
Computer Architecture
Lecture 13: Memory Controllers II: 

Performance & Service Quality

Prof. Onur Mutlu
ETH Zürich
Fall 2021

11 November 2021



Memory Controllers



Recall: Why Are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read 

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two 

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem
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Recall: DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS, 

energy efficiency, …
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Recall: Memory Controller: Performance Function

How to schedule requests to maximize system performance?
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Memory 
Controller

Core Core

Core Core
Memory

Resolves memory contention 
by scheduling requests



Recall: Reality and Dream
n Reality: It is difficult to design a policy that maximizes 

performance, QoS, energy-efficiency, … 
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Recall: Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime 
q Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in 

each state
q Continuously update reward values for <state, action> pairs based on 

feedback from system
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Recall: States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Recall: Performance Results
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Large, robust performance improvements 
over many human-designed policies 



More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Recall: Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures
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Recall: System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

12

Can we design 
fundamentally intelligent architectures?



Recall: An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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We need to rethink design 
(of all controllers)



Recall: Self-Optimizing Memory Prefetchers
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n Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas 
Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using 

Online Reinforcement Learning"
Proceedings of the 54th International Symposium on 
Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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Key Problems with Today’s Architectures
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute 
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast 
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data 
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting 
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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18Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



We Need to Think Across the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE


A Tutorial on Fundamentally Better Architectures

n Onur Mutlu,
"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices 
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

21https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures


A Tutorial on PIM
n Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices 
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE


Shared Resource Design for 
Multi-Core Systems
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Memory System: A Shared Resource View
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Storage

Most of the system is dedicated to storing and moving data 



Resource Sharing Concept
n Idea: Instead of dedicating a hardware resource to a 

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses, 

memory, interconnects, storage
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can 

use it; no need to replicate shared data
+ Reduces communication latency

q For example, shared data kept in the same cache in SMT 
processors

+ Compatible with the shared memory model
25



Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it 

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone  

- Eliminates performance isolation à inconsistent performance 
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
26



Example: Problem with Shared Caches
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L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2←t1

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Example: Problem with Shared Caches
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L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Example: Problem with Shared Caches
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L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.



Need for QoS and Shared Resource Mgmt.
n Why is unpredictable performance (or lack of QoS) bad?

n Makes programmer’s life difficult
q An optimized program can get low performance (and 

performance varies widely depending on co-runners)

n Causes discomfort to user
q An important program can starve
q Examples from shared software resources

n Makes system management difficult
q How do we enforce a Service Level Agreement when 

hardware resources are sharing is uncontrollable?
30



Resource Sharing vs. Partitioning
n Sharing improves throughput

q Better utilization of space 

n Partitioning provides performance isolation (predictable 
performance)
q Dedicated space

n Can we get the benefits of both? 

n Idea: Design shared resources such that they are efficiently 
utilized, controllable and partitionable
q No wasted resource + QoS mechanisms for threads
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Memory System is the Major Shared Resource

32

threads’ requests 
interfere



Much More of a Shared Resource in Future
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Most of the system is dedicated to storing and moving data 



Inter-Thread/Application Interference
n Problem: Threads share the memory system, but memory 

system does not distinguish between threads’ requests

n Existing memory systems 
q Free-for-all, shared based on demand
q Control algorithms thread-unaware and thread-unfair
q Aggressive threads can deny service to others
q Do not try to reduce or control inter-thread interference
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Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)
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Uncontrolled Interference: An Example

CORE 1 CORE 2

L2 
CACHE

L2 
CACHE

DRAM MEMORY CONTROLLER

DRAM 
Bank 0

DRAM 
Bank 1

DRAM 
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM 
Bank 3



// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}
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A Memory Performance Hog

STREAM

- Sequential memory access 
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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DRAM Controllers

n A row-conflict memory access takes significantly longer 
than a row-hit access

n Current controllers take advantage of the row buffer

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput
n But, it is unfair when multiple threads share the DRAM system  

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.



Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

40

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux) 

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs 
n Low system performance

Uncontrollable, unpredictable system

41



Greater Problem with More Cores

n Vulnerable to denial of service (DoS) 
n Unable to enforce priorities or SLAs
n Low system performance 

Uncontrollable, unpredictable system
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Distributed DoS in Networked Multi-Core Systems
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Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via 
packet-switched
routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu, 
“Preemptive virtual clock: A Flexible, 
Efficient, and Cost-effective QOS 
Scheme for Networks-on-Chip,“
MICRO 2009.



More on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX 
SECURITY), pages 257-274, Boston, MA, August 2007. Slides 
(ppt)

44http://www.youtube.com/watch?v=VJzZbwgBfy8

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://www.youtube.com/watch?v=VJzZbwgBfy8


More on Interconnect Based Starvation
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 268-279, New York, NY, 
December 2009. Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/grot_micro09_talk.pdf


Maslow’s (Human) Hierarchy of Needs

n Lack of QoS can be a safety and security problem
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Maslow, “A Theory of Human Motivation,” 

Psychological Review, 1943. 

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 

Psychological Review, 1943. 

Maslow, “Motivation and Personality,”

Book, 1954-1970.

