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ABSTRACT

Asymmetric Chip Multiprocessors (ACMPs) are becoming
a reality. ACMPs can speed up parallel applications if they
can identify and accelerate code segments that are critical
for performance. Proposals already exist for using coarse-
grained thread scheduling and fine-grained bottleneck ac-
celeration. Unfortunately, there have been no proposals of-
fered thus far to decide which code segments to accelerate
in cases where both coarse-grained thread scheduling and
fine-grained bottleneck acceleration could have value. This
paper proposes Utility-Based Acceleration of Multithreaded
Applications on Asymmetric CMPs (UBA), a cooperative
software/hardware mechanism for identifying and accelerat-
ing the most likely critical code segments from a set of mul-
tithreaded applications running on an ACMP. The key idea
is a new Utility of Acceleration metric that quantifies the
performance benefit of accelerating a bottleneck or a thread
by taking into account both the criticality and the expected
speedup. UBA outperforms the best of two state-of-the-art
mechanisms by 11% for single application workloads and
by 7% for two-application workloads on an ACMP with 52
small cores and 3 large cores.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)

General Terms

Design, Performance

Keywords

Multithreaded applications, critical sections, barriers, mul-
ticore, asymmetric CMPs, heterogeneous CMPs

1. INTRODUCTION
Parallel applications are partitioned into threads that can

execute concurrently on multiple cores. Speedup is often
limited when some threads are prevented from doing use-
ful work concurrently because they have to wait for other
code segments to finish. Asymmetric Chip Multi-Processors
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(ACMPs) with one or few large, fast cores and many small,
energy-efficient cores have been proposed for accelerating the
most performance critical code segments, which can lead to
significant performance gains. However, this approach has
heretofore had at least two fundamental limitations:

1. The problem of accelerating only one type of
code segment. There are two types of code segments that
can become performance limiters: (1) threads that take
longer to execute than other threads because of load im-
balance or microarchitectural mishaps such as cache misses,
and (2) code segments, like contended critical sections, that
make other threads wait. We call threads of the first type
lagging threads. They increase execution time since the pro-
gram cannot complete until all its threads have finished exe-
cution. Code segments of the second type reduce parallelism
and can potentially become the critical path of the applica-
tion. Joao et al. [10] call these code segments bottlenecks.
Prior work accelerates either lagging threads [6, 5, 13] or
bottlenecks [24, 10], but not both. Thus, these proposals
benefit only the applications whose performance is limited
by the type of code segments that they are designed to ac-
celerate. Note that there is overlap between lagging threads
and bottlenecks: lagging threads, if left alone, can eventually
make other threads wait and become bottlenecks. However,
the goal of the proposals that accelerate lagging threads is
to try to prevent them from becoming bottlenecks.

Real applications often have both bottlenecks and lagging
threads. Previous acceleration mechanisms prove subopti-
mal in this case. Bottleneck Identification and Scheduling
(BIS) [10] does not identify lagging threads early enough and
as a result it does not always accelerate the program’s crit-
ical execution path. Similarly, lagging thread acceleration
mechanisms do not accelerate consecutive instances of the
same critical section that execute on different threads and as
a result can miss the opportunity to accelerate the program’s
critical execution path. Combining bottleneck and lagging
thread acceleration mechanisms is non-trivial because the
combined mechanism must predict the relative benefit of
accelerating bottlenecks and lagging threads. Note that this
benefit depends on the input set and program phase, as well
as the underlying machine. Thus a static solution would
likely not work well. While the existing acceleration mech-
anisms are dynamic, they use different metrics to identify
good candidates for acceleration; thus, their outputs can-
not be compared directly to decide which code segments to
accelerate.

2. The problem of not handling multiple multi-
threaded applications. In practice, an ACMP can be
expected to run multiple multithreaded applications. Each
application will have lagging threads and bottlenecks that
benefit differently from acceleration. The previous work on



bottleneck acceleration [24, 10] and lagging thread acceler-
ation [13] does not deal with multiple multithreaded appli-
cations, making their use limited in practical systems.

To make ACMPs more effective, we propose Utility-
Based Acceleration of Multithreaded Applications on Asym-
metric CMPs (UBA). UBA is a general cooperative soft-
ware/hardware mechanism to identify the most important
code segments from one or multiple applications to accel-
erate on an ACMP to improve system performance. UBA
introduces a new Utility of Acceleration metric for each code
segment, either from a lagging thread or a bottleneck, which
is used to decide which code segments to run on the large
cores of the ACMP. The key idea of the utility metric is to
consider both the acceleration expected from running on a
large core and the criticality of the code segment for its ap-
plication as a whole. Therefore, this metric is effective in
making acceleration decisions for both single- and multiple-
application cases. UBA also builds on and extends previous
proposals to identify potential bottlenecks [10] and lagging
threads [13].

This paper makes three main contributions:
1. It introduces a new Utility of Acceleration metric that

combines a measure of the acceleration that each code
segment achieves, with a measure of the criticality of
each code segment. This metric enables meaningful
comparisons to decide which code segments to acceler-
ate regardless of the segment type. We implement the
metric in the context of an ACMP where acceleration
is performed with large cores, but the metric is general
enough to be used with other acceleration mechanisms,
e.g., frequency scaling.

2. It provides the first mechanism that can accelerate
both bottlenecks and lagging threads from a single
multithreaded application, using faster cores. It can
also leverage ACMPs with any number of large cores.

3. It is the first work that accelerates bottlenecks in ad-
dition to lagging threads from multiple multithreaded
applications.

We evaluate UBA on single- and multiple-application sce-
narios on a variety of ACMP configurations, running a set
of workloads that includes both bottleneck-intensive appli-
cations and non-bottleneck-intensive applications. For ex-
ample, on a 52-small-core and 3-large-core ACMP, UBA im-
proves average performance of 9 multithreaded applications
by 11% over the best of previous proposals that accelerate
only lagging threads [13] or only bottlenecks [10]. On the
same ACMP configuration, UBA improves average harmonic
speedup of 2-application workloads by 7% over our aggres-
sive extensions of previous proposals to accelerate multiple
applications. Overall, we find that UBA significantly im-
proves performance over previous work and its performance
benefit generally increases with larger area budgets and ad-
ditional large cores.

2. MOTIVATION

2.1 Bottlenecks
Joao et al. [10] defined bottleneck as any code segment that

makes other threads wait. Bottlenecks reduce the amount
of thread-level parallelism (TLP); therefore, a program run-
ning with significant bottlenecks can lose some or even all of
the potential speedup from parallelization. Inter-thread syn-
chronization mechanisms can create bottlenecks, e.g., con-
tended critical sections, the last thread arriving to a barrier
and the slowest stage of a pipeline-parallel program.

Figure 1 shows four threads executing non-critical-section
segments (Non-CS) and a critical section CS (in gray). A
critical section enforces mutual exclusion: only one thread
can execute the critical section at a given time, making any
other threads wanting to execute the same critical section
wait, which reduces the amount of useful work that can be
done in parallel.

T1

T4
time

...... T2

T3

CSNon−CS Idle

Figure 1: Example of a critical section.

The state-of-the-art in bottleneck acceleration on an
ACMP is BIS [10], which consists of software-based anno-
tation of potential bottlenecks and hardware-based tracking
of thread waiting cycles, i.e., the number of cycles threads
waited for each bottleneck. Then, BIS accelerates the bot-
tlenecks that are responsible for the most thread waiting
cycles. BIS is effective in accelerating critical sections that
limit performance at different times. However, it acceler-
ates threads arriving last to a barrier and slow stages of a
pipeline-parallel program only after they have started mak-
ing other threads wait, i.e., after accumulating a minimum
number of thread waiting cycles. If BIS could start accel-
erating such lagging threads earlier, it could remove more
thread waiting and further reduce execution time.

