Appears in the Third Data Prefetching Championship (DPC3), in conjunction with International Symposium on Computer Architecture (ISCA), 2019

Multi-Lookahead Offset Prefetching

Mehran Shakerinava* Mohammad Bakhshalipour* Pejman Lotfi-Kamran® Hamid Sarbazi-Azad*®

iDepartment of Computer Engineering, Sharif University of Technology

¥School of Computer Science, Institute for Research in Fundamental Sciences (IPM)

Abstract

Offset prefetching has been recently proposed as a low-
overhead yet high-performance approach to eliminate data
cache misses or reduce their negative effect. In offset prefetch-
ing, whenever a cache block (e.g., A) is requested, the cache
block that is distanced by k cache blocks (e.g., A + k) is
prefetched, where k is the prefetch offset. This type of data
prefetching imposes minimal storage overhead and has been
shown quite effective for many important classes of applica-
tions.

In this work, we find that prior proposals for offset
prefetching either neglect timeliness or sacrifice miss cov-
erage for timeliness when choosing the prefetch offset. To
overcome the deficiencies of prior offset prefetchers, we
propose MULTI-LOOKAHEAD OFFSET PREFETCHER (MLOP),
a new mechanism for offset prefetching that considers both
miss coverage and timeliness when issuing prefetch requests.
MLOP, like prior proposals, evaluates several offsets and al-
lows the qualified offsets to issue prefetch requests; however,
unlike them, MLOP considers multiple prefetching lookaheads
during the evaluation of prefetch offsets. MLOP uses a light-
weight hardware structure, composed of a small storage and a
simple logic, to identify the prefetching offsets that could have
covered a specific cache miss with various prediction looka-
heads. Based on this, MLOP assigns scores to the prefetch
offsets and for each lookahead, selects the highest scoring
offset for issuing prefetch requests. We evaluate and compare
MLOP with various recent state-of-the-art data prefetchers
and show that our proposal improves system performance
by 30% over a system with no data prefetcher and by 4% over
the previous best-performing data prefetcher.

1 Introduction

Data prefetching has been long proposed and adopted to
overcome the performance penalty of long latency cache
misses. By predicting the application’s future memory ac-
cesses and fetching those that are not in the on-chip caches,
data prefetchers significantly hide the latency of memory
accesses, thereby increasing system performance.
Traditionally, the ability of data prefetchers at enhanc-
ing the performance was the single metric at evaluating
data prefetchers. As such, prefetchers have grown in their
performance benefits, while other factors such as imposed

overheads have been marginalized. However, with the wide-
spread use of multi- and many-core processors, and accord-
ingly, the movement towards lean cores [3], computer ar-
chitects re-design nearly all components, considering low
overhead as a major design constraint. One of the compo-
nents that has recently been targeted for simplification is
the data prefetcher. Recent research [6, 12, 13, 15, 16] advo-
cates the use of simple and low-overhead data prefetchers,
even if they offer slightly lower performance compared to
high-performance but extremely-high-overhead prefetcher
designs.

The research towards lean data prefetchers has culminated
in offset prefetching [15, 16]. Offset prefetching, in fact, is
an evolution of stride prefetching, in which, the prefetcher
does not try to detect strided streams. Instead, whenever a
core requests for a cache block (e.g., A), the offset prefetcher
prefetches the cache block that is distanced by k cache lines
(e.g., A + k), where k is the prefetch offset. In other words,
offset prefetchers do not correlate the accessed address to
any specific stream; rather, they treat the addresses individ-
ually, and based on the prefetch offset, they issue a prefetch
request for every accessed address. Offset prefetchers have
been shown to offer significant performance benefits while
imposing small storage and logic overheads [15, 16].

The initial proposal for offset prefetching, named
SANDBOX PREFETCHER (SP) [16], attempts to find offsets
that yield accurate prefetch requests. To find such offsets,
SP evaluates the prefetching accuracy of several prede-
fined offsets (e.g., =8, =7, ..., +8) and finally allows offsets
whose prefetching accuracy are beyond a certain thresh-
old to issue actual prefetch requests. The later work, named
BEsT-OFFSET PREFETCHER (BOP) [15] tweaks SP and sets the
timeliness as the evaluation metric. BOP is based on the in-
sight that accurate but late prefetch requests do not acceler-
ate the execution of applications as much as timely requests
do. Therefore, BOP finds offsets that yield timely prefetch
requests in an attempt to have the prefetched blocks ready
before the processor actually asks for them.

