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SAFARI Live Seminar Nov 7/

SAFARI Live Seminars in Computer Architecture s A FA R'

Damla Senol Cali, Bionano Genomics SAFARI Research Group
Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-Design

Nov
2021

Our Goal & Approach 7 N

0 Our Goal:

Accelerating genome sequence analysis by efficient
hardware/algorithm co-design

U OurApproach:

(1) Analyze the multiple steps and the associated toolsin
the genome sequence analysis pipeline,

(2) Expose the tradeoffs between accuracy, performance,
memory usage and scalability, and

(3) Co-design fast and efficient algorithms along with
scalable and energy-efficient customized hardware
accelerators for the key bottleneck steps of the pipeline

Damla Senol Cali SAFARI 10

Sunday, November 07 at 6:00 pm Zurich time (CET)

Damla Senol Cali, Bionano Genomics

Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-
Design

Livestream on YouTube Link

Abstract & Speaker Bio

SAFARI

https://www.youtube.com/watch?v=MfpLmrtvNtU&list=PL5Q2s0XY2Zi tOTAYm--dYByNPL7JhwR9&index=11



https://www.youtube.com/watch?v=MfpLmrtvNtU&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=11

SAFARI Live Seminar Nov 8

RL-Scope: Cross-Stack Profiling for

licy  Off-policy
s V.00 :
OPyTorch 4 Tensortlow Python 2 Co m""’;’;%'c’;’g CPU inflation!

WX of training tmet = [ED)522,,
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GPU usage is low (< 14%)
RL # Supervised Learning

Monday, November 08 at 4:00 pm Zurich time (CET)

Gennady Pekhimenko, University of Toronto, EcoSystem group
Machine Learning_Tools in Action
Livestream on YouTube Link

Abstract & Speaker Bio
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SAFARI Live Seminar Nov 11

SAFARI Live Seminars in Computer Architecture SAFARI

SAFARI Research Group

Serghei Mangul, Mangul Lab, USC ETHziirich
Opportunities and challenges of computational data-driven immunology

Thu
y Nov
o 2021

e T

Opportunities and
challenges of

computational data- &
driven immunology

Serghei Mangul, Ph.D
Assistant Professor,
University of Southern California

%5 USC Universiry of
8 7YV Southern Califormia

https://mangul-lab-usc.github.io/

Thursday, November 11 at 11:00 am Zurich time (CET)

Serghei Mangul, University of Southern California, Mangul Lab
Opportunities and challenges of computational data-driven immunology

Livestream on YouTube Link
Note: this talk will take place in person at ETH Zentrum. Room info will be posted soon!

Abstract & Speaker Bio

SAFARI



SAFARI Live

eminars

SAFARI Live Seminars in Computer Architecture

Dr. Juan Gémez Luna, ETH Zurich
Understanding a Modemn Processing-in-Memory Architecture: Benchmarking and Experimental
Characterization

SAFARI Research Group

SAFARI Live Seminars in Computer Architecture

ARI

SAFARI Research Group

G, dy Pekhi Lo Uni

y of Toronto
Efficient DNN Training at Scale: fmm Algorithms to Hardware

DNN Training vs. Inference

Step 1 - Forward Pass (makes a prediction)
~—— Step 2- Backward Pass {calculates error gradients)

\\ \ Intermediate layer outputs

[Fermen ]
e
Generated in the forward pass  Used in the backward pass

AN training req g ps for pass
{not required in Inference)

SAFARI Live Seminars in Computer Architecture SAFARI

SAFARI Research Group
Minesh Patel, ETH Zurich
Enabling Effective Error Mitigation in Memory Chips That Use On-Die ECCs 2 1

@ REAPER (ISCA'r7)

® BEER (MICRO'20, best paper)

Yun

2001

@ Position Paper (Ongoing)

DRAM Chip

i
On-Die Data
f ECC Logic 1 Store
| |

@ HARP (MICRO'21) @ EIN (DSN'1g, best paper)

To processor

SAFARI Live Seminars in Computer Architecture SAFARI

SAFARI Research Group
Dr. Andrew Walker, Schiltron Corporation & Nexgen Power Systems
An Addiction to Low Cost Per Memory Bit — How to Recognize it and What to Do About it

1 9 JUl
2021
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SAFARI Live Seminars in Computer Architecture s A R '

Jawad Haj-Yahya, Huawen Rauaruh Center Zurich SAFARI Research Group
Power N g in Modarm  Mi

and Their Security Implications

Mo  Overview of a Modern SoC Architecture

2021 * 3 domains in modern
thermally-constrained mobile

SoC: Compute, Memory, 10 [[iopershens | SIS SN (0500
2 0
* Several voltage sources exist, cw'f:.‘.:,’f

and some of them are shared
between domains

Topeuy 01400
wvea

* 10 controllers and engines,
10 interconnect, memory
controller, and DDRIO
typically each has an
independent clock

SAFARI Live Seminars in Computer Architecture

Christina Gi; la, National Technical Uni y of Athens
Efficient Synchronization Support for Near-Data-Processing Architectures

AR

SAFARI Research Group

2 7%

NDP Synchronization Solution Space

e

Shared Memory | Message-passing
J

Pl i FPSe

Hardware Remote Specialized Software- Specialized
Cache | Atomies  Hardware based Hardware
Coherence Support Schemes | | Support _
NP sm
lnm nl

SAFARI Live Seminars in Computer Architecture
2AFARI
Geraldo F. Oliveira, ETH Zurich
DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks
S Near-Data Processing (2/2)
225
2021

Samsung FIMDRAM (2021)

UPMEM (2019)

Near-DRAM-banks processing
for neural networks

1.2 TFLOPS compute throughput®

E\ . SAFARI
SAFARI Live Seminars in Computer Architecture S

Ataberk Olgun, TOBB & ETH Zurich

QUAC-TRNG: High-Throughput True Random Number
Commodity DRAM Chips

ARI

SAFARI Research Group
Using Quad

ple Row A in

1 5 s Using QUAC to Generate Random Values

Use QUAC0 & ! nf
(e8. two Vs and two' nq) mxcneram random values

ACT 4222 PRE 7> ACT

SAFARI (< kasirga

SAFARI Live Seminars in Computer Architecture S A R '

Jawad Haj-Yahya, Huawei Research Center Zurich SAFARI Research Group
Security Implications of Power Management Mechanisms In Modern Processors, Current
Studies and Future Trends

Experimental Methodology
4 g:;‘Z‘ . er ex’;?nmenlﬂllvy sll{dzﬂ modern Intel processors
* We measure voltage and current using a Data Acquisition car
{
3 . {
4 . A
- . ‘ P

https://safari.ethz.ch/safari-seminar-series/



https://safari.ethz.ch/safari-seminar-series/

Four Key Current Directions

= Fundamentally Secure/Reliable/Safe Architectures

= Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

=| Fundamentally Low-Latency and Predictable Architectures

= Architectures for AI/ML, Genomics, Medicine, Health, ...

SAFARI] 6



Why the Long Memory Latency?

= Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

= Reason 2: “One size fits all” approach to latency specification
o Same latency parameters for all temperatures
o Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels
Same latency parameters for all application data

U O O

SAFARI /



More on AL-DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu

Carnegie Mellon University

SAFARI 8


http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Ditterent Types of Latency Variation

AL-DRAM exploits latency variation
a Across time (different temperatures)
o Across chips

Is there also latency variation within a chip?
o Across different parts of a chip

SAFARI



Why the Long Memory Latency?

= Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

= Reason 2: “One size fits all” approach to latency specification
o Same latency parameters for all temperatures
o Same latency parameters for all DRAM chips
o Same latency parameters for all supply voltage levels

o Same latency parameters for all application data

a ...

