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SAFARI Live Seminars

https://safari.ethz.ch/safari-seminar-series/

https://safari.ethz.ch/safari-seminar-series/


Four Key Current Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency and Predictable Architectures

◼ Architectures for AI/ML, Genomics, Medicine, Health, …
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Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …
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More on AL-DRAM

◼ Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015. 
[Slides (pptx) (pdf)] [Full data sets] 
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html


Different Types of Latency Variation

◼ AL-DRAM exploits latency variation

❑ Across time (different temperatures)

❑ Across chips

◼ Is there also latency variation within a chip?

❑ Across different parts of a chip
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Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …
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Variation in Activation Errors
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Different characteristics across DIMMs

No ACT Errors

Results from 7500 rounds over 240 chips

Very few errors

Modern DRAM chips exhibit 

significant variation in activation latency

Rife w/ errors

13.1ns

standard

Many errors
Max

Min

Quartiles



Spatial Locality of Activation Errors
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Activation errors are concentrated 

at certain columns of cells

One DIMM @ tRCD=7.5ns



Mechanism to Reduce DRAM Latency

• Observation: DRAM timing errors (slow DRAM 

cells) are concentrated in certain DRAM regions

• Flexible-LatencY (FLY) DRAM

– A software-transparent design that reduces latency

• Key idea:

1) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without 

slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


FLY-DRAM Configurations
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Results
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FLY-DRAM improves performance 

by exploiting spatial latency variation in DRAM

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


FLY-DRAM: Advantages & Disadvantages

◼ Advantages

+ Reduces latency significantly

+ Exploits significant within-chip latency variation

◼ Disadvantages

- Need to determine reliable operating latencies for different 
parts of a chip → higher testing cost

- More complicated controller
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Analysis of Latency Variation in DRAM Chips

◼ Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 

https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study


Putting It All Together:

Solar-DRAM
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Solar-DRAM: Putting It Together

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"Solar-DRAM: Reducing DRAM Access Latency by 
Exploiting the Variation in Local Bitlines"
Proceedings of the 36th IEEE International Conference on 
Computer Design (ICCD), Orlando, FL, USA, October 2018.
[Slides (pptx) (pdf)]
[Talk Video (16 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pdf
https://www.youtube.com/watch?v=WPmDIx1mKrU


More on Solar DRAM

20https://www.youtube.com/watch?v=WPmDIx1mKrU

https://www.youtube.com/watch?v=WPmDIx1mKrU


Why Is There 

Spatial Latency Variation 

Within a Chip?
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Inherently fast

inherently slow

What Is Design-Induced Variation?
slowfast
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DIVA Online Profiling

inherently slow

Profile only slow regions to determine min. latency
→Dynamic & low cost latency optimization

sense amplifier
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river

Design-Induced-Variation-Aware
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inherently slow

DIVA Online Profiling

slow cells  

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting 
code

Combine error-correcting codes & online profiling
→ Reliably reduce DRAM latency

sense amplifier

w
o
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e
d

river

Design-Induced-Variation-Aware
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DIVA-DRAM Reduces Latency
Read Write
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DIVA-DRAM: Advantages & Disadvantages

◼ Advantages

++ Automatically finds the lowest reliable operating latency 
at system runtime (lower production-time testing cost)

+ Reduces latency more than prior methods (w/ ECC)

+ Reduces latency at high temperatures as well

◼ Disadvantages

- Requires knowledge of inherently-slow regions

- Requires ECC (Error Correcting Codes)

- Imposes overhead during runtime profiling

- More complicated memory controller (capable of profiling)
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Design-Induced Latency Variation in DRAM

◼ Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …
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Data-Aware DRAM Latency for DNN Inference

◼ Deep Neural Network evaluation is very DRAM-intensive 
(especially for large networks)

1. Some data and layers in DNNs are very tolerant to errors

2. Reduce DRAM latency and voltage on such data and layers

3. While still achieving a user-specified DNN accuracy target 
by making training DRAM-error-aware

Data-aware management of DRAM latency and voltage 
for Deep Neural Network Inference

29
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Mapping example of ResNet-50:

Example DNN Data Type to DRAM Mapping

Map more error-tolerant DNN layers 

to DRAM partitions with lower voltage/latency

1

2
3

4

<2% BER

<5% BER <6% BER

<8% BER

4 DRAM partitions with different error rates
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Key idea: Enable accurate, efficient DNN inference using 

approximate DRAM

EDEN is an iterative process that has 3 key steps

EDEN: Overview
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CPU: DRAM Energy Evaluation

