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1 Main Memory Organization and Interleaving

Consider the following piece of code:

for(i = 0; i < 8; ++i){

for(j = 0; j < 8; ++j){

sum = sum + A[i][j];

}

}

The figure below shows an 8-way interleaved, byte-addressable memory. The total size of the memory is
4KB. The elements of the 2-dimensional array, A, are 4-bytes in length and are stored in the memory in
column-major order (i.e., columns of A are stored in consecutive memory locations) as shown. The width of
the bus is 32 bits, and each memory access takes 10 cycles.
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A more detailed picture of the memory chips in Bank 0 of Rank 0 is shown below.
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(a) Since the address space of the memory is 4KB, 12 bits are needed to uniquely identify each memory
location, i.e., Addr[11:0]. Specify which bits of the address will be used for:

• Byte on bus
Addr [ 1 : 0 ]

• Interleave/Bank bits
Addr [ 4 : 2 ]

• Chip address
Addr [ 7 : 5 ]

• Rank bits
Addr [ 11 : 8 ]

(b) How many cycles are spent accessing memory during the execution of the above code? Compare this
with the number of memory access cycles it would take if the memory were not interleaved (i.e., a single
4-byte wide array).

Assumptions: Requests are scheduled in order one after another and any number
of requests can be outstanding at a time (limited only by bank conflicts).

As consecutive array elements are stored in the same bank, they have to be accessed
serially. However, the memory access in the last iteration of the inner for loop (A[x][7])
and the memory access in the first iteration of the next time through the inner for loop
(A[x+1][0]) go to different banks and can be accessed in parallel.
Therefore, number of cycles = (10× 8× 8) - (9× 7) = 577 cycles.

(c) Can any change be made to the current interleaving scheme to optimize the number of cycles spent
accessing memory? If yes, which bits of the address will be used to specify the byte on bus, interleaving,
etc. (use the same format as in part a)? With the new interleaving scheme, how many cycles are spent
accessing memory? Remember that the elements of A will still be stored in column-major order.



Elements along a column are accessed in consecutive cycles. So, if they were mapped to
different banks, accesses to them can be interleaved.
This can be done by using the following address mapping:

• Byte on bus
Addr [ 1 : 0 ]

• Interleave/Bank bits
Addr [ 7 : 5 ]

• Chip address
Addr [ 4 : 2 ]

• Rank bits
Addr [ 11 : 8 ]

The first iteration of the outer loop starts at time 0. The first access is issued at cycle 0 and
ends at cycle 10. Accesses to consecutive banks are issued every cycle after that until cycle 7
and these accesses complete by cycle 17. The first access of the second iteration of the outer
loop can start only in cycle 10, as bank 0 is occupied until cycle 10 with the first access of the
previous outer loop iteration. The second iteration’s accesses complete at cycle 27. Extending
this, the eighth iteration’s first access starts at cycle 70 and completes by cycle 87.
Therefore, number of cycles = 87 cycles.

(d) Using the original interleaving scheme, what small changes can be made to the piece of code to optimize
the number of cycles spent accessing memory? How many cycles are spent accessing memory using the
modified code?

The inner and outer loop can be reordered as follows:

for(j = 0; j < 8; ++j){

for(i = 0; i < 8; ++i){

sum = sum + A[i][j];

}

}

Thus, elements along a row, which are stored in consecutive banks (using the original inter-
leaving scheme), will be accessed in consecutive cycles. The effect this has on the number of
cycles is exactly the same as part (c).
Therefore, number of cycles = 87 cycles.



2 Main Memory Potpourri

A machine has a 4 KB DRAM main memory system. Each row is refreshed every 64 ms.

Note: This question is open ended. We provide one possible set of solutions. There could be
other possible right solutions.

(a) The machine’s designer runs two applications A and B (each run alone) on the machine. Although
applications A and B have a similar number of memory requests, application A spends a surprisingly
larger fraction of cycles stalling for memory than application B does. What might be the reasons for
this?

A large number of application A’s memory requests are row-buffer conflicts, whereas a large
number of application B’s memory requests are row-buffer hits.
Hence, application A’s requests take longer to service and it spends more time stalling for
memory.

(b) Application A also consumes a much larger amount of memory energy than application B does. What
might be the reasons for this?

Row-buffer conflicts also consume more energy, as they require a precharge, activate and a
read/write, whereas row-buffer hits only require a read/write.
Hence, application A consumes more memory energy.

(c) When applications A and B are run together on the machine, application A’s performance degrades
significantly, while application B’s performance doesn’t degrade as much. Why might this happen?

When the applications are run together, they interfere with each other. Hence, both appli-
cations’ performance degrades when they run together. However, if a memory scheduler that
favor row-buffer hits over row-buffer conflicts (like FR-FCFS) is used, it would favor applica-
tion B’s requests over application A’s requests.
Therefore, application A’s performance degrades more.

(d) The designer decides to use a smarter policy to refresh the memory. A row is refreshed only if it has not
been accessed in the past 64 ms. Do you think this is a good idea? Why or why not?

This can reduce refresh energy significantly if a large fraction of the rows in memory contain
data and are accessed (within the 64 ms refresh window), as these rows do not have to be
refreshed explicitly. However, if only a small number of rows contain data and only these rows
are accessed, this policy will not provide much reduction in refresh energy as a large fraction
of rows are still refreshed at the 64 ms rate.

(e) The refresh energy consumption when application B is run, drops significantly when this new refresh
policy is applied, while the refresh energy when application A is run reduces only slightly. Is this possible?
Why or why not?



