
HARP: Practically and Effectively Identifying
Uncorrectable Errors in Memory Chips
That Use On-Die Error-Correcting Codes

Minesh Patel, Geraldo F. Oliveira, Onur Mutlu

Presented at MICRO on 20 October 2021

https://github.com/CMU-SAFARI/HARP

https://arxiv.org/abs/2109.12697

https://github.com/CMU-SAFARI/HARP
https://arxiv.org/abs/2109.12697

HARP Summary
Motivation: state-of-the-art memory error mitigations often require
the processor to identify which bits are at risk of error (i.e., profiling)

Problem: on-die ECCcomplicates error profiling by altering how errors
appear outside of the memory chip

Goal: understand and address the challengeson-die ECC introduces

Contributions:
1. Analytically study on-@EA &$$òO ABBA?PO =J@ E@AJPEBU three key challenges

i. Exponentially increases the number of at-risk bits
ii. Makes individual at-risk bits harder to identify
iii. Interferes with commonly-used memory data patterns

2. Hybrid Active -Reactive Profiling (HARP):
i. Separately identifies (1) raw bit errors and (2) errors introduced by on-die ECC
ii. Effectively reduces profiling with on-die ECC into profiling without on-die ECC

Evaluation: demonstrate that HARP overcomes the three challenges
ÅHARP identifies all errors faster than two baselines, which sometimes fail to

achieve full coverage of at-risk bits
ÅCase study showing that HARP identifies all errors faster than the best-

performing baseline (e.g., by 3.7x for a raw per-bit error probability of 0.75)

https://github.com/CMU -SAFARI/HARP 2

https://github.com/CMU-SAFARI/HARP

HARP Outline

1. Memory Error Mitigation and Profiling

2. On-%EA &$$òO *IL=?P KJ &NNKN 1NKBEHEJC

3. HARP: Practical and Effective Profiling

4. Evaluations

5. Conclusion and Takeaways

3

Scaling-Related Memory Errors

ÅDensity scaling increases memory error rates

4

Uncorrelated single-bit errors are the primary
challenge with continued DRAM process scaling

Data
Retention

shrinking capacitance

worsening leakage

Write
Recovery

increasing bitlineand
contact resistances

Variable
Retention Time

shrinking capacitance
worsening leakage

Increasing Single-Bit Error Rates

ÅHigher error rates require more sophisticated solutions

5

On-Die ECC

PresentPast Near Future

??

3ALNK@Q?A@ BNKI LNEKN SKNG Ć,HEJAēè)1$"òÈÆćè Ć/=ENēè*4$"òÇÉć

Typical On-Die ECC Design Today

6

Å128-bit single-error correcting (SEC) Hamming code

Data
Store

Chip
I/O

ECC Encoder

ECC Decoder

128

128 128+8

128+8

External
DRAM Bus

DRAM Chip

Fully contained
within the chip

Invisible outside
the DRAM chip

Error Mitigation at High Error Rates

Large research space

7

In-MemoryIn-ProcessorSoftware

Page retirement

Task replication

Application fault tolerance

ì

Bit-Repair Mechanisms

Error Correcting Codes

Checkpoint + recovery

ì

Row/Column Sparing

On-Die ECC

ì

ÅCost and efficiency depend on error characteristics

Bit-Repair Mechanisms

state-of-the-art
for addressing

scaling-related errors

Memory Repair Mechanisms

ÅIdentify and repair any bits that are at-risk of error

8

Memory Controller

Repair
Mechanism

Error
Profile

Unreliable Memory

Error -Prone
Data Store

read data
repaired
read data

write datawrite data

T
o

/f
ro

m
 C

P
U

Determined through
ó&NNKN 1NKBEHEJCô

Must know which bits areat-risk

Error Profiling Algorithms

9

Mark erroneous
bits as at-risk

Check for errors

Repeat until all at-risk bits identified

Induce worst -case
conditions

Passively monitor
the memory chip

Profiler
Type?

Active

Reactive

requires observing
at-risk bits fail

Error Profiling

10

Mark erroneous
bits as at-risk

Check for errors

Repeat until all at-risk bits identified

Induce worst -case
conditions

Passively monitor
the memory chip

Profiler
Type?

Active

Reactive

Profiling a Memory Chip with On -Die ECC

ÅOn-die ECC changes how errors appear to the profiler

11

write data

read data

Unreliable Memory

Error -Prone
Data Store

On-Die
ECC

Profiler

Goal: understand and address the challenges
that on-die ECC introduces for error profiling

Q: How does on-die ECC
affect error profiling?

