
Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors

Chi-Keung Luk
VSSAD/Alpha Development Group

Compaq Computer Corporation
Chi-Keung.Luk@Compaq.com

Abstract
Hardly predictable data addresses in many irregular applica-

tions have rendered prefetching ineffective. In many cases, the
only accurate way to predict these addresses is to directly execute
the code that generates them. As multithreaded architectures be-
come increasingly popular, one attractive approach is to use idle
threads on these machines to perform pre-execution—essentially a
combined act of speculative address generation and prefetching—
to accelerate the main thread. In this paper, we propose such a
pre-execution technique for simultaneous multithreading (SMT)
processors. By using software to control pre-execution, we are
able to handle some of the most important access patterns that
are typically difficult to prefetch. Compared with existing work on
pre-execution, our technique is significantly simpler to implement
(e.g., no integration of pre-execution results, no need of shorten-
ing programs for pre-execution, and no need of special hardware
to copy register values upon thread spawns). Consequently, only
minimal extensions to SMT machines are required to support our
technique. Despite its simplicity, our technique offers an average
speedup of 24% in a set of irregular applications, which is a 19%
speedup over state-of-the-art software-controlled prefetching.

1. Introduction
Multithreading [1, 32] and prefetching [8, 20, 22] are two major

techniques for tolerating ever-increasing memory latency. Multi-
threading tolerates latency by executing instructions from another
concurrent thread when the running thread encounters a cache mis-
s. In contrast, prefetching tolerates latency by anticipating what
data is needed and moving it to the cache ahead of time. Com-
paring multithreading against prefetching, the main advantage of
multithreading is that unlike prefetching, it does not need to pre-
dict data addresses in advance which can be a serious challenge
in codes with irregular access patterns [20, 26]. Prefetching, how-
ever, has a significant advantage that it can improve single-thread
performance, unlike multithreading which requires multiple con-
current threads. In this paper, we propose a technique which ex-
ploits each approach’s own advantages to complement the other.
More specifically, our technique accelerates single threads run-
ning on a multithreaded processor by spawning helper threads to
perform pre-execution, a generalized form of prefetching which
also automatically generates data addresses, on behalf of the main
thread.

Pre-execution is generally referred to as the approach that tol-
erates long-latency operations by initiating them early and spec-
ulatively. There are a number of ways to apply pre-execution,
including prefetching data and/or instructions [12, 26], pre-

computing branch outcomes [15], and pre-computing general exe-
cution results [28, 31]. For our purpose, pre-execution is main-
ly used as a vehicle for speculatively generating data address-
es and prefetching—the ultimate computational results are sim-
ply ignored. Moreover, unlike several recent pre-execution tech-
niques [4, 5, 9, 26, 28, 31, 36] which pre-execute a shortened ver-
sion of the program, our technique simply works on the original
program and hence requires no mechanism to trim the program.
In essence, our technique tolerates latency by exploiting a new di-
mension of pre-execution—running ahead multiple data streams
simultaneously.

Similar to prefetching, pre-execution can be controlled either
by hardware or software. Hardware-based schemes typically look
for particular events (e.g., cache misses) to trigger pre-execution,
and software schemes rely on the programmer or the compiler to
insert explicit instructions for controlling pre-execution. While the
hardware-based approach does not pose any instruction overhead,
the software-based approach has the major advantage of being able
to exploit application-specific knowledge about future access pat-
terns. Since we are most interested in applications whose cache
misses are caused by irregular data accesses, our focus in this s-
tudy is on a software-controlled pre-execution mechanism.

Among previously proposed multithreaded architectures, a si-
multaneous multithreading processor (SMT) [32] is chosen as the
platform for this study. An SMT machine allows multiple inde-
pendent threads to execute simultaneously (i.e. in the same cycle)
in different functional units. For example, the Alpha 21464 [13]
will be an SMT machine with four threads that can issue up to
eight instructions per cycle from one or more threads. Although
pre-execution could be applied to other multithreaded architec-
tures as well, the SMT architecture does offer a unique advantage
that resource sharing between the main thread and pre-execution
threads can be promptly adjusted to favor the ones that would in-
crease overall performance. For instance, if the main thread has
been stalled for cache misses in recent cycles, execution resources
would be given up from the main thread to pre-execution threads,
thereby allowing them to tolerate more misses.

1.1. Objectives of This Study
This paper makes the following contributions. First, we in-

vestigate how pre-execution can be exploited to generate address-
es of irregular data accesses early. Through examining a collec-
tion of benchmarks, we propose a number of software-controlled
pre-execution schemes, each of which is designated for an im-
portant class of access patterns. These schemes would be help-
ful to programmers for writing memory-friendly programs us-
ing pre-execution threads, and to the compiler for inserting pre-

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

Key

Main Execution

Pre-Execution

(a) Multiple Pointer Chains (b) Non-Affine Array Accesses

= Array Elements Accessed

(c) Multiple Procedure Calls (d) Multiple Control-Flow Paths

foo()

foo(); {

}

bar()

bar(); {

}

baz()

baz(); {

}

qux()

qux(); {

}

if

if

then else

then else

Figure 1. Illustration of four applications of software-controlled pre-execution for tolerating memory latency. The main thread is
darkly shaded while pre-execution threads are lightly shaded.

execution automatically. Second, we discuss the hardware and
software extensions required for an SMT processor to support pre-
execution. Third, we quantitatively evaluate the performance of
our pre-execution technique and compare it against the best exist-
ing software-controlled prefetching schemes. Our results demon-
strate that pre-execution significantly outperforms prefetching in a
set of irregular applications, offering at least 30% speedups over
the base case in over half of our applications. Finally, by explor-
ing the design space of our technique through experimentation, we
show that the performance benefits of our technique can be mostly
realized with only very minimal extensions to SMT processors.

2. Software-Controlled Pre-Execution
We now discuss the basic concepts behind software-controlled

pre-execution, followed by a number of applications of this mech-
anism that we found in some commonly used benchmarks.

2.1. Basic Concepts
Software-controlled pre-execution allows the programmer or

compiler to initiate helper threads to run ahead of the main thread
into parts of the code that are likely to incur cache misses. Thus,
the very first thing is to decide where to launch pre-execution in
the program, based on the programmer’s knowledge, cache miss
profiling [23], or compiler locality analysis [24]. Once this deci-
sion has been made, new instructions for spawning pre-execution
threads are inserted at the right places in the program. Each thread-
spawning instruction requests for an idle hardware context to pre-
execute the code sequence starting at a given PC. If there is no
hardware context available, the pre-execution request will simply
be dropped. Otherwise, a pre-execution thread, say T , will be suc-
cessfully spawned with its initial register state copied from that of
the parent thread. After this copying is done, T will start running

at the given PC in a so-called pre-execution mode. Instructions
are executed as normal under this mode except that (i) all excep-
tions generated are ignored and (ii) stores are not committed into
the cache and memory so that speculative actions that happened
during pre-execution will not affect the correctness of the main
execution. Finally, T will stop either at a pre-determined PC or
when a sufficient number of instructions have been pre-executed.
At this point, T will free its hardware context and the results held
in T ’s registers are simply discarded (i.e. they will not be integrat-
ed back to the main execution). Further details of this mechanism
will be given later in Section 3.

2.2. Applications of Pre-Execution
To study how software-controlled pre-execution can be em-

ployed to generate data addresses and prefetch well ahead of the
main execution, we examine a set of applications drawn from
four common benchmark suites (SPEC2000 [16], SPEC95 [10],
SPLASH-2 [34], and Olden [25]). A large number of cache miss-
es in these applications are due to relatively irregular access pat-
terns involving pointers, hash tables, indirect array references, or
a mix of them, which are typically difficult for prefetching to han-
dle. We categorize these access patterns and suggest pre-execution
schemes for them. In the rest of this section, we describe these
schemes using our benchmarks as examples.