2.2 Lagging Threads
A parallel application is composed of groups of threads

that split work and eventually either synchronize at a bar-
rier, or finish and join. The thread that takes the most
time to execute in a thread group determines the execution
time of the entire group and we call that thread a lagging
thread. Thread imbalance can appear at runtime for mul-
tiple reasons, e.g., different memory behavior that makes
some threads suffer from higher average memory latency,
and different contention for critical sections that makes some
threads wait longer.

Figure 2 shows execution of four threads over time. Thread
T2 becomes a lagging thread as soon as it starts making
slower progress than the other threads towards reaching the
barrier at time t2. Note that at time t1, T2 becomes the
last thread running for the barrier and becomes a bottleneck.
Therefore, lagging threads are potential future bottlenecks,
i.e., they become bottlenecks if thread imbalance is not cor-
rected in time. Also note that if there are multiple threads
with approximately as much remaining work to do as the
most lagging thread, all of them need to be accelerated to
actually reduce total execution time. Therefore, all those
threads have to be considered lagging threads.

T1

T4
time

... ...

Idle

T2

T3

t1 t2

Barrier

Figure 2: Example of a lagging thread (T2).

The state-of-the-art in acceleration of lagging threads are
proposals that identify a lagging thread by tracking either
thread progress [6, 13] or reasons for a thread to get de-
layed [5]. Meeting Points [6] tracks the threads that are



lagging in reaching a barrier by counting the number of
loop iterations that have been completed. Thread Critical-
ity Predictors [5] predict that the threads that suffer from
more cache misses will be delayed and will become criti-
cal. Age-based Scheduling [13] accelerates the thread that
is predicted or profiled to have more remaining work until
the next barrier or the program exit, measured in terms of
committed instructions. Once a lagging thread is identified,
it can be accelerated on a large core of an ACMP.

2.3 Applications have both Lagging Threads
and Bottlenecks

Joao et al. [10] showed that different bottlenecks can limit
performance at different times. In particular, contention for
different critical sections can be very dynamic. It is not
evident upfront whether accelerating a critical section or a
lagging thread leads to better performance. Therefore, it is
fundamentally important to dynamically identify the code
segments, either bottlenecks or lagging threads, that have
to be accelerated at any given time.

2.4 Multiple Applications
Figure 3(a) shows two 4-thread applications running on

small cores of an ACMP with a single large core. Let’s as-
sume that at time t1 the system has to decide which thread
to accelerate on the large core to maximize system perfor-
mance. With knowledge of the progress each thread has
made towards reaching the next barrier, the system can de-
termine that App1 has one lagging thread T1, because T1
has significantly more remaining work to do than the other
threads, and App2 has two lagging threads T1 and T2, be-
cause both of them have significantly more work to do than
T3 and T4. Accelerating T1 from App1 would directly re-
duce App1’s execution time by some time ∆t, while accel-
erating either T1 or T2 from App2 would not significantly
reduce App2’s execution time. It is necessary to acceler-
ate both T1 during one quantum and T2 during another
quantum to reduce App2’s execution time by a similar ∆t,
assuming the speedups for all threads on the large core are
similar. Therefore, system performance will increase more
by accelerating T1 from App1.

T1

App 1

T1

App 2

time
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barrier

time

Idle
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(a) Lagging threads

T1

App 1

T1

App 3

time

Idle

barrier

time

t1

T4

T2

T3

T4

T2

T3

(b) Lagging threads and criti-
cal sections

Figure 3: Examples of lagging threads and critical sections.

Figure 3(b) shows the same App1 from the previous exam-
ple and an App3 with a strongly-contended critical section
(in gray). Every thread from App3 has to wait to execute
the critical section at some time and the critical section is
clearly on the critical path of execution (there is always one
thread executing the critical section and at least one thread
waiting for it). At time t1, App1 has a single lagging thread
T1, which is App1’s critical path. Therefore, every cycle
saved by accelerating T1 from App1 would directly reduce

App1’s execution time. Similarly, every cycle saved by ac-
celerating instances of the critical section from App3 on any
of its threads would directly reduce App3’s execution time.
Ideally, the system should dynamically accelerate the code
segment that gets a higher speedup from the large core, ei-
ther a segment of the lagging thread from App1 or a se-
quence of instances of the critical section from App3.

These two examples illustrate that acceleration decisions
need to consider both the criticality of code segments and
how much speedup they get from the large core.

Our goal is to design a mechanism that decides which
code segments, either from lagging threads or bottlenecks,
to run on the available large cores of an ACMP, to improve
system performance in the presence of a single multithreaded
application or multiple multithreaded applications.

3. UTILITY-BASED ACCELERATION (UBA)
The core of UBA is a new Utility of Acceleration metric

that is used to decide which code segments to accelerate
at any given time. Utility combines an estimation of the
acceleration that each code segment can achieve on a large
core, and an estimation of the criticality of the code segment.

Figure 4 shows the three main components of UBA: Lag-
ging Thread Identification unit, Bottleneck Identification
unit, and Acceleration Coordination unit. Every schedul-
ing quantum (1M cycles in our experiments), the Lagging
Thread Identification (LTI) unit produces the set of Highest-
Utility Lagging Threads (HULT), one for each large core,
and the Bottleneck Acceleration Utility Threshold (BAUT).
Meanwhile, the Bottleneck Identification (BI) unit computes
the Utility of accelerating each of the most important bottle-
necks and identifies those with Utility greater than BAUT,
which we call Highest-Utility Bottlenecks (HUB). Only these
bottlenecks are enabled for acceleration. Finally, the Accel-
eration Coordination (AC) unit decides which code segments
to run on each large core, either a thread from the HULT
set, or bottlenecks from the HUB set.

Highest−Utility

Bottlenecks

(HUB)

Highest−Utility

Lagging Threads

(HULT)

Utility Threshold

(BAUT)

Bottleneck Acceleration

Bottleneck

Identification

(BI)

Coordination

Acceleration

(AC)

Lagging Thread

Identification

(LTI)

large core control

Figure 4: Block diagram of UBA.

3.1 Utility of Acceleration
We define Utility of Accelerating a code segment c as the

reduction in the application’s execution time due to acceler-
ation of c relative to the application’s execution time before
acceleration. Formally,

U c =
∆T

T

where ∆T is the reduction in the entire application’s exe-
cution time and T is the original execution time of the entire
application.

If code segment c of length t cycles is accelerated by ∆t,
then after multiplying and dividing by t ∆t, Utility of accel-
erating c can be rewritten as:

U c =
∆T

T
= (

∆t

t
) (

t

T
) (

∆T

∆t
) = L × R × G



L: The first factor is the Local Acceleration, which is the
reduction in the execution time of solely the code segment
c due to running on a large core divided by the original
execution time of c on the small core.

L =
∆t

t

L depends on the net speedup that running on a large
core can provide for the code segment, which is a necessary
condition to improve the application’s performance: if L is
close to zero or negative, running on the large core is not
useful and can be harmful.

R: The second factor is the Relevance of Acceleration,
which measures how important code segment c is for the
application as a whole: R is the execution time (in cycles)
of c on the small core divided by the application’s execution
time (in cycles) before acceleration.