This is possible. If application B has a large working set, it could access a large fraction of
the memory rows (within the 64 ms refresh window) and hence these rows do not have to be
refreshed explicitly. Application A on the other could have a much smaller working set and
hence a large fraction of rows still have to be refreshed at the 64 ms rate.



3 Banks

A processor’s memory hierarchy consists of a small SRAM L1-cache and a large DRAM main memory, both
of which are banked. The processor has a 24-bit physical address space and does not support virtual memory
(i.e., all addresses are physical addresses). An application has just started running on this processor. The
following figure shows the timeline of memory references made by that application and how they are served
in the L1-cache or main memory.
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For example, the first memory reference made by the application is to byte-address 0xffbc67 (assume that
all references are byte-sized reads to byte-addresses). However, the memory reference misses in the L1-cache
(assume that the L1-cache is intially empty). Immediately afterwards, the application accesses main memory,
where it experiences a row-buffer miss (initially, assume that all banks in main memory each have a row
opened that will never be accessed by the application). Eventually, the cache block (and only that cache
block) that contains the byte-address 0xffbc67 is fetched from memory into the cache.

Subsequent memory references may experience bank-conflicts in the L1-cache and/or main memory, if there
is a previous reference still being served at that particular bank. Bank-conflicts are denoted as hatched
shapes in the timeline.

The following table shows the address of the memory references made by the application in both hexadecimal
and binary representations.

(a) Memory address table

Hexadecimal Binary

ffbc67 1111 1111 1011 1100 0110 0111

ffbda7 1111 1111 1011 1101 1010 0111

ffbdd7 1111 1111 1011 1101 1101 0111

ff5e28 1111 1111 0101 1110 0010 1000

ff5a28 1111 1111 0101 1010 0010 1000

ff4e28 1111 1111 0100 1110 0010 1000

ff4c04 1111 1111 0100 1100 0000 0100

ffbc6f 1111 1111 1011 1100 0110 1111

ffbc70 1111 1111 1011 1100 0111 0000



From the above timelines and the table, your job is to answer questions about the processor’s cache and
main memory organization. Here are some assumptions to help you along the way.

• Assumptions about the L1-cache

– Block size: ? (Power of two, greater than two)

– Associativity: ? (Power of two, greater than two)

– Total data-store size: ? (Power of two, greater than two)

– Number of banks: ? (Power of two, greater than two)

– Initially empty

• Assumptions about main memory

– Number of channels: 1

– Number of ranks per channel: 1

– Number of banks per rank: ? (Power of two, greater than two)

– Number of rows per bank: ? (Power of two, greater than two)

– Number of cache-blocks per row: ? (Power of two, greater than two)

– Contains the entire working set of the application

– Initially, all banks have their 0th row open, which is never accessed by the application

3.1 First, let’s cover the basics

(a) Caches and main memory are sub-divided into multiple banks in order to allow parallel access. What is
an alternative way of allowing parallel access?

Multiporting, duplicating

(b) A cache that allows multiple cache misses to be outstanding to main memory at the same time is called
what? (Two words or less. Hint: It’s an adjective.)

Non-blocking (or lockup-free)

(c) While cache misses are outstanding to main memory, what is the structure that keeps bookkeeping
information about the outstanding cache misses? This structure often augments the cache.

Miss status handling registers (MSHRs)

(d) Which is larger, an SRAM cell or a DRAM cell?

SRAM cell

(e) What is the number of transistors and/or capacitors needed to implement each cell, including access
transistor(s)?

SRAM: 6T
DRAM: 1T-1C



3.2 Cache and memory organization

NOTE: For the following questions, assume that all offsets and indexes come from contiguous address bits.

(a) What is the L1-cache’s block size in bytes? Which bit positions in the 24-bit physical address correspond
to the cache block offset? (The least-significant bit in the physical address has a bit position of 0.)

Block size: 16 bytes
Bit positions of block offset: 0-3

(b) How many banks are there in the L1-cache? Which bit positions in the 24-bit physical address correspond
to the L1-cache bank index? (The least-significant bit in the physical address has a bit position of 0.)

Number of L1-cache banks: 4
Bit positions of L1-cache bank index: 4-5

(c) How many banks are there in main memory? Which bit positions in the 24-bit physical address cor-
respond to the main memory bank index? (The least-significant bit in the physical address has a bit
position of 0.)

Number of main memory banks: 8
Bit positions of main memory bank index: 10-12

(d) What kind of interleaving is used to map physical addresses to main memory?

Row-interleaving

(e) To fully support a 24-bit physical address space, how many rows must each main memory bank have?
Which bit positions in the 24-bit physical address correspond to the main memory row index? (The
least-significant bit in the physical address has a bit position of 0.)

Number of rows per main memory bank: 2048
Bit positions of row index: 13-23

(f) Each cache block within a row is called a column. How many columns are there in a single row?
Which bit positions in the 24-bit physical address correspond to the main memory column index? (The
least-significant bit in the physical address has a bit position of 0.)

Number of columns per row: 64
Bit positions of column index: 4-9



4 Memory Hierarchy

Assume you developed the next greatest memory technology, MagicRAM. A MagicRAM cell is non-volatile.
The access latency of a MagicRAM cell is 2 times that of an SRAM cell but the same as that of a DRAM cell.
The read/write energy of MagicRAM is similar to the read/write energy of DRAM. The cost of MagicRAM
is similar to that of DRAM. MagicRAM has higher density than DRAM. MagicRAM has one shortcoming,
however: a MagicRAM cell stops functioning after 2000 writes are performed to the cell.

(a) Is there an advantage of MagicRAM over DRAM other than its density? (Please do not repeat what is
stated in the above paragraph.) Explain.

