
Computer Architecture
Lecture 13: Memory Controllers II:

Performance & Service Quality

Prof. Onur Mutlu
ETH Zürich
Fall 2021

11 November 2021

Memory Controllers

Recall: Why Are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

3

Recall: DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
4

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Recall: Memory Controller: Performance Function

How to schedule requests to maximize system performance?

5

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

Recall: Reality and Dream
n Reality: It is difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

6

Recall: Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in

each state
q Continuously update reward values for <state, action> pairs based on

feedback from system

7

Recall: States, Actions, Rewards

8

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Recall: Performance Results

9

Large, robust performance improvements
over many human-designed policies

More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

10

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Recall: Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures

11

Recall: System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

12

Can we design
fundamentally intelligent architectures?

Recall: An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

13

We need to rethink design
(of all controllers)

Recall: Self-Optimizing Memory Prefetchers

14

n Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas
Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using

Online Reinforcement Learning"
Proceedings of the 54th International Symposium on
Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
15

Key Problems with Today’s Architectures
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

16

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
17

18Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

We Need to Think Across the Entire Stack

19

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step

A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

20

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

A Tutorial on Fundamentally Better Architectures

n Onur Mutlu,
"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

21https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

A Tutorial on PIM
n Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

Shared Resource Design for
Multi-Core Systems

23

Memory System: A Shared Resource View

24

Storage

Most of the system is dedicated to storing and moving data

Resource Sharing Concept
n Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses,

memory, interconnects, storage
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q For example, shared data kept in the same cache in SMT
processors

+ Compatible with the shared memory model
25

Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
26

Example: Problem with Shared Caches

27

L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2←t1

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Example: Problem with Shared Caches

28

L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Example: Problem with Shared Caches

29

L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Need for QoS and Shared Resource Mgmt.
n Why is unpredictable performance (or lack of QoS) bad?

n Makes programmer’s life difficult
q An optimized program can get low performance (and

performance varies widely depending on co-runners)

n Causes discomfort to user
q An important program can starve
q Examples from shared software resources

n Makes system management difficult
q How do we enforce a Service Level Agreement when

hardware resources are sharing is uncontrollable?
30

Resource Sharing vs. Partitioning
n Sharing improves throughput

q Better utilization of space

n Partitioning provides performance isolation (predictable
performance)
q Dedicated space

n Can we get the benefits of both?

n Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable
q No wasted resource + QoS mechanisms for threads

31

Memory System is the Major Shared Resource

32

threads’ requests
interfere

Much More of a Shared Resource in Future

33

Most of the system is dedicated to storing and moving data

Inter-Thread/Application Interference
n Problem: Threads share the memory system, but memory

system does not distinguish between threads’ requests

n Existing memory systems
q Free-for-all, shared based on demand
q Control algorithms thread-unaware and thread-unfair
q Aggressive threads can deny service to others
q Do not try to reduce or control inter-thread interference

34

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

35

36

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

37

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

38

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

39

DRAM Controllers

n A row-conflict memory access takes significantly longer
than a row-hit access

n Current controllers take advantage of the row buffer

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput
n But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

40

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

41

Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

42

Distributed DoS in Networked Multi-Core Systems

43

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via
packet-switched
routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

More on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

44http://www.youtube.com/watch?v=VJzZbwgBfy8

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://www.youtube.com/watch?v=VJzZbwgBfy8

More on Interconnect Based Starvation
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY,
December 2009. Slides (pdf)

45

http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/grot_micro09_talk.pdf

Maslow’s (Human) Hierarchy of Needs

n Lack of QoS can be a safety and security problem

46

Maslow, “A Theory of Human Motivation,”

Psychological Review, 1943.

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”

Psychological Review, 1943.

Maslow, “Motivation and Personality,”

Book, 1954-1970.

