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Executive Summary

* Problem: Data movement is a major bottleneck is modern systems.
However, it is unclear how to identify:
— different sources of data movement bottlenecks

— the most suitable mitigation technique (e.g., caching, prefetching, near-data processing)
for a given data movement bottleneck

e Goals:

1. Design a methodology to identify sources of data movement bottlenecks
2. Compare compute- and memory-centric data movement mitigation techniques

» Key Approach: Perform a large-scale application characterization to identify
key metrics that reveal the sources to data movement bottlenecks

* Key Contributions:
— Experimental characterization of 77K functions across 345 applications

— A methodology to characterize applications based on data movement bottlenecks and
their relation with different data movement mitigation techniques

— DAMOV: a benchmark suite with 144 functions for data movement studies
— Four case-studies to highlight DAMOV’s applicability to open research problems

SAFARI DAMOV: https://github.com /CMU-SAFARI/DAMOQV 2



https://github.com/CMU-SAFARI/DAMOV
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Data Movement Bottlenecks (1/2)

Data Movement

Off-Ciii Link
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Data movement bottlenecks happen because of:
- Not enough data locality — ineffective use of the cache hierarchy
- Not enough memory bandwidth
- High average memory access time
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Data Movement Bottlenecks (2/2)

Compute-Centric Architecture
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- Abundant DRAM bandwidth

Off—Chii Link

- Shorter average memory
access time
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Near-Data Processing (1/2)

The goal of Near-Data Processing (NDP) is
to mitigate data movement

SAFARI 6



Near-Data Processing (2/2)

Samsung FIMDRAM (2021)

S SAMSUNG
" HBM-PIM

Near-DRAM-banks processing Near-DRAM-banks processing
for general-purpose computing for neural networks
0.9 TOPS compute throughput’ 1.2 TFLOPS compute throughput?

The goal of Near-Data Processing (NDP) is

to mitigate data movement

[1] Devaux, "The True Processing In Memory Accelerator,” HCS, 2019
SAFARI [2] Kwon+, “A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using 7
Bank-Level Parallelism, for Machine Learning Applications,” ISSCC, 2021



When to Employ Near-Data Processing?

Mobile consumer workloads
(GoogleWL?)

Graph processing

(Tesseract!) Neural networks

(GoogleWL?)

Near-Data
Databases :
(Polynesia®) Processing

DNA

sequence mapping

Time series analysis (GenASM?; GRIM-Filter?)

(NATSA®)

[1] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015

[2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

[3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis,” MICRO, 2020
[4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics, 2018

[5] Boroumand+, "Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases with Specialized Hardware/Software Co-Design,”
arXiv:2103.00798 [cs.AR], 2021

] Fernandez+, “NATSA: A Near-Data Processing Accelerator for Time Series Analysis,” ICCD, 2020
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Identifying Memory Bottlenecks

* Multiple approaches to identify applications that:
- suffer from data movement bottlenecks
- take advantage of NDP

* Existing approaches are not comprehensive enough
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Limitations of Prior Approaches (1/2)

* Roofline model — identifies when an application is
bounded by compute or memory units

Compute Roof
/ y = Peak System Throughput

Memory Roof 1000
y=BWxAI —
Q
% 300f
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=4
S Compute Bound —
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g "l Memory :  Notsuitable for NDP
g Bound — -
* Suitable for -
L NDP
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Arithmetic Intensity (OPS/byte)
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Limitations of Prior Approaches (1/2)

* Roofline model — identifies when an application is
bounded by compute or memory units
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Limitations of Prior Approaches (1/2)

* Roofline model — identifies when an application is
bounded by compute or memory units

® Faster on CPU O Faster on NDP @ Similar on CPU/NDP O Depends

Memory Bound ot

applications Compute Bound
are faster on \ applications
CPU, 300 Ty | " are faster on CPU /
or performance * Je * =
depends Y A SN

100 |

Performance (GOPS/s)

Compute Bound applications

AN
(@] - III ’: \\.: . ) - f
Memory Bound L B have similar performance
applications aN i | on CPU/NDP or
4 T : performance depends )
o 10 100 1000

Arithmetic Intensity (OPS/byte)

SAFARI 12



Limitations of Prior Approaches (1/2)