HARP Outline

12

1. Memory Error Mitigation and Profiling

2. On-%EA &$$òO *IL=?P KJ &NNKN 1NKBEHEJC

3. HARP: Practical and Effective Profiling

4. Evaluations

5. Conclusion and Takeaways

Profiling a Memory Chip

Å1NKBEHANòO CK=Hêidentify all bits that are at risk of error

13

Memory Chip
(Without On-Die ECC)

Data Store

raw data

Memory Chip
(With On-Die ECC)

Data Store

On-Die ECC

post-correction data

raw data

Profiler marks the bits
that are observed to fail

Profiler cannot see into the memory

Error Profiling Without On -die ECC

ÅOnly one source of errors: when the physical bit fails

14

error profile = ÕÎÉÏÎ@ENA?PANNKNO

E Error

- No Error

E --E

- -E E

Memory Chip

ó%ENA?Pô ANNKN
Same errors inside
and outside of the chip

Profiler identifies these bits

- -E E

On-Die ECC

- - -E - E E

Memory Chip
data metadata

Error Profiling With On -Die ECC
ÅTwo different sources of errors

15

Indirect error
Occurs when on-die ECC
mistakenly corrects a bit

Direct error
Appears before and
after error correction

error profile = ÕÎÉÏÎ@ENA?PANNKNOèEJ@ENA?PANNKNO

E Error

- No Error

Profiler identifies these bits

systematic
encoding

Pre-correction

Post-correction

- -E E

A Closer Look at Indirect Errors
ÅIndirect errors depend on the raw bit error pattern

16

On-Die ECC

-E - E

On-Die ECC

Direct error
(same position)

Indirect error
(different positions)

- - -E - E E

P1

- - -E - -E

P2

data metadata

- - -X - X X
At Risk

- Not at risk

X

- -E E

A Closer Look at Indirect Errors
ÅIndirect errors depend on the raw bit error pattern

17

On-Die ECC

- - -E - E E

data metadata

P1

-E - E

On-Die ECC

- - -E - -E

Same position Different positions

- - -X - X X

P2

At Risk

- Not at risk

Pre-correction

X

Post-correction

Key observation:
Any bit can be at-risk of indirect errors

with different combinations of raw bit errors

On-die ECC causes statistical dependence
between otherwise independent bits

Challenges Introduced by On-Die ECC

18

Exponentially increases the at-risk bits
1

Harder to observe each at-risk bit
2

Interferes with data patterns
3

A small set of raw bit errors creates a combinatorially
larger set of at-risk post-correction bits

At-risk post-correction bits can only be exposedby
specific raw bit error patterns

Data patterns must consider combinations of raw bits
instead of just individual bitsalone

UncorrectableCorrectable

Challenge 1: Combinatorial Explosion

ÅN at-risk bits can fail in ς ways

19

- - - -X X X X At-Risk Bit

- Normal Bit0 21

0

1

2

ȟ0 1

ȟ0 2

ȟ1 2

ȟȟ1 20ς
u

n
iq

u
e

e

rr
o
r

p
a

tt
e

rn
s

UncorrectableCorrectable

Challenge 1: Combinatorial Explosion

ÅN at-risk bits can fail in ς ways

20

- - - -X X X X At-Risk Bit

- Normal Bit0 21

0

1

2

ȟ0 1

ȟ0 2

ȟ1 2

ȟȟ1 20ς
u

n
iq

u
e

e

rr
o
r

p
a

tt
e

rn
s

Every uncorrectable pattern
can cause a unique indirect error

Challenge 1: Combinatorial Explosion

ÅExponential increase in the number of at-risk
bits that the profiler must identify

21

At-Risk Pre-Correction At-Risk Post-Correction

ὲ ς ρ

ς σ

σ χ

τ ρυ

ψ ςυυ

Worst -Case Explosion of At-Risk Bits

Challenge 2: Identifying At-Risk Bits

ÅIndirect errors only appear for specific ECC-dependent
combinations of pre-correction errors

ÅThis makes identifying indirect errors slow and difficult
ÅThe profiler can neither see nor control pre-correction errors
ÅInstead, the profiler is forced to blindly explore different pre-

correction error combinations to achieve high coverage

22

The slow exploration can only be overcome
by transparency into on-die ECC

Challenge 3: Data Patterns

ÅProfilers employ carefully-designed data patterns

23

ÅData-patterns induce worst -casecircuit behavior
ÅMaximizes the chance of identifying errors
ÅExercises different failure modes