Source: By User:Factoryjoe - Mazlow's Hierarchy of Needs.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7964065



How Do We Solve The Problem?

n Inter-thread interference is uncontrolled in all memory 
resources
q Memory controller
q Interconnect
q Caches

n We need to control it
q i.e., design an interference-aware (QoS-aware) memory system
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QoS-Aware Memory Systems: Challenges

n How do we reduce inter-thread interference?
q Improve system performance and core utilization
q Reduce request serialization and core starvation

n How do we control inter-thread interference?
q Provide mechanisms to enable system software to enforce 

QoS policies 
q While providing high system performance

n How do we make the memory system configurable/flexible? 
q Enable flexible mechanisms that can achieve many goals

n Provide fairness or throughput when needed
n Satisfy performance guarantees when needed
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Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
q QoS-aware memory controllers 
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
q Source throttling to control access to memory system 
q QoS-aware data mapping to memory controllers  
q QoS-aware thread scheduling to cores
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Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Lecture on Other QoS Techniques

51https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Lecture on Other QoS Techniques

52https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Memory Channel Partitioning

53https://www.youtube.com/watch?v=rjmVKDdl8Jc&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=5

https://www.youtube.com/watch?v=rjmVKDdl8Jc&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=5


QoS-Aware Memory Scheduling

n How to schedule requests to provide
q High system performance
q High fairness to applications
q Configurability to system software 

n Memory controller needs to be aware of threads

54

Memory 
Controller

Core Core

Core Core
Memory

Resolves memory contention 
by scheduling requests



QoS-Aware Memory Scheduling:
Evolution



QoS-Aware Memory Scheduling: Evolution
n Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q Idea: Estimate and balance thread slowdowns
q Takeaway: Proportional thread progress improves performance, 

especially when threads are “heavy” (memory intensive)

n Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation

q Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness

n ATLAS memory scheduler [Kim+ HPCA’10]

q Idea: Prioritize threads that have attained the least service from the 
memory scheduler 

q Takeaway: Prioritizing “light” threads improves performance
56



QoS-Aware Memory Scheduling: Evolution

n Thread cluster memory scheduling [Kim+ MICRO’10, Top Picks’11]
q Idea: Cluster threads into two groups (latency vs. bandwidth 

sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group

q Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness

n Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11]
n Idea: Only prioritize very latency-sensitive threads in the scheduler; 

mitigate all other applications’ interference via channel partitioning
n Takeaway: Intelligently combining application-aware channel 

partitioning and memory scheduling provides better performance 
than either
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QoS-Aware Memory Scheduling: Evolution

n Parallel application memory scheduling [Ebrahimi+ MICRO’11]
q Idea: Identify and prioritize limiter threads of a multithreaded 

application in the memory scheduler; provide fast and fair progress 
to non-limiter threads

q Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance

n Staged memory scheduling [Ausavarungnirun+ ISCA’12]
n Idea: Divide the functional tasks of an application-aware memory 

scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler

n Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers
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QoS-Aware Memory Scheduling: Evolution

n MISE: Memory Slowdown Model [Subramanian+ HPCA’13]
n Idea: Estimate the performance of a thread by estimating its change 

in memory request service rate when run alone vs. shared à use 
this simple model to estimate slowdown to design a scheduling 
policy that provides predictable performance or fairness

n Takeaway: Request service rate of a thread is a good proxy for its 
performance; alone request service rate can be estimated by giving 
high priority to the thread in memory scheduling for a while

n ASM: Application Slowdown Model [Subramanian+ MICRO’15]
q Idea: Extend MISE to take into account cache+memory interference
q Takeaway: Cache access rate of an application can be estimated 

accurately and is a good proxy for application performance
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QoS-Aware Memory Scheduling: Evolution
n BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD’14, 

TPDS’16]
q Idea: Deprioritize (i.e., blacklist) a thread that has consecutively 

serviced a large number of requests
q Takeaway: Blacklisting greatly reduces interference enables the 

scheduler to be simple without requiring full thread ranking

n DASH: Deadline-Aware Memory Scheduler [Usui+ TACO’16]
q Idea: Balance prioritization between CPUs, GPUs and Hardware 

Accelerators (HWA) by keeping HWA progress in check vs. deadlines 
such that HWAs do not hog performance and appropriately 
distinguishing between latency-sensitive vs. bandwidth-sensitive CPU 
workloads

q Takeaway: Proper control of HWA progress and application-aware CPU 
prioritization leads to better system performance while meeting HWA 
deadlines
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QoS-Aware Memory Scheduling: Evolution

n Prefetch-aware shared resource management [Ebrahimi+ 
ISCA’11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA’09] [Lee+ MICRO’08’09]
q Idea: Prioritize prefetches depending on how they affect system 

performance; even accurate prefetches can degrade performance of 
the system 

q Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness

n DRAM-Aware last-level cache policies and write scheduling 
[Lee+ HPS Tech Report’10] [Seshadri+ ISCA’14]
q Idea: Design cache eviction and replacement policies such that they 

proactively exploit the state of the memory controller and DRAM 
(e.g., proactively evict data from the cache that hit in open rows)

q Takeaway: Coordination of last-level cache and DRAM policies 
improves performance and fairness; writes should not be ignored
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QoS-Aware Memory Scheduling: Evolution
n FIRM: Memory Scheduling for NVM [Zhao+ MICRO’14]

q Idea: Carefully handle write-read prioritization with coarse-grained 
batching and application-aware scheduling 

q Takeaway: Carefully controlling and prioritizing write requests 
improves performance and fairness; write requests are especially 
critical in NVMs 

n Criticality-Aware Memory Scheduling for GPUs [Jog+ 
SIGMETRICS’16]
q Idea: Prioritize latency-critical cores’ requests in a GPU system
q Takeaway: Need to carefully balance locality and criticality to make 

sure performance improves by taking advantage of both

n Worst-case Execution Time Based Memory Scheduling for 
Real-Time Systems [Kim+ RTAS’14, JRTS’16]
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Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"
40th International Symposium on Microarchitecture (MICRO), 

