umspecified, i.e., at least outside our control.

At the present stage of our discussicns we shall take the implementability

of the P-and V-~operations for granted.

%.,%. Tke Synchronizing Primitives Applied to the Mutual Exclusicon Problem.

The solution of the N processes, each with a critical section, the
executions of which must exclude one another in time (see section 2.2) is
now trivial. It can be done with the aid of a single binary scsmaphore, say
"free®. The value of "free" eguals the number of processes allowed to enter

their critical section now, or:

"free = 1" means: none of the processes is engaged in its eritical section
"free = Q" means: one of the processes is engaged in its critical section.

The overall structure gf the solution becomes:

"begin integer free; free:= 1;

parbegin
process 1: begin....... R Jal=
process 2: begin....... I - l1l=H

process N: begin...seoo.ovanecaBnd;
parend

end"
with the i-th process of the form:

"process i: begin
Li: P{free); critical section i; V{fres);
remainder of cycle i; goto Li

end"
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4. The General Semaphore.

4.1. Typical Uses of the General Semaphore.

We consider two processes, which are called the "producer" and the
"eonsumer" respectively. The producer is a cyclic process and sach time it
goes through its cycle it produces a certain portion of information, that
has to be proccessed by the consumer. The comsumer is also a cyclic process
and each time it goes through its cycle, it can process the next portion of
information, as has been produced by the producer. A simple example is given
by a computing process, producing as "portions of information™ punched cards
images to be punched out by a card punch, which plays the role of the

consumer.

The producer — consumer relation implies 2 one-way communication channel
between the two processes, slong which the portions of information can be
transmitted. We assume the two processes to be connected for this purpose
via a buffer with urnbounded capacity, i.e. the portions produced need not
to be consumed immediately, but they may queue in the buffer. The fact that
no upper bound has been given for the capacity of the buffer makss this

example slightly unreslistic, but this should not trouble us too much now.

{The origin of the name "buffer" becomes understandable as soon as we
investigate the ccnsequences of its absence, viz. when the producer can only
offer its next portian after the previous portion has been actually consumed.
In the computer - card punch example, we may assume that the card punch can
punch cards at a constant speed, say 4 cards per second. Let us assume, that
this cutput speed is well matched with the production speed, i.e. that the
computer can perform the card image production process with the same average
speed. [ the connection between computing process and card punch is unbuffered,
then the counle will only work continoously at full speed when the card pro-
duction process produces a card every guarter of a second. If, however, the
nature of the computing process is such, that after one or two seconds vigorous
computing it produces 4 to 8 card images in a single burst, then unbuffered
connection will result in a period of time, in which the punch will stand
idie (for lack of information), followed by a pericd in which the computing

process has to stand idle, because it cammot get rid of the next card image
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before the preceding one has been actually purnched. Such irregularitiss in
producticn speed, however, can be smoothed out by @ buffer of sufficient

size and thkat is, why such a queuing device is called "= huffer".)

In this section we shall not deal with the various technigues of imple-
menting a buffer. It must be able to contain successive portions of informaticn,
it must therefore be & suitable storage medium, accessible to both processes.
Furthermore, 1t must not only contain the portions themselves, it must also

represent their lineair ordering. (In the literature two well-known techniques
are described by "cyelic buffering” and "chaining” respectively.) When the
producer has prepared its next portion to be added to the buffer, we shall
indicate this action simply by "add portion to buffer", without going into
further details; similarly, the consumer will "take portion from buffer',
where it is understood that it will be the oldest portion, still in the

buffer. (Another rame af & buffer is a "First—In-First~Out-Memory. )

Omitting in the cutermost block any declarations for the buffer, we
can now construct the two processes with the aid of a single general semaphore,

called "mumber of quesuing portions".

"hegin inmteger number of queuwing partions;

number of gueuing portions;= Q;

parbegin
producer: begin

again 1: produce the next portion;
add partion to buffer;
V(number of queuing portions);
gota again 1

£nd;
consumer: begin

again 2: P(number of queuing partions);

take portion from buffer;

process partion taken;

goto again 2

parend

end"
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The first lims of the producer represents the coding of the process
which forms the next portion of information; it can be canceived =it has a
meaning- guite iﬁdependent of the buffer for which this portion is interded; when
it has been executed the next portion has besn succesfully completed, the
completion of its construction can no longer be dependent on other (unmentioned)
conditions. The secord line of cading represents the actions, which define
the finished portions as the next one in the buffer; after its execution
the new portion has been added completely to the buffer, apart from the fact
that the consumer does not know it yet. The V-operation finally canfirms its
presence, i.,e. sigrals it to the consumer. Note, that it is absolutely essen—
tial, that the V-opsraticn is precede by the compl=te additior of the portion.

About the structure of the consumer analagous remarks can be made.

Particularly in the case of buffer implementatior by means of chaining
it is not unusual that the nperations "add portion to buffer" and "take
portion from buffer" —cperating as they are on the same clerical status
information of the buffer— could interfere with each other in a most unde—
sirable fashion, unless we see to it, that they exclude each ather in time.
This can be catered for by a binary semaphore, called "buffer manipulation®,

the values of which mean:

=0 ¢t egither adding to or taking from the buffer is taking place

=1 : neither adding to nor taking from the buffer is taking place.

The program is as follows:
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"begin integer number of gueuing portiens, buffer manipulation;
rumber of gqueuing portions:= O;
buffer manipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;
P(buffer manipulation};
add portion to buffer;
V(buffer manipulation);
V(number of gueuing purtions};
goto agsin |

end;
consumer: begin

again 2: P(number of gueing pnrtions};
P{buffer manipulation);
take portion from buffer;
V(buffer manipulation);

process portion taken;

goto again 2

parend

end"

The reader is requested to convince himself that
a} the order of the two V-operatiocns in the producer is immaterial

b) the order of the two P-operaticns in the cansumer is essential,

Remark. The presence of the binary semaphere "buffer manipulation®
has arother consequence. We have given the program for ome producer and
one consumer, but now the extension to more producers and/ar MOTE CORSUMETLS
is straightforward: the same semaphore sees to it that two or more additions
af new portions will never get mixed up and the same applies to two or more
takings of a portion by differemt consumers. The reader is requested to
verify that the order of the two V-operations in tne producer is still

immaterial.
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4.2. The Superfluity of the General Semaphore.

In this section we shall show the superfluity of the general semaphaore
and we shall do so by rewriting the last program of the previous section,
using hinary semaphores only. (Intentionally I have written "we shall show"
and not "we shall prove the superfluity". We do not have at our disposal
the mathematical apparatus that would be needed to give such & proof and I
do rnot feel inclimed to develop such mathematical apparatus now. Nevertheless
I hops that my shaw will he corvincing!) We shall first give = solution and

pastpone the discussion till afterwards.

"hegin integer numgueupor, buffer manipulation, consumer delay;

numqueupor:= J; buffer manipulation:= 1; consumer delay:= Q;

parbegin
producer: begi

again 1t produce next portion;
P{buffer manipulation);
add portion to buffer;
nUMOUEeWPOT := numqueupor + 13
if numgueupor = 1 then V{consumer delay);
V(buffer manipulation);
gotc again 1

end;

consumer: hegin integer oldnumqueupor;

wait; P{consumer delay);

go on: P(buffer manipulation);
take portion from buffer;
nUMQUEeUPOT ;= numqueupar — 1;
oldrumgqueupsr = fumQuepor;
V(buffer manipulation);
process portion taken;

Aif oldnumgueupar = O then goto wait glse goto go on

parend

end"

Relevant in the dynamic behaviour of this program are the periads of time
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during which the buffer is empty. (As long as the buffer is not empty, the
consumer can ga o7 happily at its maximum speed.) Such a period can only be
initiated by the censumer {by taking the last portion pressnt from the buffer),
it can only be terminated by the producer (by adding a portion to an empty
buffer}. These two events can be detscted unambiguausly, thanks to the
binary semaphore "buffer manipulation", that guarantees the mutual exclusion
necessary for thiz detection. fach such period is accompanied by & P- and a
V=-operatior en the new binary semaphors "consumer delay". Finally we draw
attention to the local variable "oldnumgqueupor" of the consumer: its value
is set during the taking of the portion and fixes, whether it was the

last portion then present. {The more expert ALGOL rsaders will be aware that
we orly need to store a single bit of informaticn, viz. whether the decrease
of numqusupor resulted in a value = 0; we could have used a local variable
of type Hoolean for this purpose.) When the consumer decidas fo go to
"wait", i.e. finds "oldnumqueupor = O", at that moment "numqueupor" itself

could already be greatexr than zero again!

In the previous program the relevant occurrence was the period with
empty buffer. On=z can remark that emptiness is, in itself, rather irrelevant:
it only matters, when the consumer should like to take a next portion, which
is still absent. We shall program this version as well. In its dynamic
behavicur we may expect less P~ and V~aoperations on "consumer delay", viz.
not when the buffer bas been empty for a short while, but is filled again
in time tc make delay of the consumer unnecessary. Again we shall first

give the program and then its discussion.
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"begin integer numqueupor, buffer mamipuletion, consumer delay;

numgueupor:= O; buffer manipulation:= 1; consumer dalay:= O
parbegin
producer: begin
again 1: produce next portion;
P(buffer manipulation);
add particn to buffer;
numguewpor = numqueupor + 1;
Aif numgqueupor = O then
begin U(buffer menipulatian);
U( consumer delay) end
Else
V(buffer manipulation);
goto again 1
Eend;
consumer: begin
again 2: P(buffer manipulation);
numQueupar:= numgueupor — 1;
Af numgueupor = - 1 then
begin V{buffer manipulation);
P(cunsumer delay);
P(buffer manipulation) end;
take partion from buffer;
V(buffar manipulation);
process portion taken;
goto again 2
end

parend

end”

Againm, the semaphore "buffer manipulation" caters for the mutual
exclusion of critical sections. The last six linss of the producer could

have been formulated as follows:

"if numqueupor = O then V(cansumer delay);

V(buffer manipulation); goto again 1
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In mot doing so0 I have followed a personal taste, viz, toc avoid P~ and
V=cperations within critical secticns; 2 personal taste to which the

reader should not pay too much attention,

The range af possible values of "numgueupor" has beer extended with
the vaiue "=1", meaning (outside critical section execution) "the buffer
is not only empty, but its emptymess has =zlready been detected by the
consumer, which has decided tc wait". This fact can be detected by the

producer whern, after the addition of one, "rumgueupor = O" holds.