In this work, we take another step and propose a novel
offset prefetcher. We observe that while the state-of-the-art
offset prefetcher is able to generate timely prefetch requests,
it loses much opportunity at covering cache misses because
of relying on a single best offset and discarding many other ap-
propriate offsets. The state-of-the-art offset prefetcher (BOP)

evaluates several offsets and considers the offset that can
generate the most timely prefetch requests as the best off-
set; then, it relies only on this best offset to issue prefetch
requests until another offset becomes better, and hence, the
new best. In fact, this is a binary classification: the prefetch
offsets are considered either as timely offsets or late offsets.
After classification, the prefetcher does not allow the so-
called late offsets to issue any prefetch requests. However,
as we discuss in this paper, there might be many other ap-
propriate offsets that are less timely but are of value in that
they can hide a significant fraction of cache miss delays.

To overcome the deficiencies of prior work, we propose
to have a spectrum of timelinesses for various prefetch off-
sets during their evaluations, rather than binarily classify-
ing them. During the evaluation of various prefetch off-
sets, we consider multiple lookaheads for every prefetch
offset: with which lookahead can an offset cover a specific
cache miss? To implement this, we consider several looka-
heads for each offset, and assign score values to every off-
set with every lookahead, individually. Finally, when the
time for prefetching comes, we find the best offset for each
lookahead and allow it to issue prefetch requests; how-
ever, the prefetch requests for smaller lookaheads are pri-
oritized and issued first. By doing so, we ensure that we
allow the prefetcher to issue enough prefetch requests (i.e.,
various prefetch offsets are utilized; high miss coverage)
while the timeliness is well considered (i.e., the prefetch re-
quests are ordered). Putting all together, we propose the
MuLTI-LOOKAHEAD OFFSET PREFETCHER (MLOP), a novel
offset prefetcher, and show that it significantly improves
system performance over prior state-of-the-art data prefetch-
ers. Through a detailed evaluation of a set of 57 single- and
multi-core workloads, we show that MLOP improves system
performance by 30% over a baseline with no data prefetcher
and by 4% over prior state-of-the-art data prefetcher.

2 The Proposal

Figure 1 shows an overview of our proposal. To extract off-
sets from access patterns, we use an Access Map Table (AMT).
The AMT keeps track of several recently-accessed addresses,
along with a bit-vector for each base address. Each bit in the
bit-vector corresponds to a cache block in the neighborhood
of the address, indicating whether or not the block has been
accessed. For keeping track of recent accesses, this mech-
anism (i.e., base address plus bit-vector) works better than
storing full addresses in terms of storage efficiency, since
accesses exhibit significant spatial localities!. We size the
bit-vectors to embrace 64 bits.

Like prior proposals [15, 16], we consider an evaluation
period in which we evaluate several prefetch offsets and
choose the qualified ones for issuing prefetch requests later

This mechanism is also employed by pieces of prior work in data prefetch-
ing [10] and even instruction prefetching [9, 14] literature.

Access Map Table (AMT)

Address; | 001...1011010| Ay, Ay, ...
Address, | 011...0001011 By, B, ...
Address, | 000...0000010| Cy, C,, ... Last
Accesses
Scores Best
Offsets
Lookahead; | 2 | 3| ---| 7(] 9
Lookahead, | 1 | O | --{] 4 |3

Figure 1. The hardware realization of our proposal.

on?. For every offset, we consider multiple levels of score
where each level corresponds to a specific lookahead. That is,
at the end of the evaluation period, we would have a vector
of scores per lookahead level: prefetch offsets at lookahead
level one would have their own scores, independent of offset
scores at lookahead level two.

