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HARP Summary
Motivation: state-of-the-art memory error mitigations often require 
the processor to identify which bits are at risk of error (i.e., profiling )

Problem: on-die ECCcomplicates error profiling by altering how errors 
appear outside of the memory chip

Goal: understand and address the challengeson-die ECC introduces

Contributions:
1. Analytically study on-@EA &$$òO ABBA?PO =J@ E@AJPEBU three key challenges

i. Exponentially increases the number of at-risk bits
ii. Makes individual at-risk bits harder to identify
iii. Interferes with commonly-used memory data patterns

2. Hybrid Active -Reactive Profiling (HARP):
i. Separately identifies (1) raw bit errors and (2) errors introduced by on-die ECC
ii. Effectively reduces profiling with on-die ECC into profiling without on-die ECC

Evaluation: demonstrate that HARP overcomes the three challenges
ÅHARP identifies all errors faster than two baselines, which sometimes fail to 

achieve full coverage of at-risk bits
ÅCase study showing that HARP identifies all errors faster than the best-

performing baseline (e.g., by 3.7x for a raw per-bit error probability of 0.75)
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Scaling-Related Memory Errors

ÅDensity scaling increases memory error rates
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Uncorrelated single-bit errors are the primary 
challenge with continued DRAM process scaling
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Increasing Single-Bit Error Rates

ÅHigher error rates require more sophisticated solutions
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Typical On-Die ECC Design Today
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Å128-bit single-error correcting (SEC) Hamming code
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Error Mitigation at High Error Rates

Large research space
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ÅCost and efficiency depend on error characteristics
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Memory Repair Mechanisms

ÅIdentify and repair any bits that are at-risk of error
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Error Profiling Algorithms
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requires observing
at-risk bits fail

Error Profiling
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Profiling a Memory Chip with On -Die ECC

ÅOn-die ECC changes how errors appear to the profiler
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Goal: understand and address the challenges 
that on-die ECC introduces for error profiling

Q: How does on-die ECC
affect error profiling?
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Profiling a Memory Chip

Å1NKBEHANòO CK=Hêidentify all bits that are at risk of error
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Error Profiling Without On -die ECC

ÅOnly one source of errors: when the physical bit fails
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Error Profiling With On -Die ECC
ÅTwo different sources of errors
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Pre-correction

Post-correction
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A Closer Look at Indirect Errors
ÅIndirect errors depend on the raw bit error pattern
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- -E E

A Closer Look at Indirect Errors
ÅIndirect errors depend on the raw bit error pattern
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Challenges Introduced by On-Die ECC
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Exponentially increases the at-risk bits
1

Harder to observe each at-risk bit
2

Interferes with data patterns
3

A small set of raw bit errors creates a combinatorially
larger set of at-risk post-correction bits

At-risk post-correction bits can only be exposedby 
specific raw bit error patterns

Data patterns must consider combinations of raw bits 
instead of just individual bitsalone



UncorrectableCorrectable

Challenge 1: Combinatorial Explosion

ÅN at-risk bits can fail in ς ways
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UncorrectableCorrectable

Challenge 1: Combinatorial Explosion

ÅN at-risk bits can fail in ς ways
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can cause a unique indirect error



Challenge 1: Combinatorial Explosion

ÅExponential increase in the number of at-risk 
bits that the profiler must identify
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Challenge 2: Identifying At-Risk Bits

ÅIndirect errors only appear for specific ECC-dependent 
combinations of pre-correction errors

ÅThis makes identifying indirect errors slow and difficult
ÅThe profiler can neither see nor control pre-correction errors
ÅInstead, the profiler is forced to blindly explore different pre-

correction error combinations to achieve high coverage
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The slow exploration can only be overcome 
by transparency into on-die ECC



Challenge 3: Data Patterns

ÅProfilers employ carefully-designed data patterns
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ÅData-patterns induce worst -casecircuit behavior 
ÅMaximizes the chance of identifying errors
ÅExercises different failure modes
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1 0 1 00 1 0 1 1 0 1 00 1 01

1 1 1 11 1 1 1
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1 1 1 11 1 1 1
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Multi-bit data patterns are 
difficult to design and use 

(discussed in our paper)

Challenge 3: Data Patterns

ÅOn-die ECC breaks these data patterns in two ways
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On-die ECC requires multiple bits to 
fail concurrently to expose errors

Memory Chip
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Conventional data patterns induce 
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Key Observation

ÅIndirect errors are an artifact of on-die ECC

26

Direct error Indirect error

Upper-bounded 
by the ECC algorithm

ÅAn N-error correcting ECC can only cause at 
most N indirect errors at a time
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On-Die ECC

- - -E - E E

data metadata

Key Observation

ÅIndirect errors are an artifact of on-die ECC
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Direct error Indirect error