Source: By User:Factoryjoe - Mazlow's Hierarchy of Needs.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7964065

How Do We Solve The Problem?

n Inter-thread interference is uncontrolled in all memory
resources
q Memory controller
q Interconnect
q Caches

n We need to control it
q i.e., design an interference-aware (QoS-aware) memory system

47

QoS-Aware Memory Systems: Challenges

n How do we reduce inter-thread interference?
q Improve system performance and core utilization
q Reduce request serialization and core starvation

n How do we control inter-thread interference?
q Provide mechanisms to enable system software to enforce

QoS policies
q While providing high system performance

n How do we make the memory system configurable/flexible?
q Enable flexible mechanisms that can achieve many goals

n Provide fairness or throughput when needed
n Satisfy performance guarantees when needed

48

Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q QoS-aware memory controllers
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
q Source throttling to control access to memory system
q QoS-aware data mapping to memory controllers
q QoS-aware thread scheduling to cores

49

Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

50

Lecture on Other QoS Techniques

51https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Other QoS Techniques

52https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Memory Channel Partitioning

53https://www.youtube.com/watch?v=rjmVKDdl8Jc&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=5

https://www.youtube.com/watch?v=rjmVKDdl8Jc&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=5

QoS-Aware Memory Scheduling

n How to schedule requests to provide
q High system performance
q High fairness to applications
q Configurability to system software

n Memory controller needs to be aware of threads

54

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling:
Evolution

QoS-Aware Memory Scheduling: Evolution
n Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q Idea: Estimate and balance thread slowdowns
q Takeaway: Proportional thread progress improves performance,

especially when threads are “heavy” (memory intensive)

n Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

q Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

n ATLAS memory scheduler [Kim+ HPCA’10]

q Idea: Prioritize threads that have attained the least service from the
memory scheduler

q Takeaway: Prioritizing “light” threads improves performance
56

QoS-Aware Memory Scheduling: Evolution

n Thread cluster memory scheduling [Kim+ MICRO’10, Top Picks’11]
q Idea: Cluster threads into two groups (latency vs. bandwidth

sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

q Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

n Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]
n Idea: Only prioritize very latency-sensitive threads in the scheduler;

mitigate all other applications’ interference via channel partitioning
n Takeaway: Intelligently combining application-aware channel

partitioning and memory scheduling provides better performance
than either

57

QoS-Aware Memory Scheduling: Evolution

n Parallel application memory scheduling [Ebrahimi+ MICRO’11]
q Idea: Identify and prioritize limiter threads of a multithreaded

application in the memory scheduler; provide fast and fair progress
to non-limiter threads

q Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

n Staged memory scheduling [Ausavarungnirun+ ISCA’12]
n Idea: Divide the functional tasks of an application-aware memory

scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

n Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

58

QoS-Aware Memory Scheduling: Evolution

n MISE: Memory Slowdown Model [Subramanian+ HPCA’13]
n Idea: Estimate the performance of a thread by estimating its change

in memory request service rate when run alone vs. shared à use
this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

n Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

n ASM: Application Slowdown Model [Subramanian+ MICRO’15]
q Idea: Extend MISE to take into account cache+memory interference
q Takeaway: Cache access rate of an application can be estimated

accurately and is a good proxy for application performance

59

QoS-Aware Memory Scheduling: Evolution
n BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD’14,

TPDS’16]
q Idea: Deprioritize (i.e., blacklist) a thread that has consecutively

serviced a large number of requests
q Takeaway: Blacklisting greatly reduces interference enables the

scheduler to be simple without requiring full thread ranking

n DASH: Deadline-Aware Memory Scheduler [Usui+ TACO’16]
q Idea: Balance prioritization between CPUs, GPUs and Hardware

Accelerators (HWA) by keeping HWA progress in check vs. deadlines
such that HWAs do not hog performance and appropriately
distinguishing between latency-sensitive vs. bandwidth-sensitive CPU
workloads

q Takeaway: Proper control of HWA progress and application-aware CPU
prioritization leads to better system performance while meeting HWA
deadlines

60

QoS-Aware Memory Scheduling: Evolution

n Prefetch-aware shared resource management [Ebrahimi+
ISCA’11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA’09] [Lee+ MICRO’08’09]
q Idea: Prioritize prefetches depending on how they affect system

performance; even accurate prefetches can degrade performance of
the system

q Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

n DRAM-Aware last-level cache policies and write scheduling
[Lee+ HPS Tech Report’10] [Seshadri+ ISCA’14]
q Idea: Design cache eviction and replacement policies such that they

proactively exploit the state of the memory controller and DRAM
(e.g., proactively evict data from the cache that hit in open rows)

q Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness; writes should not be ignored