Yes. MagicRAM does not need refreshes, since it is nonvolatile. This can reduce dynamic
power, bus utilization, and bank contention. MagicRAM is also nonvolatile, which can enable
new uses or programming models.

(b) Is there an advantage of MagicRAM over SRAM? Explain.

Yes. MagicRAM has higher density and lower cost than SRAM.

(c) Assume you have a system that has a 64KB L1 cache made of SRAM, a 12MB L2 cache made of SRAM,
and 4GB main memory made of DRAM.

Assume you have complete design freedom and add structures to overcome the shortcoming of Magic-
RAM. You will be able to propose a way to reduce/overcome the shortcoming of MagicRAM (note that
you can design the hierarchy in any way you like, but cannot change MagicRAM itself).

(i) Does it makes sense to add MagicRAM anywhere in this memory hierarchy given that you can
potentially reduce its shortcoming?

Yes.

(ii) If so, where would you place MagicRAM? Describe it in terms of the figure above and describe why
you made this choice.

If not, why not? Explain below clearly and methodically



Many answers are possible. One option: Place MagicRAM below DRAM in the hierarchy,
and use DRAM as a cache to MagicRAM. This way, DRAM performs write coalescing so that
MagicRAM does not wear out as quickly. Another option could be to place MagicRAM “next
to” DRAM (on the same or another channel), and use MagicRAM explicitly for read-only
data.

(d) Propose a way to reduce/overcome the shortcoming of MagicRAM by modifying the given memory
hierarchy. Be clear in your explanations and illustrate with drawings to aid understanding.

A write-combining/coalescing buffer could be added. The memory hierarchy could also per-
form wear-leveling, or it could predict which data is less likely to be modified and place only
that data in MagicRAM.
Figure(s):



5 Prefetching

Suppose you have designed the next fancy hardware prefetcher for your system. You analyze its behavior
and find the following:

(a) The prefetcher successfully prefetches block A into the cache before it is required by a load instruction.
The prefetched block evicts a never-to-be-used block from the cache, so it does not cause cache pollution.
Furthermore, you find that the prefetch request does not waste bus bandwidth needed by some other
request.

(b) The prefetcher successfully prefetches block B into the cache before it is required by a load instruction.
The prefetched block evicts a never-to-be-used block from the cache, so it does not cause cache pollution.
Furthermore, you find that the prefetch request does not waste bus bandwidth needed by some other
request.

Upon further analysis, you find that the prefetching of block A actually reduced execution time of the
program whereas prefetching of block B did not reduce execution time significantly. Describe why this could
happen. Draw two execution timelines, one with and one without the prefetcher, to illustrate the concept.

Given that both prefetch requests were used, no prefetch wasted bandwidth or caused cache
pollution, but only A reduced execution time significantly, we must conclude that the miss of A
was more expensive than the miss of B. Possible reason: Memory Level Parallelism. The miss of
B was parallel with another miss (e.g. C) that wasn’t prefetched (i.e., the processor still needs to
stall for the parallel miss) whereas the miss of A was an isolated miss, eliminating which reduced
the stall time.
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6 DRAM Refresh

A memory system is composed of eight banks, and each bank contains 32K rows. The row size is 8 KB.

Every DRAM row refresh is initiated by a command from the memory controller, and it refreshes a single
row. Each refresh command keeps the command bus busy for 5 ns.

We define command bus utilization as a fraction of the total time during which the command bus is busy
due to refresh.

The retention time of each row depends on the temperature (T). The rows have different retention times, as
shown in the following Table 1:

Retention Time Number of rows

(128− T ) ms, 0◦C ≤ T ≤ 128◦C 28 rows
2 ∗ (128− T ) ms, 0◦C ≤ T ≤ 128◦C 216 rows
4 ∗ (128− T ) ms, 0◦C ≤ T ≤ 128◦C all other rows
8 ∗ (128− T ) ms, 0◦C ≤ T ≤ 128◦C 28 rows

Table 1: Retention time

6.1 Refresh Policy A

Assume that the memory controller implements a refresh policy where all rows are refreshed with a fixed
refresh interval, which covers the worst-case retention time (Table 1).

(a) What is the maximum temperature at which the DRAM can operate reliably with a refresh interval of
32 ms?

T=96◦C.

Explanation. Looking at the first column of Table 1, it is obvious that the DRAM rows with
the least retention time (i.e., the first row of the table) can operate at temperatures up to
96◦C (128 - 96) when refreshed at fixed 32 ms refresh period.

(b) What command bus utilization is directly caused by DRAM refreshes (with refresh interval of 32 ms)?

4.096%.

Explanation. The time that the command bus spends on refresh commands in 32ms is
218*5ns, where 218 is the number of rows (8 banks, 32K rows per banks), and 5ns is the time
that the bus is busy for each refresh command.

Utilization = 218∗5ns
32ms = 4.096%



6.2 Refresh Policy B

Now assume that the memory controller implements a refresh policy where all rows are refreshed only as
frequently as required to correctly maintain their data (Table 1).

(a) How many refreshes are performed by the memory controller during a 1.024 second period? (with
T=64◦C)

The number of refreshes in 1.024 seconds is 1313280.

Explanation. 28 rows are refreshed every 64ms =⇒ (1024/64) * 28 = 212 refresh commands
in 1.024 seconds.
216 rows are refreshed every 128ms =⇒ (1024/128) * 216 = 219 refresh commands in 1.024
seconds.
28 rows are refreshed every 512ms =⇒ (1024/512) * 28 = 29 refresh commands in 1.024
seconds.

