
SMASH
Co-Designing Software Compression

and Hardware-Accelerated Indexing

for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula,

Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi,

Taha Shahroodi, Juan Gomez Luna, Onur Mutlu

Presented at: MICRO 2019

2

Executive Summary

• Many important workloads heavily make use of sparse matrices

• Shortcomings of existing compression formats

• Expensive discovery of the positions of non-zero elements or

• Narrow applicability

• SMASH: hardware/software cooperative mechanism for efficient

sparse matrix storage and computation

• Software: Efficient compression scheme using

a hierarchy of bitmaps

• Hardware: Hardware unit interprets the bitmap hierarchy

and accelerates indexing

• Performance improvement: 38% and 44% for SpMV and SpMM

over the widely used CSR format

• SMASH is highly efficient, low-cost and widely applicable

• Matrices are extremely sparse

• Compression is essential to avoid storage/computational overheads

3

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

4

Recommender Systems Graph Analytics Neural Networks

• Collaborative Filtering

• PageRank

• Breadth First Search

• Betweenness

Centrality

• Sparse DNNs

• Graph Neural Networks

Sparse Matrix Operations are Widespread Today

5

0.0003%
non-zero elements

2.31%
non-zero elements

Real World Matrices Have High Sparsity

Sparse matrix compression

is essential to enable

efficient storage and computation

6

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

7

Limitations of Existing Compression Formats

General formats

optimize for storage

Expensive discovery of

the positions

of non-zero elements

1

8

• Used in multiple libraries & frameworks:

Intel MKL, TACO, Ligra, Polymer

• Stores only the non-zero elements

of the sparse matrix

• Provides high compression ratio

Widely Used Format: Compressed Sparse Row

9

0row_ptr

col_ind

values

5 0 0 0

0 0 3 4

0 8 0 0

0 0 0 3

Α =

MATRIX CSR

Basics of CSR: Indexing Overhead

1 3 4 5

0 2 3 1 3

5 3 4 8 3

Requires multiple

data-dependent memory accesses

Multiple instructions are needed to discover

the position of a non-zero element

10

Sparse Matrix Vector Multiplication (SpMV)

Indexing Overhead in Sparse Kernels

Sparse Matrix Matrix Multiplication (SpMM)

Indexing is expensive

for major sparse matrix kernels

Indexing for every non-zero element of the sparse matrix to multiply
with the corresponding element of the vector.

Index matching for every inner product between the 2 sparse matrices.

11

CSR-based SpMV

VECTOR
0
1
2
3
4
5

0 1 3 4 5row_ptr

0 2 3 1 3col_ind

Indexing in SpMV

SpMV requires

indexing for every non-zero element

12

MATRIX A MATRIX B
Α DΒ

E

F

C 0 1 2

Α Β C D E F

0 1 3
col_ind row_ind

Indexing in SpMM

SpMM requires

indexing for every inner product

CSR-based SpMM

13

Performing Indexing with Zero Cost

Reducing the cost of indexing

can accelerate sparse matrix operations

2.21 2.13

2.81

0.00

0.50

1.00

1.50

2.00

2.50

3.00

SpMatAdd SpMV SpMM

Sp
e

e
d

u
p

CSR ZERO-COST INDEXING

14

Limitations of Existing Compression Formats

General formats

optimize for storage

Specialized formats assume

specific matrix structures

and patterns (e.g., diagonals)

Expensive discovery of

the positions

of non-zero elements

Narrow

applicability

1

2

15

• Minimizes the indexing overheads

• Can be used across a wide range of

sparse matrices and sparse matrix operations

• Enables high compression ratio

Design a sparse matrix compression mechanism that:

Our Goal

16

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

Software Compression Scheme

Hardware Acceleration Unit

Cross-Layer Interface

17

SMASH: Key Idea

Efficient

compression

using a Hierarchy

of Bitmaps

Software

Unit that scans

bitmaps to

accelerate

indexing

Hardware

SMASH ISA

Hardware/Software cooperative mechanism:

• Enables highly-efficient sparse matrix compression and computation

• General across a diverse set of sparse matrices and sparse matrix operations

18

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

Software Compression Scheme

Hardware Acceleration Unit

Cross-Layer Interface

19

• Encodes the positions of non-zero elements
using bits to maintain low storage overhead

SMASH: Software Compression Scheme

Efficient

compression

using a Hierarchy

of Bitmaps

Software

20

1 0 0 0

0 1 0 0

0 0 0 0
0 0 1 1

Encodes if a block of the matrix contains

any non-zero element

1

BITMAP

0 0 0

0 1 0 0

0 0 0 0
0 0 1 1

Might contain
high number
of zero bits

SMASH: Software Compression Scheme

BITMAP:

MATRIX

NZ ZEROS ZEROS ZEROS

ZEROS NZ ZEROS ZEROS

ZEROS ZEROS ZEROS ZEROS

ZEROS ZEROS NZ NZ

Idea: Apply the same encoding recursively

to compress more effectively

21

NON-ZERO VALUES ARRAY

NZ

Z

Z Z

NZ NZ

Z Z Z

Z Z Z

Z Z

Z Z

Bitmap 01 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 1

1 1

Bitmap 1

Bitmap 2

Compression
Ratio 4:1

Compression
Ratio 2:1 MATRIX

NZ NZ NZ

Z Zero Region

NZ Non-Zero Region

Hierarchy of Bitmaps

Storage

Efficient

Fast

Indexing

Hardware

Friendly

22

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

Software Compression Scheme

Hardware Acceleration Unit

Cross-Layer Interface

23

SMASH: Hardware Acceleration Unit

Unit that scans

bitmaps to

accelerate

indexing

Hardware

• Buffers the Bitmap Hierarchy
and scans it using bitwise operations

• Interprets the Bitmap Hierarchy used in software

24

SRAM BUFFER 2

SRAM BUFFER 1

SRAM BUFFER 0

Matrix Parameters

Bitmap Parameters

Hardware Logic
NON

ZERO

INDEX

SCAN

READ

UPDATE

G
ro

u
p

 2

G
ro

u
p

 3

BITMAP

BUFFERS

CPU

Bitmap Management Unit (BMU)

BMU

SMASH ISA

25

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

Software Compression Scheme

Hardware Acceleration Unit

Cross-Layer Interface

26

MATINFO
BMAPINFO
RDBMAP

RDIND

PBMAP

SMASH: Cross-Layer Interface

Need for a cross-layer interface that

enables software to control the BMU

• Communicate the parameters needed

to calculate the index

• Query the BMU to retrieve the index

of the next non-zero element

Enables SMASH to flexibly accelerate

a diverse range of operations

on any sparse matrix

SMASH ISA

27

NZ

NZA
VECTOR

BMU

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 0 1

Matrix Parameters

Bitmap Parameters

COLUMN
INDEX

ROW
INDEX

NZ NZ

NZ NZ NZ

NZ NZ NZ

NZ NZ NZ

STREAM THROUGH
THE NON-ZERO BLOCKS

Index the vector using
the BMU output

Use Case: SpMV

Query the BMU to discover
the position of the NZ block

28

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

Software Compression Scheme

Hardware Acceleration Unit

Cross-Layer Interface

29

Simulator: ZSim Simulator [1]

Workloads:
• Sparse Matrix Kernels

SpMV & SpMM from TACO [2]

• Graph Applications

PageRank & Betweenness Centrality from Ligra [3]

Input datasets:
15 diverse sparse matrices & 4 graphs

from the Sparse Suite Collection [4]

Methodology

[1] Sanchez et al. “ZSim: Fast and Accurate Microarchitectural Simulation of Thousand-Core Systems” ISCA‘13
[2] Kjolstad et al. “ taco: A Tool to Generate Tensor Algebra Kernels“ ASE’17
[3] Shun et al. “Ligra: A Lightweight Graph Processing Framework for Shared Memory” PPoPP’13
[4] Davis et al. “The University of Florida Sparse Matrix Collection” TOMS’11