Roofline model does not accurately account
for the NDP suitability of memory-bound applications

SAFARI 13



Limitations of Prior Approaches (2/2)

* Application with a last-level cache MPKI > 10
— memory intensive and benefits from NDP

SAFARI
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Limitations of Prior Approaches (2/2)

* Application with a last-level cache MPKI > 10
— memory intensive and benefits from NDP

Applications with low
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Limitations of Prior Approaches (2/2)

LLC MPKI does not accurately account
for the NDP suitability of memory-bound applications

SAFARI 16



Identifying Memory Bottlenecks

* Multiple approaches to identify applications that:
- suffer from data movement bottlenecks

- take advantage of NDP

* Existing approaches are not comprehensive enough

Roofline model

High LLC MPKI
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Performance (GOPS/S)\
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The Problem

No available methodology can comprehensively:

— identify data movement bottlenecks

— correlate them with the most suitable
data movement mitigation mechanism

SAFARI 18



*Our Goal: develop a methodology to:

— methodically identify sources of data movement
bottlenecks

— comprehensively compare compute- and
memory-centric data movement mitigation
techniques

SAFARI 19
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Key Approach

* New workload characterization methodology to analyze:
- data movement bottlenecks
- suitability of different data movement mitigation mechanisms

* Two main profiling strategies:

4 )

characterizes the memory behavior independently
of the underlying hardware

J

Y4

Architecture-dependent profiling:

evaluates the impact of the system configuration
on the memory behavior

\_ /
SAFARI 21




Methodology Overview

User Input

————————————
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Step 1
\ Application Profiling
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Methodology Overview

NS

" “Source Code

N

Step 1
' \ Application Profiling

roi_ begin
— N\
— N\

roi_end

SAFARI

23



Step 1: Application Profiling

Goal: Identify application functions that suffer from data
movement bottlenecks

Hardware Profiling Tool:
Intel VTune

| o MemoryBound:
PIOEESSIRS CPU is stalled due to load/store

SAFARI 24



Methodology Overview

Step 2
Locality-based Clustering

Temporal Locality

Spatial Locality

SAFARI 25



Step 2: Locality-Based Clustering

* Goal: analyze application’s memory characteristics

Stride Profile Histogram

N

'\
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E
Memory Trace g
s
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Low spatial locality

Stride Profile Histogram

Frequency (count)
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Step 2: Locality-Based Clustering

* Goal: analyze application’s memory characteristics

Memory Trace

euse profile(4)+=1

SAF. q:

Reuse Profile Histogram
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Low temporal locality
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Methodology Overview

DAMOV-SIM Simulator

-------------------

Step 3
Memory Bottleneck Class.

Arithmetic Intensity

LLC MPKI

Last-to-First

SAFARI | Miss Ratio (LFMR) | |28




Step 3: Memory Bottleneck Classification (1/2)

4 )
Arithmetic Intensity (Al)

- floating-point/arithmetic operations per L1 cache lines accessed
— shows computational intensity per memory request

- J
4 )
LLC Misses-per-Kilo-Instructions (MPKI)

- LLC misses per one thousand instructions
— shows memory intensity

N\
AN

Last-to-First Miss Ratio (LFMR)

- LLC misses per L1 misses
— shows if an application benefits from L2 /L3 caches

- /
SAFARI 29




Step 3: Memory Bottleneck Classification (2 /2)

* Goal: identify the specific sources of data movement

bottlenecks
Configuration 1: Host CPU System

s DAMOV-SIM Simulator\ m Hoff T

chip lin
N Off-chip link |

\_ Scalability Analysis / e w

Integrated ZSim and Ramulator Logic Layer

* Scalability Analysis:
- 1,4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
— 3D-stacked memory as main memory

SAFARI DAMOV-SIM: https://github.com/CMU-SAFARI/DAMOV 30
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Step 1: Application Profiling

* We analyze 345 applications from distinct domains:

- Graph Processing
- Deep Neural Networks
- Physics

- High-Performance Computing

- Genomics

- Machine Learning

- Databases

- Data Reorganization
- Image Processing

- Map-Reduce

- Benchmarking

- Linear Algebra

SAFARI

Signal
processing
Machine Data
learning mining
Data
Genomics analytics

Deep Neural
Networks

processing
Data reorganizatio:

Database

Graph Physics
processing
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Memory Bound Functions

* We analyze 345 applications from distinct domains

* Selection criteria: clock cycles > 3% and Memory Bound > 30%

352 0% Clock Cycles >=3

0% Clock Cycles >=30
00 @ % Clock Cycles >=60
m % Clock Cycles >=90

257

wu
o

Number of Functions
- [ N N w
Ul o
o o

o
o

ul
o

o

>=30 >=50 >=80
Memory Bound

(%)
* We find 144 functions from a total of 77K functions and select:
- 44 functions — apply steps 2 and 3
- 100 functions — validation

SAFARI 33
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Step 2: Locality-Based Clustering

We use K-means to cluster | e © Tt T0® 2
the applications across both t o En
spatial and temporal

locality, forming two
groups

0.75+1

1. Low locality applications
(in orange)

2. High locality
applications (in blue)

ity

0.50 -

Temporal Local

0.25-

0.00 1

0.00 0.25 0.50 0.75 1.00
Spatial Locality
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Step 2: Locality-Based Clustering

The closer a function is to the bottom-left corner

— less likely it is to of
a deep cache hierarchy

Spatial Locality

SAFARI 36
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

High
Al

Ch
EEC

High  —f——
R

Low Low
LFMR
- Low Loy
Decreasing MPKL_

Temporal
Locality

Increasing Low Low
High Loy

SAFARI High

Low Low
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

High 1a: DRAM
High Y Bandwidth
e el
L
- 1b: DRAM Latency

Low Low
LFMR
.1 Low Loy 1c: L1/L2
Decreasing m Cache Capacity

Temporal
Locality
Increasingw Low Low 2a: L3 Cache
— Contention
High LEMR Loy 2b: L1 Cache
Capacity
[
: Al
Ly PRI fm— AL
" 2c: Compute-Bound
SAFARI ig

39



Step 3: Memory Bottleneck Analysis

-

\_

Six classes of
data movement bottlenecks:

each class <« data movement
mitigation mechanism

~

/

SAFARI

.lMemory Bottleneck Class

1a: DRAM
Bandwidth

1b: DRAM Latency

2c: Compute-Bound
_________________ 50 -

1c: L1/L2
Cache Capacity

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

\
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

1a: DRAM

Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

Temporal
Locality

2a: L3 Cache
Contention

High 2b: L1 Cache
Capacity

2c: Compute-Bound
41
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Class 1a: DRAM Bandwidth Bound (1/2)

| Temp.Loc: low |
| LFMR: high ]
MPKI: high ]

J

— High MPKI — high memory pressure

— Host scales well until bandwidth saturates [
| Al low
— NDP scales without saturating alongside attained bandwidth
Host NDP
@ Performance ==Bandwidth (GB/s) @ Performance ==Bandwidth (GB/s)
g 140 500 S 140 500
= 120 400 £ £ 1201 400 £
S 100 2 £ 1007 / z
5 80 300 § £ 80 300 =
g 60 7 200 = g 60 200 =
S 40 & = 40 =
0] g W e o e
20 - - - 0 =0 - - - ' 0
1 4 16 64 256 1 4 16 64 256
Number of Cores Number of Cores

DRAM bandwidth bound applications:

because of the
SAFARI 42




Class 1a: DRAM Bandwidth Bound (2/2)

— High LFMR — L2 and L3 caches are inefficient (O Y o T
(_ LFMR:high |
— Host’s energy consumption is dominated by { Mi‘;‘; high ]]

cache look-ups and off-chip data transfers

— NDP provides large system energy reduction since it does not
access L2, L3, and off-chip links

NDP
SAFARI

Energy (J)

BLink IDRAMI

?iililili

Number of Cores o

S

COOO ==

cooooo0o
Do = OV 00

(98] LJ

-0.02

DRAM bandwidth bound applications:
because it
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

High 1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2

Cache Capacity
Temporal
Locality
2a: L3 Cache
Contention
High 2b: L1 Cache
Capacity

2c: Compute-Bound
44
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Class 1b: DRAM Latency Bound

- High LFMR — L2 and L3 caches are inefficient

- Host scales well but NDP performance is always
higher

Temp. Loc: low

LFMR: high

MPKI: low

Al: low

[
[
[
[

- NDP performs better than host because of its lower memory

access latency

o 80

:: 704
E 60-
E 501
A 40-
~

£ 301
© i
E 20
o 104
Z.