The remaining rows are 218 − (28 + 216 + 28) = 218 − 216 − 29, so: 218 − 216 − 29 rows are
refreshed every 256ms =⇒ (1024/256) * (218− 216− 29) = 220− 218− 211 refresh commands
in 1.024 second.

Total: 212 + 219 + 29 + 220 − 218 − 211 = 1313280 refresh commands in 1.024 second.

6.3 Refresh Policy C

Assume that the memory controller implements an even smarter policy to refresh the memory. In this
policy, the refresh interval is fixed, and it covers the worst-case retention time (64ms), as the refresh policy
in part 6.1. However, as an optimization, a row is refreshed only if it has not been accessed during the past
refresh interval. For maintaining correctness, if a cell reaches its maximum retention time without being
refreshed, the memory controller issues a refresh command.

(a) Why does a row not need to be refreshed if it was accessed in the past refresh interval?

The charge of a DRAM cell is restored when it is accessed.

(b) A program accesses all the rows repeatedly in the DRAM. The following table shows the access interval
of the rows, the number of rows accessed with the corresponding access interval, and the retention times
of the rows that are accessed with the corresponding interval.

Access interval Number of rows Retention times

1ms 216 rows 64ms, 128ms or 256ms
60ms 216 rows 64ms, 128ms or 256ms
128ms all other rows 128ms or 256ms

(c) What command bus utilization is directly caused by DRAM refreshes?



Command bus utilization: 0.512%.

Explanation. The rows that are accessed every 1 ms and every 60 ms do not need to be
refreshed.

The remaining rows (217) are accessed once every two refresh intervals (128 ms). So, the

command bus utilization is
217 ∗ 5ns ∗ 100

128ms
= 0.512%

6.4 Refresh Policy D

Assume that the memory controller implements an approximate mechanism to reduce refresh rate using
Bloom filters, as we discussed in class. For this question we assume the retention times in Table 1 with a
constant temperature of 64◦C.

One Bloom filter is used to represent the set of all rows that require a 64 ms refresh rate.

The memory controller’s refresh logic is modified so that on every potential refresh of a row (every 64 ms),
the refresh logic probes the Bloom filter. If the Bloom filter probe results in a “hit” for the row address,
then the row is refreshed. Any row that does not hit in the Bloom filter is refreshed at the default rate of
once per 128 ms.

(a) The memory controller performs 2107384 refreshes in total across the channel over a time interval of
1.024 seconds. What is the false positive rate of the Bloom filter? (NOTE: False positive rate = Total
number of false positives / Total number of accesses).

• Hint: 2107384 = 23 ∗ (218 + 211 − 210 + 29 − 28 − 1)

False Positive rate = (210 − 1)/218.

Explanation. First, there are 28 rows that need to be refreshed every 64ms. All the other
rows (218 − 28) will be refreshed every 128ms.

At 64 ms, we have 28 rows which actually require this rate, plus P out of the 218 − 28 other
rows which will be false-positives. In a period of 1.024s, this bin is refreshed 16 times. The
number of refreshes for this bin is 16 ∗ (28 + P ∗ (218 − 28)).

At 128 ms we have the rest of the rows which are 218 − 28 minus the false positives refreshed
in the 64ms bin. So, the number of rows are 218 − 28 − P ∗ (218 − 28). In a period of 1.024s,
this bin is refreshed 8 times. The number of refreshes for this bin is 8∗((218−28)−(P ∗(218−28))

Thus, in total we have 16 ∗ (28 + P ∗ (218 − 28)) + 8 ∗ ((218 − 28)− P ∗ (218 − 28)) = 2107384
. Solving the equation, P=2−8.

Finally, False positive rate = Total number of false positives / Total number of accesses =
P ∗ (218 − 28))/218 = 2−8 ∗ (218 − 28)/218 = (210 − 1)/218



7 DRAM Refresh - Utilization

A memory system has four channels, and each channel has two ranks of DRAM chips. Each memory channel
is controlled by a separate memory controller. Each rank of DRAM contains eight banks. A bank contains
32K rows. Each row in one bank is 8KB. The minimum retention time among all DRAM rows in the system
is 64 ms. In order to ensure that no data is lost, every DRAM row is refreshed once per 64 ms. Every DRAM
row refresh is initiated by a command from the memory controller which occupies the command bus on the
associated memory channel for 5 ns and the associated bank for 40 ns. Let us consider a 1.024 second span
of time.

We define utilization (of a resource such as a bus or a memory bank) as the fraction of total time for which
a resource is occupied by a refresh command.

For each calculation in this section, you may leave your answer in simplified form in terms of powers of 2
and powers of 10.

(a) How many refreshes are performed by the memory controllers during the 1.024 second period in total
across all four memory channels?

223 refreshes per channel; 225 = 32M across 4 channels.

(b) What command bus utilization, across all memory channels, is directly caused by DRAM refreshes?

4.096% = (32M × 5ns/(4× 1.024s))

(c) What data bus utilization, across all memory channels, is directly caused by DRAM refreshes?

0

(d) What bank utilization (on average across all banks) is directly caused by DRAM refreshes?

2.048% = (32K × 16× 40ns/1.024s)

(e) The system designer wishes to reduce the overhead of DRAM refreshes in order to improve system
performance and reduce the energy spent in DRAM. A key observation is that not all rows in the
DRAM chips need to be refreshed every 64 ms. In fact, rows need to be refreshed only at the following
intervals in this particular system:

Required Refresh Rate Number of Rows

64 ms 25

128 ms 29

256 ms all other rows

Given this distribution, if all rows are refreshed only as frequently as required to maintain their data,
how many refreshes are performed by the memory controllers during the 1.024 second period in total
across all four memory channels?