61

QoS-Aware Memory Scheduling: Evolution
n FIRM: Memory Scheduling for NVM [Zhao+ MICRO’14]

q Idea: Carefully handle write-read prioritization with coarse-grained
batching and application-aware scheduling

q Takeaway: Carefully controlling and prioritizing write requests
improves performance and fairness; write requests are especially
critical in NVMs

n Criticality-Aware Memory Scheduling for GPUs [Jog+
SIGMETRICS’16]
q Idea: Prioritize latency-critical cores’ requests in a GPU system
q Takeaway: Need to carefully balance locality and criticality to make

sure performance improves by taking advantage of both

n Worst-case Execution Time Based Memory Scheduling for
Real-Time Systems [Kim+ RTAS’14, JRTS’16]

62

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"
40th International Symposium on Microarchitecture (MICRO),

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/mutlu_micro07_talk.ppt

The Problem: Unfairness

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

64

How Do We Solve the Problem?
n Stall-time fair memory scheduling [Mutlu+ MICRO’07]

n Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone à
fair scheduling

n Also improves overall system performance by ensuring cores make
“proportional” progress

n Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

n Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

65

66

Stall-Time Fairness in Shared DRAM Systems

n A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

n DRAM-related stall-time: The time a thread spends waiting for DRAM memory
n STshared: DRAM-related stall-time when the thread runs with other threads
n STalone: DRAM-related stall-time when the thread runs alone
n Memory-slowdown = STshared/STalone

q Relative increase in stall-time

n Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance
q Considers inherent DRAM performance of each thread
q Aims to allow proportional progress of threads

67

STFM Scheduling Algorithm [MICRO’07]

n For each thread, the DRAM controller
q Tracks STshared
q Estimates STalone

n Each cycle, the DRAM controller
q Computes Slowdown = STshared/STalone for threads with legal requests
q Computes unfairness = MAX Slowdown / MIN Slowdown

n If unfairness < a
q Use DRAM throughput oriented scheduling policy

n If unfairness ≥ a
q Use fairness-oriented scheduling policy

n (1) requests from thread with MAX Slowdown first
n (2) row-hit first , (3) oldest-first

68

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown
T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

a 1.05

1.03

1.06
1.031.04
1.08

1.04

1.04
1.11

1.06

1.07

1.04

1.10
1.14

1.03

Row 16Row 111

STFM Pros and Cons
n Upsides:

q First algorithm for fair multi-core memory scheduling
q Provides a mechanism to estimate memory slowdown of a

thread
q Good at providing fairness
q Being fair can improve performance

n Downsides:
q Does not handle all types of interference
q (Somewhat) complex to implement
q Slowdown estimations can be incorrect

69

More on STFM
n Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

70

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/parbs-isca08-talk.ppt

Another Problem due to Memory Interference

n Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests
q Memory-Level Parallelism (MLP)
q Out-of-order execution, non-blocking caches, runahead execution

n Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

n Multiple threads share the DRAM controller
n DRAM controllers are not aware of a thread’s MLP

q Can service each thread’s outstanding requests serially, not in parallel

72

Bank Parallelism of a Thread

73

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0
Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

74

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0
Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

75

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99
Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:
~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

n Principle 1: Parallelism-awareness
q Schedule requests from a thread (to

different banks) back to back
q Preserves each thread’s bank parallelism
q But, this can cause starvation…

n Principle 2: Request Batching
q Group a fixed number of oldest requests

from each thread into a “batch”
q Service the batch before all other requests
q Form a new batch when the current one is done
q Eliminates starvation, provides fairness
q Allows parallelism-awareness within a batch

76

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

n Request batching

n Within-batch scheduling
q Parallelism aware

77

Request Batching

n Each memory request has a bit (marked) associated with it

n Batch formation:
q Mark up to Marking-Cap oldest requests per bank for each thread
q Marked requests constitute the batch
q Form a new batch when no marked requests are left

n Marked requests are prioritized over unmarked ones
q No reordering of requests across batches: no starvation, high fairness

n How to prioritize requests within a batch?

78

Within-Batch Scheduling

n Can use any existing DRAM scheduling policy
q FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

n But, we also want to preserve intra-thread bank parallelism
q Service each thread’s requests back to back

n Scheduler computes a ranking of threads when the batch is
formed
q Higher-ranked threads are prioritized over lower-ranked ones
q Improves the likelihood that requests from a thread are serviced in

parallel by different banks
n Different threads prioritized in the same order across ALL banks

79

HOW?