https://github.com/CMU-SAFARI/SMASH

30

Evaluated Sparse Matrices

31

Performance Improvement Using SMASH

SMASH provides significant performance

improvements over state-of-the-art formats

1.00 1.00 1.00 1.001.04
1.10

1.19
1.26

1.38 1.44

1.27 1.31

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

SpMV SpMM PageRank BC

Sp
e

e
d

u
p

 o
ve

r
TA

C
O

-C
SR

TACO-CSR TACO-BCSR SMASH

32

Number of Executed Instructions

SMASH significantly reduces

the number of executed instructions

1.00 1.00 1.00 1.00

0.89
0.81 0.82

0.78

0.63
0.54

0.75 0.70

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SpMV SpMM PageRank BC

N
o

rm
al

iz
e

d
 N

u
m

b
e

r
o

f
In

st
ru

ct
io

n
s

o
ve

r
TA

C
O

-C
SR

TACO-CSR TACO-BCSR SMASH

33

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Sp
e

e
d

u
p

INCREASING SPARSITY→

TACO-CSR TACO-BCSR SMASH

Sparsity Sweep for SpMV

SMASH provides speedups regardless

of the sparsity of the matrix

34

Storage Efficiency

SMASH efficiently compresses

sparse matrices

1

10

100

1000

10000

GMEAN

TO
TA

L
C

O
M

P
R

ES
SI

O
N

 R
A

TI
O

INCREASING DENSITY →

SMASH CSR

35

SMASH configuration

• Support for 4 matrices in the BMU

• 256 bytes / SRAM buffer

• 140 bytes for registers & counters

0.076% area overhead over an Intel Xeon CPU

SMASH incurs negligible area overhead

Hardware Area Overhead

36

• Compression ratio sensitivity analysis

• Distribution of non-zero elements

• Detailed results for SpMM

• Conversion from CSR to SMASH overhead

• Software-only approaches executed

in a real machine

Other Results in the Paper

37

1. Sparse Matrix Basics

4. Evaluation

5. Conclusion

Presentation Outline

2. Compression Formats & Shortcomings

3. SMASH

Software Compression Scheme

Hardware Acceleration Unit

Cross-Layer Interface

38

Summary & Conclusion

• Many important workloads heavily make use of sparse matrices

• Shortcomings of existing compression formats

• Expensive discovery of the positions of non-zero elements or

• Narrow applicability

• SMASH: hardware/software cooperative mechanism for efficient

sparse matrix storage and computation

• Software: Efficient compression scheme using

a hierarchy of bitmaps

• Hardware: Hardware unit interprets the bitmap hierarchy

and accelerates indexing

• Performance improvement: 38% and 44% for SpMV and SpMM

over the widely used CSR format

• SMASH is highly efficient, low-cost and widely applicable

• Matrices are extremely sparse

• Compression is essential to avoid storage/computational overheads

39

Discussion

• How does SMASH work when the algorithm traverses
the matrix in an irregular way?

• Remove decompression from the critical path?

• Use In-memory bitwise operations to find which
operations result in 0s (before execution)?

• Determine the bitmap parameters on the fly?

• Can we use a similar mechanism in GPUs?

40

New Directions: Sparse Workloads

Traversal
Scheduling

Metadata
Management

41

Metadata Management

A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory
Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko,
Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons, Onur Mutlu
ISCA 2018 Slides (pptx) (pdf) Lightning Talk Slides (pptx) (pdf) Lightning Talk Video

https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pdf
https://youtu.be/hasM-p7Ag_g

42

Metadata Management

• What kind of high-level semantic information are
needed to enable efficient memory optimizations in
sparse workloads?

• What kind of memory optimizations can we enable
using high-level semantic information?

• How can we perform low-cost metadata
management without introducing performance
overheads?

43

Traversal Scheduling in Graph Analytics

Mukkara et al. MICRO 2018 [PDF]

http://people.csail.mit.edu/sanchez/papers/2018.hats.micro.pdf

44

Traversal: Numerical Vertex Ordering

Vertex Traversal: Numerical

Communities

GRAPH

Performing the graph traversal in numerical order
does NOT align with the community-driven

semantics of the graph input.
WE NEED TO TRAVERSE INTELLIGENTLY

45

State-of-the-art: Heuristic-based

State-of-the-art Hardware-based Reordering [HATS MICRO 18]:

• Detect communities online/during runtime

• Heuristic-based Depth-First Search approach

• Hardware-accelerator to support the heuristic-based community search

CORE HATS

Executes graph application Bounded DFS Engine

Provide the next

to-be-visited vertex

Need for a more fundamental and robust
reordering technique

SMASH
Co-Designing Software Compression

and Hardware-Accelerated Indexing

for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula,

Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi,

Taha Shahroodi, Juan Gomez Luna, Onur Mutlu

47

SMALL BITMAPS VS ZERO COMPUTATION

MATRIX MATRIX

1

B
it

m
a

p
-0

B
it

m
a

p
-0

NZANZA

1 A B A B

A B
A B

Two 0’sSix 0’s

Compression Ratio

48

CSR-based SpMV

VECTOR
0
1
2
3
4
5

INDIRECT ACCESS TO
LOAD THE VECTOR

0 1 3 4 5row_ptr

0 2 3 1 3col_ind

CSR-based SpMV

49

Effect of Compression Ratio

50

0.8

0.9

1

1.1

1.2

1.3

Sp
e

e
d

u
p

HIGHLY SCATTERED → HIGHLY GATHERED

MATRIX 13

Distribution of non-zero elements

51

SMALL BITMAPS VS ZERO COMPUTATION

MATRIX MATRIX

1

B
it

m
a

p
-0

B
it

m
a

p
-0

NZANZA

1 A B A B

A B
A B

Two 0’sSix 0’s

Compression Ratio Selection