2.2.1. Pre-Executing Multiple Pointer Chains
A well-known challenge in prefetching pointer-based codes

is the pointer-chasing problem [20] which depicts the situation
where the address of the next node we want to prefetch is not
known until we finish with the current load. To tackle this prob-
lem, prefetching techniques based on jump pointers [20, 27] have
been proposed to record the address of the node that we would like
to prefetch at the current node according to past traversals. These

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

techniques would tolerate the latency of accessing a single chain
if the traversal order is fairly static over time and the overhead of
maintaining those jump pointers does not overwhelm the benefit.

Recently, a technique called multi-chain prefetching [19] has
been proposed to attack the pointer-chasing problem from a differ-
ent angle. Instead of prefetching pointer chains one at a time, this
technique prefetches multiple pointer chains that will be visited
soon while traversing the current one, whereby the latency of ac-
cessing future chains can be overlapped with that of accessing the
current one. This technique has the advantage over jump-pointer
based schemes that it neither relies on a repeating traversal order
nor needs to maintain extra pointers. Of course, the key to the
success of multi-chain prefetching is to have enough independent
chains that can be traversed in parallel. Fortunately, such chains
are not uncommon as we do discover them in three of our appli-
cations: mcf, mst, and em3d. Given these chains, we need some
mechanism to visit them simultaneously. The original multi-chain
prefetching [19] uses a special hardware prefetch engine for this
purpose. In our case, this is a natural application of pre-execution:
We simply spawn one helper thread to pre-execute each pointer
chain. Thus, if there are a total of N hardware contexts supported
by the machine, we can potentially pre-execute N � 1 chains in
parallel (one thread is always used by the main execution). An il-
lustration of this scheme can be found in Figure 1(a). To make our
discussion more concrete, let us look at two benchmarks in detail.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first of sparse list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute Start(END FOR) initiates a pre-execution
thread, say T , starting at the PC represented by END FOR. Right
after the pre-execution begins, T ’s registers that hold the values
of i and arcout will be updated. Then i’s value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread T will exit the for-loop and encounters a PreExe-
cute Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, T will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop, the pre-execution will be terminated by another
PreExecute Stop(). Notice that any PreExecute Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute Stop() instructions cannot terminate
the main thread either.

In this application, we pre-execute only one list at a time be-
cause there are a sufficient number of nodes on each list to pre-
execute to hide the latency. However, that would not be the case if

(a) Original Code (b) Code with Pre-Execution

register int i;
register arc t *arcout;
for(; i<trips;)f

// loop over ‘trips” lists
if (arcout[1].ident != FIXED) f

...
first of sparse list = arcout + 1;

g
...
arcin = (arc t *)first of sparse list

!tail!mark;
// traverse the list starting with
// the first node just assigned
while (arcin) f

tail = arcin!tail;
...
arcin = (arc t *)tail!mark;

g
i++, arcout+=3;

g

register int i;
register arc t *arcout;
for(; i<trips;)f

// loop over ‘trips” lists
if (arcout[1].ident != FIXED) f

...
first of sparse list = arcout + 1;

g
...
// invoke a pre-execution starting
// at END FOR
PreExecute Start(END FOR);
arcin = (arc t *)first of sparse list

!tail!mark;
// traverse the list starting with
// the first node just assigned
while (arcin) f

tail = arcin!tail;
...
arcin = (arc t *)tail!mark;

g
// terminate this pre-execution after
// prefetching the entire list
PreExecute Stop();

END FOR:
// the target address of the pre-
// execution
i++, arcout+=3;

g
// terminate this pre-execution if we
// have passed the end of the for-loop
PreExecute Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmcf. Loads that incur many cache miss-
es are underlined.

the lists are short, as we would expect in chaining-based hash ta-
bles. An example of this scenario is found in the application mst,
as described below.

The Olden benchmark mst makes intensive use of hashing;
an abstract version of the hashing-related code is shown in Fig-
ure 3(a). The function HashLookup() is called by a list of
hash tables to perform hashing on each of them. Chaining-based
hashing, as the one performed by HashLookup(), is known to
be challenging to prefetching [20, 27] for two reasons. First, the
bucket to be hashed to should be fairly random if the hashing func-
tion is well designed. Thus, predicting the bucket address itself
tends to be difficult. Second, a good hashing function will al-
so avoid collisions and therefore the average chain length at each
bucket should be very small. Thus, jump-pointer based prefetch-
ing techniques also would not be effective.

Fortunately, pre-execution offers a unified solution to both
problems. By computing N hashing functions at the same time
(one through the main execution andN�1 through pre-execution),
we can potentially reduce memory stall by a factor of N . Fig-
ure 3(b) demonstrates such a case with N = 3. To facilitate
pre-execution, the for-loop in function BlueRule() is unrolled
twice. Doing this allows the next two iterations of the for-loop to
explicitly exist in the code so that they can be used as the targets
of the two PreExecute Start()’s. Notice that both next 1 and
next 2 are assigned twice—once for the pre-execution and once
for the main execution. We need this seemingly redundant compu-
tation since the values of tmp!next and tmp!next!next
may be modified in between the pre-execution and the main exe-
cution. Pre-execution is terminated either after HashLookup()
is done or after the for-loop exits.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

(a) Original Code (b) Unrolled Code with
Pre-Execution

void BlueRule(Vertex ins,
Vertex vlist) f

...
for (tmp=vlist!next; tmp;

tmp=tmp!next) f
...
// look up hash table
// tmp!edgehash
dist = (int) HashLookup(ins,

tmp!edgehash);
...

g //end-for
g

void *HashLookup(unsigned key,
Hash hash) f

...
// hash to the jth bucket
j = (hash!mapfunc)(key);
// assign the chain’s head to ent
ent = hash!array[j];
if (ent) f

...
for (;ent!key!=key;) f

// search for the key over
// over the list, which is
// very SHORT
ent = ent!next;
...

g
g
...

g

void BlueRule(Vertex ins,
Vertex vlist) f

...
for (tmp=vlist!next; tmp;) f

Vertex next 1, next 2;
next 1 = tmp!next;
// invoke a pre-execution
// starting at UNROLL 1
PreExecute Start(UNROLL 1);
if (next 1) f

next 2 = next 1!next;
// invoke a pre-execution
// starting at UNROLL 2
PreExecute Start(UNROLL 2);

g
...
// look up hash table tmp!edgehash
dist = (int) HashLookup(ins,

tmp!edgehash);
...
next 1 = tmp!next;

UNROLL 1: // 1st unrolled
if (next 1) f

...
// look up hash table
// next 1!edgehash
dist = (int) HashLookup(ins,

next 1!edgehash);
// terminate pre-execution
// after hashing
PreExecute Stop();
...

g else
break;

next 2 = next 1!next;
UNROLL 2: // 2nd unrolled

if (next 2) f
...
// look up hash table
next 2!edgehash
dist = (int) HashLookup(ins,

next 2!edgehash);
// terminate pre-execution
// after hashing
PreExecute Stop();
...

g else
break;

tmp = next 2!next;
g //end-for
// terminate any pre-execution
// passing the end of the loop
PreExecute Stop();

g

void *HashLookup(unsigned key,
Hash hash) f

///// IDENTICAL TO ORIGINAL ////
g

Figure 3. Abstract versions of the hashing component in mst.
Loads that incur many cache misses are underlined.

2.2.2. Pre-Executing Loops Involving Difficult-to-
Prefetch Array References

Following the fashion that we pre-execute pointer chains, we
can also pre-execute array references across multiple loop itera-
tions (see Figure 1(b) for an illustration). In particular, we are
interested in cases that present challenges for the compiler to
prefetch. Such cases typically include array references in loop-
s with control-flow as well as references with strides that are not
compile-time constants. An example of the latter case is indirect
array references, which are quite common in scientific and engi-

neering applications such as sparse-matrix algorithms and wind-
tunnel simulations. Another common example is arrays of point-
ers. To cope with these cases, the compiler usually needs to heuris-
tically decide how to prefetch, perhaps based on profiling infor-
mation [22]. In contrast, these cases do not present a problem to
pre-execution as it directly runs the code and hence does not need
to make any compile-time assumptions.