(32k × 1) + (25 × ( 256/64
− 1) + 29 × ( 256/128

− 1)) row refreshes per 256ms.
×4 for 1.024s.

What command bus utilization (as a fraction of total time) is caused by DRAM refreshes in this case?

1.0243% = 5e− 9 ∗ (25 × 16 + 29 × 8 + (221 − 29 − 25)× 4)/(4× 1.024)

(f) What DRAM data bus utilization is caused by DRAM refreshes in this case?



0

(g) What bank utilization (on average across all banks) is caused by DRAM refreshes in this case?

0.5121% = 40e− 9× (25 × 16 + 29 × 8 + (221 − 29 − 25)× 4)/(64× 1.024)

(h) The system designer wants to achieve this reduction in refresh overhead by refreshing rows less frequently
when they need less frequent refreshes. In order to implement this improvement, the system needs to
track every row’s required refresh rate. What is the minimum number of bits of storage required to track
this information?

4 Mbit (2 bits per row)

(i) Assume that the system designer implements an approximate mechanism to reduce refresh rate using
Bloom filters, as we discussed in class. One Bloom filter is used to represent the set of all rows which
require a 64 ms refresh rate, and another Bloom filter is used to track rows which require a 128 ms refresh
rate. The system designer modifies the memory controller’s refresh logic so that on every potential refresh
of a row (every 64 ms), it probes both Bloom filters. If either of the Bloom filter probes results in a
“hit” for the row address, and if the row has not been refreshed in the most recent length of time for the
refresh rate associated with that Bloom filter, then the row is refreshed. (If a row address hits in both
Bloom filters, the more frequent refresh rate wins.) Any row that does not hit in either Bloom filter is
refreshed at the default rate of once per 256 ms.

The false-positive rates for the two Bloom filters are as follows:

Refresh Rate Bin False Positive Rate

64 ms 2−20

128 ms 2−8

The distribution of required row refresh rates specified in part (e) still applies.

How many refreshes are performed by the memory controllers during the 1.024 second period in total
across all four memory channels?

false positives: 8192 + 2 (8194)

What command bus utilization results from this refresh scheme?

5e− 9× ((25 + 2)× 16 + (29 + 213) ∗ 8 + (221 − 29 − 25 − 2− 213)× 4)/(4× 1.024)

What data bus utilization results from this refresh scheme?

0%

What bank utilization (on average across all banks) results from this refresh scheme?

0.5141% = 40e− 9× ((25 + 2)× 16 + (29 + 213) ∗ 8 + (221− 29− 25− 2− 213)× 4)/(64× 1.024)



8 DRAM Scheduling and Latency

You would like to understand the configuration of the DRAM subsystem of a computer using reverse engi-
neering techniques. Your current knowledge of the particular DRAM subsystem is limited to the following
information:

• The physical memory address is 16 bits.

• The DRAM subsystem consists of a single channel and 4 banks.

• The DRAM is byte-addressable.

• The most-significant 2 bits of the physical memory address determine the bank.

• The DRAM command bus operates at 500 MHz frequency.

• The memory controller issues commands to the DRAM in such a way that no command for servicing
a later request is issued before issuing a READ command for the current request, which is the oldest
request in the request buffer. For example, if there are requests A and B in the request buffer, where A
is the older request and the two requests are to different banks, the memory controller does not issue
an ACTIVATE command to the bank that B is going to access before issuing a READ command to
the bank that A is accessing.

You realize that you can observe the memory requests that are waiting to be serviced in the request
buffer. At a particular point of time, you take the snapshot of the request buffer and you observe the
following requests in the request buffer.

Requests in the request buffer (in descending order of request age, where the oldest request is on the top):
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Read 0x4C80

Read 0x0140

Read 0x4EC0

Read 0x8000

Read 0xF000

Read 0x803F

Read 0x4E80

At the same time you take the snapshot of the request buffer, you start probing the DRAM command bus.
You observe the DRAM command type and the cycle (relative to the first command) at which the command
is seen on the DRAM command bus. The following are the DRAM commands you observe on the DRAM
bus while the requests above are serviced.

Cycle 0 --- PRECHARGE

Cycle 6 --- ACTIVATE

Cycle 10 --- READ

Cycle 11 --- READ

Cycle 21 --- PRECHARGE

Cycle 27 --- ACTIVATE

Cycle 31 --- READ

Cycle 32 --- ACTIVATE

Cycle 36 --- READ

Cycle 37 --- READ

Cycle 38 --- READ

Cycle 42 --- PRECHARGE

Cycle 48 --- ACTIVATE

Cycle 52 --- READ



Answer the following questions using the information provided above.

(a) What are the following DRAM timing parameters used by the memory controller, in terms of nanosec-
onds?

i) ACTIVATE-to-READ latency

8 ns.

Explanation. After issuing the ACTIVATE command at cycle 6, the memory controller
waits until cycle 10, which indicates that the ACTIVATE-to-READ latency is 4 cycles.
The command bus operates at 500 MHz, so it has 2 ns clock period. Thus, the ACTIVATE-
to-READ is 4 ∗ 2 = 8 ns.

ii) ACTIVATE-to-PRECHARGE latency

30 ns.

Explanation. The bank activated at cycle 6 is precharged at cycle 21. Although the mem-
ory controller is idle after cycle 11, it waits until cycle 21, which means the ACTIVATE-
to-PRECHARGE latency restricts the memory controller from issuing the PRECHARGE
command earlier. Thus, the ACTIVATE-to-PRECHARGE latency is 15 cycles = 30 ns.

iii) PRECHARGE-to-ACTIVATE latency

12 ns.