1 0 1 00 1 0 1 1 0 1 00 1 0 1
1 0 1 00 1 0 1 1 0 1 00 1 01

1 1 1 11 1 1 1
0 0 0 00 0 00

1 1 1 11 1 1 1
1 1 1 11 1 1 1

Multi-bit data patterns are
difficult to design and use

(discussed in our paper)

Challenge 3: Data Patterns

ÅOn-die ECC breaks these data patterns in two ways

24

On-die ECC requires multiple bits to
fail concurrently to expose errors

Memory Chip

? ? ? ?? ? ? ?1 0 1 00 1 0 1
? ? ? ?? ? ? ?1 0 1 00 1 01

On-Die ECC

Carefully-Designed Obfuscated

1

Conventional data patterns induce
single-bit worst case conditions2

HARP Outline

25

1. Memory Error Mitigation and Profiling

2. On-%EA &$$òO *IL=?P KJ &NNKN 1NKBEHEJC

3. HARP: Practical and Effective Profiling

4. Evaluations

5. Conclusion and Takeaways

- -E E

On-Die ECC

- - -E - E E

data metadata

Key Observation

ÅIndirect errors are an artifact of on-die ECC

26

Direct error Indirect error

Upper-bounded
by the ECC algorithm

ÅAn N-error correcting ECC can only cause at
most N indirect errors at a time

- -E E

On-Die ECC

- - -E - E E

data metadata

Key Observation

ÅIndirect errors are an artifact of on-die ECC

27

Direct error Indirect error

Upper-bounded
by the ECC algorithm

ÅAn N-error correcting ECC can only cause at
most N indirect errors at a time

Key idea:
Identify direct and indirect errors separately

Hybrid Active -Reactive Profiling (HARP)

28

Memory Controller

Repair
Mechanism

Error
Profile

Memory Chip

On-Die
ECC Data

Store

A
ct

iv
e

 P
ro

fil
e
r

on error detected ECC bypass

Active Profiling1
Quickly identifies direct errors

Reactive Profiling2
Safely identifies the indirect errors

T
o

/f
ro

m
 C

P
U

S
e

co
n

d
a

ry
 E

C
C

repaired
read data

write data

Active Profiling Design

29

Memory Controller

Repair
Mechanism

Error
Profile

Memory Chip

On-Die
ECC Data

Store

A
ct

iv
e

 P
ro

fil
e

r

on error detected ECC bypass

Bypass only for reads
(returns data bits, ignores ECC metadata)

ÅECC bypass is a simple, low -overhead change
ÅNo change to data transfer granularity or ECC algorithm
ÅEnables using existing profiling algorithms to identify bits at

risk of direct errors as if there is no on-die ECC

Active Profiling Design

30

Memory Controller

Repair
Mechanism

Error
Profile

Memory Chip

On-Die
ECC Data

Store

A
ct

iv
e

 P
ro

fil
e

r

on error detected ECC bypass

Bypass only for reads
(returns data bits, ignores metadata)

ÅAble to use existing profiling algorithms as if there is no
on-die ECC to identify bits at risk of direct errors

ÅDoes not identify bits at risk of indirect errors

Reducesthe task of profiling with on -die ECC

into a task of profiling without on -die ECC

with minimal modifications to on-die ECC

Reactive Profiling Design

31

ÅSystem designer must choose a suitable secondary ECC

ÅLarge ECC design space āonly one requirement:
ÅSecondary ECC must correct ╝errors per on -die ECC word

given an ╝-error -correcting on -die ECC
ÅRequires aligning the two ECC words (details in our paper)

Memory Controller

Repair
Mechanism

Error
Profile

Memory Chip

On-Die
ECC

Data
Store

on error
detected

Secondary
ECC

Improving Reactive Profiling

ÅReactive profiling slowly identifies indirect errors one-
at-a-time as they occur during runtime

ÅWe can shorten this process by anticipating indirect
error locations from the already-observed direct errors

32

?D ?D
D At-Risk of Direct Errors

? Unknown

Can predict a subset of indirect errors by knowing the
on-die ECC implementation (i.e., its parity -check matrix)

ÅWe introduce two HARP variants:
ÅHARP-A(ware) āknows the parity-check matrix
ÅHARP-U(naware) ādoes not know the parity-check matrix