Among our benchmarks, we find that indirect array references
contribute significantly to the cache misses in the Spec2000 ap-
plication equake. On the other hand, arrays of pointers cause
many misses in raytrace, a Splash-2 application. We apply pre-
execution to them and compare it against the best-known compiler
algorithm for prefetching indirect references [22]. The results will
be presented later in Section 5.2.

2.2.3. Pre-Executing Multiple Procedure Calls
So far, we have been focusing on pre-executing loop iterations

(either for pointer dereferences or array references). A straight-
forward extension is to pre-execute at the level of procedures, as
pictured in Figure 1(c). This would be particularly helpful in the
case where a number of procedures are used to access different
data structures (or different parts of a large structure). For ex-
ample, in the classical binary-tree traversal through recursion, one
could pre-execute the right subtree while the main execution is still
working on the left one.

We apply this rather simple pre-execution scheme to the
Spec2000 benchmarks twolf. Most cache misses occur in the
procedure ucxx2(), which invokes a few other procedures to
process various data structures. The ways that these structures
are accessed in each of these procedures are extremely compli-
cated: They involve linked lists, arrays, multi-level pointer deref-
erencing, and complex control flow. Thus, it is very challenging
to add prefetches within these procedures. Fortunately, by pre-
executing these procedures simultaneously, the latency of touching
those complicated structures can be successfully hidden without
caring much how they are actually accessed. The detailed results
will be shown in Section 5.1.

2.2.4. Pre-Executing Multiple Control-Flow Paths
Our final pre-execution scheme targets the situation where the

address of the next data reference (which is likely a cache miss)
depends on which control-flow path we are going to take out of
multiple possibilities. Instead of waiting until the correct path is
known, we can pre-execute all possible paths and hence prefetch
the data references on each of them (see the illustration in Fig-
ure 1(d)). After the correct path is determined, we can then can-
cel all wrong-path pre-execution and only keep the one that is on
the right path to allow it running ahead of the main execution. A
similar idea of executing multiple paths at once [18, 33] has been
exploited before to reduce the impact of branch misprediction.

Let us illustrate this scheme using the Spec95 benchmark
compress. In this application, the function compress() reads
a series of characters from the file being compressed. Each charac-
ter read is applied a varying hash function to form an index to the
table htab, and most cache misses in this benchmark are caused
by looking up htab. When we look up htab for the curren-
t character, there are three possible outcomes: no match, a single
match, or a collision which needs a secondary hash. The interest-
ing point here is that the hash function that will be applied to the

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

Thread ID = PreExecute Start(Start PC, Max Insts):
Request for an idle context to start pre-execution at
Start PC and stop when Max Insts instructions have
been executed; Thread ID holds either the identity of
the pre-execution thread or -1 if there is no idle context.
This instruction has effect only if it is executed by the main
thread.

PreExecute Stop(): The thread that executes this instruction
will be self terminated if it is a pre-execution thread; no
effect otherwise.

PreExecute Cancel(Thread ID): Terminate the pre-
execution thread with Thread ID. This instruction has
effect only if it is executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

next character in turn depends on the outcome of the current table
lookup. Because of this dependency, prefetching has shown lit-
tle success in this benchmark. Nevertheless, we could potentially
pre-execute all the three paths that correspond to the three possi-
ble outcomes before performing the current table lookup. One of
these pre-executions would correctly pre-compute the next hash
function and perform the next table lookup in advance, while the
other two pre-executions will be eventually canceled after the ac-
tual outcome of the current table lookup is known.

In summary, pre-execution can be a powerful weapon to at-
tack the latency problem. Its ability to automatically generate ad-
dresses and prefetch, regardless of the complexity of the data ac-
cess patterns and control flow, could allow it to overcome some
of the challenges faced by existing prefetching techniques. The
pre-execution schemes we discuss in this section are by no means
exhaustive but can handle some of the most important access pat-
terns. Given that pre-execution is so appealing, we address the
issues of implementing it in an SMT machine in the following
section.

3. Implementation Issues
We now discuss the support that we need from the instruc-

tion set, the hardware, and the software to implement software-
controlled pre-execution on an SMT machine.

3.1. Extensions to the Instruction Set Architecture
To exploit pre-execution, the machine must have some way to

control pre-execution—i.e. specify when and where to start and
terminate pre-execution. Rather than taking a purely hardware-
based approach as done in some other studies [12, 31], we pro-
pose extending the underlying instruction set architecture (ISA)
by adding a few instructions which allow software to control pre-
execution directly. It is interesting to note that this approach is
analogous to software-controlled prefetching [21, 22]. The advan-
tages of this approach are its programmability and flexibility. In
addition, we expect the software overhead to be low given today’s
wide-issue superscalar processors, which is generally quite true
for software-controlled prefetching.

Figure 4 shows our proposed ISA extensions, which consist of
three new instructions with zero to three register operands each.
PreExecute Start spawns a pre-execution thread at a particu-
lar PC and stops when certain number of instructions have been

executed in the pre-execution (Note: We have assumed a large
Max Insts in the PreExecute Start shown earlier in Figures 2
and 3.) It will return the identity of the spawned thread or -1 if
there is no context available. PreExecute Stop explicitly termi-
nates a thread itself if it is in the pre-execution mode while Pre-
Execute Cancel terminates the pre-execution running on anoth-
er thread. To simplify the design, only the main thread (i.e. not
a pre-execution thread) is allowed to spawn and terminate a pre-
execution thread. In other words, nested pre-execution is not sup-
ported in the current design. Also note that the ISA can be further
extended to have different favors of control over pre-execution.
For example, one could imagine another PreExecute Start in-
struction with stopping conditions like maximum number of loads,
maximum number of cache misses, etc.

3.2. Inserting Pre-Execution into the Application
Once we are provided with the extended instructions for con-

trolling pre-execution, the next step is to insert them into the ap-
plication. They can be inserted either by the original programmer
while the program is being developed or by applying the compiler
to existing programs.

In the first approach, since the programmer is already famil-
iar with the program, she/he can potentially insert pre-execution
without explicitly performing the analysis that would be done by
the compiler. To facilitate the insertion process, we can have an
application programming interface (API) for manipulating pre-
execution threads. In fact, a similar interface called PThreads [6]
has long been used to exploit parallelism using threads. By provid-
ing a new API (perhaps we can call it MThreads) or extending the
existing PThreads to support pre-execution threads, programmers
can use threads to address both the memory latency and parallelis-
m problems. Also, the examples given in Section 2.2 would help
programmers design their own pre-execution schemes.

In the second approach, the compiler (with assistances from
profiling or program annotations) is responsible for inserting pre-
execution. It needs to perform the algorithm shown in the ap-
pendix, which is designed in the light of existing prefetching al-
gorithms [20, 22]. The first three steps constitute a locality anal-
ysis phase which determines which references are likely to cause
cache misses and could benefit from pre-execution. The remaining
three steps work together as a scheduling phase which calculates
the pre-execution distance and performs all necessary code trans-
formations.