SAFARI 10



Variation in Activation Errors

Results from 7500 rounds over 240 chips
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Modern DRAM chips exhibit

significant variation in activation latency




Spatial Locality of Activation Errors
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Mechanism to Reduce DRAM Latency

* Observation: DRAM timing errors (slow DRAM
cells) are concentrated in certain DRAM regions

* Flexible-LatencY (FLY) DRAM

— A software-transparent design that reduces latency

* Key idea:
|) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without
slow cells; higher latency for other regions

Chang+, “"Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.



https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

FLY-DRAM Configurations

2 100%
O 80% tRCD
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Baseline

(DDR3)
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Chang+, “"Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.



https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Results

1.25
19.7%

19.5%
1.2 17.6%

1.15 13.3%

M Baseline (DDR3)
H FLY-DRAM (D1)
1.05 FLY-DRAM (D2)

FLY-DRAM (D3)
B Upper Bound

1.1

srmalized Performance

FLY-DRAM improves performance

by exploiting spatial latency variation in DRAM

Chang+, “"Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analvsis, and Optimization".,” SIGMETRICS 2016.


https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

FLY-DRAM: Advantages & Disadvantages

Advantages
+ Reduces latency significantly
+ Exploits significant within-chip latency variation

Disadvantages

- Need to determine reliable operating latencies for different
parts of a chip = higher testing cost

- More complicated controller

SAFARI 16



Analysts of Latency Variation in DRAM Chips

Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,

"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.

Slides (pptx) (pdf)]

[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang' Abhijith Kashyap® Hasan Hassan!:2
Saugata Ghose' Kevin Hsieh! Donghyuk Lee' Tianshi Li'?
Gennady Pekhimenko! Samira Khant* Onur Mutlu®*

'Carnegie Mellon University *TOBB ETU *Peking University *University of Virginia SETH Zrich
SAFARI


https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

Putting It All Together:
Solar-DRAM




Solar-DRAM: Putting It Together

Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutluy,
"Solar-DRAM: Reducing DRAM Access Latency by
Exploiting the Variation in Local Bitlines"

Proceedings of the 36th IEEE International Conference on

Computer Design (ICCD), Orlando, FL, USA, October 2018.
Slides (pptx) (pdf)]

[ Talk Video (16 minutes)]

Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines

Jeremie S. Kim?*$ Minesh Patel® Hasan Hassan® Onur Mutlu$?
fCarne gie Mellon University SETH Zirich

SAFARI 19


https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pdf
https://www.youtube.com/watch?v=WPmDIx1mKrU

More on Solar DRAM

Spatial Distribution of Failures

How are activation failures spatially distributed in DRAM?
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Activation failures are highly constrained

Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines - ICCD 2018

101 views * Oct 23,2018 e 4 GP O > SHARE =+ SAVE ...

' Jeremie Kim SUBSCRIBE
18 subscribers

S A FA R ' https://www.youtube.com/watch?v=WPmDIx1mKrU 20



https://www.youtube.com/watch?v=WPmDIx1mKrU

Why Is There
Spatial Latency Variation
Within a Chip?




What Is Design-Induced Variation?

fast slow

across column —/_ﬂnherently slow

distance from
wordline driver

@
@
@
@
(
@
MO|S

dCross row

distance from
sense amplifier

SI9AIIP 2Ul|[PJOM

158

Inherently fast

sense amplifiers

Systematic variation in cell access times

caused by the physical organization of DRAM

SAFARI 22



DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9AIIP BUl|pJOM

sense amplifier

Profile only slow regions to determine min. latency
—> Dynamic & low cost latency optimization

SAFARI 23



DIVA Online Profiling

Design-Induced-Variation-Aware

slow cells  B-OOOOCK ) “inherently slow
= \ y
process \‘-;“\t‘X‘t‘t‘t‘ design-induced
variation = *‘ OO variation
¢ e |
random error g x\\ OO0 localized error
l L +*\ +‘*‘ l

error-correcting

code online profiling

sense amplifier

Combine error-correcting codes & online profiling
—> Reliably reduce DRAM latency

SAFARI 24



Read
50% o 50%
(-
O 40% 40%
O
_g 30% 30% |-
o
- 20% - 20% -
O
o 10% |- 10% |-
©
— 0% 0%
55°C 85°C| 55°C 85°C|55°C 85°C 55°C 85°C|55°C 85°C|55°C 85°C
AL-DRAM |DIVA Profiling|DIVA Profiling AL-DRAM |DIVA Profiling|DIVA Profiling
+ Shuffling + Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells

SAFARI 25



DIVA-DRAM: Advantages & Disadvantages

Advantages

++ Automatically finds the lowest reliable operating latency
at system runtime (lower production-time testing cost)

+ Reduces latency more than prior methods (w/ ECC)
+ Reduces latency at high temperatures as well

Disadvantages

- Requires knowledge of inherently-slow regions
- Requires ECC (Error Correcting Codes)
- Imposes overhead during runtime profiling

- More complicated memory controller (capable of profiling)

SAFARI 26



Design-Induced Latency Variation in DRAM

Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,

"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University

SAFARI 27


https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Why the Long Memory Latency?

= Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

= Reason 2: “One size fits all” approach to latency specification
o Same latency parameters for all temperatures
o Same latency parameters for all DRAM chips
o Same latency parameters for all parts of a DRAM chip
o Same latency parameters for all supply voltage levels

a ...

SAFARI 28



Data-Aware DRAM Latency for DNN Inference

= Deep Neural Network evaluation is very DRAM-intensive
(especially for large networks)

1. Some data and layers in DNNs are very tolerant to errors
2. Reduce DRAM latency and voltage on such data and layers

3. While still achieving a user-specified DNN accuracy target
by making training DRAM-error-aware

Data-aware management of DRAM latency and voltage
for Deep Neural Network Inference

29



Example DNN Data Type to DRAM Mapping

Mapping example of ResNet-50:

Maximum Tolerable
Bit Error Rate (%)

SAFARI

10% <5% BER <6% BER
6% [ <2% BER

2
=X

%
X

2%

N

Weights and IFMs of ResNet-50

Map more error-tolerant DNN layers
to DRAM partitions with lower voltage /latency

4 DRAM partitions with different error rates

30



EDEN: Overview

Keyidea: Enable accurate, efficient DNN inference using
approximate DRAM

EDEN is an iterative process that has 3 key steps

SAFARI
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CPU: DRAM Energy Evaluation

30% A

L

FP32 int8 FP32 int8 FP32 int8 FP32 int8 FP32 int8 FP32 int8 FP32 int8
YOLO-T YOLO ResNet VGG SqueezeNetDenseNet Gmean

Reduction

DRAM Energy
|_I
o
X

Average 21% DRAM energy reduction
maintaining accuracy within 1% of original

SAFARI

32



CPU: Performance Evaluation

1.20 —

1.15 A
o |
3 1.10 -
8. 1.05
1.00 A
0.95 -

[N EDEN m Ideal

FP32 int8 FP32 int8 FP32 int8 FP32 int8 FP32 int8 FP32 int8 FP32 int8
YOLO-T YOLO ResNet VGG SqueezeNet DenseNet Gmean

Average 8% system speedup
Some workloads achieve 17% speedup

EDEN achieves close to the ideal speedup
possible via tRCD scaling

SAFARI 33




GPU, Eyeriss, and TPU: Energy Evaluation

GPU: average 37% energy reduction

Everiss: average 31% energy reduction

TPU: average 32% energy reduction

SAFARI
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DEN: Data-Aware Efficient DNN Inference

= Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha
Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu,
"EDEN: Enabling Energy-Efficient, High-Performance Deep
Neural Network Inference Using Approximate DRAM"
Proceedings of the 52nd International Symposium on
Microarchitecture (MICRO), Columbus, OH, USA, October 2019.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

EDEN: Enabling Energy-Efficient, High-Performance
Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci
Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

ETH Zurich

SAFARI 3


https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
http://www.microarch.org/micro52/
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pdf
https://www.youtube.com/watch?v=oS-bKY75gXQ

More on EDEN

EDEN: Overview

Key idea: Enabling accurate, efficient DNN inference
using approximate DRAM

EDEN is an iterative process that has 3 key steps

Boosting

| DNN Error Tolerance

&
V - < DNN to DRAM

| Accuracy

“\ Torget | | o DNN

“* DNN Error Toleronce > Error

Mapping

Charocterization Prafile

D Pl N) 11:33/38:02 - EDEN Overview >

ETH ZURICH
Computer Architecture - Lecture 11d: EDEN: Reducing Memory Energy in DNNs (ETH Ziirich, Fall 2019)
438 views + Oct 31,2019 b5 GPO ) SHARE =+ SAVE
€J Onur Mutlu Lectures SUBSCRIBED Q
< .~ )»  19.7K subscribers .

