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HARP Summary

Motivation: state-of-the-art memory error mitigations often require
the processor to identify which bits are at risk of error (i.egrofiling )

Problem: on-die ECCcomplicates error profiling by altering how errors
appear outside of the memory chip

Goal: understand and address thechallengeson-die ECC introduces

Contributions:

1. Analytically study on-@E A & $ $ 0 O A B Btlixéx Re® challdn@es E
I. Exponentially increases the number of atisk bits
ii. Makes individual atrisk bits harder to identify
iii. Interferes with commonly-used memory data patterns

2. Hybrid Active -Reactive Profiling (HARP).
I. Separately identifies (1) raw bit errors and (2) errors introduced by cdie ECC
ii. Effectivelyreduces profiling with on-die ECC into profilingwithout on-die ECC

Evaluation: demonstrate that HARP overcomes the three challenges

AHARP identifies all errorgaster than two baselines, which sometimes fail to
achieve full coverage of atrisk bits

ACase study showing thatiARP identifies all errors faster than the best-
performing baseline (e.g., by 3.7x for a raw pebit error probability of 0.75)
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3. HARP: Practical and Effective Profiling
4. Evaluations

5. Conclusion and Takeaways
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Scaling-Related Memory Errors

ADensity scaling increases memory error rates

Data Write Variable
Retention Recovery Retention Time
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shrinking capacitance increasingpitline and shrinking capacitance
worsening leakage contact resistances worsening leakage

Y

Uncorrelated single-bit errors are the primary
challenge with continued DRAM process scaling
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Increasing Single-Bit Error Rates

AHigher error rates require more sophisticated solutions
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Typical On-Die ECC Design Today

AL28bit single-error correcting (SEC) Hamming code

DRAM Chip

ECC Encoder Data

External
DRAM Bu

ECC Decoder

Invisible outside Fully contained
the DRAM chip within the chip
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Error Mitigation at High Error Rates

Software

)

Page retirement
Task replication
Application fault tolerance
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In-Processor

Bit-Repair Mechanisms

state-of-the-art
for addressing
scalingrelated errors

In-Memory
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On-Die ECC
1

ACost and efficiency depend orerror characteristics
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Memory Repair Mechanisms

Aldentify andrepair any bits that areat-risk of error

Memory Controller
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I write data
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Error Profiling Algorithms

Active Induceworst -case
conditions

Profiler

Type? Check forerrors

Passivelymonitor
Reactive | the memory chip

Mark erroneous
bits asat-risk

Repeat until all atisk bits identified

SAFARI



Error Profiling

requires observing
at-risk bits fall

Check forerrors

Mark erroneous
bits asat-risk

ml_____
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Profiling a Memory Chip with On -Die ECC

AOn-die ECCchanges how errors appearto the profiler
Q: How does ondie ECC

affect error profiling? Unreliable Memory
PiE EEN BN DN DN BN S BN BN B B . "F"—"-"-"—"—' """""""""" 1|
1 ! |I > |
[ write data | I i
I Brofiler i On-Die g Error-Prone | !
: i ECC | Data Store |
I read data | [ |
= A :

Goal: understand and addressthe challenges
that on-die ECC introduces for error profiling
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Profiling a Memory Chip

AL N K B E H Aidentify allbits that @reat risk of error
Profiler cannot seeinto the memory

Memory Chip |
(Without On-Die ECC) i

Data Store

Memory Chip
With On-Die ECC

Data Store

On-Die ECC

r

post-correction data

Profiler marks thebits
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Error Profiling Without On -die ECC

AOnly one source of errors: when the physical bit fails

Memory Chip

6 %E N A ? PO\LAINN-KN - | NoError

Same errors inside

and outside of the chip gl ‘ ‘ ‘

Profiler identifies these bits

error profile=O1 E@E NARIRK N C
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Error Profiling With On -Die ECC

ATwo different sources of errors
Memory Chip Error

data metadata
EI No Error

~ |- |- Jl- [E[E]

| On-Die Ecc|-/systematic
encoding
Direct error — — Indirect error
Appearsbefore and ‘ ' “ - Occurs when ondie ECC
after error correction — mistakenly corrects a bit

Profiler identifies these bits

error profile =O1 E @E NA R REEN @EAMN K
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A Closer Look at Indirect Errors

Alndirect errors depend on the raw bit error pattern

data metadata :
X| AtRisk
‘X‘X‘ Not at risk
P2

LE[- | H |[E[E] [E|- |- \lH-\EH
Pre-correction
—— 'I On- Dle ECCl' |5(;ST[ EO_I‘I‘_e(_ItI_OFll On-Die ECCl‘ =