3.3. Duplication of Register State
When a pre-execution thread is spawned, its register state need-

s to be initialized with that of the parent thread. Such register-state
duplication is also needed in many other related techniques like
threaded multi-path execution [33], speculative data-driven mul-
tithreading [28], and thread-level data speculation [30], etc. For
these techniques, the entire register state has to be copied as fast as
possible. Consequently, special hardware mechanisms have been
proposed to accomplish this task. In our case, although we can al-
so make use of these mechanisms, we observe that software-based
mechanisms may already be sufficient if the startup overhead is
small relative to the runtime of the pre-execution thread. We now
consider both hardware and software-based duplication in detail.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

3.3.1. Hardware-Based Duplication
A mechanism called mapping synchronization bus (MSB) has

been proposed to copy register state across threads for threaded
multi-path execution (TME) [33]. In this approach, it is actually
the register map (instead of register values themselves) that get-
s copied across threads. While the MSB correctly synchronizes
the register maps prior to a thread spawn, there is one complica-
tion afterward. Since a physical register can be shared by both
threads, it is possible that one thread will free the register while it
is still being used by the other thread. One solution is to commit
no instructions in the pre-execution thread and hence it will never
free any physical registers. Although this approach works well for
TME, it may not be adequate in our case since this would limit the
lifetime of our pre-execution threads (due to running out of phys-
ical registers), which tends to be much longer than that of TME
threads (because a pre-execution thread would spend the time to
cover multiple cache misses while a TME thread is done once the
branch is resolved). Another solution which better fits our need is
using reference count. Here, we associate a reference counter to
each physical register to count the number of threads that the regis-
ter is in use. If a physical register becomes shared by an additional
thread due to a thread spawn, its reference counter is increment-
ed by one. This counter will be decremented when the physical
register is freed by a thread. Eventually, the last thread that frees
the register will return it to the pool of free physical registers for
future use.

3.3.2. Software-Based Duplication
An alternative to employing special hardware is using software

to perform the duplication. Essentially, we can write a small rou-
tine which first saves the register values of one thread to memory
and then retrieves them back from memory into the registers of
the other thread. The obvious advantage of this approach is it-
s simplicity—virtually no special hardware is required. On the
other hand, its potential drawback is a longer thread-spawn la-
tency. Fortunately, the following three observations imply that a
software-based approach may be viable.

First, the memory region for passing the register values is small
(only 256 bytes for 32 64-bit logical registers of the main thread)
relative to the cache size. In addition, it is frequently referenced in
the part of the code that invokes pre-execution. Therefore, this re-
gion should be found in the cache most of the time while it is being
used. Second, since our pre-execution mechanism targets hiding
miss latency, it can potentially tolerate a longer thread-spawn la-
tency. For instance, if a pre-execution thread covers 10 L2 misses
which take 100 cycles each, then adding 50 cycles for copying reg-
ister values delays the pre-execution by only 5%. Third, in many
cases, it is not necessarily to pass the entire register state. One
generally useful heuristic is not to copy floating-point registers at
all. In addition, software can decide to copy only the subset of
registers that are relevant to data-address generation and the sur-
rounding control flow. For example, for the pre-execution code
of mcf shown in Figure 2(b), only six registers (those holding i,
arcout, trips, and first of sparse list, plus the stack
and global pointers) needed to be copied from the main thread to
the pre-execution thread.

To determine how fast the duplication needed to be done, we
experimented with a wide range of thread-spawn latencies. It is

Table 1. Simulation parameters.
Pipeline Parameters

Number of Hardware Contexts 4
Fetch/Decode/Issue/Commit Width 8
Instruction Queue 128 entries
Functional Units 8 integer, 6 floating-point;

latencies are based on
the Alpha 21264 [17]

Branch Predictor A McFarling-style choosing branch
predictor like the one in

the Alpha 21264 [17]
Thread Prioritization Policy A modified ICOUNT scheme [32]

which favors the main thread

Memory Parameters

Line Size 32 bytes
I-Cache 32KB, 4-way set-associative
D-Cache 32KB, 4-way set-associative
Miss Handlers (MSHRs) 64 total for data and inst.
Unified L2-Cache 1MB, 8-way set-associative
Primary-to-Secondary Miss Latency 12 cycles (plus any delays

due to contention)
Primary-to-Memory Miss Latency 72 cycles (plus any delays

due to contention)
Primary-to-Secondary Bandwidth 32 bytes/cycle
Secondary-to-Memory Bandwidth 8 bytes/cycle

encouraging that performance of pre-execution is fairly insensi-
tive to thread-spawn latency. Thus, we assumed a software-based
thread-spawn latency (32 cycles) in our baseline experiments. The
detailed results will be shown later in Section 5.3.2.

3.4. Handling Speculative Results
Due to the speculative nature of pre-execution, it can generate

incorrect results. There are three ways that these results could
affect the correctness of the main thread. We now consider how
each of them can be handled:

Register values: They are automatically taken care of by the
underlying SMT architecture. Since each thread has its own set
of logical registers, any incorrect computational results produced
during pre-execution are only locally visible and cannot affect the
main execution.

Exceptions: We can simply ignore all exceptions such as in-
valid load addresses, division by zero, etc. generated under the
pre-execution mode. Thus, the main thread will not notice any
additional exceptions.

Stores: There are two possible approaches here. The first ap-
proach is to simply discard all stores under the pre-execution mod-
e. The second approach, which is what we assumed in our base-
line machine, uses a scratchpad to buffer the effect of stores dur-
ing pre-execution. Instead of writing into the cache and memory,
a pre-executed store will write into the scratchpad. And a pre-
executed load will look up data in both the cache and the scratch-
pad. The main advantage of this approach is that pre-executed
loads can observe the effect of earlier stores from the same thread,
which may be important to generating future data addresses or
maintaining the correct control flow. For instance, if a procedure
with a pointer-type argument (e.g., the head of a linked list) is
called during pre-execution, both the pointer value and the return
address could be passed through the stack. Thus, it would be de-
sirable to be able to read both values back from the stack in the
procedure so that the correct data item can be fetched and the pro-
cedure can eventually return to its caller as well.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

Table 2. Application characteristics. Each application was simulated 100M instructions after skipping “Insts Skipped” instructions.

Input Insts.
Name Description Source Data Set Pre-Execution Scheme Skipped

Compress Compresses and decompresses file in memory Spec95 [10] Reference Multiple control-flow paths 2591M
Em3d Simulates the propagation of electromagnetic waves in a 3D object Olden [25] 2K nodes Multiple pointer chains 364M
Equake Simulates the propagation of elastic waves in large, highly heterogeneous valleys Spec00 [16] Training Multiple array references 1066M
Mcf Schedules single-depot vehicles in public mass transportation Spec00 Training Multiple pointer chains 3153M
Mst Finds the minimum spanning tree of a graph Olden 2K nodes Multiple pointer chains 1364M
Raytrace Ray-tracing program Splash-2 [34] Car Multiple array references 1680M
Twolf Determines the placement and global connections for standard cells Spec00 Training Multiple procedure calls 406M

3.5. Termination of Pre-Execution
We have already discussed in Section 3.1 that the application

itself can terminate pre-execution via PreExecute Stop or PreEx-
ecute Cancel. In addition, there are a few system-enforced termi-
nating conditions for preserving correctness or avoiding wasteful
computation.

To preserve correctness, a pre-execution thread must be termi-
nated if its next PC is out of the acceptable range imposed by the
operating system. Moreover, to make sure that a pre-execution
thread will be eventually terminated, there is a default limit on
the number of instructions that a pre-execution thread can execute.
Once this limit is reached, the thread will be terminated anyway.

To avoid wasteful computation, we have an option that enables
the hardware to terminate a pre-execution thread if it is already
caught up by the main thread. Accurate detection of when a pre-
execution thread and the main thread meet (if it ever happens)
is challenging since they can follow totally different control-flow
paths. One heuristic is to have the hardware keep track of the s-
tarting PC, say P , and the number of instructions pre-executed so
far, say N , for each pre-execution thread. If at some point the
main thread has executed N instructions after passing P , then we
assume that the main thread and the pre-execution thread meet.
While this heuristic is not perfect, we find that it is simple to im-
plement and yet quite useful in practice.

4. Experimental Framework
To evaluate the performance benefits of software-controlled

pre-execution, we modeled it in an SMT processor and applied
it to a collection of irregular applications. We added our proposed
ISA extensions to the underlying Alpha ISA by making use of a
few unused opcodes. Since the compiler support for automatically
inserting pre-execution is still under development, we inserted it
manually in this study, following the algorithm shown in the ap-
pendix.

