
SMASH
Co-Designing Software Compression 

and Hardware-Accelerated Indexing 

for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula,

Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi,

Taha Shahroodi, Juan Gomez Luna, Onur Mutlu

Presented at: MICRO 2019



2

Executive Summary

• Many important workloads heavily make use of sparse matrices

• Shortcomings of existing compression formats

• Expensive discovery of the positions of non-zero elements or

• Narrow applicability 

• SMASH: hardware/software cooperative mechanism for efficient 

sparse matrix storage and computation

• Software: Efficient compression scheme using 

a hierarchy of bitmaps

• Hardware: Hardware unit interprets the bitmap hierarchy 

and accelerates indexing 

• Performance improvement: 38% and 44% for SpMV and SpMM

over the widely used CSR format

• SMASH is highly efficient, low-cost and widely applicable

• Matrices are extremely sparse

• Compression is essential to avoid storage/computational overheads
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Recommender Systems Graph Analytics Neural Networks

• Collaborative Filtering

• PageRank

• Breadth First Search 

• Betweenness 

Centrality

• Sparse DNNs

• Graph Neural Networks

Sparse Matrix Operations are Widespread Today 
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0.0003%
non-zero elements

2.31% 
non-zero elements

Real World Matrices Have High Sparsity

Sparse matrix compression 

is essential to enable 

efficient storage and computation 
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Limitations of Existing Compression Formats

General formats 

optimize for storage

Expensive discovery of 

the positions 

of non-zero elements

1
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• Used in multiple libraries & frameworks:

Intel MKL, TACO, Ligra, Polymer

• Stores only the non-zero elements 

of the sparse matrix

• Provides high compression ratio

Widely Used Format: Compressed Sparse Row
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Multiple instructions are needed to discover 

the position of a non-zero element
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Sparse Matrix Vector Multiplication (SpMV)

Indexing Overhead in Sparse Kernels

Sparse Matrix Matrix Multiplication (SpMM)

Indexing is expensive 

for major sparse matrix kernels

Indexing for every non-zero element of the sparse matrix to multiply 
with the corresponding element of the vector.

Index matching for every inner product between the 2 sparse matrices.
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CSR-based  SpMV
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Indexing in SpMV

SpMV requires 

indexing for every non-zero element
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Indexing in SpMM

SpMM requires 

indexing for every inner product

CSR-based  SpMM
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Performing Indexing with Zero Cost

Reducing the cost of indexing 

can accelerate sparse matrix operations
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Limitations of Existing Compression Formats

General formats 

optimize for storage

Specialized formats assume 

specific matrix structures

and patterns (e.g., diagonals)

Expensive discovery of 

the positions 

of non-zero elements

Narrow 

applicability

1

2
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• Minimizes the indexing overheads 

• Can be used across a wide range of 

sparse matrices and sparse matrix operations

• Enables high compression ratio

Design a sparse matrix compression mechanism that:

Our Goal
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SMASH: Key Idea

Efficient 

compression 

using a Hierarchy 

of Bitmaps

Software

Unit that scans 

bitmaps to  

accelerate 

indexing 

Hardware

SMASH ISA

Hardware/Software cooperative mechanism:

• Enables highly-efficient sparse matrix compression and computation

• General across a diverse set of sparse matrices and sparse matrix operations
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• Encodes the positions of non-zero elements
using bits to maintain low storage overhead

SMASH: Software Compression Scheme

Efficient 

compression 

using a Hierarchy 

of Bitmaps

Software



20

1 0 0 0

0 1 0 0

0 0 0 0
0 0 1 1

Encodes if a block of the matrix contains 

any non-zero element 

1

BITMAP

0 0 0

0 1 0 0

0 0 0 0
0 0 1 1

Might contain 
high number 
of zero bits

SMASH: Software Compression Scheme
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Idea: Apply the same encoding recursively

to compress more effectively 
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SMASH: Hardware Acceleration Unit

Unit that scans 

bitmaps to  

accelerate 

indexing 

Hardware

• Buffers the Bitmap Hierarchy 
and scans it using bitwise operations

• Interprets the Bitmap Hierarchy used in software
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MATINFO
BMAPINFO
RDBMAP

RDIND

PBMAP

SMASH: Cross-Layer Interface

Need for a cross-layer interface that 

enables software to control the BMU

• Communicate the parameters needed 

to calculate the index

• Query the BMU to retrieve the index

of the next non-zero element

Enables SMASH to flexibly accelerate 

a diverse range of operations 

on any sparse matrix

SMASH ISA
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Simulator: ZSim Simulator [1]