The score of an offset at lookahead level X indicates the
number of cases where the offset prefetcher could have
prefetched an access, at least X accesses prior to occurrence.
For example, the score of offsets at the lookahead level 1 indi-
cates the number of cases where the offset prefetcher could
have prefetched any of the futures accesses. As the looka-
head level increases (say, at lookahead level 10), we approach
the case where the prefetcher has enough time to issue the
prefetch request (i.e., the access that we are attempting to
prefetch would happen at least 10 accesses in the future);
conversely, at lookahead levels close to 1, the prefetcher
does not have much time, because the corresponding access
would often happen shortly, within a few accesses. We set
the number of lookahead levels to 16, efficiently trading off
between the imposed overheads (e.g., metadata storage) and
performance values.

To efficiently mitigate the negative effect of all predictable
cache misses, we select one best offset from each lookahead
level. Then, during the actual prefetching, we allow all se-
lected best offsets to issue prefetch requests. Doing so, we
ensure that we choose enough prefetch offsets (i.e., do not
suppress many qualified offsets like prior work [15]), and
will cover a significant fraction of cache misses, that are pre-
dictable by offset prefetching. To handle the timeliness issue,
we try to send the prefetch requests in a way that the appli-
cation would have sent if there had not been any prefetcher:

2The length of the evaluation period is directly tied to the mechanism
and components of methods and varies from one method to another. We
empirically found that 500 accesses is a suitable evaluation period length
for our method.

we start from lookahead level 1 (i.e., the accesses that are
expected to happen the soonest) and issue the corresponding
prefetch requests (using its best offset), then go to the upper
level; this process repeats. With this prioritization, we try to
hide the latency of all predictable cache misses, as much as
possible.

To update offset scores at lookahead level 1, whenever an
access occurs, we find its corresponding bit-vector (using
its high-order bits to search the AMT), and then based upon
the bit-vector information, we identify the offsets that could
have prefetched this access>, and accordingly, increase the
score of those offsets for the first lookahead level?. Finally,
we set the bit that corresponds to the currently-accessed
block in the AMT.

To update the score values in lookahead level 2 and above,
however, we cannot merely rely on the bit-vector, and we
need information about the order of accesses. That is, if we
want to evaluate whether an offset could have prefetched an
access with a lookahead of 2, we need to know the previous
access and exclude it from the evaluation. To enable the eval-
uation of offsets at lookahead levels higher than 1, up until
N, we need to keep the order of the last N — 1 accesses within
each bit-vector. Therefore, since we consider 16 lookahead
levels in our configuration, we hold the last 15 accesses, with
the order, within each bit-vector. By keeping track of the
last accesses, we can easily exclude some of them from the
bit-vector when evaluating offsets in various lookahead lev-
els. For example, when we need to update the offset scores
at lookahead level 4, we exclude the bits that correspond to
the last three accesses from the bit-vector and then update
the score values in the same manner as updating the offset
scores at the first lookahead level.

Through a storage sensitivity analysis, we find that a 256-
entry (per-core) AMT (~8.47 KB) offers a near-optimal per-
formance improvement. The total storage requirement of
the prefetcher, including all metadata structures, is less than
12 KB, well fitting in DPC3’s rules.

3 Evaluation
3.1 Methodology

We evaluate our proposal in the context of the simulation
framework provided with DPC3. We follow the evaluation
methodology of the championship and run simulations for

3Every offset, say, k, could have prefetched the currently accessed block,
say, A, if the bit corresponding to A — k is set in the bit-vector.

4The operation of increasing the score of appropriate offsets can be done
in a single cycle by shifting the bit-vector. Due to space limitation, we
do not discuss the implementation of this component, further, and re-
fer the reader to prior work [11], where the implementation details of
Aggregate Stride Prefetcher (ASP) has been discussed.

Note that this storage is chosen to get a near-optimal performance im-
provement from the prefetcher in the context of DPC3. Our evaluations
show that, with storage far below than this level, e.g., 4 KB, MLOP is still
able to offer a significant fraction of its optimal performance improvement.

all 46 provided single-core traces. Out of 46 provided traces,
we exclude two memory-insensitive ones, then create 11 ran-
dom MIX traces from the other 44 (the MIXes are completely
different from each other; no single-core trace repeats in two
of the MIXes). For better readability, we only report the sim-
ulation results for workloads whose performance is highly
affected by the evaluated prefetchers, as well as the average
of all simulated workloads. We compare our proposal against
prior state-of-the-art data prefetchers: BOP [15], ASP [11],
and SPP [13].