We performed detailed cycle-by-cycle simulations of our ap-
plications on an out-of-order SMT processor. Our simulator called
Asim [3] is newly developed for evaluating future Alpha systems.
It models the rich details of the processor including the pipeline,
register renaming, instruction queue, branch prediction, the mem-
ory hierarchy (including tag, bank, and bus contention), and the
additional SMT support (including per-thread PC’s and return s-
tacks, thread prioritization, etc). Table 1 shows the parameters
used in our model for the bulk of our experiments. In addition,
since Asim is entirely execution-driven, it can faithfully model the
effects down any speculative paths (including both pre-execution
paths and predicted paths).

Our applications are shown in Table 2. To avoid lengthy simu-
lations, we first identified a representative region of each applica-
tion. We then skipped the simulation until that region was reached

and ran the simulation for 100M instructions. Since extra instruc-
tions were added to the pre-executed version of the application,
special care was taken to ensure that it was the same 100M instruc-
tions being simulated in the original and pre-executed versions.1

The applications were compiled using the standard Compaq C
compiler version 6.1 with -O2 optimizations under Tru64 Unix
4.0.

5. Experimental Results
We now present results from our simulation studies. We s-

tart by evaluating the performance of software-controlled pre-
execution. Next, we compare this with the best-known software
prefetching techniques for individual applications. Finally, we ex-
plore the performance impact of architectural support.

5.1. Performance of Pre-Execution
Figure 5 shows the results of our first set of experiments

in which a thread-spawn latency of 32 cycles and a per-thread
scratchpad of 64 entries were assumed. We will study the per-
formance impact of these two parameters later in Section 5.3.

Figure 5(a) shows the overall performance improvement on
the main execution offered by pre-execution, where the two bars
correspond to the cases without pre-execution (O) and with pre-
execution (PX). These bars represent execution time normalized
to the case without pre-execution, and they are broken down in-
to four categories explaining what happened during all potential
graduation slots. As we see in the figure, pre-execution offers
speedups ranging from 5% to 56% in six out of the seven applica-
tions. These improvements are the result of significant reduction
in the total load-miss stall (i.e. sum of the top two sections in Fig-
ure 5(a)), with four applications (em3d, equake, mst, and ray-
trace) enjoying roughly 50% reduction. Turning our attention
to the costs of pre-execution, there are two kinds of pre-execution
overhead: (i) the resource sharing between the main execution and
pre-execution, and (ii) the additional instructions for controlling
pre-execution. Fortunately, Figure 5(a) shows that compress
is the only case where pre-execution overhead more than offset
the reduction in memory stalls; for the other six applications pre-
execution overhead increases the sum of the busy and other stall
sections by at most 4%.

Figure 5(b) tabulates a number of statistics specific to pre-
execution. The second column is the total number of pre-execution
requests, and the third column shows how many of these requests
were able to find idle hardware contexts. Overall, at least 60% of
these requests were satisfied. They are further divided into three

1We first marked some important program points in the region and
counted how many times these markers were passed in the original ver-
sion. We then simulated the same number of markers in the pre-executed
version.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

(a) Execution Time Normalized to the Original Case

||0

|50

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e 100

O

105

PX
Compress

100

O

76

PX
Em3d

100

O

73

PX
Equake

100

O

92

PX
Mcf

100

O

64

PX
Mst

100

O

77

PX
Raytrace

100

O

95

PX
Twolf

load L2-miss stall

load L2-hit stall

other stall

busy

(b) Performance Details of Pre-Execution
Pre-Execution Actual Leading Pre-Executions Lagging Pre-Executions Wrong-Path

Application Requests Pre-Executions Number Average Lead Time (cycles) Number Average Lag Time (cycles) Pre-Executions

Compress 2972214 2483355 403849 58 699982 18 1379524
Em3d 40000 40000 40000 1796 0 0 0
Equake 36470 30423 30423 2139 0 0 0
Mcf 8596 6353 6100 2782 253 11 0
Mst 390377 378992 378560 578 429 9 3
Raytrace 1000000 613929 613928 246 0 0 1
Twolf 68537 55969 41852 680 0 0 14117

(c) Load D-Cache Misses

||0

|50

|100

|150

|200

 %
 o

f
L

o
ad

 D
-C

ac
h

e
M

is
se

s late pre-executed misses: misses combined with outstanding misses initiated by pre-execution
partial misses: misses combined with outstanding misses
full misses: misses served by the L2 cache

100

O

101

PX
Compress

100

O

56

PX
Em3d

100

O

47

PX
Equake

100

O

84

PX
Mcf

100

O

50

PX
Mst

100

O

48

PX
Raytrace

100

O

53

PX
Twolf

(d) Traffic between the D-Cache and L2-Cache

||0

|50

|100

|150

|200

 %
 o

f
L

1-
to

-L
2

T
ra

ff
ic useless pre-execution

useful pre-execution
load + store

100

O

127

PX
Compress

100

O

107

PX
Em3d

100

O

102

PX
Equake

100

O

145

PX
Mcf

100

O

106

PX
Mst

100

O

102

PX
Raytrace

100

O

105

PX
Twolf

Figure 5. Performance of software-controlled pre-execution (O = original, PX = pre-executed)

categories. “Leading Pre-Executions” are those that actually led
the main execution (by the amount shown under “Average Lead
Time”). On the contrary, “Lagging Pre-Executions” are those that
had not been started by the time that the main execution reached
the starting PC of the pre-execution (the lagging amount is shown
under “Average Lag Time”). Finally, the rest are “Wrong-Path
Pre-Executions” which instead took a path different from the main
execution.

To understand the performance results in greater depth, we
present two additional performance metrics. Figure 5(c) shows the
number of load D-cache misses in the original and pre-execution
cases, which are divided into three categories. A partial miss is a
D-cache miss that combines with an outstanding miss to the same
line, and therefore does not necessarily suffer the full miss latency.
A full miss, on the other hand, does not combine with any access
and therefore suffers the full latency. A late pre-executed miss is
a D-cache miss that combines with an outstanding miss generated
by pre-execution (i.e. the pre-execution was launched too late). If
pre-execution has perfect miss coverage, all of the full and partial
misses would have been converted into hits (which do not appear
in the figure) or at least into late pre-executed misses. We ob-
serve from Figure 5(c) that, except in compress, pre-execution
reduces the number of load misses in the main execution by 16% to
53%. For compress, recall that pre-execution is overlapped with
only a single lookup of htab (refer back to Section 2.2.4 for the
details). However, since most of these lookups are actually found
in either the D-cache or L2-cache, there is insufficient time for

pre-execution to compute the address for the next lookup. For oth-
er applications, late pre-execution does not appear to be a problem
as the late pre-executed misses section is generally small. Even
for mst, a case where existing prefetching techniques [20, 26, 27]
are unable to prefetch early enough, only 9% of misses are pre-
executed late.