R =
t

T

R limits the overall speedup that can be obtained by ac-
celerating a single code segment. For example, let’s assume
two equally long serial bottlenecks from two different appli-
cations start at the same time and can be accelerated with
the same L factor. One runs for 50% of its application’s ex-
ecution time, while the other runs for only 1%. Obviously,
accelerating the first one is a much more effective use of the
large core to improve system performance.

G: The third factor is the Global Effect of Acceleration,
which represents how much of the code segment acceleration
∆t translates into a reduction in execution time ∆T .

G =
∆T

∆t

G depends on the criticality of code segment c: if c is on
the critical path, G = 1, otherwise G = 0. In reasonably
symmetric applications, multiple threads may arrive to the
next barrier at about the same time and all of them must be
accelerated to reduce the application’s execution time, which
makes each of the threads partially critical (0 < G < 1).

We will explain how we estimate each factor L, R and G
in Sections 3.5.1, 3.5.2 and 3.5.3, respectively.

3.2 Lagging Thread Identification
The set of Highest-Utility Lagging Threads (HULT) is

produced every scheduling quantum (i.e., Q cycles) by the
LTI unit with the following steps:
1. Identify lagging threads. We use the same notion
of progress between consecutive synchronization points as
in [13]; i.e., we assume approximately the same number of
instructions are expected to be committed by each thread
between consecutive barriers or synchronization points, and
use instruction count as a metric of thread progress.1 A com-
mitted instruction counter progress is kept as part of each
hardware context. After thread creation or when restarting
the threads after a barrier, progress is reset with a simple
command ResetProgress, implemented as a store to a re-
served memory location.

Figure 5 shows the progress of several threads from the
same application that are running on small cores. Thread

1Note that we are not arguing for instruction count as the best
progress metric. In general, the best progress metric is application
dependent and we envision a mechanism that lets the software
define which progress metric to use for each application, including
[6, 13, 5] or even each application periodically reporting how much
progress each thread is making. UBA can be easily extended to
use any progress metric.

progress

minP

P

T1 T2 T4 T5T3

Figure 5: Lagging thread identification.

T1 has made the smallest progress minP and is a lagging
thread. Let’s assume that if thread T1 is accelerated during
the next scheduling quantum, it will make ∆P more progress
than the other non-accelerated threads. Therefore, T1 will
leave behind threads T2 and T3, which then will also have to
be accelerated to fully take advantage of the acceleration of
T1. Therefore, we consider the initial set of lagging threads
to be {T1, T2, T3}. We estimate ∆P as AvgDeltaIPC × Q,
where AvgDeltaIPC is the difference between average IPC
on the large cores and average IPC on the small cores across
all threads in the application, measured over five quanta.
2. Compute Utility of Acceleration for each lagging
thread. We will explain how UBA estimates each factor L,
R and G in Sections 3.5.1, 3.5.2 and 3.5.3, respectively.
3. Find the Highest-Utility Lagging Thread (HULT)
set. The HULT set consists of the lagging threads with the
highest Utility. The size of the set is equal to the number
of large cores. Lagging threads from the same application
whose Utilities fall within a small range of each other2 are
considered to have the same Utility and are sorted by their
progress instruction count (highest rank for lower progress)
to improve fairness and reduce the impact of inaccuracies in
Utility computations.
4. Determine the Bottleneck Acceleration Utility
Threshold (BAUT). As long as no bottleneck has higher
Utility than any lagging thread in the HULT set, no bottle-
neck should be accelerated. Therefore, the BAUT is simply
the smallest Utility among the threads in the HULT set.

To keep track of the relevant characteristics of each thread,
the LTI unit includes a Thread Table with as many entries
as hardware contexts, indexed by software thread ID (tid).

3.3 Bottleneck Identification
The Highest-Utility Bottleneck set is continuously pro-

duced by the Bottleneck Identification (BI) unit. The BI
unit is implemented similarly to BIS [10] with one funda-
mental change: instead of using BIS’ thread waiting cycles
as a metric to classify bottlenecks, the BI uses our Utility of
Acceleration metric.3

Software support. The programmer, compiler or library
delimits potential bottlenecks using BottleneckCall and Bot-
tleneckReturn instructions, and replaces the code that waits
for bottlenecks with a BottleneckWait instruction. The pur-
pose of the BottleneckWait instruction is threefold: 1) it
implements waiting for the value on a memory location to
change, 2) it allows the hardware to keep track of which
threads are waiting for each bottleneck and 3) it makes in-
struction count a more accurate measure of thread progress
by removing the spinning loops that wait for synchronization
and execute instructions that do not make progress.
Hardware support: Bottleneck Table. The hardware
tracks which threads are executing or waiting for each bottle-
neck and identifies the critical bottlenecks with low overhead
in hardware using a Bottleneck Table (BT) in the BI unit.
Each BT entry corresponds to a bottleneck and collects all

2We find a range of 2% works well in our experiments.
3Our experiments (not shown due to space limitations) show BIS
using Utility outperforms BIS using thread waiting cycles by 1.5%
on average across our bottleneck-intensive applications.



the data required to compute the Utility of its acceleration.
Utility of accelerating bottlenecks. The Bottleneck Ta-
ble computes the L factor once every quantum, as explained
in Section 3.5.1. It recomputes the Utility of accelerating
each bottleneck whenever its R (Section 3.5.2) or G (Sec-
tion 3.5.3) factor changes. Therefore, Utility can change at
any time, but it does not change very frequently because of
how R and G are computed as explained later.
Highest-Utility Bottleneck (HUB) set. Bottlenecks
with Utility above the Bottleneck Acceleration Utility
Threshold (BAUT) are enabled for acceleration, i.e. they
are part of the HUB set.

3.4 Acceleration Coordination
The candidate code segments for acceleration are the lag-

ging threads in the HULT set, one per large core, provided
by the LTI unit, and the bottlenecks in the HUB set, whose
acceleration has been enabled by the BI unit.
Lagging thread acceleration. Each lagging thread in the
HULT set is assigned to run on a large core at the beginning
of each quantum. The assignment is based on affinity to pre-
serve cache locality, i.e., if a lagging thread will continue to
be accelerated, it stays on the same large core, and threads
newly added to the HULT set try to be assigned to a core
that was running another thread from the same application.
Bottleneck acceleration. When a small core executes a
BottleneckCall instruction, it checks whether or not the bot-
tleneck is enabled for acceleration. To avoid accessing the
global BT on every BottleneckCall, each small core includes
a local Acceleration Index Table (AIT) that caches the bot-
tleneck ID (bid), acceleration enable bit and assigned large
core for each bottleneck.4 If acceleration is disabled, the
small core executes the bottleneck locally. If acceleration is
enabled, the small core sends a bottleneck execution request
to the assigned large core and stalls waiting for a response.
The large core enqueues the request into a Scheduling Buffer
(SB), which is a priority queue based on Utility. The oldest
instance of the bottleneck with highest Utility is executed
by the large core until the BottleneckReturn instruction, at
which point the large core sends a BottleneckDone signal
to the small core. On receiving the BottleneckDone signal,
the small core continues executing the instruction after the
BottleneckCall.

The key idea of Algorithm 1, which controls each large
core, is that each large core executes the assigned lagging
thread, as long as no bottleneck is migrated to it to be ac-
celerated. Only bottlenecks with higher Utility than the
BAUT (the smallest Utility among all accelerated lagging
threads, i.e., the HULT set) are enabled to be accelerated.
Therefore, it makes sense for those bottlenecks to preempt
a lagging thread with lower Utility.