Note how, in the case of "numqueupor = — 1", the critical section of
the comsumer is dynamically broken into two parts: this is most essential,
for otherwise the praducer would never get the opportunity to add the

portian that is already so much wanted by the cansumer,

(The program just described is known as "The Sleeping Barber”. There is

a barbershop with a separate waiting roam. The waiting room has an entry

and next to it an exit to the rpom with the harber's chair, entry and

exit sharing the same sliding door which always closes one of them; furthermore
the antry is so small that only one customer can enter it at a time, thus

fixing their order of entry. The mutual exclusions are thus guaranteed.

Barber's Chair L\
1 -

Waiting room

Wher the barber has finished & haircut, be opens the door to the
waiting room and inspects it. If the waiting room is not empty, he invites
the next customer, otherwise he goes to sleep in one of the chairs in the
waiting room. The complementary behaviour of the customers is as follows:
when they find zero or more customers in the waiting rccom, they just wait
their turn, when they find, however, the Sleeping Barber -"numgueupor = = {"-

they wake him up.)
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The two programs given present a strong hint to the conclusion that
the general semaphore is, indeed, superflucus. Nevertheless we shaal not
try toc abolish the general semaphure: the one—-sided synchronisation
restriction expressible by it is a very common one and comparison aof the
solutions with and without general semaphore shows convincingly that it

should ke regarded az an adeguate tool.

4.%. The Hounded Buffer.

I shall give a last simple example to illustrate the use of the
general semaphcre. In section 4.1 we have studied a preducer and a consumer
coupled via a buffer with unbounded capacity. This is & typically one-sided
restriction: the producer can be arbitrarily far ahead of the consumer, on
the other hand the consumer can never be ahaed of the producer. The relation
hecomes symmetric, if the two are coupled via a buffer of finite size, say
N portions. We give the program without any further discussion; we ask the
reader to canvince himself of the complete symmetry. ("The consumer produces
and the producer comsumes empty positions in the buffer.) The value N,
as the buffer, is supposed to be defimed in the surrounding universe inte

which the following program should be embedded.

"begin integer number of gueuing portionms, number of empty positions,
buffer manipulatiaon;
number of gueuing portions:= 0;
number of empty positions:i= Nj
buffer manipulation:= 1;
parbegin

producer: begin
again 1: produce next portion;

P(rumber of empty positions);
P(buffer manipulation);
add portion to buffer;
V(buffer manipulatiun);
V{rumber of queuing portions); goto again 1  end;
consumer: begin
again 2: P(number af queuing portions);
P(buffer manipulation);
take portion from buffer;
V{buffer manipulatinn);
V{mumber of empty pnsitians);
process portion taken; goto again 2 end

parend

end" ,
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5. Cooperation via Status Variables.

In sections 4.1 and 4.3 we have illustrated the use of the general
semaphore, It proved an adequate tool, be it as implementation of a rather
trivial form of interaction. The rules for the consumer are very simple: if
there is something in the buffer, consume it. They are of the same simplicity
as the behaviour rules of the wage earner who spends all his money as scon

as he has been paid and is broke until the next pay day.

Im other words: when a group of cooperating sequential processes have
to be corstructed and the overall behavicur of these processes combined
has to satisfy more elaborate requirements —the community, formed by them,
has, as a whole, to be well-behaved in saome sense- we can only expect to
be able to do so, if the individual processes themselves and the ways in
which they can interact will get more refined. We can no longer expect
a ready made solution as the general semaphore to do the jab. In general,
we need the flexibility as can be expressed in a program for a general

- purpgse computer.

We now have the raw material, we can define the individual processes,
they can commqgicate with each other via the common variables and fimally
we have the synchronizing primitives. How we can compose from it what we
might want is, however, by no means obvious. We must now train ourselves to
use the tools, we must develop a style of programming, a style of "parallel

programming” I might say.
In advance I should like to stress two points.

We shall be faced with a great amount of freedom. Interscticn may
imply decisions bearing upon more than one process and it is not always
cbvious, which of the processes should do it. If we cannot find a guiding
priciple {e.g. efficiency considerations), them we must have the courage

to impose some rule in the name aof clarity.

Secondly, if we are interested in systems that really work, we should
be able to convince ourselves and anybody else who takes the trouble to

doubt, of the correctness of our constructions. In uniprogramming one is
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already faced with the task of program verification ~a task, the difficulty
of which is often underestimated— but there one can hope toc debug by testing
of the actual program. In our case the system will often have to work

under irreprocducible circumstances and from field tests we can hardly expect
any serious help. The duty of verification should concern us right from the

start.

We shall attack a more complicated example in the hope that this will

give us some of the experience which might be used as guiding principle.

5.1. An Example of a Priority Rule.

In section 4.3 we have used the general semaphore to couple a producer
and a consumer via a bounded buffer. The solution given there is extendable
to more producers and/or more consumers; it is applicable when the "portion®
is at the ssme time a convenient unit of information, i.e. when we can regard

the different porticns as all being of the same size.

In the present problem we consider producers that offer portions of
different sizes; we assume the size of these portions to be expressed in
portions units, The consumers, again, will process the successive portions
from the buffer and will, therefore, have to be able to process portions,
the size of which is not given a priori. A maximum portion size, however,

will be known.

The size of the portions is given in information.units, we assume alse
that the maximum capacity of the buffer is given in information units: the
question whether the buffer will be able to accomadate the rmext portion
will therefore depend on the size of the portion offered. The requiremenf,
that "adding a2 portion to" and "taking & portion from the buffer" are still
conceivahle coperations implies that the size of the buffer is not less

than the maximum portion size.

We have a bounded buffer and therefore a producer may have to wait
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before it can offer a portion, With fixed size portions this could anly
cccur when the buffer was full to the brim, now it cam happen, because
free space in the buffer, although presermt, is insufficient far the portion

concerned.

Furthermore, when we have more than one producer and ome of them is
waiting, then the other omes may go an and reach the state that they wish
to offer s portion. Such a portion from a next producer may alsa be too
large or it may be smaller and it may fit in the available free space of

the buffer.

Somewhat arbitrarily, we impose on our solution the reguirement,
that the producer wishing to effer the larger portion gets priority over
the producer wishing to offer the smaller portion to the buffer. (Whan
twz or mere producers are offering portions that happen to be of the same

size, we just don't care.)

When a producer has to wait, because the buffer cennot accomodats
its portion, no other producers can therefore add their portions until
further notice: they cannot when the new portion is larger (for then it
will alss not fit), they may not when the rew portion is smaller, for then

they have a lower priority and must leave the buffer for the sarlier reguest.

Suppose at a moment & completely filled buffer and three producers,
waiting to offer portions of 1, 2 and 3 units respectively. When a consumer
now consumes @ five—unit portiom, the priority rule implies that the pro-
ducers with the Z=unit portion and the 3-unit portion respectively wili get
the opportunity to go on and not the one offering the 1-unit portion. It is
not meant to imply, that then the 3=unit porticn will actually be offered

befecre the 2-unit paortion!

We shall now try to introduce so—called "status variasbles" for the
different components of the system, with the aid of which we can characterize

the stats of the system at any moment. Let us fry.



EWD123 — 43

For each producer we introduce a variable named "desire"; this variable
will denote the number of buffer units nesded for the portion it could not
add to the buffer. As this number is always positive, we can attach to
"desirs = O" the meaning, that no request from this buffer is pending.
Furthermore we shall introduce for each producer a private binary "producer

semaphore™.

For the buffer we introduce the binary semaphore "bufman", which takes
care of the mutual exelusion of buffer manipulations in the widest sense
(i.e. not only the adding to and taking from the buffer, but alsc inspection

and modification of the status variables concerned. )

Next we need a mechanism to signal the presence of a next portion to
the consumers. As soon as a next portion is in the buffer, it can be cansumed
and as we do not care, whichk of the consumers takes it, we can hope, that
a general semaphore "number of queuing portions™ will do the job. {Note,
that it counts portions gueuing in the buffer and not number of filled

information units in the buffer.)

Freecaoming huffer space must be signalled back to the praducers, but
the possible consequences of free coming buffer space are more intricate and
we cannot expect that a general semapbore will be adeguate. Tentatively we
introduce an integer status wvariable "™number of free buffer units". Note,

that this variable caounts units and not portiens.

Remark. The value of "number of free buffer units" will at most be
equal to the size of the buffer diminished by the total size of the portions
counted in “number of queuing portians™, but it may be less! I refer to the

program given in section 4.3%; there the sum
"number of queuing perticns + number of empty positicns®

is initially (and usually) = N, but it may be = N — 1, because the P-operation
orn one of the semaphores always precedes the V-operation on the other, (Verify,
that im the pragram of section 4.3 the sum can sven be = N — 2 and that this
value can even be lower, when we have more producers and/ur consumers.) Here

we may expect the same phenomenon: the semaphore "number of gqueuing portions"
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will count the portions actually and completely filled and still unnoticed
by the consumers, "mumber of free buffer umits" will count the completely
free, unallocated unmits in the buffer. But the units which have been reserved
for fillimg, which have been granted to a (waiting) producer, without already

being filled, will not be counted in either of them.