Figure 5(d) shows another useful performance metric: the
amount of data traffic between the D-cache and the L2-cache.
Each bar in Figure 5(d) is divided into three categories, explaining
if a transfer is triggered by a normal reference (load+store; no-
tice that the full misses but not partial misses in Figure 5(c) are
counted in this category), or instead triggered by pre-execution.
Pre-execution transfers are further classified as useful or useless,
depending on whether the data fetched gets used by a load or s-
tore in the main execution before it is displaced from the D-cache.
Ideally, pre-execution will not increase memory traffic, since we
expect the same data to be accessed in both the main execution
and pre-execution. Nevertheless, Figure 5(d) shows that there are
substantial increases in the traffic for both compress and mcf.
The extra traffic in compress is due to the fact that multiple path-
s are being pre-executed—hence data fetched by the wrong paths
tends to be useless. In mcf, the lists traversed in the while-loop
shown in Figure 2(b) can be exceptionally long—with over 1000
nodes in some cases. Thus, nodes pre-executed early became use-
less if they were displaced from the cache by the nodes that we
accessed near the end of the current list. Fortunately, in the other
five applications, the additional traffic generated by pre-execution

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

(a) Prefetching Schemes

Prefetching
Application Scheme

Compress Greedy [20]
Em3d Chain jumping [27]
Equake Indirect [22]
Mcf Chain jumping
Mst Greedy
Raytrace Indirect
Twolf Greedy

(b) Execution Time Normalized to the Original Case

||0

|50

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e 106

PF

105

PX
Compress

91

PF

76

PX
Em3d

82

PF

73

PX
Equake

92

PF

92

PX
Mcf

110

PF

64

PX
Mst

90

PF

77

PX
Raytrace

102

PF

95

PX
Twolf

load L2-miss stall

load L2-hit stall

other stall

busy

Figure 6. Performance comparison between pre-execution and prefetching (PF = prefetched, PX = pre-executed).

||0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

106

0

106

2

105

4*

105

8

103

16
Compress

76

0

75

2

76

4*

79

8

88

16
Em3d

74

0

73

2

73

4*

74

8

80

16
Equake

94

0

93

2

92

4*

92

8

95

16
Mcf

63

0

64

2

64

4*

65

8

74

16
Mst

78

0

77

2

77

4*

77

8

80

16
Raytrace

96

0

95

2

95

4*

94

8

95

16
Twolf

load L2-miss stall

load L2-hit stall

other stall

busy

Figure 7. Performance of pre-execution with different thread prioritization (X = adding X to the “ICOUNT” of each pre-execution
thread; our baseline is 4*). Note that higher ICOUNT values mean lower priorities. Execution time is normalized to the original
case.

is only less than 7%.

5.2. Performance Comparison with Prefetching

To investigate how well pre-execution performs relative
to prefetching, we applied state-of-the-art software-controlled
prefetching techniques to our applications. For the two appli-
cations involving indirect array references (equake) and arrays
of pointers (raytrace), Mowry’s extended algorithm [22] for
prefetching these references was used. For the remaining five
applications, we experimented with the greedy prefetching and
jump-pointer prefetching proposed by Luk and Mowry [20, 21] as
well as the extensions of jump-pointer prefetching (full jumping,
chain jumping, and root jumping) proposed by Roth and Sohi [27].
In all cases, a wide range of prefetching distances (whenever ap-
plicable) were tested, and the best performing one was chosen for
the comparison.

Figure 6(a) reports the best software-controlled prefetching
techniques we found for individual applications, and Figure 6(b)
shows their performance. We first notice that our prefetching re-
sults are consistent with Roth and Sohi’s [27] for em3d and mst2,
the two applications that are common to both studies. Compar-
ing pre-execution against prefetching, Figure 6(b) shows that pre-
execution outperforms prefetching in six applications. The most
prominent case is mst, where prefetching is ineffective due to
hash-table accesses. On the other hand, prefetching performs as
well as pre-execution in mcf since the traversal order of its list
nodes is repetitive enough to make chain-jumping prefetching ef-
fective. The performance advantages of pre-execution observed in
equake and raytrace originate from the improved miss cover-
age. In contrast, although both pre-execution and prefetching have

2For mst, the best software-based jump-pointer prefetching technique
found by Roth and Sohi was root jumping. But since greedy prefetching
performs better than root jumping in this application, we instead use greedy
prefetching.

about the same miss coverage in em3d, prefetching incurs signif-
icantly higher overhead for maintaining jump pointers. Finally,
prefetching covers few misses in compress and twolf. Over-
all, we have seen that software-controlled pre-execution can result
in significant speedups over prefetching for applications contain-
ing irregular data access patterns.

5.3. Architectural Support
We now explore the impact of three key architectural issues on

the performance of pre-execution.

5.3.1. Thread Prioritization
Execution resources are shared by the main execution and pre-

execution. However, this sharing does not have to be fair—in fact,
it is reasonable to allow the main execution to have a larger share s-
ince it directly determines the overall performance. One simple yet
effective way to prioritize threads is the ICOUNT scheme [32] pre-
viously proposed for choosing which threads to fetch on SMT ma-
chines. Under ICOUNT, each thread maintains a priority counter
that counts the number of unissued instructions belonging to that
thread, and fetch priority is given to the thread with the lowest
counter value. By controlling instruction fetching this way, thread-
s that issue instructions at faster rates will be given more execution
resources across the entire machine than the others.

To give higher priority to the main thread, we bumped up the
priority counter of each pre-execution thread by a positive con-
stant. Note that larger counter values result in lower priorities.
Figure 7 shows the performance of pre-execution with different
constants added to the counters. Our baseline is the 4* cases while
the 0 cases correspond to the original ICOUNT scheme. As we see
in the figure, the sum of the busy and other stall components of ex-
ecution time decreases with larger constants. This implies that our
prioritization scheme does help allocate more execution resources
to the main thread. However, as we bump up the counter by 8 or
above, performance begins to drop in em3d, equake, and mst

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

(a) Execution Time
load L2-miss stall
load L2-hit stall
other stall
busy

||0

|50

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

110

0

110

2

110

4

110

8

109

16

105

32*

103

64

101

128

99

256
Compress

75

0

76

2

76

4

76

8

76

16

76

32*

76

64

77

128

79

256
Em3d

73

0

73

2

73

4

73

8

73

16

73

32*

73

64

73

128

74

256
Equake

92

0

92

2

92

4

92

8

92

16

92

32*

92

64

92

128

92

256
Mcf

59

0

59

2

60

4

60

8

61

16

64

32*

65

64

69

128

80

256
Mst

76

0

76

2

76

4

76

8

76

16

77

32*

81

64

85

128

91

256
Raytrace

95

0

95

2

95

4

95

8

95

16

95

32*

95

64

95

128

97

256
Twolf

(b) Average Number of Original Load Misses Eliminated per Pre-Execution
load D-miss/L2-miss
load D-miss/L2-hit

||0

|200

|400

|600

 N
um

be
r

of
 O

ri
gi

na
l L

oa
d

M
is

se
s

0.0
0

0.0
2

0.0
4

0.0
8

0.0
16

0.0
32*

0.0
64

0.0
128

0.0
256

Compress

225

0

224

2

224

4

224

8

224

16

224

32*

224

64

215

128

202

256
Em3d

93

0

93

2

93

4

93

8

93

16

93

32*

92

64

92

128

90

256
Equake

575

0

637

2

589

4

583

8

550

16

578

32*

578

64

578

128

591

256
Mcf

8
0

8
2

8
4

8
8

8
16

7
32*

7
64

7
128

5
256

Mst

5
0

5
2

5
4

5
8

5
16

5
32*

5
64

4
128

2
256

Raytrace

27

0

27

2

27

4

27

8

27

16

27

32*

27

64

26

128

23

256
Twolf

Figure 8. Performance of pre-execution with various thread-spawn latencies (X = X cycles; our baseline is 32*). Part (a) shows the
execution time. Part (b) shows the average number of original load misses eliminated per pre-execution.

because pre-execution has too few resources to get its work done.
Overall, we find that 4 is a fairly good choice here.

5.3.2. Thread-Spawn Latency

A key implementation issue of pre-execution is the thread-
spawn latency, the amount of time required to copy the register
state from one thread to another. We have already discussed in
Section 3.3 a number of register-copying techniques which involve
a tradeoff between hardware complexity and the thread-spawn la-
tency. To determine how fast the copying needed to be done, we
experimented with thread-spawn latencies ranging from 0 to 256
cycles. The results are shown in Figure 8. First, we observe from
Figure 8(a) that the performance of pre-execution is nearly insen-
sitive to the thread-spawn latency in four applications. Although
pre-execution does suffer from larger thread-spawn latencies in
mst and raytrace, they can still achieve speedups of 45% and
18%, respectively, even with a latency as large as 128 cycles. For
compress, increasing the spawn-latency lowers the chance of
generating useless pre-execution and hence actually improves per-
formance. To understand why pre-execution can tolerate such long
thread-spawn latencies, we show in Figure 8(b) the average num-
ber of original load D-cache misses (further classified into L2-hits
and L2-misses) eliminated by each pre-execution. The relatively
small number of misses eliminated per pre-execution in mst and
raytrace explains why they are more affected by the thread-
spawn latency. In contrast, the other four applications (except
compress) eliminate an average of at least 20 misses and can
eliminate as many as 600. Thus, delaying a thread spawn by a few
tens cycles would not significantly affect their performance.