The large core executes in one of two modes: accelerat-
ing the assigned lagging thread or accelerating bottlenecks
from its Scheduling Buffer (SB), when they show up. Af-
ter no bottleneck shows up for 50Kcycles, the assigned lag-
ging thread is migrated back to the large core. This delay
reduces the number of spurious lagging thread migrations,
since bottlenecks like contended critical sections usually oc-
cur in bursts. The reasons to avoid finer-grained interleaving
of lagging threads and bottlenecks are: 1) to reduce the im-

4Initially all bottlenecks are assigned to the large core running
the lagging thread with minimum Utility (equal to the BAUT
threshold for bottleneck acceleration), but they can be reassigned
as we will explain in Section 3.5.4. When a bottleneck is included
in or excluded from the HUB set, the BT broadcasts the update
to the AITs on all small cores.

Algorithm 1 Acceleration Coordination
while 1 do

// execute a lagging thread
migrate assigned lagging thread from small core
while not bottleneck in SB do

run assigned lagging thread
end while

migrate assigned lagging thread back to small core

// execute bottlenecks until no bottleneck shows up for 50Kcycles
done with bottlenecks = false
while not done with bottlenecks do

while bottleneck in SB do

deque from SB and run a bottleneck
end while

delay = 0
while not bottleneck in SB and (delay < 50Kcycles) do

wait while incrementing delay
end while

done with bottlenecks = not bottleneck in SB

end while

end while

pact of frequent migrations on cache locality and 2) to avoid
excessive migration overhead. Both effects can significantly
reduce or eliminate the benefit of acceleration.

3.5 Implementation Details

3.5.1 Estimation of L.
L is related to the speedup S due to running on a large

core by:

L =
∆t

t
=

t − t/S

t
= 1 −

1

S

Any existing or future technique that estimates perfor-
mance on a large core based on information collected while
running on a small core can be used to estimate S. We
use Performance Impact Estimation (PIE) [27], the latest
of such techniques. PIE requires measuring total cycles per
instruction (CPI ), CPI due to memory accesses, and misses
per instruction (MPI ) while running on a small core.

For code segments that are running on a large core, PIE
also provides an estimate of the slowdown of running on a
small core based on measurements on the large core. This es-
timation requires measuring CPI , MPI , average dependency
distance between a last-level cache miss and its consumer,
and the fraction of instructions that are dependent on the
previous instruction (because they would force execution of
only one instruction per cycle in the 2-wide in-order small
core). Instead of immediately using this estimation of per-
formance on the small core while running on the large core,
our implementation remembers the estimated speedup from
the last time the code segment ran on a small core, because
it is more effective to compare speedups obtained with the
same technique. After five quanta we consider the old data
to be stale and we switch to estimate the slowdown on a
small core based on measurements on the large core.

Each core collects data to compute L for its current thread
and for up to two current bottlenecks to allow tracking up to
one level of nested bottlenecks. When a bottleneck finishes
and executes a BottleneckReturn instruction, a message is
sent to the Bottleneck Table in the regular BIS implemen-
tation. We include the data required to compute L for the
bottleneck on this message without adding any extra over-
head. Data required to compute L for lagging threads is sent
to the Thread Table at the end of the scheduling quantum.

3.5.2 Estimation of R.
Since acceleration decisions are made at least once ev-

ery scheduling quantum, the objective of each decision is to



maximize Utility for one quantum at a time. Therefore, we
estimate R (and Utility) only for the next quantum instead
of for the whole run of the application, i.e., we use T = Q,
the quantum length in cycles. During each quantum the
hardware collects the number of active cycles, tlastQ, for
each thread and for each bottleneck to use as an estimate
of the code segment length t for the next quantum. To that
end, each Bottleneck Table (BT) entry and each Thread Ta-
ble (TT) entry include an active bit and a timestamp active.
On the BT, the active bit is set between BottleneckCall and
BottleneckReturn instructions. On the TT, the active bit
is only reset while executing a BottleneckWait instruction,
i.e., while the thread is waiting. When the active bit is set,
timestamp active is set to the current time. When the active
bit is reset, the active cycle count tlastQ is incremented by
the difference between current time and timestamp active.
Lagging thread activity can be easily inferred: a running
thread is always active, except while running a Bottleneck-
Wait instruction.

Restimated =
tlastQ

Q
for lagging threads

Bottleneck activity is already reported to the Bottleneck
Table for bookkeeping, off the critical path, after executing
BottleneckCall and BottleneckReturn instructions. There-
fore the active bit is set by BottleneckCall and reset by Bot-
tleneckReturn. Given that bottlenecks can suddenly become
important, the Bottleneck Table also keeps an active cycle
counter tlastSubQ for the last subquantum, an interval equal
to 1/8 of the quantum. Therefore,

Restimated = max(
tlastQ

Q
,
tlastSubQ

Q/8
) for bottlenecks

3.5.3 Estimation of G.
The G factor measures criticality of the code segment,

i.e., how much of its acceleration is expected to reduce total
execution time. Consequently, we estimate G for each type
of code segment as follows:
Lagging threads. Criticality of lagging threads depends on
the number of lagging threads in the application. If there are
M lagging threads, all of them have to be evenly accelerated
to remove the thread waiting they would cause before the
next barrier or joining point. That is, all M lagging threads
are potential critical paths with similar lengths. Therefore,
Gestimated = 1/M for each of the lagging threads. Amdahl’s
serial segments are part of the only thread that exists, i.e.,
a special case of lagging threads with M = 1. Therefore,
each serial segment is on the critical path and has G =
1. Similarly, the last thread running for a barrier and the
slowest stage of a pipelined program are also identified as
single lagging threads and, therefore, have G = 1.
Critical sections. Not every contended critical section is
on the critical path and high contention is not a necessary
condition for being on the critical path. Let’s consider two
cases. Figure 6(a) shows a critical section that is on the crit-
ical path (dashed line), even though there is never more than
one thread waiting for it. All threads have to wait at some
time for the critical section, which makes the critical path
jump from thread to thread following the critical section
segments. We consider strongly contended critical sections
those that have been making all threads wait in the recent
past and estimate G = 1 for them. To identify strongly
contended critical sections each Bottleneck Table entry in-
cludes a recent waiters bit vector with one bit per hardware
context. This bit is set on executing BottleneckWait for the

corresponding bottleneck. Each Bottleneck Table entry also
keeps a moving average for bottleneck length avg len. If
there are N active threads in the application, recent waiters
is evaluated every N ×avg len cycles: if N bits are set, indi-
cating that all active threads had to wait, the critical section
is assumed to be strongly contended. Then, the number of
ones in recent waiters is stored in past waiters (see the next
paragraph) and recent waiters is reset.

T1

T4
time

20 30 40 50 60 7010

... ...T2

T3

CS

Idle

(a) Strongly contended critical section (all threads wait for it)

T1

T4
time

20 30 40 50 60 7010

... ...T2

T3

Idle CS

(b) Weakly contended critical section (T2 never waits for it)

Figure 6: Types of critical sections.

We call the critical sections that have not made all threads
wait in the recent past weakly contended critical sections (see
Figure 6(b)). Accelerating an instance of a critical section
accelerates not only the thread that is executing it but also
every thread that is waiting for it. If we assume each thread
has the same probability of being on the critical path, the
probability of accelerating the critical path by accelerating
the critical section would be the fraction of threads that
get accelerated, i.e., G = (W + 1)/N , when there are W
waiting threads and a total of N threads. Since the current
number of waiters W is very dynamic, we combine it with
history (past waiters from the previous paragraph). There-
fore, we estimate G for weakly contended critical sections as
Gestimated = (max(W, past waiters) + 1)/N .