Finally we introduce the integer "buffer blocking", the valus of which
equals the number of quantities "desire"? that are positive. Obviously,
this variable is superfluous; it has been introduced as a recognition of ane
cf our earlijer remarks, that as soon as one of the desires is paositive, na
further additions to the buffer can be made, until further notice. At the
same time this variable may act as a warning to tke consumers, that such

a2 "further notice" is wanted.

We now propose the following program, written for N producers and M
consumers. ("W", "M", "Buffer size" and all that concerns the buffer is

assumed to be declared in the surroundings of this pregram.)

"begin integer array desire, producer semaphare [1 : N];

integer number of queuing peortions, number of free buffer units,
buffer blocking, bufman, loop;
for loop:= 1 step 1 until N da
begin desire[lonp]:: 0; producer semaphure{loop}:: O end;
number of queuing portionsi= O
number of free buffer units:= Buffer size;
buffer blocking:= O; bufman:= 1;

parbegin

producer t: begin..iiceaiiiaiaisiasiransaaend;

T

producer n: begin integer portion size;

again n: produce next portion and set portiorm size;
P(bufman);
if buffer blocking = Q and
number of fres buffer units > portion size

then
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number af free buffer units:=
number of free buffer units = portion size
else
begin buffer blockin:= buffer biocking = 1;
desire{n]:= portion size; V{bufman);
P(prnducer semaphcre[n}}; P(bufman) end;
add portion to buffer; U(bufman);
V{mumber of gueuing portions}; gota again n
end;

producer N: begin.ieeevecvacseas..ENd;

corsumer 1: begin..cesvasasaasaaaENd;

consumer m+: begin integer portion size, n, max, nmax;

again m; P(number of gueuing portions); P{bufman);
take partion from buffer and set portion size;
number of free buffer umits:=
number of free buffer units + portion size;
test: if buffer blocking > 0 then
begin max:= 0
for ni= 1 gtep | until N do
begin 3£_ma¥-< desire[n} then
begin max:= desire{n}; nmaxi= n end end;
if max < number of free buffer units then
begin number of free buffer units:=
number of free buffer units = max;
desire{nmax]:: 0;
buffer blocking:= buffer blocking = 1
U(produ:er semaphure[nmax]); goto test
end
Ends

V(bufman); process portion taken; goto again m

consumer M: begin..........-----..Eﬁd

Earend

end"
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In the ocutermost block the common variables are declared and initialized;
I hope -and trust that this part of the program presents no difficulties to

the reader that has followed me until here.

tet us first try to understand the behaviour of the producer. When it
wishes to add a new portion to the buffer, there are essentially two cases:
either it can do so directly, or not. It can add directly under the combined

conditian:
"ouffer blocking = Q and number of free buffer units > portion size";

if so, it will decrease "number of free buffer units" and ~dynamically
speaking in the same critical section— it will add the portion to thes buffer.
The two following V—operations (the order of which is immaterial)} clase the
critical section and signal the presence of the next pertion to the combined

consumers,. [f it cannot add directly, i.s. if (either}
"huffer blocking > O or number of free buffer units < portion size”

(ar both), then the producer decides to wait, "toc go to sleep", and delegates
to the combined consumers the task to wake it up again in due time. The Tact
that it is waiting is coded by "dasire[n]3> Q", "puffer blocking" is increased
by 1 accordingly. After all clsrical operations on the common variables have
been carried out, the tritical section iz lef: iby “V(bufman)“} and the
producer initiates a P-operation on its private semzphore. When it has completed
this P-pperation, it reemters the critical section, merges dynamically with
the first case and adds the portion to the buffer. (See alsa the consumer in
the secand program of section 4.2, where we have zlready met the cutting

open of a critical section.) Noie that in the case of waiting, the producer
has skipped the decrease of “number of free buffer units®., Note alsp, that

the producer initiates the P-operation on its private semaphore at a moment,
that the latter may already be = 1, i.e. this P-aperaticn, again, is only

a potential delay.

Let us now inspect, whether the combimed comsumers fulfill the tasks
delegated to them. The pressrce of a mext portion is correctly signalled to
them via the general semaphore "number of queuing portions" and as the
P-operation on it occurs outside any critical section, there is no danger

of consumers not initiating it. After this P-cperation, the consumer enters
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its critical section, takes a portion and increases the numbher of free
buffer units. If "buffer blocking = C" haolds, the following campound statement
is skipped completely and the critical section is left immediately; this is
correct, for "buffer blocking = O" means that none of the gquantitiss "desire"
is positive, i.e. that none of the producsrs is waiting far the free space
just created in the buffer. If, however, it finds "buffer blogcking > QOY,
it knows that at least one of the producers has gones to sleep and it will
inspect, whether one cor more preducsrs Yave to be woken up. It looks for
the maximum value of "desire". If this is not too large, it decides, that
the corresponding producer has to go en. This decision has three sffects:

the "number of free buffer units" is decreased by the number of units
desired. Thus we guarantee that the same free space in the buffer camnot be
granted to more than one producer. furthermore this decrease is in accordance
with the producer behavicur.

"desire" of the producer in question is set +to zero; this is correct,
for its request has now been granted; buffer blocking is decreased by 1
accordingly.

a V-pperation on the producer semaphore concernsd wakes the sleseping

producer.

After that, comtrol of the consumer returns to "test" to inspect,
whether more sleeping producers should be woken up. The inspection process
can end in one of two ways: either there are no sleeping producers anymore
("buffsr blocking = 0) or there are still sleeping processes, but the free
space is insufficient to accommodate the maximum desire. The final value of
"ouffer blocking" is correct in both cases. After the waking up af the

producers is done, the critical section is left.
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5.2. An Example of Conversatiors.

in this section we shall discuss 3 more complicated example, in which
vne of the cooperating processes is not a wachine but a buman being, the

"aperator™.

The cperator is connected with the processes via a so-called "semi-duplex
channel" (say "telex connection"). 1% is called a duplex channzl because it
conveys information in either direction: the operator can use a keyboard %a
type in a message for the processes, the processes can use the teleprinter
to type out A message for the operator. It is called a semi~duplex channel,

because it can only transmit information in one direction at a time.

Let us now cansider the requirements to the total constructian. (I admit,
that they are somewhai simplified. T hape, that they are sufficiently
camplicated to pose to us a real problem, yet sufficiently simple as nct
to drown the basic pattern of sur solution in a host of inessential

details. The trees should not prevent us from seeing the forest!)

We have N identical processes (numbered from 1 through N) and essentially
they can ask & single guestion, called "Qi", meaning "How shall I go on?", to
which the operator may give one of twc possible answers, called "A1™ and "AZ".
We assume, that the operator must know, which of the processes is asking the
guestion =as his answer might depend on this knowledge— and we therefore
specify, that the i—-th process identifies itself when posing the guestion:
we indicate this by saying that it transmits the question "QI(i)". In a sense
this is & consequence of the fact, that all N processes use the same cowmue—

nication channel.

A next consequence of this channel sharing between the different processes
is that no twa processes can ask their guestion simultaneously: behind the
scenes some form of mutual exclusion must see to this. If only Ql-guestions
are mutually exclusive, the operatar may meet the following situation: =
question -say "Q{3)- is posed, but before he has decided how to answer it,

& next guestion —say"Q1(7)"~ is put to him. Then the singls answer "A1" is
no longer sufficient, because now it is no longer clear, whether this answer

is intended for "process 7" or for "pracess 3". This could be overcome by
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adding to the answers the identificetion of the process concerned, say,

"A1(i)" and "AZ{i)" with the appropriate value of 1.

But this is only cne way of doing it: an alternative solutian is to
make the question, followed by its answer, together a critical occurence:
it relieves the operator from the task to identify the process and we
therefore select the latter arrangement. 3o we stick ta the answers "A1" and
"AZM, We have twa kinds of conversations "GE1{i}, A1" and "Q1(i), A2" and the

next canversation can only be initiated when the previous one has been

completed.
We shall now complicate the reguirements thrsefold.

Firstly, thes individual processes mey wish to use the communication
channel for single-shot messages *"M(i)" say— which de not require any

answer from the operator.

Secondly, we wish toc give the operator the passibility to postpones an
answer. Of course, he can do so by just not answering, but this would have
the undesirable effect,that the communication channel remains blockesd for
the other N — 1 processes. We introduce a next answer "A3", meaning: "The
channel becomes fres agein, but the conversation with the process concerned
remains unfinished.” Obviously, the operator must have the opportunmity to
reopen the conversation again. He can do so via'“A4(i)“ or "A5(i)", where
Wi runs frem 1 through N and jdentifies the process concerned, where "A4"
indicates that the process should continue in the same way as after "AIn,
while "AS" prescribes the reaction as to "A2". Possible forms of conversation
are now:
ay @i}, Alw
B)  rQi{i), Ao
c)  mp(i), A3m - = — waq(i}e
d)  vo1(i), A3n - - - mAg(ijn
As far as process i is concerned a) is equivalent with :) and b} is equivalent

with d).

The second requirement has a profocund influence: without it -i.e. only



"ATHM and "AZ" permissible answers— the process of incoming message interpre-—
tation can always be subordinete to one of the N processes, viz. the one,

that has put the question: this can wait for an answer and can act accordingly.
wWe do not know beforehand, hawever, when the message "A4(i)" or “AS(i)" comes
and we cannot delegate the interpretation of it to the i=-th process, because
the discovery that this incoming message is concerned with the i-th process

is part of the message interpretation itself!