Thread Ranking

80

Bank 0

Bank 1

req

reqreq

req

memory service timeline

thread A

thread B

thread execution timeline

WAIT

WAIT

thread B

thread A
Bank 0

Bank 1

req

reqreq

req

memory service timeline

thread execution timeline

WAIT

WAIT

ra
nk

thread B

thread A

thread A

thread B

SAVED CYCLES

Key Idea:

How to Rank Threads within a Batch
n Ranking scheme affects system throughput and fairness

n Maximize system throughput
q Minimize average stall-time of threads within the batch

n Minimize unfairness (Equalize the slowdown of threads)
q Service threads with inherently low stall-time early in the batch
q Insight: delaying memory non-intensive threads results in high

slowdown

n Shortest stall-time first (shortest job first) ranking
q Provides optimal system throughput [Smith, 1956]*

q Controller estimates each thread’s stall-time within the batch
q Ranks threads with shorter stall-time higher

81
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

n Maximum number of marked requests to any bank (max-bank-load)
q Rank thread with lower max-bank-load higher (~ low stall-time)

n Total number of marked requests (total-load)
q Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

82

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:
T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

83

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

Ti
m

e

1
2

4

6

Ranking: T0 > T1 > T2 > T3

1
2
3
4
5
6
7

Ti
m

e

Putting It Together: PAR-BS Scheduling Policy
n PAR-BS Scheduling Policy

(1) Marked requests first
(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

n Three properties:
q Exploits row-buffer locality and intra-thread bank parallelism
q Work-conserving

n Services unmarked requests to banks without marked requests
q Marking-Cap is important

n Too small cap: destroys row-buffer locality
n Too large cap: penalizes memory non-intensive threads

n Many more trade-offs analyzed in the paper
84

Batching

Parallelism-aware
within-batch
scheduling

Hardware Cost

n <1.5KB storage cost for
q 8-core system with 128-entry memory request buffer

n No complex operations (e.g., divisions)

n Not on the critical path
q Scheduler makes a decision only every DRAM cycle

85

86

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

Un
fa

irn
es

s
(lo

w
er

 is
 b

et
te

r)

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

87

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
or

m
al

iz
ed

 H
m

ea
n

Sp
ee

du
p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

8.3% 6.1% 5.1%

PAR-BS Pros and Cons

n Upsides:
q First scheduler to address bank parallelism destruction across

multiple threads
q Simple mechanism (vs. STFM)
q Batching provides fairness
q Ranking enables parallelism awareness

n Downsides:
q Does not always prioritize the latency-sensitive applications

88

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008
selected as Top Picks by IEEE Micro.

89http://www.youtube.com/watch?v=UB1kgYR-4V0

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://www.youtube.com/watch?v=UB1kgYR-4V0

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers"
IEEE Micro, Special Issue: Micro's Top Picks from 2008 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

90

https://people.inf.ethz.ch/omutlu/pub/parbs_ieee_micro09.pdf
http://www.computer.org/micro/

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_hpca10_talk.pptx

ATLAS: Summary
n Goal: To maximize system performance

n Main idea: Prioritize the thread that has attained the least
service from the memory controllers (Adaptive per-Thread
Least Attained Service Scheduling)
q Rank threads based on attained service in the past time

interval(s)
q Enforce thread ranking in the memory scheduler during the

current interval

n Why it works: Prioritizes “light” (memory non-intensive)
threads that are more likely to keep their cores busy

92

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st

em
 th

ro
ug

hp
ut

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

93

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%
8.4%

5.9%

3.5%

Sy
st

em
 th

ro
ug

hp
ut

of memory controllers

0
2
4
6
8

10
12
14

4 8 16 24 32

Cores

Sy
st

em
 th

ro
ug

hp
ut

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases è ATLAS performance benefit increases

94

1.1%
3.5%

4.0%

8.4%
10.8%

Sy
st

em
 th

ro
ug

hp
ut

of cores

ATLAS Pros and Cons
n Upsides:

q Good at improving overall throughput (compute-intensive
threads are prioritized)

q Low complexity
q Coordination among controllers happens infrequently

n Downsides:
q Lowest/medium ranked threads get delayed significantly à

high unfairness

95

More on ATLAS Memory Scheduler
n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)
Best paper session. One of the four papers nominated for
the Best Paper Award by the Program Committee.