Average 21% DRAM energy reduction

maintaining accuracy within 1% of original
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Average 8% system speedup
Some workloads achieve 17% speedup

CPU: Performance Evaluation

EDEN achieves close to the ideal speedup
possible via tRCD scaling

Ideal
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GPU, Eyeriss, and TPU:  Energy Evaluation

• GPU: average 37% energy reduction

• Eyeriss: average 31% energy reduction

• TPU: average 32% energy reduction



EDEN: Data-Aware Efficient DNN Inference

◼ Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha 
Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu,
"EDEN: Enabling Energy-Efficient, High-Performance Deep 
Neural Network Inference Using Approximate DRAM"
Proceedings of the 52nd International Symposium on 
Microarchitecture (MICRO), Columbus, OH, USA, October 2019.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
http://www.microarch.org/micro52/
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pdf
https://www.youtube.com/watch?v=oS-bKY75gXQ


More on EDEN

36https://www.youtube.com/watch?v=B5E95OPTlaw&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=18

https://www.youtube.com/watch?v=B5E95OPTlaw&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=18
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Recall: Exploiting Memory Error Tolerance 
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]
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data
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• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips
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On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



Recall: Heterogeneous-Reliability Memory

App 1 
data A

App 1 
data B

App 2 
data A

App 2 
data B

App 3 
data A

App 3 
data B

Step 2: Map application data to the HRM system 
enabled by SW/HW cooperative solutions

Step 1: Characterize and classify
application memory error tolerance

Reliable 
memory

Parity memory 
+ software recovery (Par+R)

Low-cost memory

UnreliableReliable

Vulnerable Tolerant

App 1 
data A

App 2 
data A

App 2 
data B

App 3 
data A

App 3 
data B

App 1 
data B
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More on Heterogeneous-Reliability Memory

◼ Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/


Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …
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Understanding & Exploiting the 

Voltage-Latency-Reliability 

Relationship
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Analysis of Latency-Voltage in DRAM Chips

◼ Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Key Questions

• How does reducing voltage affect 

reliability (errors)?

• How does reducing voltage affect 

DRAM latency?

• How do we design a new DRAM energy 

reduction mechanism?
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Supply Voltage Control on DRAM
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Supply Voltage

Adjust the supply voltage to every chip on the same module

DRAM Module



Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to 

1) Adjust supply voltage to DRAM modules

2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

45

Voltage

controller

DRAM

module FPGA

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

https://github.com/CMU-SAFARI/DRAM-Voltage-Study


Tested DRAM Modules

• 124 DDR3L (low-voltage) DRAM chips

– 31 SO-DIMMs

– 1.35V (DDR3 uses 1.5V)

– Density: 4Gb per chip

– Three major vendors/manufacturers

– Manufacturing dates: 2014-2016

• Iteratively read every bit in each 4Gb chip under a wide 

range of supply voltage levels: 1.35V to 1.0V (-26%)
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Reliability Worsens with Lower Voltage
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Nominal

Voltage

Min. voltage (Vmin) 

without errors

Reducing voltage below Vmin causes 

an increasing number of errors

Errors induced by 

reduced-voltage operation



Source of Errors
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DIMMs Operating at Higher Latency
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Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns 
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Voltron Overview
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How do we predict performance loss due to 

increased latency under low DRAM voltage?

Voltron

User specifies the 

performance loss target

Select the minimum DRAM voltage 

without violating the target



Linear Model to Predict Performance
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Voltron

User specifies the 

performance loss target

Select the minimum DRAM voltage 

without violating the target

Linear regression model

Application’s 

characteristics

[1.3V, 1.25V, …]

DRAM Voltage

[-1%, -3%, …]

Predicted 

performance loss

Min.
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Target

Final
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Energy Savings with Bounded Performance
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Voltron: Advantages & Disadvantages

◼ Advantages

+ Can trade-off between voltage and latency to improve 
energy or performance

+ Can exploit the high voltage margin present in DRAM

◼ Disadvantages

- Requires finding the reliable operating voltage for each 
chip → higher testing cost

- More complicated memory controller
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More on Voltron

55https://www.youtube.com/watch?v=F17sytMs80o&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=17

https://www.youtube.com/watch?v=F17sytMs80o&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=17


Reducing Memory Latency to 

Support Security Primitives

56



Using Memory for Security

◼ Generating True Random Numbers (using DRAM)