Thirdly, A4~ and AS-messages must have priority over Q1- and M-messages,
i.e. while the communication channel is occupied (in a 01= or M-message),
processes might rsach the state, that they want to use ths channel, but also
the operator might come to this conclusion. As soan as the channel becomes
available, we wish, that the operator can use it and that it won't be snatched
away by ane of the processes. This implies that the operator has a means to
express this desire —a rudimentary form of input— sven if the channel

itgelf is engaged in output.

We assume that

s} the operator can give externally a
“V(incuming message)",

which he can use to announce a message (A1, Az, A3, A4, or A5)
b} can getect by the machines rezction, whether the messags is accepted or

ignored,

Remark. The situation is not unlike the school fteacher shauting "Now
children, listen!®, If this is regarded as a normal message, it is nunéensical:
gither the children are listening and it is therefore superfluous, or they are
not listening, and therefore they do not hear it. It is, in fact a kind of
"meta~message", which only tells, that a normal message is coming and which

should alsc penetrate if the children are not listening (talking, for instance).

This priority rule may make the communication channel reserved for an
announced A4 -~ or A5 message. By the time that the cperator gets the opportunity
to give i%, the situstion or his mood may have changed, and therefore we extend

the list of answers with "A6"™ ~the dummy cpening~ which enables the operator
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to withhold, upon further cemsideration, the A4 or Ah.

A firal feature of the message interpreter is the applicability test.
The cperator is a human being and we may be sure that he will make mistakes.
The states of the message interpreter ars such that at any moment, not all
incoming messages are applicable; when a message has been rejected as non-
applicable, the interpreter should return to such a state that the aperator

can now give the correct version.

Our attack will be along the following lines:
1) Besides the N processes we introduce another process, called "message
interpreter”; this is dome because it is difficult to make the interpretation
of the messages "A4", "A5" and "AG" subordinate to one of the N processes.
2) Interpretation of a message always implies, besides the message itself,
a state of the interpreter.(ln the trivial case this is a constant state,
viz. the willingness to understand the message.) We have sesn that not all
incoming messages are always acceptable, so our message interpreter will he
in different states. We shall code them via the {common) state variable
"comvar". The private semaphore, which can delay the action of the message
interpreter, is the semaphore "incaming message", already mentioned.
3) Faor the N pracesses we shall iniraduce an array "procsem” of private
semaphores and an array "procvar" of state variables, through which the
the different processes can communicate with eachk other, with the message
interpreter and vice versa.
4) Finally we introduce 8 single binary semaphore "mutex" which caters
for the mutual exclusion during inspection and/or modification of the
common variables.
5) We shall use the binary semaphore "mutex" only for the purpese just
described and never, say, will "mutex = Q" be used to code, that the channel
is ocecupied. Such a convertion would be 2z dead alley in the sense that the
technique used would fell into pieces as soon as the N processes would have
two chamnels (and two operatnrs) at their disposal. We aim to make the
critical seciions, governed by "mutex" rather short and we won't shed a teax

if some critical section is shorter than necessary.

Well, the above five points, articles of faith, I might say, are of some
help and I hape that in view of our previous experiences they seem a set of

reasprable principles. I do ore part of my job if I present a solution along
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the lines just given and show that it is correct. I would do a better job
if I could show as well, how such a solution is found. Admittedly by trial
and error, but even so, we could try ta mske the then prevailing gquiding
priciple (in mathematics usually called "The feeling of the genius")
somewhat more explicit. For we are still faced with problems:

a) what structure should we give to the N + 1 processes?

b) what states should we imtreduce {i.e. how many possible values should

the state variables have and what should be their meanings)?

The problem (bath in constructing and in preserting the solution) is,
that the twe poinis just mentiored are interdependent. For the values of
the state variables have only an unambiguous, describable meaning, when
"mutex = 1" holds, i.e. mone of the processes is inside a critical sectian,
in which they are subject to change. In other words: the conditions under
which thke meaning of ite state variakle vzlizs should ke aprlicable is
only known, when the programs are finished, but we cen orly make the programs
if we kmow what inspections of and operstions on the state variables are
to be performed. In my experiemce one starts with 2 rough picture of both
programs and state variables, one then starts to enumerate the different
states and then tries to build the pregrams. Then two different things
may happen: eithar one finds that one has irtroduced too many states or
cne finds that —having overlooked a need for cutting @ critical section
into parts— one has not introduced engugh of them. One modifies the states
and then the program and with luck and care the design process converges.
Usually I found myself content with a working solution and I did net bother

to minimize the number of states introduced.

Im my experience it is easier to conceive first the states {being
statically interpretable) and then the programs. In conceiving the states

we have to bear three points in mind.

a) State varisbles should have a meaning when mutex is = Q; on the other
hand a process must leave the critical section before it starts to wait for
a private semaphore. We must be very keen on all those points where a process
may have to wait for sumething more ceomplicated than permission to complete

“P(mutex)“,
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b The combined state variables specify the total state af the system.
Mevertheless it helps a great deal if we can regard some state variable as
"belenging to that and that process". If some aspect of the total stats
increases linearly with N, it is easier to conceive that part as egually

divided among the N processes,

c) If a process decides to wait on account of a certain (partial) state,
gach process, that makes the system leave this partial state should inspect
whether on account of this change, some waiting process shauld go on. {This

is only a genmeralization of the prirciple, already illustrated im The Sleeping

Barber.)

The first two points are mainly helpful in the conception of the different

states, the last one is am aid, to meke the programs correct.

Let us now try to find & set of appropriate states. We starts with the

element "procvar[i]", describing the state of process i.

procvarli] = 0
This we call "the homing position™. It will indicate that none of the
following situatiors applies, that process 1 does not reguire any special

service from either the message interpreter or one of the other processes.

procvar[i] =1

"On account of non=availability of the communication channel, process
i has decided to wait on its private semaphore." This decision can be taken
independently in each process, it is therefoure reasanable *to represent it
in the state of the process. Up till now there is no obvious reason to
distinguish between waiting upon.availability for e M-messzge and for a

M ~question, so let us try to do it without this distinction.

procvar[i] =2

"Question "M (i)" has been answered by "A3", viz. with respect to
process i the operator has postponed his final decision." The fact of the
postponement must be represented becsuse it can hold for an undefinitely

long period of time (ubservation a); it should be regarded as a state variable
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af the process im question as it can hold in N-fald (observation b). Simul-
taneously, "procvar[i] = 2" will act as applicability criterion for the

operator messages “A4[i]" and "A5[i]“.

procvar[i] =3

mil i has been answered by "A1" or by "AZ"— - ~ wpg[i]r.w

procvar[i] =4

""D1[i]“ has been answersd by "A2" or hy "A%"- - - “A5[i]","

First of all we remark, that it is of no conmcern to the individual
process, whether the operator has postponed his final answer or not. The
reader may wonder, however, that the answer given is coded in "procvar", while
only one answer is given at a time. The reason is that we do not know how
‘long it will take the individual process to react te this answer: before it
has done so, a next process may have received its final answer to the G1-

question.

Let us mow try to list the possible states of the communication
organisation. We introduce a single variable, called "comvar" to distinguish
between these states. We have to bear in mind three different aspects
) availability of the communication possibility for M-messages, J1-gquestions
and the spontaneous message of the operator.

2}  acceptability -more general: interpretability~ of the incoming messages.
3) nperator priority for incoming messages.

In arder not to complicate matters immediately too much, we shall start

by ignoring the third point. Without cperator priority we can see the

following states.

camvar = O

"The communication facility is idle", i.e. egually available for both
pracesses and operator. For the processes "comvar = O" means that the commu-—
nicatiom facility is availsble, far the message interpreter it means that

an incoming message need not be ignored, but must be of type A4, A5 or AB.

comvar = 1

"The communication facility is used for & M-message or a Rf-guestion".
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In this period of time the value of "comvar" must be # 0, because the
communication facility is not available for the processes; for the message

interpreter it means, that incaming messages have to be ignored,

comvar = 2

"The communication facility is reserved for an A1-,AZ- aor AZ—answer."
When the M-message has been finished, the communication facility becomes
available again, after a Ql-question, however, it must remain reserved. During
this period, characterized by "comvar = 2", the message interpreter must
know to which praocess the operator answer applies. At the snd of the answer,

the communication facility becomes again available.

Let us now take the third requirement into consideration. This will lsad

to a duplication of (certain) states. When "comvar = O" holds, an incaming
message is accepted, when "comvar = 1", an incoming message must be ignored.
This occurence must be noted down, because at ths end of this occcupation

of the communication facility, the operater must get his priority. We can

introduce & new state:

comvar = 3

"As M"comvar = 1" with operator priority requested.”

Whern the tramsition to "eomvar = 3" occurred during a M-message, the
operator could get his opportunity immediately at the end of it; if, however,
the transition to "comvar = 3" twok place during a Ul-guestion, the priarity
can only be given to the operator after the answer to the O1—question. Therefore,

also state 2 is duplicsted:

comvar = 4

"As "comvar = 2", with operator priority requested.”

Finally we have the state:

comvar = 5
"The communication facility is reserved for, or used upon instigatien of
the operator." For the processes this means non-availability, for the message

interpreter the acceptability of the ipcoming messages of type A4, A5 and AE.



EWD12% ~ 56

Usually, these messages will be announced to the message interpreter while
"comyvar” is = 0. I we do not wish that the entire collection and interpre-
tation of these messages is done within the same critical section, the message
interpreter cam break it oper.It ic then necessary, that "comvar" is £ 0. We
may try to use the same value 5 for this purpose: for the processes it just
means non—availability, while the control of the message interpreter knows
very well, whether it is waitirmg for @ spontaneous operator message (i.e.
"reserved for..") or interpreting such a message (i.e. "used upon instigation

af..").