SAFARI https://www.youtube.com/watch?v=B5E950PTlaw8list=PL5Q2s0XY2Zi-DyoI3HbqcdtUmIYWRR z-&index=18 36



https://www.youtube.com/watch?v=B5E95OPTlaw&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=18

Recall: Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]

37




Recall: Heterogeneous-Reliability Memory

App 1 App 1 App 2 App 2 App 3 App 3
data A data B data A data B data A data B

Step 1: Characterize and classify
appllcatlon memory error tolerance

App 1 App 2 App 2
data A data A data B
Vulnerable

Tolerant

Step 2: Map application data to the HRM system

enabled by SW/HW cooperative solutions

Reliable _ _  _ C & £ o o e e D e l,Lnr_e]j_a‘bIe

Ir Reliable I Parity memory

\ memory + software recovery (Par+R)




More on Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory
Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello”  Justin Meza

Aman Kansal® Jie Liu® Badriddine Khessib" Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com

SAFARI 5


http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

Why the Long Memory Latency?

= Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

= Reason 2: “One size fits all” approach to latency specification
o Same latency parameters for all temperatures
o Same latency parameters for all DRAM chips
o Same latency parameters for all parts of a DRAM chip
o Same latency parameters for all application data

a ...

SAFARI 40



Understanding & Exploiting the
Voltage-Latency-Reliability
Relationship




Analysis of Latency-Voltage in DRAM Chips

Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutluy,

"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang”  Abdullah Giray Yaghkc' Saugata Ghose'  Aditya Agrawall Niladrish Chatterjeel
Abhijith Kashyap® Donghyuk Lee! Mike O’Connor®* Hasan Hassan® Onur Mutlu®’

"Carnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Key Questions

* How does reducing voltage affect
reliability (errors)?

* How does reducing voltage affect
DRAM latency!

* How do we design a new DRAM energy
reduction mechanism!?

SAFARI
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Supply VYoltage Control on DRAM

~ DRAM Modufe "

[ [
> < l;x
I

ce ||

c=
W OWH

Supply Voltage

Adjust the supply voltage to every chip on the same module
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Custom Testing Platform

SOoftMC [Hassan+ HPCA'17]: FPGA testing platform to

|) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

DRAM N7t jpg ot Boll (LR - | Voltage
ey £- o cml — controller

https://github.com/CMU-SAFARI/DRAM-Voltage-Study
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https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Tested DRAM Modules

* 124 DDR3L (low-voltage) DRAM chips
— 31 SO-DIMMs
— 1.35V (DDR3 uses |.5V)
— Density: 4Gb per chip
— Three major vendors/manufacturers
— Manufacturing dates: 2014-2016

* |teratively read every bit in each 4Gb chip under a wide
range of supply voltage levels: .35V to |.0V (-26%)

SAFARI 4



Reliability Worsens with Lower Voltage

M Vendor A ® Vendor B A Vendor C

10°
s 10
'5 —~ 10° Errors induced by
o S 10~ reduced-voltage operation
8 @ 10—2
o8
s 107°
SE 107 Min. voltage (Vi)
= 3 195 without errors \';lom'nal
© 6 / \ oltage
L 10

Reducing voltage below V.. causes

an Increasing numbper of errors
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Source of Errors

Detailed circuit simulations (SPICE) of a DRAM cell array to

model the behavior of DRAM operations
https://github.com/CMU-SAFARI/DRAM-Voltage-Study

20

-@-Activate =&-Precharge

2 15 Nominal
S V

> oltage
= 4

L 10

©

—

Reliable low-voltage operation requires higher
latency
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https://github.com/CMU-SAFARI/DRAM-Voltage-Study

DIMMs Operating at Higher Latency

Measured minimum latency that does not cause errors in DRAM modules
40% of modules

—
g 8 0.1
N
§ > 14 Distribution of latency in 100% of modules
- 9 0.%0.3 0.4 0.1 .
= C the total population
=212 /
8 — 0.911.0 1.0 1.0 1.0 1.0 1.0
= O
- + 10
®
S =
o 8
=

DRAM requires longer latency 1o access data

without errors at lower voltage
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Spatial Locality of Errors

A module under 1.175V (12% voltage reduction)

0 1.0

> 0.8
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Pr(row with >1-bit error)
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0.0

(o))

v
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Rank

Errors concentrate in certain regions
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Voltron Overview

Voltron

User specifies the Select the minimum DRAM voltage
performance loss target without violating the target

How do we predict performance loss due to
increased latency under low DRAM voltage?

SAFARI >



Linear Model to Predict Performance

Voltron
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Application’s
characteristics

»[ 1%, 3%, N ]» Final
Predicted Voltage Voltage

performance loss Target

[13v125v,.] = (Rfg

DRAM Voltage | inear regression model

SAFARI >2



Energy Savings with Bounded Performance

MemDVFS H Voltron
[David+, ICAC'1 1] Meets performance target

3 0
71.3% —~
’ A X -1
;\3 6 More savings for ‘m’
S e high bandwidth 3 ) 5
< %0 5 applications § -1.6% -1.8%
> 4 -3
i 3.2% -
D > 3 &
o = -4
20 o
“ 2 2 T .
v -
-1 o Performance Target
0 -6
Low High Low High
Memory Intensity Memory Intensity
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Voltron: Advantages & Disadvantages

Advantages

+ Can trade-off between voltage and latency to improve
energy or performance

+ Can exploit the high voltage margin present in DRAM

Disac

vantages

- Requires finding the reliable operating voltage for each

chip >

nigher testing cost

- More complicated memory controller

SAFARI
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More on Voltron

Reliability Worsens with Lower Voltage

B Vendor A ® Vendor B A VendorC
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ETH ZURICH

Computer Architecture - Lecture 11c: Voltron: Reducing DRAM Energy (ETH Zdrich, Fall 2019)
409 views * Oct 31,2019 7 GPO0 > SHARE =+ SAVE
SUBSCRIBED [

E‘ Onur Mutlu Lectures
< - > 19.7K subscribers
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https://www.youtube.com/watch?v=F17sytMs80o&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=17

Reducing Memory Latency to
Support Security Primitives




Using Memory for Security

= |Generating True Random Numbers (using DRAM)
o Kim et al., HPCA 2019
a Olgun et al., ISCA 2021

= |Evaluating Physically Unclonable Functions (using DRAM)
o Kim et al., HPCA 2018

= Quickly Destroying In-Memory Data (using DRAM)
o Orosa et al., arxiv 2019 + ISCA 2021

SAFARI
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DRAM Latency PUF's

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA ), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim1$ Minesh Patel® Hasan Hassan$ Onur Mutlu$t
fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE

More on DRAM lLatency PUFs

DRAM Latency PUF Key Idea

« A cell’s latency failure probability is inherently related to
random process variation from manufacturing

* We can provide repeatable and unique device
signatures using latency error patterns

High % chance to fail
with reduced t;,

B Pl A) 10:37/28:06 - DRAM Latency PUF Key Idea >

) ETH ZURICH

Computer Architecture - Lecture 11a: DRAM Latency PUF (ETH Ziirich, Fall 2019)

449 views - Oct 31,2019 6 GPo

e Onur Mutlu Lectures
< - > 197K subscribers

SAFAR]| nhtps://www.youtube.com/watch?v=7gqnrTZpixE&list=PL5Q250XY2Zi-Dyol3HbqcdtUmOYWRR z-&index=15
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https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15

DRAM Latency True Random Number Generator

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA ), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim*$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$*
fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu

GAFAR] HPeA™N
ETH i Carnegie Mellon



D-RaNGe Executive Summary

Motivation: High-throughput true random numbers enable system
security and various randomized algorithms.