❑ Kim et al., HPCA 2019

❑ Olgun et al., ISCA 2021

◼ Evaluating Physically Unclonable Functions (using DRAM)

❑ Kim et al., HPCA 2018

◼ Quickly Destroying In-Memory Data (using DRAM)

❑ Orosa et al., arxiv 2019 + ISCA 2021
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DRAM Latency PUFs

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM 
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer 
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE


More on DRAM Latency PUFs

59https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15

https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15


DRAM Latency True Random Number Generator
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◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random 
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer 
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


D-RaNGe: Using Commodity DRAM Devices 
to Generate True Random Numbers 

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Lois Orosa Onur Mutlu

HPCA 2019
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D-RaNGe Executive Summary
• Motivation: High-throughput true random numbers enable system 

security and various randomized algorithms. 
• Many systems (e.g., IoT, mobile, embedded) do not have dedicated True 

Random Number Generator (TRNG) hardware but have DRAM devices

• Problem: Current DRAM-based TRNGs either 

1. do not sample a fundamentally non-deterministic entropy source             

2. are too slow for continuous high-throughput operation 

• Goal: A novel and effective TRNG that uses existing commodity DRAM 
to provide random values with 1) high-throughput, 2) low latency and 
3) no adverse effect on concurrently running applications

• D-RaNGe: Reduce DRAM access latency below reliable values and 
exploit DRAM cells’ failure probabilities to generate random values 

• Evaluation:

1. Experimentally characterize 282 real LPDDR4 DRAM devices 

2. D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)

3. D-RaNGe (100ns) has significantly lower latency (180x)
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DRAM Latency Characterization of 
282 LPDDR4 DRAM Devices

• Latency failures come from accessing DRAM with 
reduced timing parameters.

• Key Observations:
1. A cell’s latency failure probability is determined 

by random process variation

2. Some cells fail randomly
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DRAM Accesses and Failures
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D-RaNGe Key Idea

High % chance to fail 
with reduced tRCD

Low % chance to fail 
with reduced tRCD

SASASASASASASA

Fails randomly 
with reduced tRCD

We refer to cells that fail randomly
when accessed with a reduced tRCD

as RNG cells
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Our D-RaNGe Evaluation

• We generate random values by repeatedly 
accessing RNG cells and aggregating the data 
read 

• The random data satisfies the NIST statistical 
test suite for randomness 

• The D-RaNGE generates random numbers 
- Throughput: 717.4 Mb/s 

- Latency: 64 bits in <1us

- Power: 4.4 nJ/bit
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More on D-RaNGe
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◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random 
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer 
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


More on DRAM Latency TRNGs

71https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


In-DRAM True Random Number Generation
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◼ Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using 
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA), 
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


More on QUAC-TRNG

73https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


Reducing Refresh Latency

74



Reducing Refresh Latency

◼ Anup Das, Hasan Hassan, and Onur Mutlu,
"VRL-DRAM: Improving DRAM Performance via 
Variable Refresh Latency"
Proceedings of the 55th Design Automation 
Conference (DAC), San Francisco, CA, USA, June 2018.
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https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/


Reducing Memory Latency by 

Exploiting Memory Access Patterns
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ChargeCache: Exploiting Access Patterns

◼ Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row 
Access Locality"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, March 
2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


ChargeCache: Executive Summary

• Goal: Reduce average DRAM access latency with no 
modification to the existing DRAM chips

• Observations: 

1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: 

Row Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again

• ChargeCache:

– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)



More on ChargeCache

79https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


Partial Restoration of Cell Charge

◼ Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri 
Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad 
Sadrosadati, and Onur Mutlu,
"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead 
Partial Restoration"
Proceedings of the 51st International Symposium on 
Microarchitecture (MICRO), Fukuoka, Japan, October 2018.
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https://people.inf.ethz.ch/omutlu/pub/CAL-DRAM_for-reduced-latency-memory_micro18.pdf
http://www.microarch.org/micro51/


Parallelizing Refreshes and Accesses

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. 
[Summary] [Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf


On DRAM Power Consumption
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VAMPIRE DRAM Power Model
◼ Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X. 

Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor, 
and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed 
Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]
[VAMPIRE DRAM Power Model]
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https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pdf
https://github.com/CMU-SAFARI/VAMPIRE
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Summary: Low-Latency Memory
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Challenge and Opportunity for Future

Fundamentally

Low Latency

Computing Architectures
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Summary: Tackling Long Memory Latency

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips (e.g., rows)

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …

87



Takeaway I

We Can Reduce

Memory Latency

with Change of Mindset
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Takeaway II

Main Memory Needs 

Intelligent Controllers

to Reduce Latency
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Some Solution Principles

◼ Data-centric design 

◼ All components intelligent

◼ Better cross-layer communication, better interfaces

◼ Better-than-worst-case design

◼ Heterogeneity

◼ Flexibility, adaptability

90

Open minds



Four Key Current Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency and Predictable Architectures

◼ Architectures for AI/ML, Genomics, Medicine, Health, …

91
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Solar-DRAM
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Solar-DRAM: Putting It Together

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"Solar-DRAM: Reducing DRAM Access Latency by 
Exploiting the Variation in Local Bitlines"
Proceedings of the 36th IEEE International Conference on 
Computer Design (ICCD), Orlando, FL, USA, October 2018.
[Slides (pptx) (pdf)]
[Talk Video (16 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pdf
https://www.youtube.com/watch?v=WPmDIx1mKrU


Activation failures are highly constrained 
to local bitlines

Spatial Distribution of Failures
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A weak bitline is likely to remain weak and 
a strong bitline is likely to remain strong over time

Fail probability at time 1 (%)
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Short-term Variation
Does a bitline’s probability of failure change over time?



A weak bitline is likely to remain weak and 
a strong bitline is likely to remain strong over time
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Does a bitline’s probability of failure change over time?

This shows that we can rely on a static profile of weak 
bitlines to determine whether an access will cause failures

We can rely on a static profile of weak bitlines
to determine whether an access will cause failures



We can reliably issue write operations 
with significantly reduced tRCD (e.g., by 77%)

How are write operations affected by reduced tRCD?
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Solar-DRAM

Uses a static profile of weak subarray columns
• Identifies subarray columns as weak or strong

• Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)

2. Reordered subarray columns (RSC)

3. Reduced latency for writes (RLW)
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Solar-DRAM

Uses a static profile of weak subarray columns
• Identifies subarray columns as weak or strong

• Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)

2. Reordered subarray columns (RSC)

3. Reduced latency for writes (RLW)
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Solar-DRAM: VLC (I)
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Solar-DRAM

Uses a static profile of weak subarray columns
• Identifies subarray columns as weak or strong

• Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)

2. Reordered subarray columns (RSC)

3. Reduced latency for writes (RLW)
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Solar-DRAM: RSC (II)
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Solar-DRAM

Uses a static profile of weak subarray columns
• Identifies subarray columns as weak or strong

• Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)

2. Reordered subarray columns (RSC)

3. Reduced latency for writes (RLW)
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Solar-DRAM: Putting It Together

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"Solar-DRAM: Reducing DRAM Access Latency by 
Exploiting the Variation in Local Bitlines"
Proceedings of the 36th IEEE International Conference on 
Computer Design (ICCD), Orlando, FL, USA, October 2018.
[Slides (pptx) (pdf)]
[Talk Video (16 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pdf
https://www.youtube.com/watch?v=WPmDIx1mKrU


More on Solar DRAM

106https://www.youtube.com/watch?v=WPmDIx1mKrU

https://www.youtube.com/watch?v=WPmDIx1mKrU


Understanding & Exploiting the 

Voltage-Latency-Reliability 

Relationship
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Analysis of Latency-Voltage in DRAM Chips

◼ Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and u,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


High DRAM Power Consumption

• Problem: High DRAM (memory) power in today’s 

systems

109

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)



Low-Voltage Memory

• Existing DRAM designs to help reduce DRAM power 

by lowering supply voltage conservatively

– 𝑃𝑜𝑤𝑒𝑟 ∝ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒2

• DDR3L (low-voltage) reduces voltage from 1.5V to 

1.35V (-10%)

• LPDDR4 (low-power) employs low-power I/O 

interface with 1.2V (lower bandwidth)

110

Can we reduce DRAM power and energy by

further reducing supply voltage?



Goals

111

1 Understand and characterize the various 

characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by 

lowering voltage while keeping performance loss 

within a target



Key Questions

• How does reducing voltage affect 

reliability (errors)?

• How does reducing voltage affect 

DRAM latency?