Before starting to try to make the program, we must bear im mind point
c: remembering that availability of the communication facility is the great
{and only) bottleneck, we must see to it, that every process that ends a
communication facility occupation decides upon its future usage. This is
in the processes at the end of the M-message {and not so much at the end of
the Q1—-questison, for them the communication facility remains reserved for
the answer) and in the message interpreter at the end of sach message inter-

pretation.

The proof of the pudding is the eating, let us try, whether we can
make the progrsam. (In the program, the sequence of characters starting
with "comment™ and up to and including the first semicaolon are inserted
for explanatory puTposes only, In ALGOL 60, such a comment is only admitted
anly immediately after "begin" but I do not promise, to respect this
(superfluous) restriction. The following program should be interpreted to
be embedded in a universe in which the operator, the communication facility

and the semaphore "incoming message" —initially = O~ are defimed.

begin integer mutex, comvar, asknum, loop;

comment The integer "asknum" is a state variable of the message
interpreter, primerily during interpretation of the answers A1, A2
and A3. It is a common variable, as its wvalue is set by the asking
process.;

. integer array procvar, pracsem [1 : N];
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for loop:= 1 step 1 until N da
begin procvar[loop]:: 0; pro:sem[lmop]:: QO end;
comvar:= {J; mutex:= 1;

parbegin

process 1: bEgin...viveveereransssaoend;

rocess n: begin integer i; comment The integer "i" is a local variable
P '

very much like "loop".;

M message:P(muteX);
if comvar = O then
begin comment Whem the communication facility is available,
it is taken.:
comvar:= 1; V(mutex) end
slse
begin cemment Otherwise the process books itself as sleeping
and goes to sleep.;
prDcvar[n]:: 13 V(mutex); P(procsem[n}}
camment At the completiom of this P-operation,
"pracsem[n]" will again be = Q, but comvar -still
untouched by this process— will be =1 or =3.; end;
send M message; .
cocmment Now the process has to analyse, whether the operator
(first!) or one of the other processes should get the commu-
nication facility or not.; P{mutex);
if comvar = 3 then comvar:=
else
begin comment CGtherwise "comvar = 1™ will hold and progess n
has to look whether one of the other processes is waiting.
Note that "proevar{m] = O" holds.;
for ir= 1 step 1 until N do
begin éf_procvar[i] = 1 then
begin procvar[ijs= 0; V(procsem[i]); gote ready
end
end;
comvar:= 0
end

ready: V(mutex);
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.
-

Q1 Question: P{mutex);
Aif comvar = O then
begin comvar:= 1; V(mutex) end
Else
begin prucvar{n]:: 13 V(mutex); P(procsem[n]) end;
comment This eniry is identical to that of the M message.
Note that we are out of the critical section, nevertheless
this process will set "asknum". It can do so safely, for no
- other proeess, nor the message interpreter, will access
asknum” as long as "comvar = 1" holds.;
asknum:= n; send question U {n);
P(mutex);
comment "camvar" will be = 1 or = 3.3
if comvar = 1 then comvar:= 2 else comvar:= 4;
v{mutex); P(procsem[n]);
camment After completion of this P-operation, procvar[n]
will be = 3 or = 4. This process can now imspect and reset
its procvar, although we are outside a critical secticn.;
if prncvar[n] = 3 then Reaction ! else Reaction 2;
procvar[n Ji= 0;

comment This last assignment is superflucus.;

-
-
-

£nd;
process N: begimi.sviresaneveenanaaend;
messsge interpreter:
begin integer ij;
wait: P(incoming message);'
P(mutex);
if comvar =1 then comvar:= 3;
if comvar = 3 then
begin comment The message interpreter ignores the incoming
message, but in due time the operator will get the
opportunity.;

Vimutex); goto wait End;
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if comvar = 2 or comvar = 4 then

begin comment Only A1, A2 and AT are admissible. The inter—

after correct answer:

pretation of the message need not be done inside a
critical sectiong
V(mutex);
interpretation of the message coming in;
if message = Al then
begin procuar[asknum}:= 3 V(prmcsem[asknum]};
goto after correct answer end;
if message = A2 then
begin pro:var[:sknum]:: 4; V(procsem[asknum]);
goto after correct answer end;
if message = A% then
begin prucvar[askmum]:: 2; goto after correct answer end;
comment The operator has given an erroneous answer
and should repeat the message; goto wait;
Plmutex);
if comver = 4 then
begin comment The operator should now get his apportunity;

comvar;= 5; V(mutax); goto wait end;

perhaps comvar ta zero:for i:= 1 step 1 until N do

begin if prncvar[i] = 1 then
begin prucvar{i]:: Q; comvar:= 1;
V(procsem[i]); goto ready end
Eend;

comvari= {;

ready: V(mutex); goto wait

=

comment The cases "caomvar = Q" and "comvar = 5" remain.

Messages A4, A5 and A6 are admissible.;

if comvar = 0 then comvar:= 5;

comment See Remark 1 after the program.;

V(mutex);

interpretation of the message coming in;
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end

parend
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P(mutex);
if message = A4Eprocesa number] then
begin i:= "process number given in the msssags";
if procvar{i] = 2 Ehen
begin procvar[i]:: s V(prmcsem[i]);
goto perhaps comvar to zerc end;
comment Otherwise process not waiting for postpaned
answer.; gots wrong message
end;
Aif message = A5[process number] then
begin i:= "process number given in the message";
if prucvar[ij = 2 then
hbegin procvar i Ji= 4; V(procaem[i]);
goto perbaps comvar to zerc end;
comment Otherwise process not waiting for postponed
answer.; gotoc wrong message
end;
if messags = A6 then goto perhaps comvar to zero;
comment'comvar = 5" holds, giving priority to the operator
to repeat his message.;

V(mutex); goto wait

Remark 1. If the operator, while "comvar = O" or "comvar = 5"

originally holds, gives an uninterpretable (or inapprapriate) message, ths

caommunication facility will remein reserved for his next trial.

Remark 2. The final interpretation of the A4 and A5 messages is

dome within the critical section, as their admissibility depends on the state

af the process concerned. If we have only one communication charmnel and one

operator, this precaution is rather superfluous.
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Remark 3. The for—loops in the program scam the processes in
order, starting by process 1; by scanning them cyclically, starting at anm
arbitrary process (selected by means of a (pseudo) random number generator)

we could have made the solution more symmetrical in the N processes.

Remark 4. In this sectign we have first giver a rather thorough
exploration of the possible states and then the progrem. The readsr might
be interested to krnow that this is the true picture -"a life recording™-
of the birth of this solution., When I started to write this section, the
problem posed was for me as new as for the reader: the program given is
my first wversion, constructed on accourt of the cansiderations and
explorations given. I hope that this section may thus give a hint as how

orne may find such solutiens.

5.2.1., Improvements of the Previous Program.

In sectian 5.2 we have given a first version of the program; this
version has been included in the text, not because we are content with it,
but hecause its inclusion completes the picture of the birth of a solution.
Let us now try tc embellish, in the name of greater conciseness, clarity and,
may be, efficiency. Let us try to discover in what respects we have made a

mess aof it.

tet us compare the information flows from a process to the message
interpreter and vice wversa. In the one direction we have the common variable
"asknum" to tell the message interpreter, which process is asking the
question. The seétting ard the inspection of "asknum" can safely take place
outside the critical sections, governed by "mutex", because at any moment
at most one of the N + 1 processes will try to access Masknum™. In the inverse
information flow, where the message interpreter has to signal back to the
i-th process the nature of the final aperator answer, this answer is coded
in "procvar". This is mixing things oup, as is shown

a) by the "procvar"-inspection (whether procvar is = 3 or = 4), which is
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suddenly allowed to take place cutside 2 critical secticn

b) by the superfluity of its being reset to zero.

The suggestion is to introduce a new
"integer array uperanswer£1:N]" ,
the eiements of which will be used in a similar fashion as "asknum". (Am
attractive consedquence is that the number of possible values aof "procyar®
-the more fundamental guantity(see below)- does not increase any more, if

the number of possible answers io the question Q1 is increased.)

I should like to investigate whether w= can achieve a greater clarity
by separating the common variables intc two {or perbaps more?) distinct
groups, in order to reflect an observable hierarchy in the way in which they

are vsed. Let us try to order them in terms of "bhasicness".

The semaphore "incoming message" seems at first sight a fairly basic
cne, being defined by the surrounding universe. This is, however, an illusion:
within +the parallel compound we should have programmed (as N + 2nd process)
the operator himgelf, and the semaphore "incoming message" is the private
semaphore for the message interpreter just as "procsem[i]" is for the i-th

process. )

Thus the mest basic guantity is the semaphore "mutex" taking care of the

mutual exclusion of the critical sections,

Then come the state variables "comvar® and "procvar" which are inspected

arnd can be modified within the critical sections.

The quantities just mentioned share the property that their values
must be set before entering the parallel compound. This property is also
shared by the semaphores “procsem” (and "incoming message", see abave), if
we stick to the rules that parallel staiements will access common semaphores

via P~ and V-operations exclusively.

(Without this restriction, request for the communicatinn facility

by process n could start with:
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"P(mutex};
if camvar = O then
begin comvar:= 1; V(mutex) end
else
begin arocvar{n |s= 1; procsen[nli= O
V(mutex); P(procsem[n]) end" .

We reject this solution an the further observation, that the assignment
“procsem[n]“ is void, except for the first time that it is executed; the
initialization of procsem's cutside the parallel compound seems therefore

apprapriate).

For the common variables, listed thus far I should like to reserve the
name M"status variables", to distinguish them from the remaining ones,

"asknum" and "operanswer", which I should like to call "transmissicn variables".