Overall, we see that a very fast register-copying mechanism
is not required to exploit the benefits of pre-execution. In order
to estimate how much time a software-based copying mechanis-
m would take, we measured the amount of time needed to pass
32 registers from one thread to another through memory using
software. Our results indicate that it takes about 24 cycles on
average. Therefore, we have assumed a software-based register-
copying mechanism that takes 32 cycles in our baseline machine.

5.3.3. Handling Pre-Executed Stores
Our final set of experiments evaluate the impact of the policy

for handling stores encountered during pre-execution. Recall from
Section 3.4 that we can write these stores into a scratchpad or sim-
ply discard them. Figure 9(a) shows how pre-execution performs
with three scratchpad sizes: 0, 64, and 128 entries. Surprising-
ly, pre-execution works equally well with no scratchpad at all (i.e.
the 0 cases). There are two possible reasons for this. The first is
that computational results that decide which addresses being ac-
cessed in pre-execution (and their surrounding control flow) are
mostly communicated through registers. The second possible rea-
son is that the store queue of the underlying machine has already
provided sufficient buffering (Note: The store queue is a common
piece of hardware in out-of-order machines to hold stores before
they commit. In contrast, the scratchpad is a special buffer added
beyond the store queue to hold stores after they “commit” during
pre-execution.) To find the true reason, we ran an experiment that
discarded all pre-executed stores (i.e. they were not written into the
store queue at all). The results are shown in Figure 9(b), which in-
dicate that ignoring pre-executed stores does not hurt performance.
This evidences that it is the pre-executed stores themselves that do
not matter. This is good news since a scratchpad may not be nec-
essary to support pre-execution.

In summary, the experimental results in this section demon-
strate that the additional hardware support for our pre-execution
scheme can be very minimal: Register copying can be done in
software and a scratchpad may not be necessary. Essentially, we
only need the support for creating and terminating pre-execution
threads as well as that for marking them as non-excepting. In ad-
dition, we also show that our modified ICOUNT scheme is quite
useful for adjusting the resource sharing between the main execu-
tion and pre-execution.

6. Related Work
Dundas and Mudge [12] are among the first who suggested us-

ing pre-execution to improve cache performance. In their scheme,
the hardware pre-executes future instructions upon a cache miss

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

(a) Three Scratchpad Sizes (b) Pre-executed Stores Discarded

||0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

105

0

105

64*

105

128Compress

76

0

76

64*

76

128Em3d

73

0

73

64*

73

128Equake

92

0

92

64*

92

128Mcf

64

0

64

64*

64

128Mst

77

0

77

64*

77

128Raytrace

95

0

95

64*

95

128Twolf

||0

|50

|100

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

105

P*

105

DCompress

76

P*

76

DEm3d

73

P*

74

DEquake

92

P*

92

DMcf

64

P*

64

DMst

77

P*

77

DRaytrace

95

P*

95

DTwolf

load L2-miss stall
load L2-hit stall
other stall
busy

Figure 9. Performance of pre-execution under two different ways to handle pre-executed stores. In part (a), pre-executed stores
wrote into a scratchpad; three sizes of the scratchpad are shown (X = X entries; our baseline is 64*). In part (b), all stores were
discarded during pre-execution (P* = stores preserved; D = stores discarded).

in a single threaded machine. Compared to typical out-of-order
machines, this scheme has the advantage that instructions that de-
pend on the result of the cache miss can be pre-executed before the
miss completes. However, it has two drawbacks. First, we must
suffer from a cache miss before triggering pre-execution. Second
and more seriously, such pre-execution would not be effective for
pointer-chasing loads whose addresses actually depend on the val-
ues returned from cache misses.

The notion of using helper threads to accelerate the main ex-
ecution was independently introduced in the form of simultane-
ous subordinate microthreading (SSMT) [7] and assisted execu-
tion [11]. In both schemes, helper threads do not directly run the
program: Instead, they are designated to perform some specific
algorithms such as stride prefetching and self-history branch pre-
diction. In contrast, since our pre-execution mechanism actually
runs the program itself, it is more capable of handling irregular
data accesses. In addition, our mechanism is built on top of SMT
machines and hence requires less additional hardware support than
SSMT and assisted execution do.

Recall that our scheme simply ignores the computational re-
sults of pre-execution. More aggressive schemes that actually
use the results of speculative threads have also been proposed.
Examples of them are the multiscalar architecture [29], thread-
level data-speculation (TLDS) [30], threaded multiple path execu-
tion (TME) [33], dynamic multithreading (DMT) [2], slipstream
processors [31], and speculative data-driven multithreading (D-
DMT) [28]. Of course, being able to use the results of specula-
tive threads is appealing. Nevertheless, by caring only data ad-
dresses but not the final results of pre-execution, our scheme is
substantially simpler to implement as we consider the following
three aspects. First, our scheme requires no mechanism to in-
tegrate the results of pre-execution back to the main execution.
Hence, we do not need to verify (and possibly recover from) these
speculative results. Second, our scheme can tolerate larger thread-
spawn latencies. We have already shown in Section 5.3.2 that it
is viable to copy register state using software, thereby eliminating
the need of special hardware-based register-copying mechanism-
s. Third, by relaxing our scheme from concerning the accuracy
of pre-execution results, it has higher flexibility in deciding where
and when to launch pre-execution in the program.

Several researchers have investigated ways to pre-execute only
a subset of instructions (as known as a slice) that lead to perfor-
mance degradation such as cache misses and branch mispredic-
tions. Zilles and Sohi [35] found that speculation techniques like
memory dependency prediction and control independence can be
used to significantly reduce the slice size. Recently, a collection
of schemes [4, 5, 9, 15, 26, 28, 31, 36] have been proposed to con-
struct and pre-execute slices. They differ from ours in two major

ways. First, our pre-execution strategies (i.e. those presented in
Section 2.2) are designed based on a high-level understanding of
data access patterns. Thus, our strategies may be easier for the
programmer or compiler to apply. Second, a common theme of
our strategies is to pre-execute multiple data streams simultane-
ously while the other schemes focus on pre-executing a single da-
ta stream/branch as quickly as possible. Nevertheless, we believe
that our approach and theirs can be complementary, and we leave
an integration of them as potential future work.

7. Conclusions
As multithreaded machines emerge into mainstream comput-

ing, it is appealing to utilize idle threads on these machines to
improve single-thread performance. In this paper, we have ex-
amined such a technique: pre-execution. With the harnessing of
software, pre-execution can accurately generate data addresses and
fetch them in advance, regardless of their regularity. Experimental
results demonstrate that our technique significantly outperform-
s software-controlled prefetching, offering an average speedup of
24% in a set of irregular applications. Another important finding
is that the additional support required by SMT machines in order
to enjoy these performance benefits is only minimal: mainly the
mechanisms for launching and terminating pre-execution, and for
making pre-execution non-excepting. Given these encouraging re-
sults, we advocate a serious consideration of supporting software-
controlled pre-execution in future SMT machines.

8. Acknowledgments
I thank Joel Emer’s encouragement of pursuing a software-

based approach to pre-execution (see his HPCA-7 keynote
speech [14] for the philosophy behind). Yuan Chou, Robert Cohn,
Joel Emer, and Steve Wallace gave insightful comments on early
drafts of the paper. In addition, I thank the Asim team for support-
ing the simulator and the Alpha 21464 team for graciously sharing
their computing resources. Finally, I appreciate the documentary
help from Artur Klauser, Todd Mowry, and Robert Muth.