3.5.4 False Serialization and Using Multiple Large
Cores for Bottleneck Acceleration.

Instances of different bottlenecks from the same or from
different applications may be accelerated on the same large
core. Therefore, a bottleneck may get falsely serialized, i.e.,
it may have to wait for too long on the Scheduling Buffer
for another bottleneck with higher Utility. Bottlenecks that
suffer false serialization can be reassigned to a different large
core, as long as their Utility is higher than that of the lagging
thread assigned to run on that large core. Otherwise, a
bottleneck that is ready to run but does not have a large core
to run is sent back to its small core to avoid false serialization
and potential starvation, as in BIS [10].

3.5.5 Reducing Large Core Waiting.
While a lagging thread is executing on a large core it may

start waiting for several reasons. First, if the thread starts
waiting for a barrier or is about to exit or be de-scheduled,
the thread is migrated back to its small core and is replaced
with the lagging thread with the highest Utility that is not
running on a large core. Second, if the lagging thread starts
waiting for a critical section that is not being accelerated,
there is a situation where a large core is waiting for a small



Structure Purpose Location and entry structure (field sizes in bits in parenthesis) Cost

Thread Table (TT) To track threads, identify lagging
threads and compute their Utility of
Acceleration

LTI unit, one entry per HW thread (52 in this example). Each entry
has 98 bits: tid(16), pid(16), is lagging thread(1), num threads(8),
timestamp active(24), active(1), t lastQ(16), Utility(16).

637 B

Bottleneck Table
(BT)

To track bottlenecks [10] and com-
pute their Utility of Acceleration

One 32-entry table on the BI unit. Each entry has 452 bits:
bid(64), pid(16), executers(6), executer vec(64), waiters(6), wait-
ers sb(6), large core id(2), PIE data(107), timestamp active(24),
active(1), t lastQ(16), t lastSubQ(13), timeoutG(24), avg len(18),
recent waiters(64), past waiters(6), Utility(16)

1808 B

Acceleration Index
Tables (AIT)

To avoid accessing BT to find if a
bottleneck is enabled for acceleration

One 32-entry table per small core. Each entry has 66 bits: bid(64),
enabled(1), large core id(2). Each AIT has 268 bytes.

13.6 KB

Scheduling Buffers
(SB)

To store and prioritize bottleneck ex-
ecution requests on each large core

One 52-entry buffer per large core. Each entry has 214 bits:
bid(64), small core ID(6), target PC(64), stack pointer(64), Util-
ity(16). Each SB has 1391 bytes.

4.1 KB

Total 20.1 KB

Table 1: Hardware structures for UBA and their storage cost on an ACMP with 52 small cores and 3 large cores.

Small core 2-wide, 5-stage in-order, 4GHz, 32 KB write-through, 1-cycle, 8-way, separate I and D L1 caches, 256KB write-back,
6-cycle, 8-way, private unified L2 cache

Large core 4-wide, 12-stage out-of-order, 128-entry ROB, 4GHz, 32 KB write-through, 1-cycle, 8-way, separate I and D L1
caches, 1MB write-back, 8-cycle, 8-way, private unified L2 cache

Cache coherence MESI protocol, on-chip distributed directory, L2-to-L2 cache transfers allowed, 8K entries/bank, one bank per core
L3 cache Shared 8MB, write-back, 16-way, 20-cycle
On-chip interconnect Bidirectional ring, 64-bit wide, 2-cycle hop latency
Off-chip memory bus 64-bit wide, split-transaction, 40-cycle, pipelined bus at 1/4 of CPU frequency
Memory 32-bank DRAM, modeling all queues and delays, row buffer hit/miss/conflict latencies = 25/50/75ns

CMP configurations with area equivalent to N small cores: LC large cores, SC = N − 4 × LC small cores.

ACMP [15, 16] A large core always runs any single-threaded code. Max number of threads is SC + LC.
AGETS [13] In each quantum, the large cores run the threads with more expected work to do. Max number of threads is SC+LC.
BIS [10] The large cores run any single-threaded code and bottleneck code segments as proposed in [10]: 32-entry Bottleneck

Table, each large core has an SC-entry Scheduling Buffer, each small core has a 32-entry Acceleration Index Table.
Max number of threads is SC.

UBA The large cores run the code segments with the highest Utility of Acceleration: BIS structures plus an SC-entry
Thread Table. Max number of threads is SC.

Table 2: Baseline processor configuration.

core, which is inefficient. Instead, we save the context of the
waiting thread on a shadow register alias table (RAT) and
migrate the thread that is currently running the critical sec-
tion from its small core to finish on the large core. Third, if
the accelerated lagging thread wants to enter a critical sec-
tion that is being accelerated on a different large core, it is
migrated to the large core assigned to accelerate that critical
section, to preserve shared data locality. Fourth, if acceler-
ation of a critical section is enabled and there are threads
waiting to enter that critical section on small cores, they are
migrated to execute the critical section on the assigned large
core. All these mechanisms are implemented as extensions
of the behavior of the BottleneckCall and BottleneckWait
instructions and use the information that is already on the
Bottleneck Table.

3.5.6 Hardware Structures and Cost.
Table 1 describes the hardware structures required by

UBA and their storage cost for a 52-small-core, 3-large-core
ACMP, which is only 20.1 KB. UBA does not substantially
increase storage cost over BIS, since it only adds the Thread
Table and requires minor changes to the Bottleneck Table.

3.5.7 Support for Software-based Scheduling.
Software can directly specify lagging threads if it has bet-

ter information than what is used by our hardware-based
progress tracking. Software can also modify the quantum
length Q depending on application characteristics (larger Q
means less migration overhead, but also less opportunity
to accelerate many lagging threads from the same applica-
tion between consecutive barriers). Finally, software must
be able to specify priorities for different applications, which
would become just an additional factor in the Utility metric.
Our evaluation does not include these features, and explor-
ing them is part of our future work.

4. EXPERIMENTAL METHODOLOGY
We use an x86 cycle-level simulator that models asym-

metric CMPs with small in-order cores modeled after the
Intel Pentium processor and large out-of-order cores mod-
eled after the Intel Core 2 processor. Our simulator faith-
fully models all latencies and core to core communication,
including those due to execution migration. Configuration
details are shown in Table 2. We compare UBA to previ-
ous work summarized in Table 3. Our comparison points
for thread scheduling are based on two state-of-the-art pro-
posals: Age-based Scheduling [13] (AGETS) and PIE [27].
We chose these baselines because we use similar metrics for
progress and speedup estimation. Note that our baselines
for multiple applications are aggressive extensions of pre-
vious proposals: AGETS combined with PIE to accelerate
lagging threads, and an extension of BIS that dynamically
shares all large cores among applications to accelerate any
bottleneck based on relative thread waiting cycles.