I call the latter "transmissieon variables" because, whenever one of
the processes assigns & value to such a variable, the information just stored
is destinated for a well known "receiving party". They are used to transmit

information between well-known parties.

Let us now turn our attention from the common variables towards the
programs. Within the programs we have learnt to distinguish the so~called
"critical sections"™, for which the semaphcre._"mutex" caters for the mutual
exclusion. Besides these, we can distinguish regions, in which relevant

actions occur, such as:

in the i-th process:
Region 1: sending an M-message
Region 2: sending a Qt(i)~question

Region 3: reacting to operanswer[i] (this region is somewhat opsn=ended)

and in the message interpreter:

Region 4: ignoring ‘incoming messages
Region 5: expecting A1, A2 or A3
Region 6: expecting A4{i), AS(i) or A6
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We come now fto the following picture. In the programs we have critical
sections, mutually excluded by the semaphaore "mutex". The purpose of the
critical sections is to resplve any ambiguity im the inspection and modification
of the remaining state variables, inspection and modification performed fer
the purpose of more intricate “sequencing patterns® of the regions, sequencing
patterns, that make the unambiguous use of the transmission variables possihle,
(If one process has to transmit information to ancther, it can now do sg
via a transmission variable, provided that the execution of the assigning
region is always followed by that of the inmspecting region before that af the

next assigning region!)

In the embellisbed version of the program we shall stick to the rule
that the true state variables will only be accessed in critical sections
{if they are not semaphores) or wvia P= and V-operations (if they are sema-
phmres),rwhile the transmission variables will only be accessed in the
regions. {In more cumplicafed examples this rule might prove too rigid and
duplication migh% be avoided by allowing transmission variables at least
to be inspected within the critical zection. In this example, however,

we shall stick to it.)
The remaining program improvemenis are less fundamental,

Coding goes more smoothly if we represent the fact of requested
operator pricrity not in additional values of "comvar™ but in an additional
two~valued state variable:

"Boolean operator priority"
(Quantities of type "Boolean" can take on the two values denoted by "true"
and "false" respectively, viz. the same domain as "conditions" such as we

have met in the if-clause.)

Furthermore we shall introduce two proceduress; they are declared
outside the compound and therefore at the dispasal of the different

constituents of the parallsl compound.

We shall first give a short description of the new meanings af the

values. of the state variables "procvar" and "comvar":
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prmcvar[i] =0 homing positicn

procvar[i] = 1 waiting for availability of the communicetion facility
for M or Q1(4i)

prncvar[i] =2 waiting for the answer "A4(i)“ or “AB(i)".

comyar = homing position (cammunication facility free)

comvar = 1 communication facility for M or Q1

camvar = 2 communicatiaon facility for Al, A2 or A3

comyar = 3 communication facility for A4, A% or A6.

We give the program withgut comments and shall do it in twe stages:
first the program outside the parsilel compound and then the constituerts

of the parallel compound,

begin integer mutex, comvar, asknum, loop;
Boolean aperator priority;
inieger array Procvar, pracsem, Dperanswerf1:N];
procedure M or Q entry(u); value u; integer uj

begin P(mutex);

if comvar = 0 then
begin comvar:= 1; V(mutex) and
else
begin procuar[u}:: 1; V(mutex); P(prucsem[u}) end
Eend;
Erocedure select new comvar value;
begin integer i;
if operator priority then
begin operator prigrity:= false; comvar:= 3 end
else
begin for is= 1 step ! until N do
begin if procuar[i] =1 then
begin pra:var[i]:: ; comvar:i= 1;
V(procsem[i}); goto ready end
end;
comvar:= J;
ready: end

end;
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for loop:= 1 step 1 wntil N do
begin procvar[loup}:: 0; procsem{luop]:: 0 end;
comvar:= O; mutex:= 1; operator priority:= false;

parbegin
process 1: begin.iseeceeinasannseesuend;

LY

process N: beginee.essscvssesans veesBnd;

message interpreter:

bEginseevessrsooans eesaa.end
parend

end

Here the n—th process will be of the form

process n:  begin

LRE Y

M message: M or Q entry{n);
Region 1: send M message;

F(mutex); select new comvar value; V(mutex);

Q' question:M ar Q entry(n);
Region 2: asknumi= n;

send Q1(n);

P(mutex); comvar:= 2; V(mutex); P(prncsem[n]);
Region 3:  if operanswer[n} = 1 then Reaction 1

else Reaction 2;

Whern the message interpretsr decides to enter Region 6 it copies, befors
doing so, the array "procvar": if an answer A4(i) should be acceptable,
ther "procvar[i] = 2" should already hold at the moment of annourcement of

the answer.
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message interpreter:

begin integer i; integer array pvcopy[1:N];

wait: P(incuming message ) ; P(mutex);

if comvar = 1 then

Region 4: begin operator priority:= frue;
leave: V(mutex); goto wait end;
if camvar £ 2 then goto Region 6;
Region 5: V(mutex); collect message;
if message £ Al and message # A2 and message % A3 then goto wait;
ir= asknum;
if message = Al ﬁbgﬂ_operanswer[i}:: 1 else
if message = A2 Eﬁgﬂ‘operanswerEi]:z 23
P(mutex);
if message = A3 then arocvar]iJi= 2 else
signal to i: V(prmcsem[i]);
preleave: select new comvar value; goto leave;
Region 6: if comvar = O ther comvar:i= 3;
for i:=1 step 1 until N do pvcnpy[i]:: procvarfi];
V(mutax); collect message;
if message = A6 then begin P(mutex); gota prelsave end;
if message # A4(pr0cess number) and message # AS(DIDCESS number) then
goto wait;
i:= "process number given in the message";
if.pucnpy[i] L2 then goto wait;
operanswer[i]::.if message = A4 then 1 else 2;
P{mutex); procvar[i]:= O; gota signal to 1

end

As an exercise we leave to the reader the version, where pending requests
for Q1-guestions have priarity over those for M—messages. As a next extensiaon
we suggest a two console configuration with the additional restriction that
an A4- or AS—message is only acceptable via the console over which the conver—
sation has been initiated. {Dtherwise we have to exclude simultaneous, contra—
dicting messages “A4(i)" and "AS(i)" via the two different consoles. The solution

without this restriction is left for the really fascinated reader.)
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5.2.2. Proving the Correctness.

In this section title I have used the word "proving"™ in an informzl way.
1 have not defined what formal conditions must be satisfied by a "legal
proof" and I do not intend to do so, When I can fird a way tc discuss the
program of section 5.2.1, by which I can convince myself —and hopefully
anybody else that takes the trouble to doubtl~ of the correctness of the

overall performance of this aggregate of processes, I am content.

In the following "state picture" we make = diagram of al the states in
which a process may fird itself "for any length af time", i.s. autside
sections, critical to mutex. In arrows we describs the transitions taking
place within the critical sections; accompanying these arrows, we give the
modifications of comvar or the conditicns, under which the transition

from one state toc another is made.

Calling the neutral region of a process before entry into a Region 1

or Region 2: "Region O", we can give the state picture

Region ©

procvar = O

comvar O — 1 comvar # ¢

procvar = |

comvar — 1

Regian 1 or 2

procvar = Q

Leaving Region 1 can be pictured as:

Region 1, procvar = O

comvar 1 — 3 1= i1 =0
vperator procvar all procvar # 0
priority t—=0

1]
[®]

Region O, procvar
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Leaving Region 2, with the possibility of a delayed answer, can bhe pictured

as:
Region 2, procvar = O }
|
waiting for answer, procvar = Q
At, A2 AS
comvar 2 — 3, 1, 0O comvar 2 — 3, 1, 0

J waiting for answer, procvar = 2

! !
i comvar Q0,3 — C,1

J{ A, AS

\ Region %, procvar = Q J

Aeaction to the answer i

‘

‘ Region Q, procvar = 0

We can try to do the same for the message interpreter. Here we indicate
alang the arrows the relevant occurrences, such as changes of a pracvar
and the kind of message. We use "WIM" as abreviation for "Waiting for

Incoming Message".



EWD123 - 70O

procvar 1 = Q
Region & — 1, 2

WIM
comvar = 1
no prierity

"Regian O —

all procvar # 1

WIM
comvar = 0

N
| fAegion ? —

Region O

end of Regiaonm 2

message rejected

Region 1, 2

na priority

T

| message

Region 4

=

end of Region 2

WIM
camvar = 2
no priority

mesgage

Region 5
comvar = 2
no priority

wrang

Al, A2, A3
Region 2 —
2y, 3

message

A1
AZ,
Az,

WIMm
comvar = 1

priprity

Region 1 -

Region O

WIM

comvar = 2

priority

message

Region 5

comvar = 2

priority
wrong
message

i

WIM
comvar = 3

no priority

message

\

Regicn 6
comvar = 3

no priority

wTong

?

message

A, A5 (Region 23, procvar 2 — O)

or A6




EwDizs -~ 71

These schemes, of course, teach us nothing new, but they may be a

paowerful aid ir the program inmspectiaon.

We verify first, that "comvar = 0" representc indeed the homing
position of the communication facility, i.e. available for either entrance
into Regien ! ar Region 2 (by one of the processes) ur entrance into
Region & (by the message interpreter, as result of am incoming messags

for which it is waiting).

If camvar = O and one af the processes wants to enter Region 1 ar
Region 2, or a message comes from the operator, Region 1, 2 or 6 is entered;
furthermore this entrance is accompanied by esither "comvar:= 1" or "comvar:= %"
and in this way care is taken of the mutual axclusion of the Regiorms 1, 2

and 6.