BEST-OFFSET PREFETCHER (BOP) [15] is the state-of-the-
art offset prefetcher, as well as the winner of DPC2. On each
access, BOP tests a single offset to determine whether it
would have been able to predict the current access. BOP uses
a direct-mapped structure, named Recent Requests (RR) table,
to keep track of recently-accessed cache blocks. The size of
the RR table is purposely chosen to be small so that old
cache blocks are automatically replaced by the information
of recently-accessed ones.

AGGREGATE STRIDE PREFETCHER (ASP) is a prefetching
mechanism proposed in Jain’s Ph.D. thesis on “Exploiting
Long-Term Behavior for Improved Memory System Perfor-
mance” [11]. We include ASP as there are similarities be-
tween our mechanism and that of ASP (cf. Section 2). ASP
employs a History Buffer to extract the qualified offsets, i.e.,
the offset that can correctly predict a cache miss, thereby is-
suing prefetch requests based on that information. Moreover,
ASP ignores several recent accesses (e.g., eight), which causes
the prefetcher to train on accesses that are (temporally [2])
further away, and thus, issue timely prefetch requests.

SIGNATURE PATH PREFETCHER (SPP) [13] is a recent state-
of-the-art prefetcher. SPP works based on the signatures
that it creates and associates to various access patterns. The
main contribution of SPP is that it adaptively adjusts (in-
creases or decreases) its prefetching degree, trying to issue
timely prefetch requests while preventing memory band-
width pollution. To keep the track of metadata information
(e.g., signatures), SPP uses a Signature Table, which directly
influences the ability of the prefetcher at keeping the history
of accesses and hence predicting future patterns.

For all prefetching methods, we enlarge metadata tables
to the extent that either the performance improvement of
the prefetcher plateaus or DPC3’s rules are violated. All
prefetchers sit in the L1 data cache and are trained by L1-D
miss streams.

3.2 Results

Figure 2 and 3 show the miss coverage and performance
results, respectively. We report miss coverage results only
for single-core programs and performance results for all sim-
ulated workloads. Miss coverage is the percentage of cache
misses that is covered by the prefetcher. We use Instruction-
Per-Clock (IPC) as the performance metric and report the

performance improvement of all prefetchers over a system
without data prefetcher.

OBOP OASP mSPP mMLOP

&) 1000 =-mnmemmmrm e m e
P R, S e O S— 1 0| S—
o 75% I"
S 50% 1T o T
¢ 25% 1 \IER Tl 11 U (TR T T
S :
PR PR XA RRYIIX R XD L
F P RFRLRELESS LRI
AN SN I S S P L P ?5%%
S o7 o3 &7 e? é\? K7 (s? S é\‘)‘/ g&/\rb? > &7 '\j
S §F IS T E T TGS T
3 s & s S ¥
< © .,,e‘\} ° & &
<

Figure 2. Miss coverage of prefetching techniques. ‘Avg SC’
stands for the average of all single-core workloads.

MLOP offers the highest miss coverage and performance
improvement among the evaluated data prefetchers. On av-
erage, MLOP covers 56% of cache misses, which is slightly
better than the miss coverage of ASP, the second best-
performing method in this regard®.

OBOP OASP @SPP mMLOP

100% -yypad------

Performance Improvement

Figure 3. Performance comparison of prefetching tech-
niques, normalized to a baseline system with no prefetcher.
Mix1={mcf_s-472B, gcc_s-1850B, roms_s-1070B, cam4_s-
490B}, Mix2={xz_s-2302B, mcf_s-484B, fotonik3d_s-8225B,
bwaves_s-1740B}, Mix3={pop2_s-17B, roms_s-1613B,
bwaves_s-2609B lbm_s-4268B}, and Mix4={roms_s-1007B,
fotonik3d_s-7084B, mcf_s-1554B, xalancbmk_s-165B}. ‘Avg
SC/MC/AIl' stands for the average of single-core/multi-
core/all workloads.