* Many systems (e.g., [oT, mobile, embedded) do not have dedicated True
Random Number Generator (TRNG) hardware but have DRAM devices

Problem: Current DRAM-based TRNGs either

1. do not sample a fundamentally non-deterministic entropy source
2. are too slow for continuous high-throughput operation

Goal: A novel and effective TRNG that uses existing commodity DRAM

to provide random values with 1) high-throughput, 2) low latency and
3) no adverse effect on concurrently running applications

D-RaNGe: Reduce DRAM access latency below reliable values and
exploit DRAM cells’ failure probabilities to generate random values

Evaluation:

1. Experimentally characterize 282 real LPDDR4 DRAM devices
2. D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)
3. D-RaNGe (100ns) has significantly lower latency (180x)
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DRAM Latency Characterization of
282 LPDDR4 DRAM Devices

* Latency failures come from accessing DRAM with
reduced timing parameters.

* Key Observations:

1. A cell's latency failure probability is determined
by random process variation

2. Some cells fail randomly

SAFARI 63/8



DRAM Accesses and Failures
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DRAM Accesses and Failures
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D-RaNGe Key Idea

High % chance to fail
with reduced tg

SAFARI

Row Decoder

Low % chance to fail

with reduced tg,

/.

SA

SA

SA SA

SA
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SA

Fails randomly

with reduced tg
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D-RaNGe Key Idea

We refer to cells that fail randomly

when accessed with a reduced tg
as RNG cells
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Our D-RaNGe Evaluation

* We generate random values by repeatedly
accessing RNG cells and aggregating the data
read

* The random data satisfies the NIST statistical
test suite for randomness

* The D-RaNGE generates random numbers
- Throughput: 717.4 Mb/s
- Latency: 64 bits in <1us
- Power: 4.4 n] /bit

SAFARI 68/8



D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu

SAFAR| HPcA20i9
ETH i Carnegie Mellon



More on D-RaNGe

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA ), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim*$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$*
fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

More on DRAM Latency TRNGs

D-RaNGe: Extracting Random Values

Identify all DRAM cells that fail randomly when
accessed with a reduced ty, (RNG Cell)

- When accessing an RNG Cell with a reduced
taep, the values read will be truly random values

RNG Cell

1

__sA_ 0110100110011101000110101

SAFARI

K] P Pl N) 851/27:00 - D-RaNGe Key Idea >

V' ETH ZURICH
Computer Architecture - Lecture 11b: D-RaNGe: True Random Number Generation (ETH Ziirich, Fall 2019)

449 views * Oct 31,2019 e 6 GPO0 ) SHARE

@ Onur Mutlu Lectures
< - » 197K subscribers
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https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

In-DRAM True Random Number Generation

Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,

"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"

Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (25 minutes)]

[SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation
Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun’’  Minesh Patel®  A. Giray Yaglk¢®  Haocong Luo®
Jeremie S. Kim® F. Nisa Bostanci®' Nandita Vijaykumar®® Oguz Ergin' Onur Mutlu®

SETH Ziirich "TOBB University of Economics and Technology ©University of Toronto
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https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

More on QUAC-TRNG

Experimentally study QUAC and QUAC-TRN
using 136 real DDR4 chips from SK Hynix

DDR4 SoftMC > DRAM Testing Infrastructure

/ / N
e - =] e = o) ! | \
= ~ ﬂ 2'3 ] 0 }»
3 7 - | | o> - A7
25 : \
> o . —
I

Som ="

{ 2. DRAM Module Wn’; 3
— e n
¥ "'-.."'l‘!l"i =1 57’

J':.' -
c. PCle Host Interface .
d. Temperature Controller

————— .

SAFARI Live Seminar: High-Throughput TRNG Using Quadruple Row Activation in Commodity DRAM Chips

713 views * Streamed live on Sep 15, 2021 e 27 GP O > SHARE =+ SAVE ...
@ Onur Mutlu Lectures SUBSCRIBED I
&> 19.7K subscribers g
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Reducing Refresh Latency




Reducing Refresh Latency

Anup Das, Hasan Hassan, and Onur Mutlu,

"VRL-DRAM: Improving DRAM Performance via
Variable Refresh Latency”

Proceedings of the 55th Design Automation
Conference (DAC), San Francisco, CA, USA, June 2018.

VRL-DRAM: Improving DRAM Performance
via Variable Refresh Latency

Anup Das Hasan Hassan
Drexel University ETH Ziirich

Philadelphia, PA, USA Zurich, Switzerland
anup.das@drexel.edu hhasan@ethz.ch

Onur Mutlu
ETH Zirich
Zurich, Switzerland

omutlu@gmail.com
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https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/

Reducing Memory Latency by
Exploiting Memory Access Patterns




ChargeCache: Exploiting Access Patterns

Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,

"ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality"
Proceedings of the 22nd International Symposium on High-

Performance Computer Architecture (HPCA ), Barcelona, Spain, March
2016.

Slides (pptx) (pdf)]

[Source Code]

ChargeCache: Reducing DRAM Latency
by Exploiting Row Access Locality

Hasan Hassan', Gennady Pekhimenko', Nandita Vijaykumar'
Vivek Seshadri’, Donghyuk Leef, Oguz Ergin*, Onur Mutlu®

"Carnegie Mellon University *TOBB University of Economics & Technology


https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

ChargeCache: Executive Summary

* Goal: Reduce average DRAM access latency with no
modification to the existing DRAM chips
* Observations:
1) A highly-charged DRAM row can be accessed with low latency
2) Arow’'s charge is restored when the row is accessed
3) Arecently-accessed row is likely to be accessed again:
Row Level Temporal Locality (RLTL)

* Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

* ChargeCache:
— Low cost & no modifications to the DRAM
— Higher performance (8.6-10.6% on average for 8-core)
— Lower DRAM energy (7.9% on average)

SAFARI



More on ChargeCache

Observation 1

A highly-charged DRAM row can be
accessed with low latency

* tRCD: 44% l
* tRAS:37%

How does a row become
highly-charged?

SAFARI

14 P I N 11:15/31:00

© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 6a: ChargeCache: Reducing DRAM Latency (ETH Zirich, Fall 2018)
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https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

Partial Restoration of Cell Charge

Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri
Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad
Sadrosadati, and Onur Mutlu,

"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead
Partial Restoration”

Proceedings of the 51st International Symposium on

Microarchitecture (MICRO), Fukuoka, Japan, October 2018.

Reducing DRAM Latency
via Charge-Level-Aware Look-Ahead Partial Restoration

Yaohua \?VangJr§ Arash Tavakkol! Lois Orosal™ Saugata Ghose!  Nika Mansouri Ghiasi'
Minesh Patel’ Jeremie S. Kim*T Hasan Hassan| Mohammad Sadrosadati’ Onur Mutluf?