0

@ Host #NDP

——————

BDRAM

— o m m— — m m e e

Number of Cores

| H h thF

DRAM latency bound applications:
host performance is hurt by the
SAFARI
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

High 1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

Temporal
Locality

2a: L3 Cache
Contention

High 2b: L1 Cache
Capacity

2c: Compute-Bound
46

SAFARI High



Class 1c: L1 /L2 Cache Capacity

Temp. Loc: low ]
LFMR: decreasing ]
MPKI: low ]

Al: low ]

- Decreasing LFMR — L2 /L3 caches turn efficient

- NDP scales better than the host at low core counts

[
[
[
[

- Host scales better than NDP at high core counts

- Host performs better than NDP at high core counts since it
reduces memory access latency via data caching

» 90 mL1 mL2
1 2 3 4 5

6

| @ Host #NDP

[o0]
(=)

SSS 23

D R

AMAT (cycles)
O NWHR LI

(@]
]

7 8

Normalized Performanc
O = N WH 1O

o O
L1

o= —

Number of Cores- - = - =7

L1/L2 cache capacity bottlenecked applications:
when the aggregated
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

Temporal
Locality

SAFARI

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

2c: Compute-Bound
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Class 2a: L3 Cache Contention

— Increasing LFMR — L2 /L3 caches turn inefficient {
— Host scales better than the NDP at low core counts | MPKI: low
[

— NDP scales better than host at high core counts

Temp. Loc: high

LFMR: increasing

Al: low

)
)
)
)

- NDP performs better than host at high core counts since it
reduces memory access latency

k‘llm]"\ﬂ" I'\F r‘f\?‘ﬂ(‘

L3 cache contention bottlenecked applications:

SAFARI
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity
Temporal
Locality
2a: L3 Cache

Contention

2b: L1 Cache
Capacity

2c: Compute-Bound

SAFARI High
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Class 2b: L1 Cache Capacity

- Low LFMR, MPKI; high temporal locality [
— efficient L2 /L3 caches, low memory intensity {
[

- Low Al — few operations per byte

Temp. Loc: high

- Host and NDP performance are similar
— L1 dominates average memory access time

250

(32 TR (Y
o o (@]
(e} o

Normalized Performance

o

DN
)
<

@ Host #NDP

4 16 64

Nitmher nf Carec

L1 cache capacity bottlenecked applications:

NDP can be used to

SAFARI
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LFMR: low ]
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Al: low ]
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

Temporal
Locality

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

2c: Compute-Bound

52
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Class 2c¢c: Compute-Bound

- Low LFMR, MPKI; high temporal locality

— efficient L2 /L3 caches, low memory intensity

execution time

Normalized Performance

High Al — many operations per byte

@ Host

#NDP

benefit highly from
SAFARI

4

16
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Compute-bound applications:

64 256

; NDP is

Temp. Loc: high

LFMR: low

MPKI: low

[
[
[
[

Al: high

)
)
)
)

a good fit

Host performs better than NDP because computation dominates
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Step 3: Memory Bottleneck Analysis

.lMemory Bottleneck Class

\

High 1a: DRAM
High iy - Bandwidth
[=)
L
- 1b: DRAM Latency

Low Low
LFMR

Low Loy 1c: L1/L2
Decreasing ML Cache Capacity

Temporal
Locality

2a: L3 Cache
Contention

Increasing Low Low
High LFMR Loy
MPKI Al
MPKI Jmmmeet A
2c: Compute-Bound
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Step 3: Memory Bottleneck Analysis

DAMOV: A New Methodology and
Benchmark Suite for Evaluating Data
Movement Bottlenecks

GERALDO F. OLIVEIRA', JUAN GOMEZ-LUNA', LOIS OROSA', SAUGATA GHOSE?,
NANDITA VIJAYKUMAR?, IVAN FERNANDEZ'-*, MOHAMMAD SADROSADATI', and
ONUR MUTLU!