Workloads:
• Sparse Matrix Kernels 

SpMV & SpMM from TACO [2]

• Graph Applications

PageRank & Betweenness Centrality from Ligra [3]

Input datasets:
15 diverse sparse matrices & 4 graphs

from the Sparse Suite Collection [4]

Methodology

[1] Sanchez et al. “ZSim: Fast and Accurate Microarchitectural Simulation of Thousand-Core Systems” ISCA‘13
[2] Kjolstad et al. “ taco: A Tool to Generate Tensor Algebra Kernels“ ASE’17
[3] Shun et al. “Ligra: A Lightweight Graph Processing Framework for Shared Memory” PPoPP’13
[4] Davis et al. “The University of Florida Sparse Matrix Collection” TOMS’11

https://github.com/CMU-SAFARI/SMASH
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Evaluated Sparse Matrices
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Performance Improvement Using SMASH

SMASH provides significant performance 

improvements over state-of-the-art formats
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Number of Executed Instructions 

SMASH significantly reduces 

the number of executed instructions
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Sparsity Sweep for SpMV

SMASH provides speedups regardless 

of the sparsity of the matrix
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Storage Efficiency

SMASH efficiently compresses 

sparse matrices
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SMASH configuration 

• Support for 4 matrices in the BMU 

• 256 bytes / SRAM buffer

• 140 bytes for registers & counters

0.076% area overhead over an Intel Xeon CPU

SMASH incurs negligible area overhead

Hardware Area Overhead
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• Compression ratio sensitivity analysis

• Distribution of non-zero elements

• Detailed results for SpMM

• Conversion from CSR to SMASH overhead

• Software-only approaches executed 

in a real machine

Other Results in the Paper
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Summary & Conclusion

• Many important workloads heavily make use of sparse matrices

• Shortcomings of existing compression formats

• Expensive discovery of the positions of non-zero elements or

• Narrow applicability 

• SMASH: hardware/software cooperative mechanism for efficient 

sparse matrix storage and computation

• Software: Efficient compression scheme using 

a hierarchy of bitmaps

• Hardware: Hardware unit interprets the bitmap hierarchy 

and accelerates indexing 

• Performance improvement: 38% and 44% for SpMV and SpMM

over the widely used CSR format

• SMASH is highly efficient, low-cost and widely applicable

• Matrices are extremely sparse

• Compression is essential to avoid storage/computational overheads
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Discussion

• How does SMASH work when the algorithm traverses 
the matrix in an irregular way?

• Remove decompression from the critical path?

• Use In-memory bitwise operations to find which 
operations result in 0s (before execution)?

• Determine the bitmap parameters on the fly?

• Can we use a similar mechanism in GPUs?
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New Directions: Sparse Workloads

Traversal 
Scheduling

Metadata 
Management
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Metadata Management

A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory
Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko, 
Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons, Onur Mutlu
ISCA 2018 Slides (pptx) (pdf) Lightning Talk Slides (pptx) (pdf) Lightning Talk Video

https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pdf
https://youtu.be/hasM-p7Ag_g
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Metadata Management

• What kind of high-level semantic information are 
needed to enable efficient memory optimizations in 
sparse workloads?

• What kind of memory optimizations can we enable 
using high-level semantic information?

• How can we perform low-cost metadata 
management without introducing performance 
overheads?
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Traversal Scheduling in Graph Analytics

Mukkara et al. MICRO 2018 [PDF]

http://people.csail.mit.edu/sanchez/papers/2018.hats.micro.pdf
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Traversal: Numerical Vertex Ordering

Vertex Traversal: Numerical

Communities

GRAPH

Performing the graph traversal in numerical order 
does NOT align with the community-driven

semantics of the graph input. 
WE NEED TO TRAVERSE INTELLIGENTLY
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State-of-the-art: Heuristic-based

State-of-the-art Hardware-based Reordering [HATS MICRO 18]: 

• Detect communities online/during runtime

• Heuristic-based Depth-First Search approach 

• Hardware-accelerator to support the heuristic-based community search 

CORE HATS

Executes graph application Bounded DFS Engine

Provide the next 

to-be-visited vertex

Need for a more fundamental and robust 
reordering technique
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SMALL BITMAPS          VS ZERO COMPUTATION
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CSR-based  SpMV
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Effect of Compression Ratio
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SMALL BITMAPS          VS ZERO COMPUTATION
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