Explanation. The PRECHARGE-to-ACTIVATE latency can be easily seen in the first
two commands at cycles 0 and 6. The PRECHARGE-to-ACTIVATE latency is 6 cycles
= 12 ns.

(b) What is the row size in bytes? Explain your answer.

64 bytes.

Explanation. The Read request to address 0x803F (to Bank 2) does not require an ACTI-
VATE command, which means there is a row hit for that access. The open row was activated
by the command issued for the request to the address 0x8000. That means the target rows of
both requests should be the same. When we look at the binary form of those addresses, we
see that the least significant 6 bits are different (000000 for 0x8000 and 111111 for 0x803F).
That means at least 6 of the least significant bits should be the column bits.
Later, when we look at the commands issued for the requests to 0x4ECO and 0x4E80, we
see that for both of those requests, the memory controller has opened a new row. Thus, the
target rows of those requests should be different. Since only the 6th bit (assuming the least
significant bit is the 0th bit) is different between the two addresses, the 6th bit should be
part of the row address. So, of the 6th bit is part of the row address, the number of columns
bits should be 6 or less. As we previously found from the requests to 0x8000 and 0x803F
that the number of column bits should be at least 6, combining those two findings we can say
that the number of column bits should be exactly 6. Thus, the row size is 26 = 64 bytes.



(c) What is the status of the banks prior to the execution of any of the the above requests? In other words,
which rows from which banks were open immediately prior to issuing the DRAM commands listed above?
Fill in the table below indicating whether a bank has an open row, and if there is an open row, specify
its address. If there is not enough information to infer the open row address, write unknown.

Open or Closed? Open Row Address

Bank 0 Open 5
Bank 1 Open Unknown
Bank 2 Closed —
Bank 3 Open 192

Explanation. By decoding the accessed addresses we can find which bank and row each access tar-
gets. Looking at the commands issued for those requests, we can determine which requests needed
PRECHARGE (row buffer conflict, the initially open row is unknown in this case), ACTIVATE (the
bank is initially closed), or directly READ (the bank is initially open and the open row is the same as
the one that the request targets).
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0x4C80 → Bank: 1, Row: 50 (PRECHARGE first. Any row other than 50 could be opened.)
0x0140 → Bank: 0, Row: 5 (Row hit, so Bank 0 must have row 5 open.)
0x4EC0 → Bank: 1, Row: 59

0x8000 → Bank: 2, Row: 0 (ACTIVATE is issued first. That means the bank was already closed.)
0xF000 → Bank: 3, Row: 192 (Row hit, so Bank 3 must have row 192 open.)
0x803F → Bank: 2, Row: 0

0x4E80 → Bank: 1, Row: 58

(d) To improve performance, you decide to implement the idea of Tiered-Latency DRAM (TL-DRAM)
in the DRAM chip. Assume that a bank consists of a single subarray. With TL-DRAM, an entire
bank is divided into a near-segment and far-segment. When accessing a row in the near-segment, the
ACTIVATE-to-READ latency reduces by 2 cycles and the ACTIVATE-to-PRECHARGE latency reduces
by 5 cycles. When accessing a row in the far-segment, the ACTIVATE-to-READ latency increases by 1
cycle and the ACTIVATE-to-PRECHARGE latency increases by 2 cycles.

Assume that the rows in the near-segment have smaller row ids compared to the rows in the far-segment.
In other words, physical memory row addresses 0 through N−1 are the near-segment rows, and physical
memory row addresses N through M − 1 are the far-segment rows.

If the above DRAM commands are issued 5 cycles faster with TL-DRAM compared to the baseline (the
last command is issued in cycle 47), how many rows are in the near-segment? Show your work.



59 rows have to be in the near segment.

Explanation. There should 59 rows in the near-segment (rows 0 to 58) since rows until row
id 58 need to be accessed with low latency to get 5 cycle reduction. Rows 59 and 192 are in
the far-segment, thus latency for accessing them increases slightly.
Here is the new command trace:
Cycle 0 --- PRECHARGE - Bank 1

Cycle 6 --- ACTIVATE - Bank 1, Row 50, near segment

Cycle 8 --- READ - Bank 1

Cycle 9 --- READ - Bank 0

Cycle 16 --- PRECHARGE - Bank 1

Cycle 22 --- ACTIVATE - Bank 1, Row 59, far segment

Cycle 27 --- READ - Bank 1

Cycle 28 --- ACTIVATE - Bank 2, Row 0

Cycle 30 --- READ - Bank 2

Cycle 31 --- READ - Bank 3

Cycle 32 --- READ - Bank 2

Cycle 39 --- PRECHARGE - Bank 1

Cycle 45 --- ACTIVATE - Bank 1, Row 58, near segment

Cycle 47 --- READ - Bank 1



9 Memory Scheduling

In lectures, we introduced a variety of ways to tackle memory interference. In this problem, we will look at
the Blacklisting Memory Scheduler (BLISS) to reduce unfairness. There are two key aspects of BLISS that
you need to know.

• When the memory controller services η consecutive requests from a particular application, this appli-
cation is blacklisted. We name this non-negative integer η the Blacklisting Threshold.

• The blacklist is cleared periodically every 10000 cycles starting at t = 0.