We evaluate 9 multithreaded workloads with a wide range
of performance impact from bottlenecks, as shown in Ta-
ble 4. Our 2-application workloads are composed of all com-
binations from the 10-application set including the 9 mul-
tithreaded applications plus the compute-intensive ft nasp,
which is run with one thread to have a mix of single-threaded
and multithreaded applications. Our 4-application work-
loads are 50 randomly picked combinations of the same 10
applications. We run all applications to completion. On the
multiple-application experiments we run until the longest
application finishes and meanwhile, we restart any applica-
tion that finishes early to continue producing interference
and contention for all resources, including large cores. We
measure execution time during the first run of each applica-
tion. We run each application with the optimal number of
threads found when running alone. When the sum of the op-
timal number of threads for all applications is greater than



Mechanism Description

ACMP Serial portion runs on a large core, parallel portion runs on all cores [3, 15, 16].
AGETS Age-based Scheduling algorithm for a single multithreaded application as described in [13].
AGETS+PIE To compare to a reasonable baseline tor thread scheduling of multiple applications we use AGETS [13] to find the most

lagging thread within each application. Then, we use PIE [27] to pick for each large core the thread that would get the
largest speedup among the lagging threads from each application.

BIS Serial portion and bottlenecks run on the large cores, parallel portion runs on small cores [10].
MA-BIS To compare to a reasonable baseline, we extend BIS to multiple applications by sharing the large cores to accelerate bottle-

necks from any application. To follow the key insights from BIS, we prioritize bottlenecks by thread waiting cycles normalized
to the number of threads for each application, regardless of which application they belong to.

UBA Our proposal.

Table 3: Experimental configurations.

Workload Description Source Input set # Bottl. Bottleneck description

blacksch BlackScholes option pricing [18] 1M options 1 Final barrier after omp parallel

hist ph Histogram of RGB components Phoenix [19] S (small) 1 Crit. sections (CS) on map-reduce scheduler
iplookup IP packet routing [28] 2.5K queries # thr. CS on routing tables
is nasp Integer sort NAS suite [4] n = 64K 1 CS on buffer of keys
mysql MySQL server [1] SysBench [2] OLTP-nontrx 18 CS on meta data, tables
pca ph Principal components analysis Phoenix [19] S (small) 1 CS on map-reduce scheduler
specjbb JAVA business benchmark [22] 5 seconds 39 CS on counters, warehouse data

tsp Traveling salesman [12] 8 cities 2 CS on termination condition, solution
webcache Cooperative web cache [26] 100K queries 33 CS on replacement policy

ft nasp FFT computation NAS suite [4] size = 32x32x32 1 Run as single-threaded application

Table 4: Evaluated workloads.

the maximum number of threads, we reduce the number of
threads for the application(s) whose performance is(are) less
sensitive to the number of threads. Unless otherwise indi-
cated, we use harmonic mean to compute all the averages
in our evaluation. To measure system performance with
multiple applications [9] we use Harmonic mean of Speedups
(Hspeedup) [14] and Weighted Speedup (Wspeedup)[21], de-
fined below for N applications. T alone

i is the execution time
when the application runs alone in the system and T shared

i

is the execution time measured when all applications are
running. We also report Unfairness [17] as defined below.

Hspeedup =
N

N−1
X

i=0

T shared
i

T alone
i

Wspeedup =
N−1
X

i=0

T alone
i

T shared
i

Unfairness =
max(T alone

i /T shared
i )

min(T alone
i /T shared

i )

5. EVALUATION

5.1 Single Application
We carefully choose the number of threads to run each

application with, because that number significantly affects
performance of multithreaded applications. We evaluate
two situations: (1) number of threads equal to the num-
ber of available hardware contexts, i.e., maximum number
of threads, which is a common practice for running non-I/O-
intensive applications; and (2) optimal number of threads,
i.e., the number of threads that minimizes execution time,
which we find with an exhaustive search for each application
on each configuration. Table 5 shows the average speedups
of UBA over other mechanisms for different ACMP configu-
rations. UBA performs better than the other mechanisms on
every configuration, except for multiple large cores on a 16-
core area budget. BIS and UBA dedicate the large cores to
accelerate code segments, unlike ACMP and AGETS. There-
fore, the maximum number of threads that can run on BIS
and UBA is smaller. With an area budget of 16, BIS and
UBA cannot overcome the loss of parallel throughput due
to running significantly fewer threads. For example, with
3 large cores, AGETS and ACMP can execute applications
with up to 7 threads (4 on small cores and 3 on large cores),

while BIS and UBA can execute a maximum of 4 threads.
Overall, the benefit of UBA increases with area budget and
number of large cores.

Config. Opt. number of threads Max. number of threads
Area LC ACMP AGETS BIS ACMP AGETS BIS
16 1 7.6 0.2 9.0 8.2 0.2 9.0
16 2 −6.3 −5.8 19.2 −5.9 −5.7 19.2
16 3 −43.4 −11.7 37.8 −43.3 −11.6 37.8
32 1 14.6 7.5 8.2 16.1 6.2 4.1
32 2 15.3 4.7 13.2 21.7 9.0 13.9
32 3 14.5 2.2 16.0 22.2 5.7 15.4
64 1 16.2 7.3 6.9 20.5 6.2 5.5
64 2 21.6 9.8 9.5 30.1 18.3 10.5
64 3 23.1 11.0 11.3 33.5 24.0 13.0

Table 5: Average speedup (%) of UBA over ACMP,
AGETS and BIS.

5.1.1 Single-Large-Core ACMP
Figure 7 shows the speedup of AGETS, BIS and UBA

over ACMP, which accelerates only the Amdahl’s serial bot-
tleneck. Each application runs with its optimal number of
threads for each configuration. We show results for 16, 32
and 64-small-core area budgets and a single large core. On
average, our proposal improves performance over ACMP by
8%/15%/16%, over AGETS by 0.2%/7.5%/7.3% and over
BIS by 9%/8%/7% for area budgets of 16/32/64 small cores.
We make three observations.

First, as the number of cores increases, AGETS, BIS and
UBA provide higher average performance improvement over
ACMP. Performance improvement of UBA over AGETS in-
creases with the number of cores because, unlike AGETS,
UBA can accelerate bottlenecks, which have an increasingly
larger impact on performance as the number of cores in-
creases (as long as the number of threads increases). How-
ever, performance improvement of UBA over BIS slightly
decreases with a higher number of cores. The reason is that
the benefit of accelerating lagging threads in addition to bot-
tlenecks gets smaller for some benchmarks as the number of
threads increases, depending on the actual amount of thread
imbalance that UBA can eliminate. Since BIS and UBA ded-
icate the large core to accelerate code segments, they can
run one fewer thread than ACMP and AGETS. With an
area budget of 16, the impact of running one fewer thread is
significant for BIS and UBA, but UBA is able to overcome
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(a) Area budget=16 small cores
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(b) Area budget=32 small cores
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(c) Area budget=64 small cores

Figure 7: Speedup for optimal number of threads, normal-
ized to ACMP.

that disadvantage with respect to ACMP and AGETS by
accelerating both bottlenecks and lagging threads.

Second, as the number of threads increases, iplookup,
is nasp, mysql, tsp and webcache become limited by con-
tended critical sections and significantly benefit from BIS.
UBA improves performance more than AGETS and BIS be-
cause it is able to accelerate both lagging threads and bot-
tlenecks. Hist ph and pca ph are MapReduce applications
with no significant contention for critical sections where
UBA improves performance over AGETS because its shorter
scheduling quantum and lower-overhead hardware-managed
thread migration accelerates all three parallel portions (map,
reduce and merge) more efficiently.

Third, blacksch is a very scalable workload with nei-
ther significant bottlenecks nor significant thread imbalance,
which is the worst-case scenario for all the evaluated mech-
anisms. Therefore, AGETS produces the best performance
because it accelerates all threads in round-robin order and
it can run one more thread than BIS or UBA, which dedi-
cate the large core to acceleration. However, AGETS’ per-
formance benefit for blacksch decreases as the number of
cores (and threads) increases because the large core is time-
multiplexed among all threads, resulting in less acceleration
on each thread and a smaller impact on performance. Note
that in a set of symmetric threads, execution time is reduced
only by the minimum amount of time that is saved from any
thread, which requires accelerating all threads evenly. UBA
efficiently accelerates all threads, similarly to AGETS, but
is penalized by having to run with one fewer thread.