'"ETH Zurich, Switzerland

*University of Illinois Urbana-Champaign, USA
3Uni\'cniily of Toronto. Canada

*University of Malaga, Spain

Corresponding author: Geraldo F. Oliveira (e-mail: geraldod @inf.ethz.ch).
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Methodology Validation

* Goal: evaluate the accuracy of our workload
characterization methodically on a large set of functions

* Two-phase validation:

High accuracy:

Phase 1: Phase 2:
calculate thresholds (T) calculate accuracy

4 N\ ) 4 )

Temporal || Arithmetic T | T

Locality Intensity . :ty —
\_ I\ y \_ ocali ntensi )
Accurac

g ( Last-to-Fir ) g T, .o b Hracy

LLC MPKI st 44 T, vox ) 100
N J(MissRatio J  functions functions

into one of the six memory bottleneck classes
SAFARI
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More in the Paper

e Effect of the last-level cache size

- Large L3 cache size (e.g., 512 MB) can mitigate some cache
contention issues

e Summary of our workload characterization methodology

- Including workload characterization using in-order host/NDP
cores

* Limitations of our methodology

* Benchmark diversity

SAFARI 57



More in the Paper

DAMOV: A New Methodology and
Benchmark Suite for Evaluating Data

Movement Bottlenecks

GERALDO F. OLIVEIRA', JUAN GOMEZ-LUNA', LOIS OROSA', SAUGATA GHOSE?,
NANDITA VIJAYKUMAR?, IVAN FERNANDEZ'-*, MOHAMMAD SADROSADATI', and
ONUR MUTLU!

'"ETH Zurich, Switzerland

*University of Illinois Urbana-Champaign, USA
"Uni\'cxsily of Toronto. Canada

*University of Malaga, Spain

Corresponding author: Geraldo F. Oliveira (e-mail: geraldod @inf.ethz.ch).
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e Many open questions related to NDP system designs®:
- Interconnects
- Data mapping and allocation
- NDP core design (accelerators, general-purpose cores)
- Offloading granularity
- Programmability
- Coherence
- System integration

* Goal: demonstrate how DAMOYV is useful to study NDP
system designs

SAFARI 60



4 )

Load Balance and Inter-Vault Communication on NDP
\_ J
4 NDP Accelerators and Our Methodology A
\_ J
4 )
Different Core Models on NDP Architectures
\_ J
e . . . ™
Fine-Grained NDP Offloading
- Y,
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Case Studies (1/4)

4 )

Load Balance and Inter-Vault Communication on NDP
portion of the memory requests an NDP core issues go to remote vaults
g — Iincreases the memory access latency for the NDP core P
4 NDP Accelerators and Our Methodology A
- J
4 ) ) )
Different Core Models on NDP Architectures
- J
4 : : } )
Fine-Grained NDP Offloading
g /
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Case Studies (2/4)

d Load Balance and Inter-Vault Communication on NDP A

S J
4 NDP Accelerators and Our Methodology A

NDP accelerator is faster than compute-centric accelerator for Class 1a and 1b
applications; slower for Class 2c
— Key observations hold for other NDP architectures

\ J

f Different Core Models on NDP Architectures A

\_ J

4 . . . )
Fine-Grained NDP Offloading

- Y,
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Case Studies (3/4)

4 )

Load Balance and Inter-Vault Communication on NDP
\ J
4 NDP Accelerators and Our Methodology A
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Case Studies (4/4)
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Fine-Grained NDP Offloading

few basic blocks are responsible for most of LLC misses

\_— offloading such basic blocks to NDP are enough to improve performance )
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d Load Balance and Inter-Vault Communication on NDP

portion of the memory requests an NDP core issues go to remote vaults
— Iincreases the memory access latency for the NDP core
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— Key observations hold for other NDP architectures
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using in-order cores limits performance of some applications
.= static instruction scheduling cannot exploit memory parallelism P
4 )

Fine-Grained NDP Offloading

few basic blocks are responsible for most of LLC misses
\_— offloading such basic blocks to NDP are enough to improve performance )

SAFARI 66




d Load Balance and Inter-Vault Communication on NDP A

S J
4 NDP Accelerators and Our Methodology A

NDP accelerator is faster than compute-centric accelerator for Class 1a and 1b
applications; slower for Class 2c
— Key observations hold for other NDP architectures