TETH Zirich SNational University of Defense Technology
iCar;rwgie Mellon University *University of Campinas
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https://people.inf.ethz.ch/omutlu/pub/CAL-DRAM_for-reduced-latency-memory_micro18.pdf
http://www.microarch.org/micro51/

Parallelizing Refreshes and Accesses

Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"

Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishtif
Alaa R. Alameldeent Chris Wilkersont Yoongu Kim Onur Mutlu

Carnegie Mellon University fIntel Labs
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

On DRAM Power Consumption




VAMPIRE DRAM Power Model

Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X.
Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor,
and Onur Mutlu,

"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study"

Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.

[Abstract]

[POMACS Journal Version (same content, different format)]

[Slides (pptx) (pdf)]

[VAMPIRE DRAM Power Model]

What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study

Saugata Ghose' Abdullah Giray Yaglikci* Raghav Gupta’ Donghyuk Lee®
Kais Kudrolli William X. Liu" Hasan Hassan* Kevin K. Chang”
Niladrish Chatterjee® Aditya Agrawal® Mike O’Connor® Onur Mutlu*"

TCarnegie Mellon University *ETH Ziirich SNVIDIA TUniversity of Texas at Austin
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Summary: Low-Latency Memory




Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures

SAFARI



Summary: Tackling .ong Memory Latency

=| Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

=| Reason 2: "One size fits all” approach to latency specification
Same latency parameters for all temperatures
Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels
Same latency parameters for all application data
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Takeaway 1

We Can Reduce
Memory Latency
with Change of Mindset

SAFARI



Takeaway 11

Main Memory Needs
Intelligent Controllers
to Reduce Latency

SAFARI



Some Solution Principles

= Data-centric design

= All components intelligent

= Better cross-layer communication, better interfaces
= Better-than-worst-case design

= Heterogeneity

= Flexibility, adaptability Open mlnds

90



Four Key Current Directions

=| Fundamentally Secure/Reliable/Safe Architectures

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

=| Fundamentally Low-Latency and Predictable Architectures

=| Architectures for AI/ML, Genomics, Medicine, Health, ...

SAFARI] 9
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Solar-DRAM




Solar-DRAM: Putting It Together

Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutluy,
"Solar-DRAM: Reducing DRAM Access Latency by
Exploiting the Variation in Local Bitlines"

Proceedings of the 36th IEEE International Conference on

Computer Design (ICCD), Orlando, FL, USA, October 2018.
Slides (pptx) (pdf)]

[ Talk Video (16 minutes)]

Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines

Jeremie S. Kim?*$ Minesh Patel® Hasan Hassan® Onur Mutlu$?
fCarne gie Mellon University SETH Zirich
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
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https://www.youtube.com/watch?v=WPmDIx1mKrU

Spatial Distribution of Failures

How are activation failures spatially distributed in DRAM?
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DRAM Column (number)

Activation failures are highly constrained
to local bitlines



Short-term Variation

Does a bitline’s probability of failure change over time?

N N
S o

Forob at time t, (%)

W
=
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F .o, at time t, (%)

pro

A weak bitline is likely to remain weak and
a strong bitline is likely to remain strong over time



Short-term Variation

Does a bitline’s probability of failure change over time?

We can rely on a static profile of weak bitlines
to determine whether an access will cause failures

A weak bitline is likely to remain weak and
a strong bitline is likely to remain strong over time



Write Operations

How are write operations affected by reduced tgp?

Weak bitline

N\

e Va .
ANAEN)

Local Row Buff, «WRITE »

Cache line

{ Row Decoder
O )

We can reliably issue write operations
with significantly reduced tgp, (e.g., by 77%) 98



Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM: VLC (I)

Weak bitline Strong bitline
N e
S
= Cache line
S |
&)
QO
A
=
O
ad
—

LLocal Row Buffer

[dentify cache lines comprised of strong bitlines
Access such cache lines with a reduced tg
101



Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM: RSC (II)

Cacheline 0 Cacheline 1

Cache line
|

{ Row Decoder }

LLocal Row Buffer

Remap cache lines across DRAM at the memory
controller level so cache line 0 will likely map to
a strong cache line 103



Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM: Putting It Together

Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutluy,
"Solar-DRAM: Reducing DRAM Access Latency by
Exploiting the Variation in Local Bitlines"

Proceedings of the 36th IEEE International Conference on

Computer Design (ICCD), Orlando, FL, USA, October 2018.
Slides (pptx) (pdf)]

[ Talk Video (16 minutes)]

Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines

Jeremie S. Kim?*$ Minesh Patel® Hasan Hassan® Onur Mutlu$?
fCarne gie Mellon University SETH Zirich
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pdf
https://www.youtube.com/watch?v=WPmDIx1mKrU

More on Solar DRAM

Spatial Distribution of Failures

How are activation failures spatially distributed in DRAM?
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Activation failures are highly constrained

Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines - ICCD 2018

101 views * Oct 23,2018 e 4 GP O > SHARE =+ SAVE ...

' Jeremie Kim SUBSCRIBE
18 subscribers
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Understanding & Exploiting the
Voltage-Latency-Reliability
Relationship




Analysis of Latency-Voltage in DRAM Chips

Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and u,

"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang”  Abdullah Giray Yaghkc' Saugata Ghose'  Aditya Agrawall Niladrish Chatterjeel
Abhijith Kashyap® Donghyuk Lee! Mike O’Connor®* Hasan Hassan® Onur Mutlu®’

"Carnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

High DRAM Power Consumption

* Problem: High DRAM (memory) power in today’s
systems

>40% in POWERTY (Ware+,HPCA'10)  >40% in GPU (Paul+,IsCA'I5)

SAFARI 0



Low-VYoltage Memory

* Existing DRAM designs to help reduce DRAM power
by lowering supply voltage conservatively

— Power « Voltage?

 DDRJ3L (low-voltage) reduces voltage from |.5V to
.35V (-10%)

 LPDDR4 (low-power) employs low-power |/O
interface with 1.2V (lower bandwidth)

Can we reduce DRAM power and energy by
further reducing supply voltage?

SAFARI o



Goals

1 Understand and characterize the various
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by

lowering voltage while keeping performance loss
within a target

SAFARI '



Key Questions

* How does reducing voltage affect
reliability (errors)?

* How does reducing voltage affect
DRAM latency!

* How do we design a new DRAM energy
reduction mechanism!?

SAFARI 2



Supply VYoltage Control on DRAM

~ DRAM Modufe "

[ [
> < l;x
I

ce ||

c=
W OWH

Supply Voltage

Adjust the supply voltage to every chip on the same module

SAFARI '3



Custom Testing Platform

SOoftMC [Hassan+ HPCA'17]: FPGA testing platform to

|) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

DRAM N7t jpg ot Boll (LR - | Voltage
ey £- o cml — controller

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

SAFARI 4


https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Tested DRAM Modules

* 124 DDR3L (low-voltage) DRAM chips
— 31 SO-DIMMs
— 1.35V (DDR3 uses |.5V)
— Density: 4Gb per chip
— Three major vendors/manufacturers
— Manufacturing dates: 2014-2016

* |teratively read every bit in each 4Gb chip under a wide
range of supply voltage levels: .35V to |.0V (-26%)

SAFARI '3



Reliability Worsens with Lower Voltage

M Vendor A ® Vendor B A Vendor C

10°
s 10
'5 —~ 10° Errors induced by
o S 10~ reduced-voltage operation
8 @ 10—2
o8
s 107°
SE 107 Min. voltage (Vi)
= 3 195 without errors \';lom'nal
© 6 / \ oltage
L 10

Reducing voltage below V.. causes

an Increasing numbper of errors
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Source of Errors

Detailed circuit simulations (SPICE) of a DRAM cell array to

model the behavior of DRAM operations
https://github.com/CMU-SAFARI/DRAM-Voltage-Study

20

-@-Activate =&-Precharge

2 15 Nominal
S V

> oltage
= 4

L 10

©

—

Reliable low-voltage operation requires higher
latency

SAFARI
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DIMMs Operating at Higher Latency

Measured minimum latency that does not cause errors in DRAM modules
40% of modules

—
g 8 0.1
N
§ > 14 Distribution of latency in 100% of modules
- 9 0.%0.3 0.4 0.1 .
= C the total population
=212 /
8 — 0.911.0 1.0 1.0 1.0 1.0 1.0
= O
- + 10
®
S =
o 8
=

DRAM requires longer latency 1o access data

without errors at lower voltage
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Spatial Locality of Errors

A module under 1.175V (12% voltage reduction)
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Errors concentrate in certain regions

SAFARI '



Summary of Key Experimental Observations

* Voltage-induced errors increase as
voltage reduces further below V_.