Direct error Indirect error
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A Closer Look at Indirect Errors

Key observation:
Any bit can be atrisk of indirect errors
with different combinations of raw bit errors

On-die ECC causestatistical dependence
between otherwise independent bits
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Challenges Introduced by On-Die ECC

A small set of raw bit errors creates acombinatorially
larger set of atrisk post-correction bits

@ Exponentially increases the at-risk bits

At-risk post-correction bits can only be exposedy
specific raw bit error patterns

@ Harder to observe each at-risk bit

Data patterns must considercombinations of raw bits
Instead of just individual bitsalone

@ Interferes with data patterns
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Challenge 1: Combinatorial Explosion

AN at-risk bits can fail ing  ways

1

C unique

error patterns
A
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Challenge 1: Combinatorial Explosion

Every uncorrectable pattern
can cause ainique indirect error

Uncorrectable
SAFARI 20



Challenge 1: Combinatorial Explosion

AExponential increase in the number of atrisk
bits that the profiler must identify

Worst -Case Explosion of AtRisk Bits

At-Risk PreCorrection At-Risk PostCorrection

——
G
o) X
T o U
U CuU
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Challenge 2: Identifying At-Risk Bits

Alndirect errors only appear forspecific ECGdependent
combinations of pre-correction errors

AThis makes identifying indirect errorsslow and difficult
AThe profiler can neithersee nor control pre-correction errors

Alnstead, the profiler is forced toblindly explore different pre-
correction error combinations to achieve high coverage

The slow exploration can only be overcome

by transparency into on-die ECC
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Challenge 3: Data Patterns

AProfilers employ carefullydesigneddata patterns

013101310 0310310 [X10
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AData-patterns induceworst -casecircuit behavior
AMlaximizes the chanceof identifying errors
AExercises differentfailure modes
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Challenge 3: Data Patterns

AOn-die ECC breaks these data patterns imvo ways

Memory Chip
OO0 O : tdirdicdicdiedicdirdi:
@ TOIE OO 0]~ On-Die ECCl»(5ZI5ZEZLE
Carefully-Designed Obfuscated

Multi-bit data patterns are
difficult to design and use
(discussed in our paper)

Conventional data patterns induce| On-die ECC requiresiultiple bits to
single-bit worst case conditions fail concurrently to expose error
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Key Observation
Andirect errors are anartifact of on-die ECC

metadata
- |E|E]

[oroeecc
ELE]

AAn N-error correcting ECC can only causet
most N indirect errors at a time

data

|

. |

Direct error Indirect error !
|

Upper-bounded
by the ECC algorithm
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Key Observation

Key Idea:
ldentify direct and indirect errors separately
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Hybrid Active -Reactive Profiling (HARP)

Active Profiling
Quickly identifiesdirect errors

To/from CPU

Memory Controller Memory Chip
________________________________ | femmm—————————————
; |_,—|_,_|_>' Y
write data Repal_r o | !
Mechanism = 1! |on-Die
: o) |
repaired Error al 1! ECC Data
read data i I
Pro%flle — 2 e |' : Pl Store
------------ — e 2 4--: :------------
on error detected : : ECC bypass
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Reactive Profiling

Safelyidentifies the indirect errors
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Active Profiling Design

Memory Controller Memory Chip
[T TmmTm e H l
i - i |
] Repair o[ :
i Mechanism = "1 | on-Die :
| Error - S| Ecc “*| Data | |
! Profile o | 1! Store | |
l 7 = l
I T = I
: e L |edmpm e |
| on error detected I | ECC bypass :
____________________ 1 _____.k___________l

Bypassonly for reads
(returns data bits, ignores ECC metadata

AECC bypass is aimple, low -overhead change
ANo change to data transfer granularity or ECC algorithm

AEnables usingexisting profiling algorithms to identify bits at
risk of direct errorsas if there is no onrdie ECC
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Active Profiling Design

Reducesthe task ofprofiling with on -die ECC

Into a task ofprofiling without on -die ECC
with minimal modifications to on-die ECC
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Reactive Profiling Design

Memory Controller Memory Chi

y y P
- P —
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ASystem designer must choose a suitable secondary EC

ALarge ECC design spaceonly one requirement;

ASecondary ECC must correct errors per on-die ECC word
given an< -error -correcting on -die ECC

ARequiresaligning the two ECC words (details in our paper)
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Improving Reactive Profiling

AReactive profiling slowly identifies indirect errorsone-
at-a-time as they occur during runtime

AWe can shorten this process byanticipating indirect
error locations from the already-observed direct errors

ID|D[?]|?

?