96

https://people.inf.ethz.ch/omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
https://people.inf.ethz.ch/omutlu/pub/kim_hpca10_talk.pptx

TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

FCFS
FRFCFS
STFM
PAR-BS
ATLAS

Previous Scheduling Algorithms are Biased

98

System throughput bias

Fairness bias
Ideal

Better system throughput

Be
tte

rf
ai

rn
es

s
24 cores, 4 memory controllers, 96 workloads

Take turns accessing memory

Throughput vs. Fairness

99

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation è unfairness

thread C thread Bthread A

Does not starve

not prioritized è
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

100

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads
For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

101

thread

Threads in the system

thread

thread

thread
thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

TCM Outline

102

1. Clustering

Clustering Threads
Step1 Sort threads by MPKI (misses per kiloinstruction)

103

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

higher
MPKI

T α < 10%
ClusterThreshold

Intensive
clusterαT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM Outline

104

1. Clustering

2. Between
Clusters

Prioritize non-intensive cluster

• Increases system throughput
– Non-intensive threads have greater potential for

making progress

• Does not degrade fairness
– Non-intensive threads are “light”
– Rarely interfere with intensive threads

Prioritization Between Clusters

105

>
priority

TCM Outline

106

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

Throughput

Prioritize threads according to MPKI

• Increases system throughput
– Least intensive thread has the greatest potential

for making progress in the processor

Non-Intensive Cluster

107

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

TCM Outline

108

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

Throughput

Fairness

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?
• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

109

thread

thread

thread

Increases fairness

Most prioritizedhigher
priority

thread

thread

thread

0
2
4
6
8

10
12
14

random-access streaming
Sl

ow
do

w
n

Case Study: A Tale of Two Threads
Case Study: Two intensive threads contending
1. random-access
2. streaming

110

Prioritize random-access Prioritize streaming

random-access thread is more easily slowed down

0
2
4
6
8

10
12
14

random-access streaming

Sl
ow

do
w

n

7x
prioritized

1x

11x

prioritized
1x

Which is slowed down more easily?

Why are Threads Different?

111

random-access streaming
reqreqreqreq

Bank 1 Bank 2 Bank 3 Bank 4 Memory
rows

•All requests parallel
•High bank-level parallelism

•All requests è Same row
•High row-buffer locality

reqreqreqreq

activated row
reqreqreqreq reqreqreqreqstuck

Vulnerable to interference

TCM Outline

112

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

Fairness

Throughput

Niceness
How to quantify difference between threads?

113

Vulnerability to interference
Bank-level parallelism

Causes interference
Row-buffer locality

+ Niceness -

NicenessHigh Low

TCM: Quantum-Based Operation

114

Time

Previous quantum
(~1M cycles)

During quantum:
•Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized
• Non-Intensive cluster > Intensive cluster
• Non-Intensive cluster: lower intensity è higher rank
• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

115

TCM: Implementation Cost
Required storage at memory controller (24 cores)

• No computation is on the critical path

116

Thread memory behavior Storage

MPKI ~0.2kb

Bank-level parallelism ~0.6kb

Row-buffer locality ~2.9kb

Total < 4kbits

Previous Work
FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits

– Thread-oblivious è Low throughput & Low fairness

STFM [Mutlu et al., MICRO07]: Equalizes thread slowdowns

– Non-intensive threads not prioritized è Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests
while preserving bank-level parallelism

– Non-intensive threads not always prioritized è Low
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory
service

– Most intensive thread starves è Low fairness
117

TCM: Throughput and Fairness

FRFCFS

STFM
PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

118

Better system throughput

Be
tte

rf
ai

rn
es

s
24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

In Lecture, We Stopped Here.

TCM: Fairness-Throughput Tradeoff

120

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

Be
tte

rf
ai

rn
es

s FRFCFS

Operating System Support
• ClusterThreshold is a tunable knob
– OS can trade off between fairness and throughput

• Enforcing thread weights
– OS assigns weights to threads
– TCM enforces thread weights within each cluster

121

Conclusion

122

• No previous memory scheduling algorithm provides
both high system throughput and fairness
– Problem: They use a single policy for all threads

• TCM groups threads into two clusters
1. Prioritize non-intensive cluster è throughput
2. Shuffle priorities in intensive cluster è fairness
3. Shuffling should favor nice threads è fairness

• TCM provides the best system throughput and fairness

TCM Pros and Cons
n Upsides:

q Provides both high fairness and high performance
q Caters to the needs for different types of threads (latency vs.

bandwidth sensitive)
q (Relatively) simple

n Downsides:
q Scalability to large buffer sizes?
q Robustness of clustering and shuffling algorithms?
q Ranking is still too complex?