* Errors exhibit spatial locality

* Increasing the latency of DRAM operations
mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce Energy

* Goal: Exploit the trade-off between voltage and latency
to reduce energy consumption

* Approach: Reduce DRAM voltage reliably

— Performance loss due to increased latency at lower voltage
M Performance B DRAM Power Savings

o g 4 ~\ High Power Savings Low Power Savings

5 o 30 Bad Performance Good Performance
D20 4 “

2 ©

C

v 5 10

£ S N .

S

o c 10

g— & -20 —

£ 2 0.9 1.0 1.1 1.2 1.3

Supply Voltage (V)
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Voltron Overview

Voltron

User specifies the Select the minimum DRAM voltage
performance loss target without violating the target

How do we predict performance loss due to
increased latency under low DRAM voltage?
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Linear Model to Predict Performance

Voltron

-
-
-
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C 4
>
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-
-
-
>
4
-
-
C 4
-
-
-
-

Application’s
characteristics

»[ 1%, 3%, N ]» Final
Predicted Voltage Voltage

performance loss Target

[13v125v,.] = (Rfg

DRAM Voltage | inear regression model
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Regression Model to Predict Performance

* Application’s characteristics for the model:
— Memory intensity: Frequency of last-level cache misses

— Memory stall time: Amount of time memory requests stall
commit inside CPU

* Handling multiple applications:
— Predict a performance loss for each application

— Select the minimum voltage that satisfies the performance
target for all applications

SAFARI 24



Comparison to Prior Work

* Prior work: Dynamically scale frequency and voltage of the entire
DRAM based on bandwidth demand [David+, ICAC’| I]

— Problem: Lowering voltage on the peripheral circuitry
decreases channel frequency (memory data throughput)

* Voltron: Reduce voltage to only DRAM array without changing
the voltage to peripheral circuitry

Peripheral DRAM Peripheral DRAM

Circuitry Array Circuitry ) Array

Low

Voltage
o2

Prior Work

ﬂ Off-chip channel f Off-chip channel
Low frequency High frequency 5
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that
observe errors under low voltage

— Benefit: Higher performance

Peripheral

Circuitry DRAM Array

Control
Logic

Bank 2

. h J
Off-chip channel \/

High latency Low latency
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Voltron Evaluation Methodology

* Cycle-level simulator: Ramulator [CALI5]
— McPAT and DRAMPower for energy measurement
https://github.com/CMU-SAFARI/ramulator

* 4-core system with DDR3L memory

* Benchmarks: SPEC2006,YCSB

* Comparison to prior work: MemDVFS [paid+, icac'ii]
— Dynamic DRAM frequency and voltage scaling

— Scaling based on the memory bandwidth consumption

SAFARI 27
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Energy Savings with Bounded Performance

MemDVFS H Voltron
[David+, ICAC'1 1] Meets performance target
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Voltron: Advantages & Disadvantages

Advantages

+ Can trade-off between voltage and latency to improve
energy or performance

+ Can exploit the high voltage margin present in DRAM

Disac

vantages

- Requires finding the reliable operating voltage for each

chip >

SAFARI

nigher testing cost
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Analysis of Latency-Voltage in DRAM Chips

Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutluy,

"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang”  Abdullah Giray Yaghkc' Saugata Ghose'  Aditya Agrawall Niladrish Chatterjeel
Abhijith Kashyap® Donghyuk Lee! Mike O’Connor®* Hasan Hassan® Onur Mutlu®’

"Carnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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More on Voltron

Reliability Worsens with Lower Voltage
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ETH ZURICH

Computer Architecture - Lecture 11c: Voltron: Reducing DRAM Energy (ETH Zdrich, Fall 2019)
409 views * Oct 31,2019 7 GPO0 > SHARE =+ SAVE
SUBSCRIBED [
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Reducing Memory Latency to
Support Security Primitives




Using Memory for Security

= |Generating True Random Numbers (using DRAM)
o Kim et al., HPCA 2019
a Olgun et al., ISCA 2021

= |Evaluating Physically Unclonable Functions (using DRAM)
o Kim et al., HPCA 2018

= Quickly Destroying In-Memory Data (using DRAM)
o Orosa et al., arxiv 2019 + ISCA 2021
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D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu
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D-RaNGe Executive Summary

Motivation: High-throughput true random numbers enable system
security and various randomized algorithms.

* Many systems (e.g., [oT, mobile, embedded) do not have dedicated True
Random Number Generator (TRNG) hardware but have DRAM devices

Problem: Current DRAM-based TRNGs either

1. do not sample a fundamentally non-deterministic entropy source
2. are too slow for continuous high-throughput operation

Goal: A novel and effective TRNG that uses existing commodity DRAM

to provide random values with 1) high-throughput, 2) low latency and
3) no adverse effect on concurrently running applications

D-RaNGe: Reduce DRAM access latency below reliable values and
exploit DRAM cells’ failure probabilities to generate random values

Evaluation:

1. Experimentally characterize 282 real LPDDR4 DRAM devices
2. D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)
3. D-RaNGe (100ns) has significantly lower latency (180x)
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DRAM Latency Characterization of
282 LPDDR4 DRAM Devices

* Latency failures come from accessing DRAM with
reduced timing parameters.

* Key Observations:

1. A cell's latency failure probability is determined
by random process variation

2. Some cells fail randomly

SAFARI 136/8



DRAM Accesses and Failures
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DRAM Accesses and Failures
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D-RaNGe Key Idea

High % chance to fail
with reduced tg

SAFARI

Row Decoder

Low % chance to fail

with reduced tg,

/.
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SA

SA SA
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SA

SA

Fails randomly

with reduced tg
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D-RaNGe Key Idea

We refer to cells that fail randomly

when accessed with a reduced tg
as RNG cells
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Our D-RaNGe Evaluation

* We generate random values by repeatedly
accessing RNG cells and aggregating the data
read

* The random data satisfies the NIST statistical
test suite for randomness

* The D-RaNGE generates random numbers
- Throughput: 717.4 Mb/s
- Latency: 64 bits in <1us
- Power: 4.4 n] /bit
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D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu
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More on D-RaNGe

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA ), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim*$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$*
fCarne gie Mellon University SETH Ziirich
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More on DRAM Latency TRNGs

D-RaNGe: Extracting Random Values

Identify all DRAM cells that fail randomly when
accessed with a reduced ty, (RNG Cell)

- When accessing an RNG Cell with a reduced
taep, the values read will be truly random values