• How do we design a new DRAM energy 

reduction mechanism?
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Supply Voltage Control on DRAM
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Supply Voltage

Adjust the supply voltage to every chip on the same module

DRAM Module



Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to 

1) Adjust supply voltage to DRAM modules

2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

114

Voltage

controller

DRAM

module FPGA

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

https://github.com/CMU-SAFARI/DRAM-Voltage-Study


Tested DRAM Modules

• 124 DDR3L (low-voltage) DRAM chips

– 31 SO-DIMMs

– 1.35V (DDR3 uses 1.5V)

– Density: 4Gb per chip

– Three major vendors/manufacturers

– Manufacturing dates: 2014-2016

• Iteratively read every bit in each 4Gb chip under a wide 

range of supply voltage levels: 1.35V to 1.0V (-26%)
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Reliability Worsens with Lower Voltage
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Nominal

Voltage

Min. voltage (Vmin) 

without errors

Reducing voltage below Vmin causes 

an increasing number of errors

Errors induced by 

reduced-voltage operation



Source of Errors

117

5

10

15

20

0.9 1.0 1.1 1.2 1.3

La
te

n
cy

 (
n

s)

Supply Voltage (V)

Activate Precharge

Detailed circuit simulations (SPICE) of a DRAM cell array to 

model the behavior of DRAM operations

Circuit model

Nominal

Voltage

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Reliable low-voltage operation requires higher 

latency

https://github.com/CMU-SAFARI/DRAM-Voltage-Study


DIMMs Operating at Higher Latency
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Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns 
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Summary of Key Experimental Observations

• Voltage-induced errors increase as 

voltage reduces further below Vmin

• Errors exhibit spatial locality

• Increasing the latency of DRAM operations 

mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce Energy

• Goal: Exploit the trade-off between voltage and latency 

to reduce energy consumption

• Approach: Reduce DRAM voltage reliably

– Performance loss due to increased latency at lower voltage
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Voltron Overview
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How do we predict performance loss due to 

increased latency under low DRAM voltage?

Voltron

User specifies the 

performance loss target

Select the minimum DRAM voltage 

without violating the target



Linear Model to Predict Performance
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Voltron

User specifies the 

performance loss target

Select the minimum DRAM voltage 

without violating the target

Linear regression model

Application’s 

characteristics

[1.3V, 1.25V, …]

DRAM Voltage

[-1%, -3%, …]

Predicted 

performance loss

Min.
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Target

Final
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Regression Model to Predict Performance

• Application’s characteristics for the model:

– Memory intensity: Frequency of last-level cache misses

– Memory stall time: Amount of time memory requests stall 

commit inside CPU

• Handling multiple applications:

– Predict a performance loss for each application

– Select the minimum voltage that satisfies the performance 

target for all applications
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Comparison to Prior Work

• Prior work: Dynamically scale frequency and voltage of the entire 

DRAM based on bandwidth demand [David+, ICAC’11]

– Problem: Lowering voltage on the peripheral circuitry 

decreases channel frequency (memory data throughput)

• Voltron: Reduce voltage to only DRAM array without changing 

the voltage to peripheral circuitry
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that 

observe errors under low voltage

– Benefit: Higher performance
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Voltron Evaluation Methodology

• Cycle-level simulator: Ramulator [CAL’15]

– McPAT and DRAMPower for energy measurement

• 4-core system with DDR3L memory

• Benchmarks: SPEC2006, YCSB

• Comparison to prior work: MemDVFS [David+, ICAC’11]

– Dynamic DRAM frequency and voltage scaling

– Scaling based on the memory bandwidth consumption

127

https://github.com/CMU-SAFARI/ramulator

https://github.com/CMU-SAFARI/DRAM-Voltage-Study
https://github.com/CMU-SAFARI/ramulator


Energy Savings with Bounded Performance
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Voltron: Advantages & Disadvantages

◼ Advantages

+ Can trade-off between voltage and latency to improve 
energy or performance

+ Can exploit the high voltage margin present in DRAM

◼ Disadvantages

- Requires finding the reliable operating voltage for each 
chip → higher testing cost
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Analysis of Latency-Voltage in DRAM Chips

◼ Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


More on Voltron

131https://www.youtube.com/watch?v=F17sytMs80o&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=17

https://www.youtube.com/watch?v=F17sytMs80o&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=17


Reducing Memory Latency to 

Support Security Primitives
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Using Memory for Security

◼ Generating True Random Numbers (using DRAM)

❑ Kim et al., HPCA 2019

❑ Olgun et al., ISCA 2021

◼ Evaluating Physically Unclonable Functions (using DRAM)

❑ Kim et al., HPCA 2018

◼ Quickly Destroying In-Memory Data (using DRAM)