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/mutlu_micro07_talk.ppt


The Problem: Unfairness

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs 
n Low system performance

Uncontrollable, unpredictable system

64



How Do We Solve the Problem?
n Stall-time fair memory scheduling [Mutlu+ MICRO’07]

n Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone à
fair scheduling

n Also improves overall system performance by ensuring cores make 
“proportional” progress

n Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns

n Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007. 
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Stall-Time Fairness in Shared DRAM Systems

n A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system

n DRAM-related stall-time: The time a thread spends waiting for DRAM memory
n STshared: DRAM-related stall-time when the thread runs with other threads
n STalone:  DRAM-related stall-time when the thread runs alone
n Memory-slowdown = STshared/STalone   

q Relative increase in stall-time

n Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance
q Considers inherent DRAM performance of each thread
q Aims to allow proportional progress of threads
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STFM Scheduling Algorithm [MICRO’07]

n For each thread, the DRAM controller
q Tracks STshared
q Estimates STalone

n Each cycle, the DRAM controller
q Computes Slowdown = STshared/STalone for threads with legal requests
q Computes unfairness = MAX Slowdown / MIN Slowdown

n If unfairness < a
q Use DRAM throughput oriented scheduling policy

n If unfairness ≥ a
q Use fairness-oriented scheduling policy 

n (1) requests from thread with MAX Slowdown first
n (2) row-hit first , (3) oldest-first
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How Does STFM Prevent Unfairness?
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STFM Pros and Cons
n Upsides: 

q First algorithm for fair multi-core memory scheduling
q Provides a mechanism to estimate memory slowdown of a 

thread
q Good at providing fairness
q Being fair can improve performance 

n Downsides:
q Does not handle all types of interference
q (Somewhat) complex to implement
q Slowdown estimations can be incorrect
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More on STFM
n Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on 
Microarchitecture (MICRO), pages 146-158, Chicago, IL, 
December 2007. [Summary] [Slides (ppt)] 
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Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA), 
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/parbs-isca08-talk.ppt


Another Problem due to Memory Interference

n Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests
q Memory-Level Parallelism (MLP) 
q Out-of-order execution, non-blocking caches, runahead execution

n Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks

n Multiple threads share the DRAM controller
n DRAM controllers are not aware of a thread’s MLP

q Can service each thread’s outstanding requests serially, not in parallel

72



Bank Parallelism of a Thread
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Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0
Stall Compute

Bank 1

Single Thread:



Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM
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Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0
Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
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2 DRAM Requests

Parallelism-Aware Scheduler
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Parallelism-Aware Batch Scheduling (PAR-BS)

n Principle 1: Parallelism-awareness
q Schedule requests from a thread (to 

different banks) back to back
q Preserves each thread’s bank parallelism
q But, this can cause starvation…

n Principle 2: Request Batching
q Group a fixed number of oldest requests 

from each thread into a “batch”
q Service the batch before all other requests
q Form a new batch when the current one is done
q Eliminates starvation, provides fairness
q Allows parallelism-awareness within a batch
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.



PAR-BS Components

n Request batching

n Within-batch scheduling
q Parallelism aware
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Request Batching

n Each memory request has a bit (marked) associated with it

n Batch formation:
q Mark up to Marking-Cap oldest requests per bank for each thread
q Marked requests constitute the batch
q Form a new batch when no marked requests are left

n Marked requests are prioritized over unmarked ones
q No reordering of requests across batches: no starvation, high fairness

n How to prioritize requests within a batch?
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Within-Batch Scheduling

n Can use any existing DRAM scheduling policy
q FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

n But, we also want to preserve intra-thread bank parallelism
q Service each thread’s requests back to back

n Scheduler computes a ranking of threads when the batch is 
formed
q Higher-ranked threads are prioritized over lower-ranked ones
q Improves the likelihood that requests from a thread are serviced in 

parallel by different banks
n Different threads prioritized in the same order across ALL banks
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Thread Ranking
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How to Rank Threads within a Batch
n Ranking scheme affects system throughput and fairness

n Maximize system throughput
q Minimize average stall-time of threads within the batch

n Minimize unfairness (Equalize the slowdown of threads)
q Service threads with inherently low stall-time early in the batch
q Insight: delaying memory non-intensive threads results in high 

slowdown

n Shortest stall-time first (shortest job first) ranking
q Provides optimal system throughput [Smith, 1956]*

q Controller estimates each thread’s stall-time within the batch
q Ranks threads with shorter stall-time higher

81
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.



n Maximum number of marked requests to any bank (max-bank-load)
q Rank thread with lower max-bank-load higher (~ low stall-time)

n Total number of marked requests (total-load)
q Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking
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Putting It Together: PAR-BS Scheduling Policy
n PAR-BS Scheduling Policy

(1) Marked requests first
(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

n Three properties:
q Exploits row-buffer locality and intra-thread bank parallelism
q Work-conserving

n Services unmarked requests to banks without marked requests 
q Marking-Cap is important

n Too small cap: destroys row-buffer locality
n Too large cap: penalizes memory non-intensive threads   

n Many more trade-offs analyzed in the paper
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Hardware Cost

n <1.5KB storage cost for
q 8-core system with 128-entry memory request buffer

n No complex operations (e.g., divisions)

n Not on the critical path
q Scheduler makes a decision only every DRAM cycle
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Unfairness on 4-, 8-, 16-core Systems
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System Performance (Hmean-speedup)
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PAR-BS Pros and Cons

n Upsides: 
q First scheduler to address bank parallelism destruction across 

multiple threads
q Simple mechanism (vs. STFM)
q Batching provides fairness
q Ranking enables parallelism awareness

n Downsides:
q Does not always prioritize the latency-sensitive applications
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More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008 
selected as Top Picks by IEEE Micro.