To reduce unfairness, memory requests in BLISS are prioritized in the following order:

• Non-blacklisted applications’ requests

• Row buffer hit requests

• Older requests

The memory system for this problem consists of 2 channels with 2 banks each. Tables 1 and 2 show the
memory request stream in the same bank for both applications at different times (t = 0 and t = 10). For
both tables, a request on the left-hand side is older than a request on the right-hand side in the same table.
The applications do not generate more requests than those shown in Tables 1 and 2. The memory requests
are labeled with numbers that represent the row position of the data within the accessed bank. Assume the
following for all questions:

• A row buffer hit takes 100 cycles.

• A row buffer miss (i.e., opening a row in a bank with a closed row buffer) takes 200 cycles.

• A row buffer conflict (i.e., closing the currently open row and opening another one) takes 250 cycles.

• All row buffers are closed at time t = 0

Application A (Channel 0, Bank 0)
Application B (Channel 0, Bank 0) Row 2 Row 2 Row 2 Row 2 Row 2 Row 3 Row 3 Row 4

Table 2: Memory requests of the two applications at t = 0

Application A (Channel 0, Bank 0) Row 3 Row 7 Row 2 Row 0 Row 5 Row 3 Row 8 Row 9
Application B (Channel 0, Bank 0) Row 2 Row 2 Row 2 Row 2 Row 2 Row 3 Row 3 Row 4

Table 3: Memory requests of the two applications at t = 10. Note that none of the Application B’s existing
requests are serviced yet.

(a) Compute the slowdown of each application using the FR-FCFS scheduling policy after both threads ran
to completion. We define:

slowdown = memory latency of the application when run together with other applications
memory latency of the application when run alone

Show your work.



slowdownA =∼ 1.53
slowdownB = 1.25

Explanation:
For both applications, the first request will incur row buffer miss penalty, and the rest of the
requests will either be hits or conflicts.
Application A (alone) = 200 + 100 + 250 ∗ 6 = 1800 cycles
Application B (alone) = 200 + 100 ∗ 4 + 250 + 100 + 250 = 1200 cycles

Applications A (with B, FR-FCFS) = 200+100∗4+100+250+100+100∗2+250+250∗5 =
2750 cycles
Applications B (with A, FR-FCFS) = 200+100∗4+100+250+100+100∗2+250 = 1500 cycles

From the two tables above we know that all requests of application B were issued before any
of the application A’s requests were issued. Thus, all requests of B are prioritized unless there
is a row hit for A’s requests.
slowdownA = 2750

1800 =∼ 1.53

slowdownB = 1500
1200 = 1.25

(b) If we use the BLISS scheduler, for what value(s) of η (the Blacklisting Threshold) will the slowdowns of
both applications be equal to those obtained with FR-FCFS?

For η ≥ 6 or η = 0.

Explanation:
We want both A and B to complete without blacklisting or to complete both blacklisted, thus
η ≥ 6 and η = 0, respectively.

(c) For what value(s) of η (the Blacklisting Threshold) will the slowdown of A be < 1.5?

Impossible. Slowdown for A will always be ≥ 1.5

Explanation: For the give memory requests, it is not possible to find η that blacklists B but
not A. Thus, the smallest slowdown for A is the case explained in the solution of part (b).

(d) For what value(s) of η (the Blacklisting Threshold) will B experience the maximum slowdown it can
possibly experience with the Blacklisting Scheduler?



For η = 5.

Explanation: We already know that the slowdowns will be equal to the slowdown with FR-
FCFS when η ≥ 6 or η = 0. If we execute the memory requests for the rest of possible η
values, we find that η = 5 causes application B to complete after 2150 cycles, which is the
largest.

(e) What is a simple mechanism (that we discussed in lectures) that we can use instead of BLISS to make
the slowdowns of both A and B equal to 1.00?

Memory Channel Partitioning (MCP)

Explanation: With MCP, each application will operate on an independent channel, without
any interference with the other application.



10 Emerging Memory Technologies

Researchers at Lindtel developed a new memory technology, L-RAM, which is non-volatile. The access
latency of L-RAM is close to that of DRAM while it provides higher density compared to the latest DRAM
technologies. L-RAM has one shortcoming, however: it has limited endurance, i.e., a memory cell stops
functioning after 106 writes are performed to the cell (known as cell wear-out).

(a) Lindtel markets a new computer system with L-RAM to have a lifetime of 2 years and the following
specifications:

• 4 GBs of L-RAM as main memory with a perfect wear-leveling mechanism, i.e., writes are equally
distributed over all the cells of L-RAM.

• The processor is in-order and there is no memory-level parallelism.

• It takes 4 ns to send a memory request from the processor to the memory controller and it takes
20 ns to send the request from the memory controller to L-RAM. The write latency of L-RAM is
40 ns.

• L-RAM is word-addressable. Thus, each write request writes 8 bytes to memory.

A student at ETH tests the lifetime of the system and finds that this new computer system cannot
guarantee a lifetime of 2 years. She writes a program to wear out the entire L-RAM device as quickly
as possible. How fast is she able to wear out the device? Show all work.

twear out = 232

23 × 106 × (40 + 4 + 20)
twear out = 235 × 106 ns
twear out ≈ 397.68 days

Explanation:
• Each memory cell should receive 106 writes.

• Since ETH-RAM is word addressable, the required number of writes is equal to 232

23 ×106.
• The processor is in-order and there is no memory-level parallelism, so the total latency

of each memory access is equal to 40 + 4 + 20.