123

More on TCM
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

"Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, December
2010. Slides (pptx) (pdf)
One of the 11 computer architecture papers of 2010 selected
as Top Picks by IEEE Micro.

124

https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
https://people.inf.ethz.ch/omutlu/pub/kim_micro10_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/kim_micro10_talk.pdf

More on TCM
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

"Thread Cluster Memory Scheduling"
IEEE Micro, Special Issue: Micro's Top Picks from 2010 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 31, No. 1, pages 78-89, January/February 2011.

125

https://people.inf.ethz.ch/omutlu/pub/tcm_ieee_micro_top_picks11.pdf
http://www.computer.org/micro/

The Blacklisting Memory Scheduler

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost"

Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD),
Seoul, South Korea, October 2014. [Slides (pptx) (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

Tackling Inter-Application Interference:

Application-aware Memory Scheduling

127

Monitor Rank
Highest

Ranked AID

Enforce
Ranks

Full ranking increases
critical path latency and area

significantly to improve
performance and fairness

4

3

2

1
2

4

3

1

Req 1 1

Req 2 4

Req 3 1

Req 4 1

Req 5 3

Req 7 1

Req 8 3

Request Buffer

Req 5 2

Request
App. ID

(AID)

=

=

=

=

=

=

=

=

Performance vs. Fairness vs. Simplicity

128

Performance

Fairness

Simplicity

FRFCFS

PARBS

ATLAS

TCM

Blacklisting

Ideal

App-unaware

App-aware
(Ranking)

Our Solution
(No Ranking)

Is it essential to give up simplicity to
optimize for performance and/or fairness?
Our solution achieves all three goals

Very Simple

Low performance
and fairness

Complex

Our Solution

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

129

Benefit 1: Low complexity compared to ranking

Group

Vulnerable
Interference
Causing

>

Monitor Rank

4

3

2

1
2

4

3

1

4

2

3

1

Benefit 2: Lower slowdowns than ranking

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

130

Group

Vulnerable
Interference
Causing

>

Monitor Rank

4

3

2

1
2

4

3

1

4

2

3

1

How to classify applications into groups?

Key Observation 2
Observation 2: Serving a large number of consecutive

requests from an application causes interference

Basic Idea:
• Group applications with a large number of consecutive

requests as interference-causing à Blacklisting
• Deprioritize blacklisted applications
• Clear blacklist periodically (1000s of cycles)

Benefits:
• Lower complexity
• Finer grained grouping decisions à Lower unfairness

131

Performance vs. Fairness vs. Simplicity

132

Performance

Fairness

Simplicity

FRFCFS
FRFCFS-Cap
PARBS
ATLAS
TCM
Blacklisting

Ideal

Highest
performance

Close to
simplest

Close to
fairest

Blacklisting is the closest scheduler to ideal

Performance and Fairness

133

1
3
5
7
9

11
13
15

1 3 5 7 9

Un
fa
irn

es
s

Performance

FRFCFS FRFCFS-Cap PARBS
ATLAS TCM Blacklisting

Ideal

5%
21%

(Higher is better)

(L
ow

er
 is

 b
et

te
r)

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness

Complexity

134

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12

Sc
he

du
le

r A
re

a
(s

q.
 u

m
)

Critical Path Latency (ns)

FRFCFS FRFCFS-Cap PARBS
ATLAS TCM Blacklisting

43%

70%

Blacklisting reduces complexity significantly

Ide
al

More on BLISS (I)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

135

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

More on BLISS: Longer Version
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

136

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

Handling Memory Interference
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Lecture on Parallel Application Scheduling

138https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Bottleneck Acceleration

139https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

Multithreaded (Parallel) Applications
n Threads in a multi-threaded application can be inter-

dependent
q As opposed to threads from different applications

n Such threads can synchronize with each other
q Locks, barriers, pipeline stages, condition variables,

semaphores, …

n Some threads can be on the critical path of execution due
to synchronization; some threads are not

n Even within a thread, some “code segments” may be on
the critical path of execution; some are not