❑ Orosa et al., arxiv 2019 + ISCA 2021
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D-RaNGe: Using Commodity DRAM Devices 
to Generate True Random Numbers 

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Lois Orosa Onur Mutlu

HPCA 2019
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D-RaNGe Executive Summary
• Motivation: High-throughput true random numbers enable system 

security and various randomized algorithms. 
• Many systems (e.g., IoT, mobile, embedded) do not have dedicated True 

Random Number Generator (TRNG) hardware but have DRAM devices

• Problem: Current DRAM-based TRNGs either 

1. do not sample a fundamentally non-deterministic entropy source             

2. are too slow for continuous high-throughput operation 

• Goal: A novel and effective TRNG that uses existing commodity DRAM 
to provide random values with 1) high-throughput, 2) low latency and 
3) no adverse effect on concurrently running applications

• D-RaNGe: Reduce DRAM access latency below reliable values and 
exploit DRAM cells’ failure probabilities to generate random values 

• Evaluation:

1. Experimentally characterize 282 real LPDDR4 DRAM devices 

2. D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)

3. D-RaNGe (100ns) has significantly lower latency (180x)
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DRAM Latency Characterization of 
282 LPDDR4 DRAM Devices

• Latency failures come from accessing DRAM with 
reduced timing parameters.

• Key Observations:
1. A cell’s latency failure probability is determined 

by random process variation

2. Some cells fail randomly
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DRAM Accesses and Failures
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D-RaNGe Key Idea

High % chance to fail 
with reduced tRCD

Low % chance to fail 
with reduced tRCD

SASASASASASASA

Fails randomly 
with reduced tRCD
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D-RaNGe Key Idea

High % chance to fail 
with reduced tRCD

Low % chance to fail 
with reduced tRCD

SASASASASASASA

Fails randomly 
with reduced tRCD

We refer to cells that fail randomly
when accessed with a reduced tRCD

as RNG cells
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Our D-RaNGe Evaluation

• We generate random values by repeatedly 
accessing RNG cells and aggregating the data 
read 

• The random data satisfies the NIST statistical 
test suite for randomness 

• The D-RaNGE generates random numbers 
- Throughput: 717.4 Mb/s 

- Latency: 64 bits in <1us

- Power: 4.4 nJ/bit



D-RaNGe: Using Commodity DRAM Devices 
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with Low Latency and High Throughput
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More on D-RaNGe
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◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random 
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer 
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


More on DRAM Latency TRNGs

144https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


Doing Better Than D-RaNGe
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◼ Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using 
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA), 
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


More on QUAC-TRNG

146https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


DRAM Latency PUFs

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM 
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer 
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE


The DRAM Latency PUF: 
Quickly Evaluating Physical Unclonable Functions 

by Exploiting the Latency-Reliability Tradeoff 
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Onur Mutlu
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DL-PUF: Executive Summary
• Motivation: 

• We can authenticate a system via unique signatures if we can 
evaluate a Physical Unclonable Function (PUF) on it

• Signatures (PUF response) reflect inherent properties of a device

• DRAM is a promising substrate for PUFs because it is widely used

• Problem: Current DRAM PUFs are 1) very slow, 2) require a DRAM 
reboot, or 3) require additional custom hardware

• Goal: To develop a novel and effective PUF for existing commodity 
DRAM devices with low-latency evaluation time and low system 
interference across all operating temperatures

• DRAM Latency PUF: Reduce DRAM access latency below reliable 
values and exploit the resulting error patterns as unique identifiers

• Evaluation:

1. Experimentally characterize 223 real LPDDR4 DRAM devices 

2.    DRAM latency PUF (88.2 ms) achieves a speedup of 102x/860x
at 70°C/55°C over prior DRAM PUF evaluation mechanisms
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Motivation
We want a way to ensure that a system’s 
components are not compromised
• Physical Unclonable Function (PUF): a function we evaluate

on a device to generate a signature unique to the device 

• We refer to the unique signature as a PUF response

• Often used in a Challenge-Response Protocol (CRP)

DeviceTrusted Device

Input:
ChallengeX

Output:
PUF ResponseX

Evaluating
PUF       . . . 

Checking
PUF response       . . . 