We conclude that UBA improves performance of applica-
tions that have lagging threads, bottlenecks or both by a
larger amount than AGETS, a previous proposal to accel-
erate only lagging threads, and BIS, a previous proposal to
accelerate only bottlenecks.

5.1.2 Multiple-Large-Core ACMP
Figure 8 shows the average speedups across all workloads

on the different configurations with the same area budgets,
running with their optimal number of threads. The main
observation is that replacing small cores with large cores on
a small area budget (16 cores, Figure 8(a)) has a very large
negative impact on performance due to the loss of paral-
lel throughput. With an area budget of 32 (Figure 8(b))
AGETS can take advantage of the additional large cores to
increase performance, but BIS cannot, due to the loss of
parallel throughput. UBA performs about the same with 1,
2 or 3 large cores, but still provides the best overall perfor-
mance of all three mechanisms. With an area budget of 64
(Figure 8(c)) there is no loss of parallel throughput, except
for blacksch. Therefore, both AGETS and BIS can take ad-
vantage of more large cores. However, average performance
of UBA improves more significantly with additional large
cores. According to per-benchmark data not shown due to
space limitations, the main reason for this improvement is
that iplookup, mysql and webcache benefit from additional
large cores because UBA is able to concurrently accelerate
the most important critical sections and lagging threads.

We conclude that as the area budget increases UBA be-
comes more effective than ACMP, AGETS and BIS in taking
advantage of additional large cores.
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Figure 8: Average speedups with multiple large cores, nor-
malized to ACMP with 1 large core.

5.2 Multiple Applications
Figure 9 shows the sorted harmonic speedups of 55 2-

application workloads with each mechanism: the extensions
of previous proposals to multiple applications (AGETS+PIE
and MA-BIS) and UBA, normalized to the harmonic speedup
of ACMP, with an area budget of 64 small cores. Perfor-
mance is generally better for UBA than for the other mech-
anisms and the difference increases with additional large
cores. Results for 2-application and 4-application workloads
with an area budget of 128 small cores show a similar pat-
tern and are not shown in detail due to space limitations,
but we show the averages. Tables 6 and 7 show the improve-
ment in average weighted speedup, harmonic speedup and
unfairness with UBA over the other mechanisms. Average
Wspeedup and Hspeedup for UBA are better than for the
other mechanisms on all configurations. Unfairness is also
reduced, except for three cases with 4 applications. UBA’s
unfairness measured as maximum slowdown [7] is even lower
than with the reported metric (by an average -4.3% for 2 ap-



plications and by an average -1.7% for 4 applications, details
not shown due to space limits).

We conclude that as the area budget and the number of
large cores increase, the performance advantage of UBA gen-
erally increases because UBA utilizes the large cores more
effectively than the other mechanisms, i.e., UBA identifies
and accelerates the most important bottlenecks and lagging
threads for each application.
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Figure 9: Sorted harmonic speedups for 55 2-application
workloads, normalized to ACMP, on Area budget=64.

Figure 10 shows detailed results for one of the 4-application
workloads, consisting of iplookup, which has many critical
sections with medium criticality, and three instances of mysql,
which has many critical sections with high criticality. The
experiment ran on an area budget of 128, with a single large
core. Figure 10(a) shows the individual speedups for each
application, relative to each application running alone with
the best configuration, i.e., UBA. AGETS improves perfor-
mance on iplookup but not much on mysql, because mysql is
critical-section limited and does not have much thread im-
balance. Both BIS and UBA focus on the more important
critical sections from mysql and do not improve iplookup’s
performance. However, UBA is more effective in choosing
the critical sections whose acceleration can improve perfor-
mance for each application and is also more fair. Therefore,
UBA has the best weighted and harmonic speedups and the
lowest unfairness, as shown in Figure 10(b).
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Figure 10: A case study with multiple applications.

5.3 Other Results
Figure 11(a) shows the average speedups for all mech-

anisms relative to ACMP on a 28-small-core, 1-large-core
ACMP, running with optimal number of threads, for differ-
ent interconnect hop latencies. On average, the benefit of
UBA over the best of AGETS and BIS increases with hop
latency (4.4%/7.5%/7.5%/8.1%/8.4% for 1/2/5/10/20 cy-
cles). This is because UBA is more effective than previous
proposals in selecting the code segments that provide higher
performance benefit from acceleration.
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Figure 11: Sensitivity studies.

Figure 11(b) shows the average speedups for UBA for dif-
ferent values of the scheduling quantum Q on the same sys-
tem configuration. A shorter quantum enables finer-grained
scheduling of lagging threads between consecutive barriers,
i.e., even when the number of identified lagging threads is
not small, all of them have an opportunity to be accelerated
before the next barrier. A longer quantum better amortizes
the costs of migration, which could otherwise reduce or even
negate the benefit of acceleration. For our workloads, Q =
1Mcycles is the overall best value.

We also analyzed the effect of acceleration proposals on
cache misses. Our workloads are not memory intensive (LLC
MPKI is less than 2.5). Code segment migration does not
significantly affect L1 misses and L3 (i.e., LLC) misses. The
only significant change is in L2 misses, more specifically in
core-to-core data transfers for mysql. In mysql, the amount
of private data that must be migrated to the large core run-
ning critical sections is significant. Therefore, BIS and UBA
increase L2 MPKI by 16% and 18%, respectively, since UBA
slightly increases the number of critical sections that run on
the large core. Using Data Marshaling [23] can significantly
reduce this problem, further increasing mysql’s speedup over
BIS (by 10.8%) and UBA (by 8.8%).

5.4 Discussion
UBA improves performance of a single application over

AGETS or BIS, because it can accelerate both bottlenecks



Configuration
Average Weighted speedup Average Harmonic speedup Average Unfairness

ACMP AGETS+PIE MA-BIS ACMP AGETS+PIE MA-BIS ACMP AGETS+PIE MA-BIS
Area=64, 1 LC 8.7 3.9 3.6 10.2 4.1 4.4 −13.4 −3.9 −6.3
Area=64, 2 LC 11.5 5.4 5.3 12.1 5.8 5.4 −7.1 −6.1 −0.6
Area=64, 3 LC 14.7 6.7 6.9 15.6 7.3 7.0 −8.5 −6.7 −0.8
Area=128, 1 LC 8.4 4.5 2.4 10.1 4.9 3.1 −13.3 −4.6 −4.8
Area=128, 2 LC 11.8 6.6 4.2 12.7 7.2 4.3 −9.6 −7.4 −2.0
Area=128, 3 LC 14.9 8.3 6.1 16.4 9.0 6.2 −12.6 −8.4 −1.9

Table 6: Average improvement (%) for each metric with UBA over each baseline on each configuration with 2 applications.