The performance analysis shows that MLOP outperforms
the competing prefetching techniques on both single-core
and multi-core platforms. On average, MLOP improves per-
formance by 30%, outperforming the second best-performing
method (SPP) by 4%.

Miss coverage and timeliness are the main contributors
to MLOP’s superior performance improvement. BOP, as dis-
cussed in this paper, due to its binary classification, neglects
many appropriate prefetch offsets and hence, falls short of

®Note that the high miss coverage of ASP comes at the cost of huge over-
predictions that it produces (~31% overprediction rate more than MLOP;
not shown in the results due to space limitations), which causes memory
bandwidth pollution, impairing its performance improvement, especially in
multi-core substrates where bandwidth is a scarce resource [1, 7, 8].

covering a significant fraction of cache misses. Moreover, we
find that another deficiency of BOP arises from the fact that
it updates merely a single offset in each update; whereas,
our approach, as well as prior proposals like ASP, use vector
operations to efficiently update all offset scores at once. ASP,
on the other hand, uses a sequential structure to look up
the access maps and shifts the entries to create new access
maps. We find that this approach suffers from inaccuracy in
that frequent shiftings cause the loss of a lot of useful data.
Furthermore, ASP adopts a single global lookahead (eight)
for its distance selections and simply multiplies the prefetch-
ing offset to increase the prefetching degree, which usually,
based upon our observations, results in a high overpredic-
tion rate. Corroborating recent work [4, 5], we find that SPP
suffers from the fact that its miss coverage and timeliness
is further dependent on the accuracy of its throttling deci-
sions: whenever the throttler makes a wrong prediction, both
miss coverage and timeliness of the prefetcher are impaired.
MLOP, by considering both miss coverage and timeliness at
evaluation and selection of its prefetch offsets, provides the
best of both worlds, significantly improving miss coverage
and timeliness of prefetching, thereby providing significant
performance benefits.

References

[1] M. Bakhshalipour et al., “Die-Stacked DRAM: Memory, Cache, or Mem-
Cache?” arXiv preprint arXiv:1809.08828, 2018.

[2] M. Bakhshalipour et al., “Domino Temporal Data Prefetcher,” in HPCA,
2018.

[3] M.Bakhshalipour et al, “Fast Data Delivery for Many-Core Processors,”
IEEE TC, 2018.

[4] M. Bakhshalipour et al., “Accurately and Maximally Prefetching Spatial
Data Access Patterns with Bingo,” The Third Data Prefetching Champi-
onship, 2019.

[5] M. Bakhshalipour et al, “Bingo Spatial Data Prefetcher,” in HPCA,
2019.

[6] M. Bakhshalipour et al., “Evaluation of Hardware Data Prefetchers on
Server Processors,” ACM CSUR, 2019.

[7] M. Bakhshalipour et al, “Reducing Writebacks Through In-Cache
Displacement,” ACM TODAES, 2019.

[8] P.Esmaili-Dokht et al, “Scale-Out Processors & Energy Efficiency,”
arXiv preprint arXiv:1808.04864, 2018.

[9] M. Ferdman et al., “Proactive Instruction Fetch,” in MICRO, 2011.

[10] Y. Ishii et al., “Access Map Pattern Matching for Data Cache Prefetch,’
in ICS, 2009.

[11] A.Jain, “Exploiting Long-Term Behavior for Improved Memory System
Performance,” Ph.D. dissertation, Austin, TX, USA, 2016.

[12] D.Kadjo et al, “B-Fetch: Branch Prediction Directed Prefetching for
Chip-Multiprocessors,” in MICRO, 2014.

[13] J. Kim et al, “Path Confidence Based Lookahead Prefetching,” in MI-
CRO, 2016.

[14] A. Kolli et al, “RDIP: Return-Address-Stack Directed Instruction
Prefetching,” in MICRO, 2013.

[15] P. Michaud, “Best-Offset Hardware Prefetching,” in HPCA, 2016.

[16] S.H. Pugsley et al., “Sandbox Prefetching: Safe Run-Time Evaluation
of Aggressive Prefetchers,” in HPCA, 2014.

	Abstract
	1 Introduction
	2 The Proposal
	3 Evaluation
	3.1 Methodology
	3.2 Results

	References