The mutual exclusion implies that processes may fail to enter Regian
1 or 2 immediately, or that an incoming message must be rejected, coming
at an inacceptable momsnt. In the first case, the process sets "procvar:= 1",
in the second case (in Region 4) the message interpreter sets "operator

pricrity:= true",

These assignments are only performed under the condition "caomvar # o,
furthermore the assigrment "eamvar:= O" —omly occurring in the procedurs
"select new comvar valus"- is only performed provided "nan operator priority
and all procvar f 1", From these two chservations and the initial values,

we can conclude:

"comvar = O" excludes "operator priority" as well as the occurrence of one

or more "procvar = 1",

As all ends of accupaticn of ths communication facility (i.=. the
end of Region 1, 5 =znd 6) call "select new comvar value" we have established
a) that entrance into the Region 1, 2 and 6 is only delayed when necessary

b) that such & delay is guaranteed to be resolved at the earliest opportunity,

The structure of the message interpreter shows clearly that
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a) it can =xscute Region 5 only if "comwvar = 2"
b) it can only sxecute Region 5 if "comvar = 2"

C) execution of Region 5 is the only way to mske comvar again # 2.

The only assignment "comvar:= 2" occurs at the end of Region 2. As
a result each Region 2 can only be followed by a Region 5 and, conversely,
gach Region 5 must be preceded by & Region 2. This sequencing allows us
to use the transmission variable "asknum", which is set in Region 2 and

inspected in Region 5.

For the uses of the transmission variables "operanswer™ an arzlogous
analysis can be made. Region 2 will be followed by Region 5 (see abave);
if here the final answer (A1 ar A2) is interpreted, Uperanswer[i} is set
before “V{procsem[i])", so that the transmission variable has been set
praperly before the process can (and will) enter Region 3, where its
"operanswer" will be inspected. If in Region 5 the answer A% is detected,
the message interpreter set for this process "prgcvar[i]:: 2", thus allowing
ance in Region § the answer A4 or AS for this process. Again "V{prn:sem[i])"
is only performed after the assignment to operanswer. Thus we have verified
that
a) operanswer is only set once by the message interpreter after a request
in Region 2,
b) this operanswer will only be inspected in the following Region % after
the request to set it has been fulfilled (in Region 5 or Region ).

This completes the soundness of the use of the transmissicn variables

"aperanswer".

Inspection of the message interpreter (particularly the scheme of its

states) shows

a) that & rejected message (Region 4) sooner or later is bound to give
rise to Region 6

b} that wrong messages are ignored, giving the operator the opportunity

to correct.

By the abave analysis we hope to have created sufficient confidence
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in the correctness of our comstruction. The amalysis followed the steps
glready hinted at in section 5.2.%: after creation of the critical sections
(with the aid of mutex), the latter are ussd to sequence Regicns properly,

thanks to which seguencing the transmission variables can be used unambiguously.

6. The Problem of the Deadly Embrace.

In the introductory part of this section I shall draw attenticn to a
rather logical praoblem that arises in the cooperation between various
processes, when they have to share the same facilities, We have selected
this problem for various reasons. Firstly it is a straightferward extension
of the sound principle that po two persons can use a single compartment of
a revolving door simultsneously. Seondly, its solution, which I regard as
non—trivial and that will be given in section 6.1, gives us a nice example
of more subtle cooperation rules than we have met before. Thirdly. it gives
us the opportunity to illustrate (in section 6.2) a programming technique

by which a further gain in clarity can be achieved.

Let me first give an example of the kind of sharing I have in mind.

As "orocesses" we might take "programs", describing some computational
process to be performed by a computer. Execution of such a computaticnal
process takes time, during which information must be stored in the computer.
We restrict ocurselves to thoses processes of which is known in advance
1) the maximum demand on storage space  and
2) that the computational process will end, provided that storage space
requested by the process will be put at the disposal of the computational
process. The ending of the computational process will imply that its demand

on storage space will reduce to zero.

We assume that the available store has heen subdivided into fixed size
"pages" which, from the point of view of the programs can be regarded as

equivalent.

The actual demand on storage space, needed by a process, may be a function
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varying irn time as the process proceeds -subject, of course, to the & priori
known upper bound. We assume that the individual processes request from
and return to "available store" in single page units. With "equivalence"
{see the last word of the previous paragraph) is meant that a process,

requiring 3 mew page only asks for "a new page" but never for a special one

or one out of a special group.

We now request that s process, once initiated, will gei the opportunity
~sooner or later— to complets its action and rejsct any organization in
which it may happern that a process may have to be killed half way its
activity, thereby throwing away the computation time already invested in

it.

If the computer has to perform the different processes one after the
other, the only condition that must be satisfied by a process is that its

maximum demand does not exceed the total stcrage capacity,

If, however, the computer can serve mare tham one process simultaneously,
one can adhers to the rule that cne only admits programs as long as the sum
aof their maximum demands does not exceed the total storage capacity. This
rule, safe though it is, is unpecessarily restrictive, for it means that
each process effectively occupies its maximum demand during the complete
time of its executiom. When we consider the following table {in which we

regard the processes as "borrowing" pages from available store)

process maximum demand present loan further claim

Pt 80 40 40

Pz 60 20 + 40
available store = 100 - 60 =40

(a total store af 100 pages is assumed), we have & situation in which is
still nothing wrong. If, however, both process request their next page and

they should bpth get it, we should get the following situation:

process maximum demand present loar further claim
P1 80 41 39
P2 60 21+ 39

available store = 100 - 62 = 38
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This is an wnsafe situation, for both processes might want to realize
their full further claim before returning a single page to available store.
So each af them may first need a further 39 pages, while there are only 38

available.

This situation, when one process can only continue provided the other
one is killed first, is called "The Deadly Embrace'". The problem to be solved
is: how can we avoid the danger of the Deadly Embrace without being unrsces-

sarily restrictive.

€.1. The Benker's Algorithm.

A banker has a finite capital expressed in florins. He is willing to
accept customers, that may borrow florins from him on the following conditions.
1. The customer makes the loan for a transaction that will be completed
in a finite pericd of time.

2. The customer must specify in advance his maximum "meed" for florins
for this transaction.

3. As long as the "lpan" does not exceed the "need" stated in advarce,
the customer can increase or decrease his lean florin wise.

4. A customer may not ¢omplain, if he asks fer an increase of the

current loan and receives Trom the banker the answer "If I gave you the
florin you ask for you would not exceed your stated nesd and therefore you
are entitled to a next Tlorin. At present, however, it is somewhat incomvenient
for me to pay you, but I promise to send you the florin in due time."

5. His guarantee that this moment will indeed arrive is founded on the
banker's cautiousness and the fact that his co-customers are subjected to
the same condition as he: that as soon as a customer has got the florin he
asked for he will proceed with his transactions at & non-zero speed, i.e.
within a firite period of time he will ask for a mext florin or will return
a florin or will finish the transaction , which implies that his complete

inan has been returned (florin hy florin).

The primary guestions are
&) under which conditicons can the banker make the contract with a new

customer?
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£) under which conditions can the banker pay a (next) florin to a requesting

customer without running into the danger of the Deadly Embrace?

. Y . . v
The answer to gquestion a) is simple; he can accept any cusiomer, whase

stated need does not exceed the banker's capital.
To answer question b) we introduce the following terminology.

The banker has a fixed "capital"™ at his disposal; each new custamer

states 1in advance his maximum "need" and for each customer will hgld

"need[i] < capital” (for all i).

The current situation for each customer is characterized by his "loan",

Eack lcan is initially = O and shall satisfy at any instant

nQ << lgan[i] < nesd[i]" (for all i).

A useful quantity to be derived from this is the maximum further "claim",

given by "claim[ij = need{i] - loan[i]" (for all i),

Fimally the banker notes the amount in Yecash", giver by
"ragh = capital — sum of the loan}s".

Obviausly no S cash _<_ capital"

has to hold.

In order to decide, whether a requested florin can be paid to the
customer, the banker essentially inspects the situation that would arise
if he had paid it. If this situation is "safe", then he pays the florin,

if the situation is not "safe", he has to say: "Sorry, but you have to wait.",

Inspection, whether a situation is safe amounts to inspection, whether
all custamer transactiors can be guaranteed to be able to finish. The algorithm
starts to investigate whether at least one customer has a claim not exceeding
cash. If so, this custamer can complete his transactions and therefore the
algarithm investigates the remaining customers as if the first one had finished
and returned its complete leoan. Safety of the situation mearns, that all

transactions can be finished, i.e. that the banker sees a way of getting all
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his money back.

If the customers are numbered from 1 through N, the routime inspecting

a gituation can be written as follows:

"integer free money; Hoolesan safe; Hoolean array finish doubtful[1:N];
free money:= cashj
for it= 1 step 1 until N do finish doubtfulli]:= true;
for i:= 1 step 1 until N go
begin if finish doubtful[i] and claim[i] < free maney then
begin finish doubtfulli]:= false;
free money:= free maney + loan[i]; gato L

end;

if free money = capital then safe:= true else safe:= falge"

The above routine inspects any situation. An improvement of the
Algorithm has been given by L.Zwanenburg, who takes into account that the
only situations to be investigated are those, where, starting from a safe
situstion, a florin has beern tentatively given to custamer[j]. As soon as
"£inish doubtfull j]:= false" can be executed the algorithm can decide
directly on safety of the situation, for apparently this tempted payment
was reversible! This short cut will be implemented in the program in the

next section.

6.2. The Banker's Algorithm Applied.

In this example, the florins are processes as well. (Each florin, say,
represents the use of a magnetic tape deck; the loan of a florin is ithen the

permission to use one of the tape decks.)