Authenticated

✔



151/4
5

Motivation
1. We want a runtime-accessible PUF

- Should be evaluated quickly with minimal impact 
on concurrent applications

- Can protect against attacks that swap system 
components with malicious parts

2. DRAM is a promising substrate for evaluating 
PUFs because it is ubiquitous in modern systems

- Unfortunately, current DRAM PUFs are slow and get 
exponentially slower at lower temperatures
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DRAM Latency Characterization of 
223 LPDDR4 DRAM Devices

•Latency failures come from accessing 
DRAM with reduced timing parameters.

•Key Observations:
1. A cell’s latency failure probability is 

determined by random process variation

2. Latency failure patterns are repeatable and 
unique to a device
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DRAM Latency PUF Key Idea
• A cell’s latency failure probability is inherently related to 

random process variation from manufacturing

• We can provide repeatable and unique device 
signatures using latency error patterns

High % chance to fail 
with reduced tRCD

Low % chance to fail 
with reduced tRCD

SASASASASASASA
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DRAM Latency PUF Key Idea
• A cell’s latency failure probability is inherently related to 

random process variation from manufacturing

• We can provide repeatable and unique device 
signatures using latency error patterns

High % chance to fail 
with reduced tRCD

Low % chance to fail 
with reduced tRCD

SASASASASASASA

The key idea is to compose a PUF response 
using the DRAM cells that fail 

with high probability 
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The DRAM Latency PUF Evaluation

•We generate PUF responses using latency
errors in a region of DRAM

•The latency error patterns satisfy PUF 
requirements

•The DRAM Latency PUF generates PUF 
responses in 88.2ms
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Results – PUF Evaluation Latency
8KiB memory segment

8KiB memory segment

DRAM latency PUF is

1. Fast and constant latency (88.2ms)

33,806.6x

318.3x
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Results – PUF Evaluation Latency
8KiB memory segment

64KiB memory segment

DRAM latency PUF is

1. Fast and constant latency (88.2ms)

8KiB memory segment

869.8x
108.9x
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Results – PUF Evaluation Latency
8KiB memory segment

64KiB memory segment

DRAM latency PUF is

1. Fast and constant latency (88.2ms)

64MiB memory segment

8KiB memory segment17.3x 11.5x
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Results – PUF Evaluation Latency
8KiB memory segment

64KiB memory segment

64MiB memory segment

DRAM latency PUF is

1. Fast and constant latency (88.2ms)

2. On average, 102x/860x faster than the previous 
DRAM PUF with the same DRAM capacity overhead (64KiB)

8KiB memory segment
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Other Results in the Paper
• How the DRAM latency PUF meets the basic 

requirements for an effective PUF 

• A detailed analysis on:
- Devices of the three major DRAM manufacturers

- The evaluation time of a PUF

• Further discussion on:
- Optimizing retention PUFs

- System interference of DRAM retention and latency PUFs

- Algorithm to quickly and reliably evaluate DRAM latency PUF

- Design considerations for a DRAM latency PUF

- The DRAM Latency PUF overhead analysis



The DRAM Latency PUF: 
Quickly Evaluating Physical Unclonable Functions 

by Exploiting the Latency-Reliability Tradeoff 
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Onur Mutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

HPCA 2018



More on DRAM Latency PUFs

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in 
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf


More on DRAM Latency PUFs

163https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15

https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15


Reducing Memory Latency by 

Exploiting Memory Access Patterns

164



ChargeCache: Executive Summary

• Goal: Reduce average DRAM access latency with no 
modification to the existing DRAM chips

• Observations: 

1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: 

Row Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again

• ChargeCache:

– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)
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Accessing Highly-charged Rows
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Observation 1

A highly-charged DRAM row can be 
accessed with low latency
• tRCD: 44%

• tRAS: 37%

How does a row become 
highly-charged?
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How Does a Row Become Highly-Charged?

DRAM cells lose charge over time

Two ways of restoring a row’s charge:

• Refresh Operation

• Access

timeRefresh

ch
a

rg
e

RefreshAccess
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Observation 2

A row’s charge is restored when the row 
is accessed

How likely is a recently-accessed
row to be accessed again?
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A recently-accessed DRAM row is likely to be 
accessed again.