140

Critical Sections

n Enforce mutually exclusive access to shared data
n Only one thread can be executing it at a time
n Contended critical sections make threads wait à threads

causing serialization can be on the critical path

141

Each thread:
loop {

Compute
lock(A)

Update shared data
unlock(A)

}

N

C

Barriers

n Synchronization point
n Threads have to wait until all threads reach the barrier
n Last thread arriving at the barrier is on the critical path

142

Each thread:
loop1 {

Compute
}
barrier
loop2 {

Compute
}

Stages of Pipelined Programs
n Loop iterations are statically divided into code segments called stages
n Threads execute stages on different cores
n Thread executing the slowest stage is on the critical path

143

loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C

Handling Interference in Parallel Applications

n Threads in a multithreaded application are inter-dependent
n Some threads can be on the critical path of execution due

to synchronization; some threads are not
n How do we schedule requests of inter-dependent threads

to maximize multithreaded application performance?

n Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n Hardware/software cooperative limiter thread estimation:
n Thread executing the most contended critical section
n Thread executing the slowest pipeline stage
n Thread that is falling behind the most in reaching a barrier

144PAMS Micro 2011 Talk

file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx

Prioritizing Requests from Limiter Threads

145

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync
or Lock

Thread D

Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B
Thread A

Critical Section 2 Critical Path

Saved
Cycles Limiter Thread: DBCA

Most Contended
Critical Section: 1

Limiter Thread Identification

Parallel App Mem Scheduling: Pros and Cons

n Upsides:
q Improves the performance of multi-threaded applications
q Provides a mechanism for estimating “limiter threads”
q Opens a path for slowdown estimation for multi-threaded

applications

n Downsides:
q What if there are multiple multi-threaded applications running

together?
q Limiter thread estimation can become complex

146

More on PAMS
n Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo

Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

147

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Memory Scheduling
for Heterogeneous Systems

Lecture on Heterogeneous System Scheduling

149https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance

and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),

Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

SMS: Executive Summary
n Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n Compared to state-of-the-art memory schedulers:
q SMS is significantly simpler and more scalable
q SMS provides higher performance and fairness

151

SMS: Staged Memory Scheduling

152

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req
Req

Req
Req

Req
Req Req

Req Req Req

ReqReqReq
Req Req

Req Req

Req Req Req
Req
Req Req

Req

Req
Req

Req
Req Req

Req Req Req
ReqReqReqReq Req Req

Req
Req
Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
on

ol
ith

ic
Sc

he
du

le
r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

153

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req ReqBatch Scheduler

Batch
Formation

Stage 3
DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy
SJF

Current Batch
Scheduling

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

154

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Complexity
n Compared to a row hit first scheduler, SMS consumes*

q 66% less area
q 46% less static power

n Reduction comes from:
q Monolithic scheduler à stages of simpler schedulers
q Each stage has a simpler scheduler (considers fewer

properties at a time to make the scheduling decision)
q Each stage has simpler buffers (FIFO instead of out-of-order)
q Each stage has a portion of the total buffer size (buffering is

distributed across stages)

155* Based on a Verilog model using 180nm library

Performance at Different GPU Weights

156

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

n At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

157

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

More on SMS
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

158

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH Memory Scheduler
[TACO 2016]

159

Current SoC Architectures

n Heterogeneous agents: CPUs and HWAs
q HWA : Hardware Accelerator

n Main memory is shared by CPUs and HWAs à Interference

160

CPU CPU CPU CPU

Shared Cache HWA HWA HWA

DRAM Controller

DRAM

How to schedule memory requests from CPUs and HWAs
to mitigate interference?