RNG Cell

1

__sA_ 0110100110011101000110101

SAFARI
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V' ETH ZURICH
Computer Architecture - Lecture 11b: D-RaNGe: True Random Number Generation (ETH Ziirich, Fall 2019)
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@ Onur Mutlu Lectures
< - » 197K subscribers
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Doing Better Than D-RaNGe

Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,

"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"

Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (25 minutes)]

[SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation
Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun’’  Minesh Patel®  A. Giray Yaglk¢®  Haocong Luo®
Jeremie S. Kim® F. Nisa Bostanci®' Nandita Vijaykumar®® Oguz Ergin' Onur Mutlu®

SETH Ziirich "TOBB University of Economics and Technology ©University of Toronto
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More on QUAC-TRNG

Experimentally study QUAC and QUAC-TRN
using 136 real DDR4 chips from SK Hynix

DDR4 SoftMC > DRAM Testing Infrastructure
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SAFARI Live Seminar: High-Throughput TRNG Using Quadruple Row Activation in Commodity DRAM Chips
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DRAM Latency PUF's

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA ), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim1$ Minesh Patel® Hasan Hassan$ Onur Mutlu$t
fCarne gie Mellon University SETH Ziirich
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The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

mgs SAFARI
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DL-PUF: Executive Summary

e Motivation:

* We can authenticate a system via unique signatures if we can
evaluate a Physical Unclonable Function (PUF) on it

 Signatures (PUF response) reflect inherent properties of a device
* DRAM is a promising substrate for PUFs because it is widely used

* Problem: Current DRAM PUFs are 1) very slow, 2) require a DRAM
reboot, or 3) require additional custom hardware

* Goal: To develop a novel and effective PUF for existing commodity
DRAM devices with low-latency evaluation time and low system
interference across all operating temperatures

 DRAM Latency PUF: Reduce DRAM access latency below reliable
values and exploit the resulting error patterns as unique identifiers

* Evaluation:
1. Experimentally characterize 223 real LPDDR4 DRAM devices

2. DRAM latency PUF (88.2 ms) achieves a speedup of 102x/860x
at 70°C/55°C over prior DRAM PUF evaluation mechanisms
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Motivation

We want a way to ensure that a system’s
components are not compromised

* Physical Unclonable Function (PUF): a function we evaluate
on a device to generate a signature unique to the device

* We refer to the unique signature as a PUF response
* Often used in a Challenge-Response Protocol (CRP)

| t:
Ch I;F u Authenticated
Trusted Device w’ Device
Checki Evaluati
PUF reecs lgﬁse Output: ‘;’aUl;a -
P Bl PUF Responsey L
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Motivation

1. We want a runtime-accessible PUF

- Should be evaluated quickly with minimal impact
on concurrent applications

- Can protect against attacks that swap system
components with malicious parts

2. DRAM is a promising substrate for evaluating
PUFs because it is ubiquitous in modern systems

- Unfortunately, current DRAM PUFs are slow and get
exponentially slower at lower temperatures

SAFARI 15174



DRAM Latency Characterization of
223 LPDDR4 DRAM Devices

* Latency failures come from accessing
DRAM with reduced timing parameters.

* Key Observations:

1. A cell’s latency failure probability is
determined by random process variation

2. Latency failure patterns are repeatable and

unique to a device
SAFARI 152/8



DRAM Latency PUF Key Idea

* A cell's latency failure probability is inherently related to
random process variation from manufacturing

* We can provide repeatable and unique device
signatures using latency error patterns

Low % chance to fail

High % chance to fail
J with reduced tg,

with reduced tg,
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DRAM Latency PUF Key Idea

The key idea is to compose a PUF response
using the DRAM cells that fail

with high probability

SAFARI Y



The DRAM Latency PUF Evaluation

* We generate PUF responses using latency
errors in a region of DRAM

* The latency error patterns satisty PUF
requirements

* The DRAM Latency PUF generates PUF
responses in 88.2ms
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency

1 ) DRAM Retention PUF
104 - 8KiB memory segment Manufacturer A
T 105,
W DRAM Latency PUF
£ | 64KiB memory segment All Manufacturers
I 1 . --_---._-"—.-—-l—..
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Temperature (°C)
DRAM latency PUF is

1. Fast and constant latency (88.2ms)

2. 0n average, 102x/860x faster than the previous
DRAM PUF with the same DRAM capacity overhead (64KiB) 159/4
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Other Results in the Paper

 How the DRAM latency PUF meets the basic
requirements for an effective PUF

* A detailed analysis on:

- Devices of the three major DRAM manufacturers
- The evaluation time of a PUF

* Further discussion on:

Optimizing retention PUFs

System interference of DRAM retention and latency PUFs
Algorithm to quickly and reliably evaluate DRAM latency PUF
Design considerations for a DRAM latency PUF

The DRAM Latency PUF overhead analysis
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The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

HPCA 2018

:; QR Cod frth paper S A FA R ’

systemS@E'"Zﬂr&ﬁ https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf hpcal8.pdf
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More on DRAM Latency PUFs

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in
Modern DRAM Devices"

Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
Lightning Talk Video]

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim1$ Minesh Patel® Hasan Hassan$ Onur Mutlu$t
fCarne gie Mellon University SETH Ziirich
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More on DRAM lLatency PUFs

DRAM Latency PUF Key Idea

« A cell’s latency failure probability is inherently related to
random process variation from manufacturing

* We can provide repeatable and unique device
signatures using latency error patterns

High % chance to fail
with reduced t;,

B Pl A) 10:37/28:06 - DRAM Latency PUF Key Idea >

) ETH ZURICH

Computer Architecture - Lecture 11a: DRAM Latency PUF (ETH Ziirich, Fall 2019)

449 views * Oct 31,2019 e 6 GP 0 > SHARE =+ SAVE
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&> 19.7K subscribers
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Reducing Memory Latency by
Exploiting Memory Access Patterns




ChargeCache: Executive Summary

* Goal: Reduce average DRAM access latency with no
modification to the existing DRAM chips
* Observations:
1) A highly-charged DRAM row can be accessed with low latency
2) Arow’'s charge is restored when the row is accessed
3) Arecently-accessed row is likely to be accessed again:
Row Level Temporal Locality (RLTL)

* Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

* ChargeCache:
— Low cost & no modifications to the DRAM
— Higher performance (8.6-10.6% on average for 8-core)
— Lower DRAM energy (7.9% on average)
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DRAM Charge over Time
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Accessing Highly-charged Rows

Ready to Access Ready to Precharge
A Cell
-~ X z" h
_____ 0 o F - M ——____Datal
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< Sense-Amplifier
Data 0
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Observation 1

A highly-charged DRAM row can be
accessed with low latency

$

e tRCD:44%
e tRAS:37%

How does a row become
highly-charged?
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How Does a Row Become Highly-Charged?