L/

IEI At-Risk of Direct Errors

Unknown

Can predict subsetof indirect errors by knowing the
on-die ECC implementation (i.e., p@rity -check matrix)

AWe introduce two HARP variants:

AHARP-A(ware)a knows the parity-check matrix
AHARP-U(naware) & does not know the parity-check matrix

SAFARI
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Evaluation Methodology

AWe evaluate HARP usinéylonte -Carlo simulation

AEnablesaccurately measuring coverage (using a SAT solver)

A1.036,980 total ECC words

AAcross 2769 randomlygenerated (71, 64) and (136, 128) ECC codes
A&14 CPUyears (20 days on 256 cores) of simulation time

AArtifacts areopen-sourced

DOI 10.5281/zen0do0.5148592

https://github.com/CMU-SAFARI/HARP
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Baseline Profiling Algorithms

AWe compare HARP withwo baseline algorithms :

1. Naive: round-based profiling thatignores on-die ECC
AEach round uses different data patterns (e.g., random data)
AProfiler marks observed errors as atisk bits

2. BEEPC 1 =P AHe e:knows therexact ondie ECC
Implementation (i.e., its paritycheck matrix)
ASame overall roundbased strategy as Naive
AData patterns designed using the known pariticheck matrix

SAFARI 35



Coverage of Bits at Risk of Direct Errors

Per-Bit Probability of Pre-Correction Error

" 25% 50% 75% 100%

o 1.0 - . - SN | - JRNIANNK
(v] p k7R 4 -

- (27 X K} ==
g o | W

o )/‘ | ¥

O '»! ? /I

5 0.5 1 1/l F . {/

= L )5

+ Pre-Correction Errors %'/ mmm HARP-U
5 g —-— 5 ——3 7 mmm Naive
v s -6 4 — D Im BEEP
'5 OO T 7 7

1 41664 1 4 1664 1 4 1664 1 4 16 64
Number of Profiling Rounds

1. HARP achievesull coverage in all cases,
outperforming both baseline algorithms
ABEERails to achieve full coverage because ifoes not explore
different pre-correction error patterns
2. HARP isndependent of the number of pre-correction
errors because it directly reads raw data bit values
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Coverage of Bits at Risk of Direct Errors

HARPovercomes all three profiling challenges

by separating direct and indirect errors
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Profiling Speed Evaluation

AGoal: determine how many profiling rounds are
necessary to prevent N-bit error patterns

AWe inject 2 raw bit errors per ECC word
APer-bit error probability = 1.0 (fails in every profiling round)

BEEP and Naive are

[ERN
N
o

35 A order(s) of magnitude slower W Naive

S 100 A BN BEEP

2 B HARP-U

> 80 - B HARP-A

c

£ g0 A HARP only needs 3 rounds

o] to prevent multi -bit errors

(@]

g 20 A

£

Z 0 HE== ———— ' ' '

2 3 4 5 ]
’ Maximum Number of Simultaneous Post -Correction Errors Possible K
Requires ECC1 Requires ECCG6
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Profiling Speed Evaluation

Number of Pre-Correction Errors per ECC Word
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AARP achieves high coverage of -atsk bits
much faster than the baseline algorithms
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Profiling Speed Evaluation

Number of Pre-Correction Errors per ECC Word
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than the bestperforming baseline
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Maximum Number of Simultaneous Post-Correction Errors Possible

HARP performs20.6- to 62.1% faster
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Case Study: DRAM DataRetention

AWe consider a system that uses aileal repair
mechanism to safely reduce the DRAM refresh rate

AWe study how the endto-end bit error rate (BER)
changes when using different profilers

BEEP falls to
reach zero BER o

Per-Bit Probability of Pre-Correction Error
0%

. T

LNt

'—I
o
©

A XATA—

BER After
Reactive Profiling
= =
S

HARP always 1 ,ﬂﬂ 4 ﬂ 1 41664 1 4 1664
reaches zero BER Number of Profiling Rounds
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Case Study: DRAM DataRetention

HARP reaches zero BER 7x faster

than the bestperforming baseline

Per-Bit Probability of Pre- Correctlon Error
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Other Information in the Paper

ADetailed analysis of on-die ECC

AHow on-die ECC introduces statistical dependence between
post-correction errors

ADifferences between direct and indirect errors
AOVEO? QOOEKJ =>KQP )" 3100 C

AMore evaluation results
ACoverage of direct and indirect errors
AAnalysis of profiler bootstrapping
ACase study on the eneto-end memory bit error rate (BER)

ADetailed artifact description
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Other Information in the Paper

https://arxiv.org/abs/2109.12697
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