Upper-bounded 
by the ECC algorithm

ÅAn N-error correcting ECC can only cause at 
most N indirect errors at a time

Key idea:
Identify direct and indirect errors separately



Hybrid Active -Reactive Profiling (HARP)
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Active Profiling Design
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ÅECC bypass is a simple, low -overhead change
ÅNo change to data transfer granularity or ECC algorithm
ÅEnables using existing profiling algorithms to identify bits at 

risk of direct errors as if there is no on-die ECC 



Active Profiling Design
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Reactive Profiling Design
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ÅSystem designer must choose a suitable secondary ECC

ÅLarge ECC design space āonly one requirement:
ÅSecondary ECC must correct ╝errors per on -die ECC word 

given an ╝-error -correcting on -die ECC
ÅRequires aligning the two ECC words (details in our paper)
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Improving Reactive Profiling

ÅReactive profiling slowly identifies indirect errors one-
at-a-time as they occur during runtime

ÅWe can shorten this process by anticipating indirect 
error locations from the already-observed direct errors
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?D ?D
D At-Risk of Direct Errors

? Unknown

Can predict a subset of indirect errors by knowing the 
on-die ECC implementation (i.e., its parity -check matrix)

ÅWe introduce two HARP variants:
ÅHARP-A(ware) āknows the parity-check matrix
ÅHARP-U(naware) ādoes not know the parity-check matrix



HARP Outline
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Evaluation Methodology

ÅWe evaluate HARP using Monte-Carlo simulation
ÅEnables accurately measuring coverage (using a SAT solver)
Å1,036,980 total ECC words 
ÅAcross 2769 randomly-generated (71, 64) and (136, 128) ECC codes

Åå14 CPU-years (20 days on 256 cores) of simulation time

ÅArtifacts are open-sourced
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Baseline Profiling Algorithms

ÅWe compare HARP withtwo baseline algorithms :

1. Naive: round-based profiling that ignores on-die ECC
ÅEach round uses different data patterns (e.g., random data)
ÅProfiler marks observed errors as at-risk bits

2. BEEP Ć1=PAHēè.*$30òÈÆć: knows the exact on-die ECC 
implementation  (i.e., its parity-check matrix)
ÅSame overall round-based strategy as Naive
ÅData patterns designed using the known parity-check matrix
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Coverage of Bits at Risk of Direct Errors

1. HARP achieves full coverage in all cases, 
outperforming both baseline algorithms
ÅBEEP fails to achieve full coverage because it does not explore 

different pre-correction error patterns

2. HARP is independent of the number of pre-correction 
errors because it directly reads raw data bit values
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Coverage of Bits at Risk of Direct Errors

1. HARP achieves full coverage in all cases, 
outperforming both baseline algorithms
ÅBEEP fails to achieve full coverage because it does not explore 

different pre-correction error patterns

2. HARP is independent of the number of pre-correction 
errors because it directly reads raw data bit values
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HARP overcomes all three profiling challenges 

by separating direct and indirect errors



Profiling Speed Evaluation
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ÅGoal: determine how many profiling rounds are 
necessary to prevent* N-bit error patterns

ÅWe inject 2 raw bit errors per ECC word
ÅPer-bit error probability = 1.0 (fails in every profiling round)

HARP only needs 3 rounds
to prevent multi -bit errors

BEEP and Naive are 
order(s) of magnitude slower 

Requires ECC-1 Requires ECC-6

*for 99th percentile coverage



Profiling Speed Evaluation

ÅHARP achieves high coverage of at-risk bits 
much faster than the baseline algorithms
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Profiling Speed Evaluation

ÅHARP achieves high coverage of at-risk bits 
much faster than the baseline algorithms
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HARP performs 20.6- to 62.1% faster 
than the best-performing baseline 



Case Study: DRAM Data-Retention
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ÅWe consider a system that uses an ideal repair 
mechanism to safely reduce the DRAM refresh rate 

ÅWe study how the end-to-end bit error rate (BER) 
changes when using different profilers

BEEP fails to 
reach zero BER

HARP always 
reaches zero BER



Case Study: DRAM Data-Retention
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ÅWe consider a system that uses an ideal repair 
mechanism to safely reduce the DRAM refresh rate 

ÅWe study how the end-to-end bit error rate (BER) 
changes when using different profilers

HARP reaches zero BER 3.7x faster 
than the best-performing baseline 
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Other Information in the Paper

ÅDetailed analysis of on-die ECC
ÅHow on-die ECC introduces statistical dependence between 

post-correction errors
ÅDifferences between direct and indirect errors

Å%EO?QOOEKJ =>KQP )"31òO @AOECJ @A?EOEKJO

ÅMore evaluation results
ÅCoverage of direct and indirect errors
ÅAnalysis of profiler bootstrapping 
ÅCase study on the end-to-end memory bit error rate (BER)

ÅDetailed artifact description
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Other Information in the Paper

https://arxiv.org/abs/2109.12697
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