89http://www.youtube.com/watch?v=UB1kgYR-4V0

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://www.youtube.com/watch?v=UB1kgYR-4V0


More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair 
Memory Controllers"
IEEE Micro, Special Issue: Micro's Top Picks from 2008 Computer Architecture 
Conferences (MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.
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ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance 

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA), 

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_hpca10_talk.pptx


ATLAS: Summary
n Goal: To maximize system performance

n Main idea: Prioritize the thread that has attained the least 
service from the memory controllers (Adaptive per-Thread 
Least Attained Service Scheduling)
q Rank threads based on attained service in the past time 

interval(s)
q Enforce thread ranking in the memory scheduler during the 

current interval

n Why it works: Prioritizes “light” (memory non-intensive) 
threads that are more likely to keep their cores busy
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System throughput = ∑ Speedup
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ATLAS Pros and Cons
n Upsides:

q Good at improving overall throughput (compute-intensive 
threads are prioritized) 

q Low complexity
q Coordination among controllers happens infrequently

n Downsides:
q Lowest/medium ranked threads get delayed significantly à

high unfairness
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More on ATLAS Memory Scheduler
n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance Scheduling 
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India, 
January 2010. Slides (pptx)
Best paper session. One of the four papers nominated for 
the Best Paper Award by the Program Committee.
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TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: 

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO), 
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
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No previous memory scheduling algorithm provides 
both the best fairness and system throughput
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Take turns accessing memory

Throughput vs. Fairness

99

Fairness biased approach

thread C

thread B

thread A

less memory 
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation è unfairness

thread C thread Bthread A

Does not starve

not prioritized è
reduced throughput

Single policy for all threads is insufficient



Achieving the Best of Both Worlds
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For Throughput
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Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster
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TCM Outline
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1. Clustering



Clustering Threads
Step1 Sort threads by MPKI (misses per kiloinstruction)
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TCM Outline
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1. Clustering

2. Between 
Clusters



Prioritize non-intensive cluster

• Increases system throughput
– Non-intensive threads have greater potential for 

making progress

• Does not degrade fairness
– Non-intensive threads are “light”
– Rarely interfere with intensive threads

Prioritization Between Clusters
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TCM Outline
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Prioritize threads according to MPKI

• Increases system throughput
– Least intensive thread has the greatest potential 

for making progress in the processor

Non-Intensive Cluster
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TCM Outline
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Periodically shuffle the priority of threads

• Is treating all threads equally good enough?
• BUT: Equal turns ≠ Same slowdown

Intensive Cluster
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Why are Threads Different?

111

random-access streaming
reqreqreqreq

Bank 1 Bank 2 Bank 3 Bank 4 Memory
rows

•All requests parallel
•High bank-level parallelism

•All requests è Same row
•High row-buffer locality

reqreqreqreq

activated row
reqreqreqreq reqreqreqreqstuck

Vulnerable to interference



TCM Outline
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Niceness
How to quantify difference between threads?
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Vulnerability to interference
Bank-level parallelism

Causes interference
Row-buffer locality

+ Niceness -

NicenessHigh Low



TCM: Quantum-Based Operation
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Time

Previous quantum 
(~1M cycles)

During quantum:
•Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of 

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)



TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized
• Non-Intensive cluster > Intensive cluster
• Non-Intensive cluster: lower intensity è higher rank
• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized
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TCM: Implementation Cost
Required storage at memory controller (24 cores)

• No computation is on the critical path
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Thread memory behavior Storage

MPKI ~0.2kb

Bank-level parallelism ~0.6kb

Row-buffer locality ~2.9kb

Total < 4kbits



Previous Work
FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits

– Thread-oblivious è Low throughput & Low fairness

STFM [Mutlu et al., MICRO07]: Equalizes thread slowdowns

– Non-intensive threads not prioritized è Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests 
while preserving bank-level parallelism

– Non-intensive threads not always prioritized è Low 
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory 
service

– Most intensive thread starves è Low fairness
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TCM: Throughput and Fairness
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TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput



In Lecture, We Stopped Here.



TCM: Fairness-Throughput Tradeoff
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Operating System Support
• ClusterThreshold is a tunable knob
– OS can trade off between fairness and throughput

• Enforcing thread weights
– OS assigns weights to threads
– TCM enforces thread weights within each cluster
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Conclusion
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• No previous memory scheduling algorithm provides 
both high system throughput and fairness
– Problem: They use a single policy for all threads

• TCM groups threads into two clusters
1. Prioritize non-intensive cluster è throughput
2. Shuffle priorities in intensive cluster è fairness
3. Shuffling should favor nice threads è fairness

• TCM provides the best system throughput and fairness



TCM Pros and Cons
n Upsides:

q Provides both high fairness and high performance
q Caters to the needs for different types of threads (latency vs. 

bandwidth sensitive)
q (Relatively) simple

n Downsides:
q Scalability to large buffer sizes?
q Robustness of clustering and shuffling algorithms?
q Ranking is still too complex?
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More on TCM
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

"Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior"
Proceedings of the 43rd International Symposium on 
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, December 
2010. Slides (pptx) (pdf)
One of the 11 computer architecture papers of 2010 selected 
as Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
https://people.inf.ethz.ch/omutlu/pub/kim_micro10_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/kim_micro10_talk.pdf


More on TCM
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

"Thread Cluster Memory Scheduling"
IEEE Micro, Special Issue: Micro's Top Picks from 2010 Computer Architecture 
Conferences (MICRO TOP PICKS), Vol. 31, No. 1, pages 78-89, January/February 2011.
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https://people.inf.ethz.ch/omutlu/pub/tcm_ieee_micro_top_picks11.pdf
http://www.computer.org/micro/


The Blacklisting Memory Scheduler

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost"

Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD), 
Seoul, South Korea, October 2014. [Slides (pptx) (pdf)] 

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


Tackling Inter-Application Interference:

Application-aware Memory Scheduling
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Performance vs. Fairness vs. Simplicity 
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Is it essential to give up simplicity to 
optimize for performance and/or fairness?
Our solution achieves all three goals
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Low performance 
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications 
into two groups, rather than do full ranking
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Benefit 1: Low complexity compared to ranking
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Benefit 2: Lower slowdowns than ranking



Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications 
into two groups, rather than do full ranking
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Key Observation 2
Observation 2: Serving a large number of consecutive 

requests from an application causes interference

Basic Idea:
• Group applications with a large number of consecutive 

requests as interference-causing à Blacklisting
• Deprioritize blacklisted applications
• Clear blacklist periodically (1000s of cycles)

Benefits:
• Lower complexity
• Finer grained grouping decisions à Lower unfairness

131



Performance vs. Fairness vs. Simplicity
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Performance and Fairness
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Complexity
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More on BLISS (I)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on 
Computer Design (ICCD), Seoul, South Korea, October 2014. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


More on BLISS: Longer Version
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, 

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in 
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to 
appear in 2016.  arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004, 
Carnegie Mellon University, March 2015.
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim


Handling Memory Interference 
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, 
Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO), 
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Lecture on Parallel Application Scheduling

138https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Lecture on Bottleneck Acceleration

139https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31


Multithreaded (Parallel) Applications
n Threads in a multi-threaded application can be inter-

dependent
q As opposed to threads from different applications

n Such threads can synchronize with each other
q Locks, barriers, pipeline stages, condition variables, 

semaphores, …

n Some threads can be on the critical path of execution due 
to synchronization; some threads are not

n Even within a thread, some “code segments” may be on 
the critical path of execution; some are not
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Critical Sections

n Enforce mutually exclusive access to shared data
n Only one thread can be executing it at a time
n Contended critical sections make threads wait à threads 

causing serialization can be on the critical path
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Each thread:
loop {

Compute
lock(A)

Update shared data
unlock(A)

}

N

C



Barriers

n Synchronization point
n Threads have to wait until all threads reach the barrier
n Last thread arriving at the barrier is on the critical path

142

Each thread:
loop1 {

Compute
}
barrier
loop2 {

Compute
}



Stages of Pipelined Programs
n Loop iterations are statically divided into code segments called stages
n Threads execute stages on different cores
n Thread executing the slowest stage is on the critical path
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loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C



Handling Interference in Parallel Applications

n Threads in a multithreaded application are inter-dependent
n Some threads can be on the critical path of execution due 

to synchronization; some threads are not
n How do we schedule requests of inter-dependent threads 

to maximize multithreaded application performance?

n Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n Hardware/software cooperative limiter thread estimation:
n Thread executing the most contended critical section
n Thread executing the slowest pipeline stage
n Thread that is falling behind the most in reaching a barrier

144PAMS Micro 2011 Talk

file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx


Prioritizing Requests from Limiter Threads
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Parallel App Mem Scheduling: Pros and Cons

n Upsides:
q Improves the performance of multi-threaded applications
q Provides a mechanism for estimating “limiter threads”
q Opens a path for slowdown estimation for multi-threaded 

applications

n Downsides:
q What if there are multiple multi-threaded applications running 

together?
q Limiter thread estimation can become complex
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More on PAMS
n Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo

Lee, Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx


Memory Scheduling 
for Heterogeneous Systems



Lecture on Heterogeneous System Scheduling

149https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance 

and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA), 

Portland, OR, June 2012. 

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx


SMS: Executive Summary
n Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers

n Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes

n Solution: Staged Memory Scheduling (SMS) 
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n Compared to state-of-the-art memory schedulers:
q SMS is significantly simpler and more scalable
q SMS provides higher performance and fairness
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SMS: Staged Memory Scheduling
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Stage 1

Stage 2

SMS: Staged Memory Scheduling
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Putting Everything Together
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Complexity
n Compared to a row hit first scheduler, SMS consumes*

q 66% less area
q 46% less static power

n Reduction comes from:
q Monolithic scheduler à stages of simpler schedulers
q Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision)
q Each stage has simpler buffers (FIFO instead of out-of-order)
q Each stage has a portion of the total buffer size (buffering is 

distributed across stages)

155* Based on a Verilog model using 180nm library



Performance at Different GPU Weights
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n At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight

Performance at Different GPU Weights
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More on SMS
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, 

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx


DASH Memory Scheduler
[TACO 2016]
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Current SoC Architectures

n Heterogeneous agents: CPUs and HWAs 
q HWA : Hardware Accelerator

n Main memory is shared by CPUs and HWAs à Interference

160

CPU CPU CPU CPU

Shared Cache HWA HWA HWA

DRAM Controller

DRAM

How to schedule memory requests from CPUs and HWAs 
to mitigate interference? 