References
[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: A processor

architecture for multiprocessing. In Proc. 17th ISCA, pages 104–114, May
1990.

[2] H. Akkary and M. Driscoll. A dynamic multithreading processor. In Proc. 31st
MICRO, pages 226–236, Nov 1998.

[3] Alpha Development Group, Compaq Computer Corp. The Asim Manual, 2000.

[4] M. M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by depen-
dence graph precomputation. In Proc. 28th ISCA, 2001.

[5] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dynamically allocating
processor resources between nearby and distant ILP. In Proc. 28th ISCA, 2001.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

[6] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[7] R. S. Chappel, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simultaneous
subordinate microthreading (SSMT). In Proc. 26th ISCA, pages 186–195, May
1999.

[8] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high-
performance processors. IEEE Transactions on Computers, 44(5), May 1995.

[9] J. D. Collins, H. Wang, D. M. Tullsen, H. J. Christopher, Y.-F. Lee, D. Lav-
ery, and J. P. Shen. Speculative precomputation: Long-range prefetching of
delinquent loads. In Proc. 28th ISCA, 2001.

[10] Standard Performance Evaluation Corporation. The SPEC95 benchmark suite.
http://www.specbench.org.

[11] M. Dubois and Y. H. Song. Assisted execution. Technical Report CENG Tech-
nical Report 98-25, University of Southern California, October 1998.

[12] J. Dundas and T. Mudge. Improving data cache performance by pre-executing
instructions under a cache miss. In Proc. 1997 International Conference on
Supercomputing, 1997.

[13] J. S. Emer. Simultaneous Multithreading: Multiplying Alpha Performance.
Microprocessor Forum, October 1999.

[14] J. S. Emer. Relaxing Constraints: Thoughts on the Evolution of Computer
Architecture. Keynote Speech for the 7th HPCA, January 2000.

[15] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow analysis of branch
mispredictions and its application to early resolution of branch outcomes. In
Proc. 31st MICRO, pages 59–68, Dec 1998.

[16] J. L. Henning. SPEC CPU2000: measuring cpu performance in the new mil-
lennium. IEEE Computer, 33(7):28–35, July 2000.

[17] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 micropro-
cessor architecture. In Proc. International Conference on Computer Design,
October 1998.

[18] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution on the
polypath architecture. In Proc. 25th ISCA, pages 250–259, June 1998.

[19] N. Kohout, S. Choi, and D. Yeung. Multi-chain prefetching: Exploiting mem-
ory parallelism in pointer-chasing codes. In ISCA Workshop on Solving the
Memory Wall Problem, 2000.

[20] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data
structures. In Proc. 7th ASPLOS, pages 222–233, October 1996.

[21] C.-K. Luk and T. C. Mowry. Automatic compiler-inserted prefetching for
pointer-based applications. IEEE Transactions on Computers (Special Issue
on Cache Memory), 48(2):134–141, February 1999.

[22] T. C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetch-
ing. PhD thesis, Stanford University, March 1994.

[23] T. C. Mowry and C.-K. Luk. Predicting data cache misses in non-numeric
applications through correlation profiling. In Proc. 30th MICRO, pages 314–
320, December 1997.

[24] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[25] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data
structures on distributed memory machines. ACM Transactions. on Program-
ming Languages and Systems, 17(2):233–263, March 1995.

[26] A. Roth, A. Moshovos, and G. Sohi. Dependence based prefetching for linked
data structures. In Proc. 8th ASPLOS, pages 115–126, October 1998.

[27] A. Roth and G. Sohi. Effective jump-pointer prefetching for linked data struc-
tures. In Proc. 26th ISCA, pages 111–121, May 1999.

[28] A. Roth and G. S. Sohi. Speculative data-driven multithreading. In Proc. 7th
HPCA, 2001.

[29] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In Proc. 22nd
ISCA, pages 414–425, June 1995.

[30] J. G. Steffan and T. C. Mowry. The potential for using thread-level data spec-
ulation to facilitate automatic parallellization. In Proc. 4th HPCA, February
1998.

[31] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream processors: Im-
proving both performance and fault tolerance. In Proc. 9th ASPLOS, Nov 2000.

[32] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm.
Exploiting choice: Instruction fetch and issue on an implementable simultane-
ous multithreading processor. In Proc. 23rd ISCA, pages 191–202, May 1996.

[33] S. Wallace, B. Calder, and D. M. Tullsen. Threaded multiple path execution. In
Proc. 25th ISCA, pages 238–249, June 1998.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
programs: Characterization and methodological considerations. In Proc. 22nd
ISCA, pages 24–38, June 1995.

[35] C. B. Zilles and G. S. Sohi. Understanding the backward slices of performance
degrading instructions. In Proc. 27th ISCA, pages 172–181, June 2000.

[36] C. B. Zilles and G. S. Sohi. Execution-base prediction using speculative slices.
In Proc. 28th ISCA, 2001.

Appendix: Compiler Algorithm for Inserting
Pre-Execution
Phase I: Locality Analysis

Step 1: Locate where cache misses occur in the program. This step can
be accomplished through some low-overhead profiling tools such as DCPI
or through cache simulations.

Step 2: Determine if the misses identified in Step 1 are generated by
access patterns that can potentially be pre-executed. For the four important
classes of accesses patterns we discussed in Section 2.2, they are all rec-
ognizable by the compiler: Previous prefetching work has used compilers
to recognize pointer-based data structures [20] and array (both affine and
sparse) accesses [22]; control-flow analysis and call-graph analysis [24]
can easily discover multiple paths and procedure calls.

Step 3: If Step 2 shows that pre-execution might be beneficial, the com-
piler has to determine whether the pre-execution and actual execution will
access the same data. This can be computed through aliasing analysis,
which typically gives three possible answers: “yes”, “no”, or “maybe”. S-
ince the overhead of pre-execution is relative low compared to the cache
miss penalty, the compiler can aggressively perform pre-execution for both
the “yes” and “maybe” cases. For example, for the mst code fragment
shown in Figure 3(b), the compiler optimistically assumes that the value of
tmp!next remains the same during the pre-execution and actual execu-
tion and hence can pre-execute the next hash.

Phase II: Scheduling

Step 4: At this point, the compiler must decide how far ahead it need-
s to pre-execute. Ideally, we would like to pre-execute as far as possi-
ble without polluting the cache. However, computing the volume of data
brought in by pre-execution is challenging due to non-compile-time con-
stants like unknown loop bounds, the length of linked lists, etc. There
are three possible approaches here. The first approach is to assume that
pre-execution would access a small volume of data with respect to the
cache size. Under this assumption, the compile will pre-execute as far
as possible. This is a reasonable assumption for today’s machines since
their caches (especially the L2 caches) are typically large enough to hold
the data accessed within a few iterations of the innermost loop. The sec-
ond approach relies on the user to specify the expected values of those
non-compile-time constants through program annotations. In the third ap-
proach, the compiler can generate two versions of pre-execution code: One
corresponds to the “small volume” case and the other corresponds to the
“large volume” one. In addition, it also includes the code that will adap-
t to one of these two versions at run-time. A similar approach has been
suggested [22] for prefetching loops with unknown bounds.

Step 5: Perform code transformations to facilitate pre-execution.
These transformations are mainly for generating explicit target address-
es for pre-execution. An example of them is the loop unrolling done in
Figure 3(b). Moreover, additional code may be required to preserve the
correctness of the main execution. For instance, both next 1 and nex-
t 2 in Figure 3(b) have to be reloaded prior to the main execution.

Step 6: Finally, insert PreExecute Start’s and PreExecute Stop’s in-
to the program. PreExecute Start’s are inserted at the earliest points in
the program where pre-execution can be launched with the correct data ad-
dresses. PreExecute Stop’s are put at the expected ends of pre-execution
as well as all possible exits.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 00:55:34 UTC from IEEE Xplore. Restrictions apply.