Configuration
Average Weighted speedup Average Harmonic speedup Average Unfairness

ACMP AGETS+PIE MA-BIS ACMP AGETS+PIE MA-BIS ACMP AGETS+PIE MA-BIS
Area=128, 1 LC 3.0 3.1 0.9 4.1 2.6 1.7 −12.9 0.6 −9.1
Area=128, 2 LC 7.3 3.8 1.9 9.6 4.2 2.5 −18.9 −4.4 −5.7
Area=128, 3 LC 7.4 3.7 3.4 9.3 4.1 3.0 −14.2 −3.3 4.6
Area=128, 4 LC 7.6 4.0 2.8 8.9 4.7 2.1 −10.7 −6.4 8.4

Table 7: Average improvement (%) for each metric with UBA over each baseline on each configuration with 4 applications.

and lagging threads, depending on which ones are more criti-
cal for performance at any time. UBA is also better at taking
advantage of multiple large cores and accelerating multiple
applications.

The relative performance benefit of UBA over other mech-
anisms is somewhat reduced as the number of concurrent ap-
plications increases. This is due to two reasons. First, our
baselines for multiple applications are new contributions of
this paper and are very aggressive: AGETS+PIE combines
AGETS with PIE, and MA-BIS thoughtfully extends BIS.
Second, as the number of applications increases, it is easier
to find at any given time a bottleneck or lagging thread that
is clearly critical for one of the applications and should be ac-
celerated. Therefore, even the simpler mechanisms can im-
prove performance as the number of applications increases.
For the same reasons, the performance improvement of UBA
does not consistently increase with additional large cores
when running 4 applications.

Figure 9 shows that UBA is not the best proposal for ev-
ery workload. We identify two reasons why UBA does not
always accelerate the code segments that provide the highest
system performance improvement. First, UBA uses PIE [27]
to predict performance on a large core for code segments
running on small cores. In this mode of operation, PIE is
simple but does not distinguish between code segments that
do not access main memory. Second, our L factor does not
consider the costs of migration. Therefore, UBA sometimes
accelerates critical sections that require migration of a sig-
nificant amount of private data, instead of a lagging thread
or bottleneck from another concurrent application, whose
acceleration would have been more profitable. Extending
our Utility of Acceleration metric to consider the costs of
migration is part of our future work.

6. RELATED WORK
Our major contribution is a new Utility of Acceleration

metric that allows meaningful comparisons to decide which
code segments to accelerate, both bottlenecks and lagging
threads, in a single- or multiple-application scenario. The
most closely related work is a set of proposals to acceler-
ate bottlenecks or to accelerate lagging threads using large
cores of an ACMP. Also related are software-based thread
scheduling proposals for ACMPs.

6.1 Accelerating Bottlenecks
Several proposals accelerate Amdahl’s serial bottleneck.

Annavaram et al. [3] use frequency throttling, Morad et al.
use the large core of an ACMP for a single application [15]
and for multiple applications [16]. Suleman et al. [24] ac-
celerate critical sections on a large core of an ACMP. Sule-

man et al. [25] reduce stage imbalance on pipeline-parallel
programs by allocating cores to stages. Joao et al. [10] ac-
celerate bottlenecks of multiple types on large cores of an
ACMP, using the amount of thread waiting each bottleneck
causes as an estimate of its criticality. These proposals ac-
celerate only specific bottlenecks, improving performance of
applications that are limited by those bottlenecks, but do
not take advantage of the large cores of an ACMP for appli-
cations that do not have the bottlenecks that they target.
Additionally, these proposals are not designed to acceler-
ate bottlenecks from multiple applications, except for [16],
which is limited to serial bottlenecks. In contrast, our pro-
posal always accelerates code segments, either bottlenecks
or lagging threads, fully utilizing any number of large cores
to improve performance of any kind of single and multiple
applications.

Ebrahimi et al. [8] prioritize memory requests produced
by cores that are executing important critical sections or
barriers to accelerate their execution. This work is orthog-
onal to ours, and our Utility metric could also be used to
influence memory scheduling decisions.

6.2 Accelerating Lagging Threads on Single
Multithreaded Applications

Several proposals try to find the most lagging thread us-
ing different progress metrics. Meeting Points [6] uses hints
from the software to count executed loop iterations and de-
termine which thread is lagging, assuming all threads have
to execute the same number of iterations. Thread Critical-
ity Predictors [5] use a combination of L1 and L2 cache miss
counters to predict thread progress, considering that in a set
of balanced threads, those that are affected by more cache
misses are more likely to lag behind. Age-based Schedul-
ing [13] assumes balanced threads have to execute the same
number of instructions and finds the thread that has exe-
cuted fewest instructions. Only [13] explicitly accelerates
the most lagging thread on a large core of an ACMP, but
the other proposals could also be used for the same pur-
pose, e.g., as [6] is used for memory scheduling in [8]. These
approaches are limited to reducing or eliminating thread im-
balance, but cannot identify and accelerate limiting critical
sections. Age-based Scheduling is implemented as a coarse-
grained O/S-based thread scheduler and therefore has higher
scheduling and context switch overheads than our proposal,
which relies on hardware-controlled execution migration.

6.3 Accelerating Multiple Applications
Koufaty [11] schedules on a large core threads with fewer

off-core memory accesses and fewer core front-end stalls.
Saez [20] proposes a utility factor that includes a speedup



factor based on LLC miss rates and a function of the to-
tal number of threads (TLP) and the number of accelerated
threads. The utility factor is used to classify threads into
three priority classes and the large cores are assigned start-
ing with the high-priority class and are time-multiplexed if
there are more threads in a class than available large cores.
Sequential phases are given the highest priority, as long as
their utility factor qualifies for the high-priority class.

UBA overcomes four major limitations of these past pro-
posals. First, their speedup estimation is based on LLC
misses or stalls, while our Utility of Acceleration metric pre-
dicts the speedup from executing a thread on a large core us-
ing PIE [27], which considers not only memory accesses but
also instruction-level parallelism (ILP) and memory-level
parallelism (MLP). Second, they do not distinguish lagging
threads within each application and treat all threads in an
application with the same importance in terms of criticality,
assuming balanced parallel phases. In contrast, UBA identi-
fies lagging threads. If the number of lagging threads is sig-
nificantly smaller than the total number of threads in an ap-
plication, focusing acceleration on those lagging threads has
higher potential to improve performance [13]. Third, they
do not consider accelerating critical sections that are likely
to be on the critical path, which UBA accelerates when crit-
ical sections have higher Utility of Acceleration than lagging
threads. Fourth, [11] and [20] are coarse-grained O/S-based
proposals and have higher scheduling and context switch
overheads than our proposal, which manages execution mi-
gration in hardware.

Van Craeynest et al. [27] develop a simple model to es-
timate performance on different core types, and use it to
schedule multiple single-threaded applications on an ACMP.
We use their proposal (PIE) as part for our Utility of Accel-
eration metric to estimate the acceleration of executing on
a large core. Since our Utility metric also takes into account
the criticality of code segments, it can be used to identify the
most important bottlenecks and lagging threads within each
application. Therefore UBA can accelerate any combination
of single- and multi-threaded applications.

7. CONCLUSION
We propose Utility-Based Acceleration of Multithreaded

Applications on Asymmetric CMPs (UBA), the first mech-
anism that can accelerate both bottleneck code segments
and lagging threads on an Asymmetric CMP (ACMP).
Our proposal can accelerate multiple multithreaded appli-
cations and can leverage an ACMP with any number of
large cores. We show that UBA improves performance of
a set of workloads including bottleneck-intensive and non-
bottleneck-intensive applications. UBA outperforms state-
of-the-art thread scheduling and bottleneck acceleration pro-
posals for single applications, and their aggressive extensions
for multiple applications. The benefit of UBA increases with
more cores. We conclude that UBA is a comprehensive pro-
posal to effectively use ACMPs to accelerate any number
of parallel applications with reasonable hardware cost and
without requiring programmer effort.
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