DASH Scheduler: Executive Summary
n Problem: Hardware accelerators (HWAs) and CPUs share the same 

memory subsystem and interfere with each other in main memory
n Goal: Design a memory scheduler that improves CPU performance while 

meeting HWAs’ deadlines
n Challenge: Different HWAs have different memory access characteristics 

and different deadlines, which current schedulers do not smoothly handle
q Memory-intensive and long-deadline HWAs significantly degrade CPU 

performance when they become high priority (due to slow progress)
q Short-deadline HWAs sometimes miss their deadlines despite high priority

n Solution: DASH Memory Scheduler 
q Prioritize HWAs over CPU anytime when the HWA is not making good progress
q Application-aware scheduling for CPUs and HWAs

n Key Results:
1) Improves CPU performance for a wide variety of workloads by 9.5% 
2) Meets 100% deadline met ratio for HWAs

n DASH source code freely available on our GitHub
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Goal of Our Scheduler (DASH)

• Goal: Design a memory scheduler that 
– Meets GPU/accelerators’ frame rates/deadlines and
– Achieves high CPU performance

• Basic Idea:
– Different CPU applications and hardware accelerators 

have different memory requirements
– Track progress of different agents and prioritize 

accordingly
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Key Observation:
Distribute Priority for Accelerators

• GPU/accelerators need priority to meet deadlines
• Worst case prioritization not always the best
• Prioritize when they are not on track to meet a 

deadline
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Distributing priority over time mitigates impact 
of accelerators on CPU cores’ requests



Key Observation: 
Not All Accelerators are Equal

• Long-deadline accelerators are more likely to 
meet their deadlines

• Short-deadline accelerators are more likely to 
miss their deadlines

164

Schedule short-deadline accelerators 
based on worst-case memory access time 



Key Observation: 
Not All CPU cores are Equal

• Memory-intensive cores are much less 
vulnerable to interference

• Memory non-intensive cores are much more 
vulnerable to interference

165

Prioritize accelerators over memory-intensive cores 
to ensure accelerators do not become urgent



DASH Summary: 
Key Ideas and Results

• Distribute priority for HWAs
• Prioritize HWAs over memory-intensive CPU 

cores even when not urgent
• Prioritize short-deadline-period HWAs based 

on worst case estimates
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Improves CPU performance by 7-21%
Meets (almost) 100% of deadlines for HWAs



DASH: Scheduling Policy

n DASH scheduling policy 
1. Short-deadline-period HWAs with high priority
2. Long-deadline-period HWAs with high priority
3. Memory non-intensive CPU applications
4. Long-deadline-period HWAs with low priority
5. Memory-intensive CPU applications
6. Short-deadline-period HWAs with low priority
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Switch 
probabilistically



More on DASH
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and 

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory 
Scheduler for Heterogeneous Systems with Hardware 
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO), 
Vol. 12, January 2016. 
Presented at the 11th HiPEAC Conference, Prague, Czech Republic, 
January 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim


Predictable Performance: 
Strong Memory Service Guarantees

169



Lecture on Predictable Performance

170https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Lecture on Predictable Performance

171https://www.youtube.com/watch?v=15hRJLhGWGA&list=PL5Q2soXY2Zi-IymxXpH_9vlZCOeA7Yfn9&index=19

https://www.youtube.com/watch?v=15hRJLhGWGA&list=PL5Q2soXY2Zi-IymxXpH_9vlZCOeA7Yfn9&index=19


Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
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CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the 

presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

n Approach: 
q Develop techniques/models to accurately estimate the 

performance loss of an application/agent in the presence of 
resource sharing

q Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

q All the while providing high system performance 

n Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,” HPCA 2013.

n Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
173



Predictable Performance Readings (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


Predictable Performance Readings (II)
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Predictable Performance Readings (III)
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


MISE: 
Providing Performance Predictability 

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri, 
Yoongu Kim, Ben Jaiyen, Onur Mutlu
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Unpredictable Application Slowdowns
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Need for Predictable Performance
n There is a need for predictable performance

q When multiple applications share resources 
q Especially if some applications require performance 

guarantees

n Example 1: In mobile systems
q Interactive applications run with non-interactive applications
q Need to guarantee performance for interactive applications

n Example 2: In server systems
q Different users’ jobs consolidated onto the same server
q Need to provide bounded slowdowns to critical jobs 
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Our Goal: Predictable performance 
in the presence of memory interference
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1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
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1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown



Slowdown: Definition
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Intel Core i7, 4 cores
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Key Observation 2
Request Service Rate Alone (RSRAlone) of an application can be 

estimated by giving the application highest priority in 
accessing memory 

Highest priority à Little interference
(almost as if the application were run alone)
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Key Observation 2
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications
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Key Observation 3
n Memory-bound application

187

No 
interference

Compute Phase

Memory Phase

With 
interference

Memory phase slowdown dominates overall slowdown

time

time
Req

Req

Req Req

Req Req



Key Observation 3
n Non-memory-bound application
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Interval Based Operation
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Measuring RSRShared and α
n Request Service Rate Shared (RSRShared)

q Per-core counter to track number of requests serviced
q At the end of each interval, measure

n Memory Phase Fraction (  )
q Count number of stall cycles at the core
q Compute fraction of cycles stalled for memory