HARP Outline

33

1. Memory Error Mitigation and Profiling

2. On-%EA &$$òO *IL=?P KJ &NNKN 1NKBEHEJC

3. HARP: Practical and Effective Profiling

4. Evaluations

5. Conclusion and Takeaways

Evaluation Methodology

ÅWe evaluate HARP using Monte-Carlo simulation
ÅEnables accurately measuring coverage (using a SAT solver)
Å1,036,980 total ECC words
ÅAcross 2769 randomly-generated (71, 64) and (136, 128) ECC codes

Åå14 CPU-years (20 days on 256 cores) of simulation time

ÅArtifacts are open-sourced

34

https://github.com/CMU-SAFARI/HARP

https://github.com/CMU-SAFARI/HARP

Baseline Profiling Algorithms

ÅWe compare HARP withtwo baseline algorithms :

1. Naive: round-based profiling that ignores on-die ECC
ÅEach round uses different data patterns (e.g., random data)
ÅProfiler marks observed errors as at-risk bits

2. BEEP Ć1=PAHēè.*$30òÈÆć: knows the exact on-die ECC
implementation (i.e., its parity-check matrix)
ÅSame overall round-based strategy as Naive
ÅData patterns designed using the known parity-check matrix

35

Coverage of Bits at Risk of Direct Errors

1. HARP achieves full coverage in all cases,
outperforming both baseline algorithms
ÅBEEP fails to achieve full coverage because it does not explore

different pre-correction error patterns

2. HARP is independent of the number of pre-correction
errors because it directly reads raw data bit values

36

Coverage of Bits at Risk of Direct Errors

1. HARP achieves full coverage in all cases,
outperforming both baseline algorithms
ÅBEEP fails to achieve full coverage because it does not explore

different pre-correction error patterns

2. HARP is independent of the number of pre-correction
errors because it directly reads raw data bit values

37

HARP overcomes all three profiling challenges

by separating direct and indirect errors

Profiling Speed Evaluation

38

0

20

40

60

80

100

120

1 2 3 4 5 6

N
u

m
b
e

r
o
f
P

ro
fi
lin

g
 R

o
u

n
d
s

Maximum Number of Simultaneous Post -Correction Errors Possible

ÅGoal: determine how many profiling rounds are
necessary to prevent* N-bit error patterns

ÅWe inject 2 raw bit errors per ECC word
ÅPer-bit error probability = 1.0 (fails in every profiling round)

HARP only needs 3 rounds
to prevent multi -bit errors

BEEP and Naive are
order(s) of magnitude slower

Requires ECC-1 Requires ECC-6

*for 99th percentile coverage

Profiling Speed Evaluation

ÅHARP achieves high coverage of at-risk bits
much faster than the baseline algorithms

39

Profiling Speed Evaluation

ÅHARP achieves high coverage of at-risk bits
much faster than the baseline algorithms

40

HARP performs 20.6- to 62.1% faster
than the best-performing baseline

Case Study: DRAM Data-Retention

41

ÅWe consider a system that uses an ideal repair
mechanism to safely reduce the DRAM refresh rate

ÅWe study how the end-to-end bit error rate (BER)
changes when using different profilers

BEEP fails to
reach zero BER

HARP always
reaches zero BER

Case Study: DRAM Data-Retention

42

ÅWe consider a system that uses an ideal repair
mechanism to safely reduce the DRAM refresh rate

ÅWe study how the end-to-end bit error rate (BER)
changes when using different profilers

HARP reaches zero BER 3.7x faster
than the best-performing baseline

HARP Outline

43

1. Memory Error Mitigation and Profiling

2. On-%EA &$$òO *IL=?P KJ &NNKN 1NKBEHEJC

3. HARP: Practical and Effective Profiling

4. Evaluations

5. Conclusion and Takeaways

Other Information in the Paper

ÅDetailed analysis of on-die ECC
ÅHow on-die ECC introduces statistical dependence between

post-correction errors
ÅDifferences between direct and indirect errors

Å%EO?QOOEKJ =>KQP)"31òO @AOECJ @A?EOEKJO

ÅMore evaluation results
ÅCoverage of direct and indirect errors
ÅAnalysis of profiler bootstrapping
ÅCase study on the end-to-end memory bit error rate (BER)

ÅDetailed artifact description

44

Other Information in the Paper

https://arxiv.org/abs/2109.12697

45

https://arxiv.org/abs/2109.12697