\ J

f Different Core Models on NDP Architectures A

\_ J

4 . . . )
Fine-Grained NDP Offloading

- Y,

SAFARI 67



NDP Accelerators and Our Methodology

* Goal: evaluate compute-centric versus NDP accelerators
Compute-Centric Accelerator NDP Accelerator
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NDP Accelerators and Our Methodology

The performance of NDP accelerators
are in line with the characteristics of the
memory bottleneck classes:

our memory bottleneck classification can be applied to

Arcnltectures, 11 ISUA, ZU 14
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portion of the memory requests an NDP core issues go to remote vaults
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_ J
4 NDP Accelerators and Our Methodology A
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DAMOV is Open-Source

* We open-source our benchmark suite and our toolchain

CMU-SAFARI / DAMOV

<> Code () Issues 1 Pull requests (*) Actions [M1] Projects () Security |~ Insights 51 Settings

¥ main ~ ¥ 1branch © 0tags Go to file Add file ~ About b

DAMOQV is a benchmark suite and a

Q omutlu Update README.md celbdea 17 daysago YO 5 commits methodical framework targeting the
4 " = =2 = ® = m W® study of data movement bottlenecks
DAM OV—S I M " B simulator L] Cleaning 19 days ago in modern applications. It is intended
n n n n n n n » -
[% README.md Update README.md 17 days ago tostudynew arCh[FeCtures’ S.UCh ae
s " N mN E N EmE E N near-data processing. Described by
DAM OV " [9 get_workloads.sh 3 DAMOV -- first commit 19 days ago Oliveira et al. (preliminary version at
¢ E TR https://arxiv.org/pdf/2105.03725.pdf)
Benchmark
‘= README.md V4 0 Readme

DAMOV: A New Methodology and Benchmark Suite for e
Evaluating Data Movement Bottlenecks ———

Create a new release

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in

modern applications. It is intended to study new architectures, such as near-data processing.
Packages

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related ECT——
studies, based on our systematic characterization methodology. This suite consists of 144 functions representing Publish your first package
different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-

movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark

suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, Languages

PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM. )
S B L
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DAMOYV i1s Open-Source

Get DAMOV at:
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https://github.com/CMU-SAFARI/DAMOV

Conclusion

* Problem: Data movement is a major bottleneck is modern systems.
However, it is unclear how to identify:
— different sources of data movement bottlenecks

— the most suitable mitigation technique (e.g., caching, prefetching, near-data processing)
for a given data movement bottleneck

e Goals:

1. Design a methodology to identify sources of data movement bottlenecks
2. Compare compute- and memory-centric data movement mitigation techniques

» Key Approach: Perform a large-scale application characterization to identify
key metrics that reveal the sources to data movement bottlenecks

* Key Contributions:
— Experimental characterization of 77K functions across 345 applications

— A methodology to characterize applications based on data movement bottlenecks and
their relation with different data movement mitigation techniques

— DAMOV: a benchmark suite with 144 functions for data movement studies
— Four case-studies to highlight DAMOV’s applicability to open research problems
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https://github.com/CMU-SAFARI/DAMOV

More on DAMOV Analysis Methodology & Workloads

Step 3: Memory Bottleneck Classification (2/.
* Goal: identify the specific sources of data movement ctior il

bottlenecks
Configuration 1: Host CPU System

/ DAMOV-SIM Simulator ' o

# Cores

\ Scalability Analysis /

Integrated ZSim and Ramulator

Logic Layer

 Scalability Analysis:
- 1,4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
- 3D-stacked memory as main memory

| G/ A B ¢ httns: sithub.com 7 SAFAR A
> »l N 2642724040 e (m I I3

SAFARI Live Seminar: DAMOV: A New Methodology & Benchmark Suite for Data Movement Bottlenecks

352 views * Streamed live on Jul 22, 2021 |. 18 ql 0 ) SHARE =i SAVE

@ Onur Mutlu Lectures ANALYTICS | EDIT VIDEO
P S 17.7K subscribers

https://www.youtube.com/watch?v=GWideVyoOnM&list=PL5Q2s0XY2Zi tOTAYm--dYByNPL7JhwR9&index=3
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