Length Interval
Serviced Requests ofNumber 

  RSRShared =

α
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Estimating Request Service Rate Alone (RSRAlone)

n Divide each interval into shorter epochs

n At the beginning of each epoch
q Memory controller randomly picks an application as the 

highest priority application

n At the end of an interval, for each application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone
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Accounting for Interference in RSRAlone Estimation

n Solution: Determine and remove interference cycles from 
RSRAlone calculation

n A cycle is an interference cycle if
q a request from the highest priority application is 

waiting in the request buffer and
q another application’s request was issued previously
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MISE Model: Putting it All Together 
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Previous Work on Slowdown Estimation
n Previous work on slowdown estimation

q STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07] 

q FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

q Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

n Basic Idea:
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Two Major Advantages of MISE Over STFM

n Advantage 1:
q STFM estimates alone performance while an 

application is receiving interference à Hard
q MISE estimates alone performance while giving an 

application the highest priority à Easier

n Advantage 2:
q STFM does not take into account compute phase for 

non-memory-bound applications 
q MISE accounts for compute phase à Better accuracy

199



Methodology
n Configuration of our simulated system

q 4 cores
q 1 channel, 8 banks/channel
q DDR3 1066 DRAM 
q 512 KB private cache/core

n Workloads
q SPEC CPU2006 
q 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM

202

cactusADM

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

0

1

2

3

4

0 50 100
Sl
ow
do
w
n

GemsFDTD

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

soplex

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

wrf

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

calculix

0

1

2

3

4

0 50 100
Sl
ow
do
w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)



Outline

203

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown



Providing “Soft” Slowdown Guarantees
n Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

n Basic Idea
q Allocate just enough bandwidth to QoS-critical 

application
q Assign remaining bandwidth to other applications
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MISE-QoS: Mechanism to Provide Soft QoS

n Assign an initial bandwidth allocation to QoS-critical application
n Estimate slowdown of QoS-critical application using the MISE 

model
n After every N intervals

q If slowdown > bound B +/- ε, increase bandwidth allocation
q If slowdown < bound B +/- ε, decrease bandwidth allocation

n When slowdown bound not met for N intervals
q Notify the OS so it can migrate/de-schedule jobs
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Methodology
n Each application (25 applications in total) considered the 

QoS-critical application
n Run with 12 sets of co-runners of different memory 

intensities
n Total of 300 multiprogrammed workloads
n Each workload run with 10 slowdown bound values
n Baseline memory scheduling mechanism

q Always prioritize QoS-critical application 
[Iyer+, SIGMETRICS 2007]

q Other applications’ requests scheduled in FRFCFS order
[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload
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Effectiveness of MISE in Enforcing QoS
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Performance of Non-QoS-Critical Applications
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Higher performance when bound is looseWhen slowdown bound is 10/3 
MISE-QoS improves system performance by 10%  
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Other Results in the Paper
n Sensitivity to model parameters

q Robust across different values of model parameters

n Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees
q MISE significantly more effective in enforcing guarantees

n Minimizing maximum slowdown
q MISE improves fairness across several system configurations
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Summary
n Uncontrolled memory interference slows down  

applications unpredictably
n Goal: Estimate and control slowdowns
n Key contribution

q MISE: An accurate slowdown estimation model 
q Average error of MISE: 8.2%

n Key Idea
q Request Service Rate is a proxy for performance
q Request Service Rate Alone estimated by giving an application highest 

priority in accessing memory
n Leverage slowdown estimates to control slowdowns

q Providing soft slowdown guarantees
q Minimizing maximum slowdown
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MISE: Pros and Cons

n Upsides:
q Simple new insight to estimate slowdown
q Much more accurate slowdown estimations than prior 

techniques (STFM, FST)
q Enables a number of QoS mechanisms that can use slowdown 

estimates to satisfy performance requirements

n Downsides:
q Slowdown estimation is not perfect - there are still errors
q Does not take into account caches and other shared resources 

in slowdown estimation
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More on MISE
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Extending MISE to Shared Caches: ASM
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015. 

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 

(pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim
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Other Ways of 
Handling Memory Interference



Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
q QoS-aware memory controllers 
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
q Source throttling to control access to memory system 
q QoS-aware data mapping to memory controllers  
q QoS-aware thread scheduling to cores
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO), 

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx


Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels
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Data Mapping in Current Systems

222

Channel 0Red 
App

Blue 
App

Memory 
Controller

Memory 
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Partitioning Channels Between Applications
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Overview: Memory Channel Partitioning (MCP) 

n Goal
q Eliminate harmful interference between applications

n Basic Idea
q Map the data of badly-interfering applications to different 

channels

n Key Principles
q Separate low and high memory-intensity applications
q Separate low and high row-buffer locality applications

224Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low 

memory-intensity applications in shared memory channels
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Key Insight 2: Separate by Row-Buffer Locality
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High row-buffer locality applications interfere with low 
row-buffer locality applications in shared memory channels
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Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel
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Interval Based Operation
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time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences



Observations

n Applications with very low memory-intensity rarely 
access memory
à Dedicating channels to them results in precious 
memory bandwidth waste

n They have the most potential to keep their cores busy
à We would really like to prioritize them

n They interfere minimally with other applications
à Prioritizing them does not hurt others
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Integrated Memory Partitioning and Scheduling (IMPS)

n Always prioritize very low memory-intensity 
applications in the memory scheduler

n Use memory channel partitioning to mitigate 
interference between other applications

230Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Hardware Cost
n Memory Channel Partitioning (MCP)

q Only profiling counters in hardware
q No modifications to memory scheduling logic
q 1.5 KB storage cost for a 24-core, 4-channel system

n Integrated Memory Partitioning and Scheduling (IMPS)
q A single bit per request
q Scheduler prioritizes based on this single bit

231Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Performance of Channel Partitioning

232

1%

5%

0.9

0.95

1

1.05

1.1

1.15
No

rm
al

ize
d 

Sy
st

em
 P

er
fo

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler 
at lower hardware cost 

Averaged over 240 workloads



An Example of Bad Channel Partitioning
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Combining Multiple Interference Control Techniques

n Combined interference control techniques can mitigate 
interference much more than a single technique alone can 
do

n The key challenge is:
q Deciding what technique to apply when
q Partitioning work appropriately between software and 

hardware
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MCP and IMPS: Pros and Cons

n Upsides:
q Keeps the memory scheduling hardware simple
q Combines multiple interference reduction techniques
q Can provide performance isolation across applications mapped 

to different channels
q General idea of partitioning can be extended to smaller 

granularities in the memory hierarchy: banks, subarrays, etc. 

n Downsides:
q Reacting is difficult if workload changes behavior after 

profiling
q Overhead of moving pages between channels restricts benefits 
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More on Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 

Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)

236https://www.youtube.com/watch?v=yEYEzFwAY9g

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
https://www.youtube.com/watch?v=yEYEzFwAY9g


Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
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Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance 

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf
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The Problem with “Smart Resources”

n Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other

n Explicitly coordinating mechanisms for different 
resources requires complex implementation

n How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner?
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Source Throttling: A Fairness Substrate

n Key idea: Manage inter-thread interference at the cores 
(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system 
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.
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Fairness via Source Throttling (FST)

n Two components (interval-based)

n Run-time unfairness evaluation (in hardware)
q Dynamically estimates the unfairness (application slowdowns) 

in the memory system
q Estimates which application is slowing down which other

n Dynamic request throttling (hardware or software)
q Adjusts how aggressively each core makes requests to the 

shared resources
q Throttles down request rates of cores causing unfairness

n Limit miss buffers, limit injection rate

242



243

Runtime 
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness 
2- Find app. with the highest 
slowdown (App-slowest)
3- Find app. causing most 
interference for App-slowest 
(App-interfering)

if (Unfairness Estimate >Target) 
{
1-Throttle down App-interfering

(limit injection rate and parallelism)
2-Throttle up App-slowest

}

FST
Unfairness Estimate

App-slowest
App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown 
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime 
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]



Dynamic Request Throttling
n Goal: Adjust how aggressively each core makes requests to 

the shared memory system 

n Mechanisms:
q Miss Status Holding Register (MSHR) quota

n Controls the number of concurrent requests accessing shared 
resources from each application

q Request injection frequency
n Controls how often memory requests are issued to the last level 

cache from the MSHRs
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Dynamic Request Throttling
n Throttling level assigned to each core determines both 

MSHR quota and request injection rate
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Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128



System Software Support

n Different fairness objectives can be configured by       
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a 

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) = 

Estimated Slowdown(i) x Weight(i)
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Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache 

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone 
provides the best performance

n Combined approaches are even more powerful 
q Source throttling and resource-based interference control
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Source Throttling: Ups and Downs
n Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize 

à throughput loss due to too much throttling
à can be difficult to find an overall-good configuration
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More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference

(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)
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Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each 

other to be scheduled together on cores sharing the memory 
system
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Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate 

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the 

controller
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Multi-Core to Many-Core

Multi-Core Many-Core
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Many-Core On-Chip Communication
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Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
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Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance? 
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How to prioritize applications to improve throughput? 



Application-to-Core Mapping
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Step 1 — Clustering
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Inefficient data mapping to memory and caches

Memory 
Controller



Step 1 — Clustering

Improved Locality

260

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3



System Performance
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System performance improves by 17%



Network Power
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More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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Interference-Aware Thread Scheduling
n An example from scheduling in compute clusters (data 

centers)
n Data centers can be running virtual machines
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Virtualized Cluster
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Conventional DRM Policies
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Microarchitecture-level Interference

267
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• VMs within a host compete for:
– Shared cache capacity
– Shared memory bandwidth

Can operating-system-level metrics capture the 
microarchitecture-level resource interference?



Microarchitecture Unawareness
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Impact on Performance
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Impact on Performance
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A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level 
shared resource interference
– Shared cache capacity
– Shared memory bandwidth

• Key Idea: 
– Monitor and detect microarchitecture-level shared 

resource interference
– Balance microarchitecture-level resource usage across 

cluster to minimize memory interference while 
maximizing system performance
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A-DRM: Architecture-aware DRM
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More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, 

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments (VEE), Istanbul, 
Turkey, March 2015. 
[Slides (pptx) (pdf)] 
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Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic 
applications” together (as opposed to just managing the 
interference)
+ Less intrusive to hardware (less need to modify the hardware 
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads and data between cores and 
machines
-- Does not work (well) if all threads are similar and they 
interfere 
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Summary
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Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Best is to combine all. How would you do that?
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Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective at reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling, 
memory partitioning
q All approaches are effective at reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]
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Summary: Memory Interference and QoS

n QoS-unaware memory à
uncontrollable and unpredictable system

n Providing QoS awareness improves performance, 
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques 
and closing the interaction with software
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What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n DRAM designs to reduce interference
n Interference issues in near-memory processing
n …
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What the Future May Bring

n Memory QoS techniques for heterogeneous SoC systems
q Many accelerators, processing in/near memory, better 

predictability, higher performance

n Combinations of memory QoS/performance techniques
q E.g., data mapping and scheduling

n Fundamentally more intelligent designs that use machine 
learning

n Real prototypes
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SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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