• t-RLTL: Fraction of rows that are accessed 
within time t after their previous access

8ms – RLTL for single-core workloads8ms – RLTL for eight-core workloads
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Key Idea

Track recently-accessed DRAM rows 
and use lower timing parameters if 

such rows are accessed again
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ChargeCache Overview

Memory Controller

ChargeCache

A

:B

:D

:C

:E

:F

Requests: 

:A

D A

DRAM

A
D

ChargeCache Miss: Use Default TimingsChargeCache Hit: Use Lower Timings
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Area and Power Overhead

• Modeled with CACTI

• Area
– ~5KB for 128-entry ChargeCache
– 0.24% of a 4MB Last Level Cache (LLC) 

area

• Power Consumption
– 0.15 mW on average (static + dynamic)
– 0.23% of the 4MB LLC power consumption
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Methodology
• Simulator

– DRAM Simulator (Ramulator [Kim+, CAL’15])
https://github.com/CMU-SAFARI/ramulator

• Workloads
– 22 single-core workloads

• SPEC CPU2006, TPC, STREAM

– 20 multi-programmed 8-core workloads
• By randomly choosing from single-core workloads

– Execute at least 1 billion representative instructions per 
core (Pinpoints)

• System Parameters
– 1/8 core system with 4MB LLC

– Default tRCD/tRAS of 11/28 cycles
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Eight-core Performance
NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upperbound)
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ChargeCache significantly improves 
multi-core performance
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DRAM Energy Savings
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More on ChargeCache

◼ Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row 
Access Locality"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, March 
2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


More on ChargeCache

180https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


Partial Restoration of Cell Charge

◼ Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri 
Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad 
Sadrosadati, and Onur Mutlu,
"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead 
Partial Restoration"
Proceedings of the 51st International Symposium on 
Microarchitecture (MICRO), Fukuoka, Japan, October 2018.
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https://people.inf.ethz.ch/omutlu/pub/CAL-DRAM_for-reduced-latency-memory_micro18.pdf
http://www.microarch.org/micro51/


On DRAM Power Consumption
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VAMPIRE DRAM Power Model
◼ Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X. 

Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor, 
and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed 
Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]
[VAMPIRE DRAM Power Model]
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https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18.pdf
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Power Measurement Methodology

▪ SoftMC: an FPGA-based memory controller [Hassan+ HPCA ’17]

• Modified to repeatedly loop commands

• Open-source: https://github.com/CMU-SAFARI/SoftMC

▪Measure current consumed by a module during a SoftMC

test

▪Tested 50 DDR3L DRAM modules (200 DRAM chips)

• Supply voltage: 1.35 V

• Three major vendors: A, B, C

• Manufactured between 2014 and 2016

▪For each experimental test that we perform

• 10 runs of  each test per module

• At least 10 current samples per run
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1. Real DRAM Power Varies Widely from IDD Values

▪Different vendors have very different margins (i.e., 

guardbands)

▪Low variance among different modules from same vendor
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2. DRAM Power is Dependent on Data Values

▪ Some variation due to infrastructure – can be subtracted

▪Without infrastructure variation: up to 230 mA of  change

▪Toggle affects power consumption, but < 0.15 mA per bit
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3. Structural Variation Affects DRAM Power Usage

▪Vendor C: variation in 

idle current across 

banks

▪All vendors: variation 

in read current across 

banks

▪All vendors: variation 

in activation based on

row address
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4. Generational Savings Are Smaller Than Expected

▪ Similar trends for idle and read currents

Page 189 of 20

IDD0

Activate–Precharge

IDD4W

Write

Actual power savings of  newer DRAM is much lower
than the savings indicated in the datasheets



Summary of New Observations on DRAM Power

1. Real DRAM modules often consume less power
than vendor-provided IDD values state

2. DRAM power consumption is dependent on the data 
value that is read/written

3. Across banks and rows, structural variation affects power
consumption of  DRAM

4. Newer DRAM modules save less power than indicated in 
datasheets by vendors

Detailed observations and analyses in the paper
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A New Variation-Aware DRAM Power Model

▪VAMPIRE: Variation-Aware model of  Memory Power

Informed by Real Experiments

▪VAMPIRE and raw characterization data are open-source: 

https://github.com/CMU-SAFARI/VAMPIRE
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VAMPIRE Has Lower Error Than Existing Models

▪Validated using new power measurements: details in the 

paper
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VAMPIRE Enables Several New Studies

▪Taking advantage of  structural variation to perform 

variation-aware physical page allocation to reduce power

▪ Smarter DRAM power-down scheduling

▪Reducing DRAM energy with data-dependency-aware

cache line encodings

• 23 applications from 

the SPEC 2006 

benchmark suite

• Traces collected using

Pin and Ramulator

▪We expect there to be many other new studies in the future
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VAMPIRE DRAM Power Model
◼ Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X. 

Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor, 
and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed 
Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]
[VAMPIRE DRAM Power Model]
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