We assume, that the customers are numbered from 1 through N and that the
florins are numbered from 1 through M, Each customer has a variable "flarin
number" in which, after each granting of a florinm, it can find the number of
the florin it has just borrowed; also each flerin has a variable "customer

number" in which it can find by which customer it hes been horrowed.
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Each customer has a state variable "cusvar", where "cusvar = 1" means
"] am anxious to borrow." {otherwise "cusvar = O); each florin has a state
variable "flovar", where "flovar = 1" means "I am anxious to get borrowed,
i.e. T am in cash.," {otherwise "flovar = O"). Each customer has a binary
semaphore "cussem", each florin has a bimary semaphore "flosem", which

will be used in the usual manper.

We assume that each florin is borrpwed and returned upon customer indi—
cation, but that he cannot finish the loan of a florin immediately. After the
custemer has indicated that he has no further use for this florin, the florin
may not be instamtaneously available for a next use. It is, as if the
customer can say to & borrowed florin "run home to the banker", The actual
loan will only be ended after the florin has indeed returned into cash: of its
return into the banker's cash it will signal the customer from which it came
via a customer semaphore "florin returned". A P-operation on this semaphore
should guard the customer for an inconscious overdraft. Before each flarin
request the customer will perform a P-operation an its "florin returned"; the

initial value of "fleorin returned" will be "= need".

We assume that the constant integers "N" and "M" (scapital) and the
constant integer array "need" are declared and defined in the wniverse in

which the following program is embedded.

The procedure "try to give to" is made into a Boolean procedure, the
value of which indicates whether a delayed request for a florin has been
granted. In the florin program it is expleoited that returning a florin may
at most give rise to a single delayed request now being grarmted. (If more than
one type of facility is shared under control of the banker, this will no longer
held, Jumping out of the for loop to the statement labeled "leave" at the

end of the florim program is then not permissible.)



EWD123 - 79

begin integer array loan, claim, cussem, cusvar, florin number, florin

réturned[1:N],

flosem, flovar, customer number[?:M];

integer mutex, cash, k;

Boolean pracedurs try to give to {j); value j; integer j;

begin if cusvar[j} = 1 then
begin integer i, free money;
Baplesan array finish doubtful[1:N];
free moneyi= cash = 1;
claim[j]:: claim[j] -t loan[j]:: laan[j] +1;
for i:= 1 step 1 until N do finish doubtfulli]:= true;
LO:  for i:= 1 step 1 until N dg
begin if finish doubtful[i] and claim[i] < free money then
begin if i # j then
begin finish doubtfullil:= false;

free money:= free money + lnan[i];

gato 0

else
begin comment Here more sophisticsted ways for

selecting a free florin may be implemented;

is= Q;
Li: d:= i + 1; if flovar[i] = O then goto L1;
florin number[j]:: i;
customer number{i]:: is
cusvar[j]:: 03 Flavar[i]:: Q:
cash:= cash - 1;
try to give to:= frue;
V(cussem 5 1); V(flosem[i]); goto L2
end

end;

claim|j]:= claim[j] + 1; loan[j]:= Ioan[j] - 1
end;
try to give to:= false;

L2: end;
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mutex:= 1; cashi= M;

for ki= 1 step 1 until N do

begin lean[k]:= 0; cussem[k]:= O3 cusvar[k]i= O; claim[k]:= need[k];
florin returned[k J:= need[k ]

end;

for ki= 1 step 1 until M da

begin flosem[k]:= 0; flovar[k]:= 1 end;

parbegin

custamer 1: begin..sssscicsonnassnaaand;

N EREN]

customer Ni begimesececascrarornaneas end;
florin 1: beginseecsocrrvernveccnss end;

LRI A Y

florin M: bEgQin.eececscnecrsanssaanend
parend

In custamer "n", the request for a new florin consists of the following
sequence of statements:
"P(florin returned[n]);
P(mutex);
cusvar[n]:= 1; try to give to (n);
V(mutex);
P(cussem[n])" H
after completion of the last statement "florin number[n]" gives the identity
of the florin just borrowed, the customer has the opportunity to use it and

the duty to return it in due time to the banker.
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The structure of & fiorin is as follows:

florin m:

begin integer h;

start:P(Flasem[m]);
"Now "customer number[m]“ identifies the customer that has borrowed it.
The florin cam serve that customer until it has finished the task
required from it during this loan. To return itself to the cash, the

florin proceeds as follows:"

claim| customer numher[m]]:: claim[customer number[m]] +1;
loan[custnmer numher[m]]:: loan| customer number[mj] -1;
flovar[m]:: 1; cash:= cash + 1;
V(florim returned[customer number[m}}};
for hi= 1 step 1 uptil N do

begin if try to give to{h) then goto leave end;

leave:V(mutex);

goto start
end
Remark. Roughly speaking a succesful loan can only take place when two

conditions are satisfied: the florin must be requested and the florin must
be available, In this program the mechanism of cusvar and cussem is also
used (by the customer), when the requested florin is immediately available,
likewise the mechanism of flovar and flosem is also used (by the florin)
if, after its return to cash, it can immediately be borrowed again by a
waiting customer. This programming technique has besen suggested by C.Ligtmans
and P.A.Voarhoeve, and I mention it because in the case of more intricate
rules of cooperation it has given rise to a simplificatiorn that proved to
be indispensable. The underlying cause of this increase in simplicity it
that the dynamic way through the topological structure of the program no
longer distinguishes between an actual delay or not, just as in the case

of the P-operaticn itself.
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7. Conluding Remarks.

In the literaturs one sometimes finds a sharp distinction between
"concurrent programming" -more than one central processor operating on the
same job= and "multiprogramming® =a single processcr dividing its time
between different jobs—. I have always felt that this distinction was
rather artificisl and therefore confusing. In both cases we have, macros-
capically speaking, a number of seguential processes that have to cooperate
with each other and our discussions on this cooperation apply equally well
to "concurrent programming® as to "multiprogramming” ar any mixture of the
two. What in concurrent programming is spread cut in space (:.q. equipment)
iz in multiprogramming spread ocut in fime: the two present themselves as
different implementations of the same logical structure and 1 regard the
development of a tool to describe and form such structures themselves, i.e.
independent af these implementational differences, as ore of the major
contributions of the work from which this monagraph has been born. As =z
specific example of this unifyirmg train of thought I shauld like to mention
-for those that are only meekly interested in multiprocessors, multiprogram—
ming and the like— the complete symmetry between a normal sequential computer
on the one hand and its periferzl gear on the other (as displayed,.For instance,

in Section 4.%: "The Hounded. Buffer™).

Finally I should like to express, once mors, my concern about the
correctness of programs, because I am not too sure, whether =211 of it is

duly reflected in what I have written.

If I suggest methods by which we could try to attain a greater securiiy,
then this is of course more psychology than, say, mathematics. I have the
feeling that for the Human Mind it is just terribly bard te think in terms
af processing evolving in time and that our greatest aid in controling them
is by attaching meanings tc the values of identified guantities. Fer instance,

in the program sectian "o 10
1:= H

LO: xi= sqri(x); it= i = 1;

if i > 0 then gato LO"
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we conclude that the cperation "x::sqrt(x)" is repeated ten times, but I
have the impression that we can do so by sttaching to "i" the meaning of
"the number of times that the operation "x::sqrt(x)" still has to be re-
peated". (I know that in discussing program verification, Dr,F.Naur has
intraoduced the term "the gemeral snapshot"; in all probsbility we have here
a trivial example of it.) But we should be aware of the fact that such a
timeless meaning (a statement of fact or relatien} is not permanently
correct: immediately after the execution of "x:=sgri(x)" but before that of
the subsequent "i:= 1 — 1" the value af "i" is "one more thamn the number of
times that the operation "x:= sqri(x)" still has to he repeated". In other
words: we have to specify st what stages of the process such a meaning is
applicable and, of course, it must be applicsble in every situation where
we rely om this meaning in the reasoning that convinces us of the desired

overall performance of the program.

In purely segquential programming, as in the above example, the regions
of applicability of such meanings are usually closely connected with places
in the program text (if not, we have just a tricky and probably messy program).
In multiprogramming we have seen —in particular in Section 5.2.1- that it is
a worth-while effort to create such regians of applicabili?y of meaning very
consciously. The recognition of the hierarchical difference between the
presence of a message and the message itself, here forced upon us, might give

a clue even to clearer uniprogramming.

For example. if 1 am married to one out of ten wives, numbered from
1 through 10, this fact may be represented by the value of a variable "wife
number", associated with me. If I may also be sinmgle, it is a commanly used
programmer's device to code the state of the bachelor as an eleventh value,
say "wife number = O", The meaning of the wvalue of this variable then becomes
"If my wife number is = O, then I am single, otherwise it gives the number
of my wife." The moral is that the introduction of a separate Hooclean variable

"married" might have been more honest.

We know that the von Neumann type machine derives its power and flexibility
fram the fact that it treats all words in store on the same footing. It is

often insufficiently reslized that, thersby, it gives the user the duty to
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impose structure wherever recognizable.

Sometimes it is. It has often been quoted as The Great Feature of the
von Neumann type machine that it can modify its own instructions, but most
modern algorithmic translators, however, create an ochbject program that
remains in its entire execution fase just as constant as the original
source text. Instead of chactically modifying its awn instructions just
before or after thelir execution, creation af instructions and execution af
these instructians now occur in different sequencesd regions: the tramslation

fase and the exscution fase. And this for the benefit of us all.

It is my firm belief that in esach process of some complexity the
variables occurring in it admit analogous hisrsrchical orderings and that,
when these hierarchies are clearly recognizable in the program text, the
gain in clarity of the program and in- efficiency of the implementaticn
will be considerahle. If this monograph gives anmy reader a clearer indication
of what kind of hierarchical ordering can be expected to be relevant, 1
have reached ane of my dearest goals. And may we rnot hope, that a confram-
tation with the intricacies of Multiprogramming gives us a clearer under-—

standing of what Uniprogramming is all about?