(b) L-RAM works in the multi-level cell (MLC) mode in which each memory cell stores 2 bits. The student
decides to improve the lifetime of L-RAM cells by using the single-level cell (SLC) mode. When L-RAM
is used in SLC mode, the lifetime of each cell improves by a factor of 10 and the write latency decreases
by 75%. What is the lifetime of the system using the SLC mode, if we repeat the experiment in part
(a), with all else remaining the same in the system? Show your work.

twear out = 231

23 × 107 × (10 + 4 + 20)× 10−9

twear out = 91268055.04s ≈ 1056.34 days

Explanation:
• Each memory cell should receive 10× 106 = 107 writes.
• The memory capacity is reduced by 50% since we are using SLC: Capacity = 232/2 = 231

• The required number of writes is equal to 231

23 × 107.
• The SLC write latency is 0.25× twrite MLC : twrite SLC = 0.25× 40 = 10 ns

(c) Provide a mechanism that would increase the guaranteed lifetime of the computer system without chang-
ing the physical circuitry of L-RAM. From the baseline computer system in part (a), describe the changes
required to guarantee a computer system lifetime of 2 years, with your mechanism. Be concrete and
precise.



Artificially increase the time to either (1) send a memory request from the memory controller
to L-RAM or (2) send a request from the processor to the memory controller by 54 ns.

730 ∗ 3600 ∗ 24 < 232

23 × 106 × (40 + 4 + 20 + x)
x > 53.4ns



11 Prefetching II

An ETH student writes two programs A and B and runs them on 3 different toy machines, M1, M2, and
M3, to determine the type of the prefetching mechanism used in each of these 3 machines. She observes
programs A and B to have the following access patterns to cache blocks. Note that the addresses are cache
block addresses, not byte addresses.

Program A: 27 accesses

a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,

a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,

a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64

Program B: 501 accesses

b, b + 2, b + 4, ...., b + 998, b + 1000

The student is able to measure the accuracy and coverage of the prefetching mechanism in each of the
machines. The following table shows her measurement results:

Machine M1 Machine M2 Machine M3
Coverage Accuracy Coverage Accuracy Coverage Accuracy

Program A 6/27 6/27 0 0 1/3 9/26
Program B 499/501 499/501 0 0 499/501 499/500

The student knows the following facts about M1, M2, and M3 machines:

• The prefetcher prefetches into a fully-associative cache whose size is 8 cache blocks. The cache employs
the FIFO (First-In First-Out) replacement policy.

• The prefetchers have large enough resources to detect and store access patterns.

• Each cache block access is separated long enough in time such that all prefetches issued can complete
before the next access happens.

• There are 5 different possible choices for the prefetching mechanism:
1) Markov prefetcher with a correlation table of 4 entries
2) Markov prefetcher with a correlation table of 10 entries
3) 1st-next-block prefetcher (degree = 1) – prefetches block N + 1 after seeing block N
4) 4th-next-block prefetcher (degree = 1) – prefetches block N + 4 after seeing block N
5) stride prefetcher

• None of the above-mentioned prefetchers employ confidence bits.

• The prefetchers start out with an empty table when each program A and B start execution.

• The prefetcher sends only one prefetch request after a program access (i.e., prefetch degree = 1).

Determine what type of prefetching mechanism each of the above-mentioned machines use:

Machine M1: 4th-next-block prefetcher

Machine M2: Markov prefetcher with a correlation table of 4 entries

Machine M3: Stride prefetcher



Extra space for explanation:

We calculate the accuracy and coverage for all 5 types of prefetchers, and then we can answer what prefetcher
each machine is using:

The 5 prefetechers work in the following ways when running Application A:

Markov, table size=4: Coverage: 0, Accuracy: 0
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,

Markov, table size=10: Coverage: 17/27, Accuracy: 17/18
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64 —unused: a

1st-next-block: Coverage: 4/9, Accuracy: 4/9
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64, —unused: a + 5, a + 9, a + 17, a + 33, a + 65,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64, —unused: a + 5, a + 9, a + 17, a + 33, a + 65,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64 —unused: a + 5, a + 9, a + 17, a + 33, a + 65

4th-next-block: Coverage: 6/27, Accuracy: 6/27
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,—unused: a + 5, a + 6, a + 7, a + 12, a + 20, a +
36, a + 68,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64,—unused: a + 5, a + 6, a + 7, a + 12, a + 20, a +
36, a + 68,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64—unused: a + 5, a + 6, a + 7, a + 12, a + 20, a +
36, a + 68

Stride: Coverage: 1/3, Accuracy: 9/26
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64, —unused: a + 5, a + 12, a + 24, a + 48, a + 96,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64, —unused: a - 64, a + 5, a + 12, a + 24, a + 48, a +
96,
a, a + 1, a + 2, a + 3, a + 4, a + 8, a + 16, a + 32, a + 64 —unused: a - 64, a + 5, a + 12, a + 24, a + 48, a +
96

‘
The 5 prefetechers work in the following ways when running Application B:

Markov, table size=4: Coverage: 0, Accuracy: 0
b, b + 2, b + 4, b + 6, b + 8, b + 10, ... , b + 998, b + 1000

Markov, table size=10: Coverage: 0, Accuracy: 0
b, b + 2, b + 4, b + 6, b + 8, b + 10, ... , b + 998, b + 1000

1st-next-block: Coverage: 0, Accuracy: 0
b, b + 2, b + 4, b + 6, b + 8, b + 10, ... , b + 998, b + 1000 —unused: b + 1, b + 3, ..., b + 999, b + 1001

4th-next-block: Coverage: 499/501, Accuracy: 499/501
b, b + 2, b + 4, b + 6, b + 8, b + 10, ..., b + 998, b + 1000 —unused: b +1002, b + 1004

Stride: Coverage: 499/501, Accuracy: 499/500
b, b + 2, b + 4, b + 6, b + 8, b + 10, ..., b + 998, b + 1000 —unused: b + 1002
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