DRAM cells lose charge over time
Two ways of restoring a row’s charge:
* Refresh Operation

 Access
A
) \]\%\
)
S
S
: : : —>
Refresh Access Refresh time
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Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?
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Row Level Temporal Locality (RLTL)

A recently-accessed DRAM row is likely to be
accessed again.

 t-RLTL: Fraction of rows that are accessed

within time t after their previous access
97%

100%
80%
60%
40%
20%

0%

EAIPRUIIE IR IR IR

Snss—RI L féorsaight-core workloads
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Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if
such rows are accessed again
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ChargeCache Overview
DRAM

Memory Controller

ChargeCache

mHY OW B

Requests: A D A

Cobege€labbdHis: Wse hofaaltTiimingss
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Area and Power Overhead
* Modeled with CACTI

e Area

— ~5KB for 128-entry ChargeCache

—0.24% of a 4MB Last Level Cache (LLC)
area

* Power Consumption
—0.15 mW on average (static + dynamic)
—0.23% of the 4MB LLC power consumption
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Methodology

 Simulator

— DRAM Simulator (Ramulator [Kim+, CAL’15])
https://github.com/CMU-SAFARI/ramulator

e Workloads

— 22 single-core workloads
« SPEC CPU2006, TPC, STREAM

— 20 multi-programmed 8-core workloads
* By randomly choosing from single-core workloads

— Execute at least 1 billion representative instructions per
core (Pinpoints)
* System Parameters
— 1/8 core system with 4MB LLC
— Default tRCD/tRAS of 11/28 cycles
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Single-core Performance

NUAT B chargecCache

B chargecache + NUAT [} LL-DRAM (Upper bound)

ChargeCache improves
single-core performance
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Eight-core Performance

9.16%
_g 12%
Q 8%
<5
Q. 4%
9

0%

NUAT 2.5% B chargecache 9%
ChargeCache + NUAT ] LL-DRAM (Upperbound) 1394

Idddddddadd

A O A A R A A

ChargeCache significantly i |mproves

multi-core performance
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DRAM Energy Savings

15% :
O Average H Maximum

Single-core Eight-core

p—
3
=

DRAM Energy
Reduction

ChargeCache reduces DRAM energy
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More on ChargeCache

Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality”

Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA ), Barcelona, Spain, March
2016.

Slides (pptx) (pdf)]

[Source Code]

ChargeCache: Reducing DRAM Latency
by Exploiting Row Access Locality

Hasan Hassan', Gennady Pekhimenko', Nandita Vijaykumar'
Vivek Seshadri’, Donghyuk Leef, Oguz Ergin*, Onur Mutlu®

"Carnegie Mellon University *TOBB University of Economics & Technology


https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

More on ChargeCache

Observation 1

A highly-charged DRAM row can be
accessed with low latency

* tRCD: 44% l
* tRAS:37%

How does a row become
highly-charged?

SAFARI
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© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 6a: ChargeCache: Reducing DRAM Latency (ETH Zirich, Fall 2018)
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https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

Partial Restoration of Cell Charge

Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri
Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad
Sadrosadati, and Onur Mutlu,

"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead
Partial Restoration”

Proceedings of the 51st International Symposium on

Microarchitecture (MICRO), Fukuoka, Japan, October 2018.

Reducing DRAM Latency
via Charge-Level-Aware Look-Ahead Partial Restoration

Yaohua \?VangJr§ Arash Tavakkol! Lois Orosal™ Saugata Ghose!  Nika Mansouri Ghiasi'
Minesh Patel’ Jeremie S. Kim*T Hasan Hassan| Mohammad Sadrosadati’ Onur Mutluf?

TETH Zirich SNational University of Defense Technology
iCar;rwgie Mellon University *University of Campinas
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On DRAM Power Consumption




VAMPIRE DRAM Power Model

Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X.
Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor,
and Onur Mutlu,

"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study"

Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.

[Abstract]

[POMACS Journal Version (same content, different format)]

[Slides (pptx) (pdf)]

[VAMPIRE DRAM Power Model]

What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study

Saugata Ghose' Abdullah Giray Yaglikci* Raghav Gupta’ Donghyuk Lee®
Kais Kudrolli William X. Liu" Hasan Hassan* Kevin K. Chang”
Niladrish Chatterjee® Aditya Agrawal® Mike O’Connor® Onur Mutlu*"

TCarnegie Mellon University *ETH Ziirich SNVIDIA TUniversity of Texas at Austin
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Power Measurement Methodology SAFARI

" SoftMC: an FPGA-based memory controller [Hassan+ HPCA *17

* Modified to repeatedly loop commands
* Open-source: https://github.com/CMU-SAFARI/SoftMC

" Measure current consumed by a module during a SoftMC
test

" Tested 50 DDR3L DRAM modules (200 DRAM chips)

* Supply voltage: 1.35 V
* Three major vendors: A, B, C
* Manufactured between 2014 and 2016

" For each experimental test that we perform

* 10 runs of each test per module

* At least 10 current samples per run
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1. Real DRAM Power Varies Widely from IDD Values SAFARI

100

» Different vendors have very different margins (i.e.,
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A

different modules from same vendor

Current consumed by real DRAM modules

varies significantly for all IDD values that we measure
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2. DRAM Power is Dependent on Data Values SAFARI

g 800 ® Vendor A l E 800 *
=~ 600 4 ™ VendorB _’.,.o"' ]é’ 600 J - *& £
§ VendorC..,. e - ? & 4w * ....... i i
5 400 - ,.o""...f.,;,}.ﬁ} ..... &8 5 g0 { L Tl RRE a
et I o @ e Vendor A
S 200 & S 200 7 =VendorB
o Vendor C
O T T T O | | |
0 128 256 384 512 0 128 256 384 512
Number of Ones in a Cache Line Number of Ones in a Cache Line

" Some variation due to infrastructure — can be subtracted
= Without infrastructure variation: up to 230 mA of change

" Toggle affects power consumption, but < 0.15 mA per bit

DRAM power consumption depends strongly

on the data value
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3. Structural Variation Affects DRAM Power Usage SAFARI

st 147 Coe
NQ o] " Vendor C: variation in
(1 e ] - o
3o D o cverene s
£ o I
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23 08 701234567 01234567 01234567 in read current across
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Number of Ones in Row Address in activation based on

Significant structural variation:

DRAM power varies systematically by bank and row
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4. Generational Savings Are Smaller Than Expected SAFARI

IDDO IDD4W
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® Similar trends for idle and read currents

Actual power savings of newer DRAM is much lower

than the savings indicated in the datasheets
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Summary of New Observations on DRAM Power SAFARI

1. Real DRAM modules often consume less power
than vendor-provided IDD values state

2. DRAM power consumption is dependent on the data
value that is read/written

3. Across banks and rows, structural variation affects power
consumption of DRAM

4. Newer DRAM modules save less power than indicated in
datasheets by vendors

Detailed observations and analyses in the paper
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A New Variation-Aware DRAM Power Model

SAFARI

* VAMPIRE: Variation-Aware model of Memory Power
Informed by Real Experiments

Inputs

(from memory system
simulator)

Trace of DRAM
commands, timing

Data that is
being written

VAMPIRE

|

Read/Write and
Data-Dependent
Power Modeling

|

[

Idle/Activate/Precharge
Power Modeling

|

[

Structural Variation Aware
Power Modeling

|

Outputs

Per-vendor
power

» consumption

Range for
each vendor
(optional)

* VAMPIRE and raw characterization data are open-source:

htt

s:/ /github.com/CMU-SAFARI/VAMPIRE
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VAMPIRE Has Lower Error Than Existing Models SAFARI

" Validated using new power measurements: details in the
250%
200% -

B Micron Model B DRAMPower : [0 VAMPIRE

160.6%

150% -
100% - i
50% - W 35 4y
: 6.8%

Mean Absolute
Percentage Error

VendorA VendorB VendorC GMean

(8 modules) (7 modules) (7 modules)

VAMPIRE has very low error for all vendors: 6.8%o

Much more accurate than prior models
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VAMPIRE Enables Several New Studies SAFARI

» Taking advantage of structural variation to perform
variation-aware physical page allocation to reduce power

* Smarter DRAM power-down scheduling

" Reducing DRAM energy with data-dependency-aware
cache line encodings

1.2
> 1 H H 77
« 23 applications from g %o 11 - M Baseline [ BDI lOptlmlzeld ZO\;\Q/
N 1 -
the SPEC 2006 =5 1.0 T = = i -~ 70
benchmark suite €S 09 - ! l
. o< !
* Traces collected using 2 & 0.8 - i
Pin and Ramulator 0.7 - :

Vendor A Vendor B VendorCi GMean

" We expect there to be many other new studies in the future
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