DASH Scheduler: Executive Summary
n Problem: Hardware accelerators (HWAs) and CPUs share the same

memory subsystem and interfere with each other in main memory
n Goal: Design a memory scheduler that improves CPU performance while

meeting HWAs’ deadlines
n Challenge: Different HWAs have different memory access characteristics

and different deadlines, which current schedulers do not smoothly handle
q Memory-intensive and long-deadline HWAs significantly degrade CPU

performance when they become high priority (due to slow progress)
q Short-deadline HWAs sometimes miss their deadlines despite high priority

n Solution: DASH Memory Scheduler
q Prioritize HWAs over CPU anytime when the HWA is not making good progress
q Application-aware scheduling for CPUs and HWAs

n Key Results:
1) Improves CPU performance for a wide variety of workloads by 9.5%
2) Meets 100% deadline met ratio for HWAs

n DASH source code freely available on our GitHub
161

Goal of Our Scheduler (DASH)

• Goal: Design a memory scheduler that
– Meets GPU/accelerators’ frame rates/deadlines and
– Achieves high CPU performance

• Basic Idea:
– Different CPU applications and hardware accelerators

have different memory requirements
– Track progress of different agents and prioritize

accordingly

162

Key Observation:
Distribute Priority for Accelerators

• GPU/accelerators need priority to meet deadlines
• Worst case prioritization not always the best
• Prioritize when they are not on track to meet a

deadline

163

Distributing priority over time mitigates impact
of accelerators on CPU cores’ requests

Key Observation:
Not All Accelerators are Equal

• Long-deadline accelerators are more likely to
meet their deadlines

• Short-deadline accelerators are more likely to
miss their deadlines

164

Schedule short-deadline accelerators
based on worst-case memory access time

Key Observation:
Not All CPU cores are Equal

• Memory-intensive cores are much less
vulnerable to interference

• Memory non-intensive cores are much more
vulnerable to interference

165

Prioritize accelerators over memory-intensive cores
to ensure accelerators do not become urgent

DASH Summary:
Key Ideas and Results

• Distribute priority for HWAs
• Prioritize HWAs over memory-intensive CPU

cores even when not urgent
• Prioritize short-deadline-period HWAs based

on worst case estimates

166

Improves CPU performance by 7-21%
Meets (almost) 100% of deadlines for HWAs

DASH: Scheduling Policy

n DASH scheduling policy
1. Short-deadline-period HWAs with high priority
2. Long-deadline-period HWAs with high priority
3. Memory non-intensive CPU applications
4. Long-deadline-period HWAs with low priority
5. Memory-intensive CPU applications
6. Short-deadline-period HWAs with low priority

167

Switch
probabilistically

More on DASH
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

168

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

Predictable Performance:
Strong Memory Service Guarantees

169

Lecture on Predictable Performance

170https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Predictable Performance

171https://www.youtube.com/watch?v=15hRJLhGWGA&list=PL5Q2soXY2Zi-IymxXpH_9vlZCOeA7Yfn9&index=19

https://www.youtube.com/watch?v=15hRJLhGWGA&list=PL5Q2soXY2Zi-IymxXpH_9vlZCOeA7Yfn9&index=19

Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs

172

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the

presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

n Approach:
q Develop techniques/models to accurately estimate the

performance loss of an application/agent in the presence of
resource sharing

q Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

q All the while providing high system performance

n Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

n Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
173

Predictable Performance Readings (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

174

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Predictable Performance Readings (II)
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

175

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Predictable Performance Readings (III)
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

176

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

MISE:
Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

177

Unpredictable Application Slowdowns

178

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

Sl
ow
do
w
n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

Sl
ow
do
w
n

An application’s performance depends on
which application it is running with

Need for Predictable Performance
n There is a need for predictable performance

q When multiple applications share resources
q Especially if some applications require performance

guarantees

n Example 1: In mobile systems
q Interactive applications run with non-interactive applications
q Need to guarantee performance for interactive applications

n Example 2: In server systems
q Different users’ jobs consolidated onto the same server
q Need to provide bounded slowdowns to critical jobs

179

Our Goal: Predictable performance
in the presence of memory interference

Outline

180

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown

Outline

181

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Slowdown: Definition

182

Shared

Alone

 ePerformanc
 ePerformanc

 Slowdown =

Key Observation 1
For a memory bound application,

Performance µ Memory request service rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1No
rm

al
ize

d
Pe

rfo
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

183

Shared

Alone

 Rate ServiceRequest
 Rate ServiceRequest

Slowdown =
Shared

Alone

 ePerformanc
 ePerformanc

 Slowdown =

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

Key Observation 2
Request Service Rate Alone (RSRAlone) of an application can be

estimated by giving the application highest priority in
accessing memory

Highest priority à Little interference
(almost as if the application were run alone)

184

Key Observation 2

185

Request Buffer State
Main

Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State
Main

Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State
Main

Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

186

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest
)(RSR Rate ServiceRequest

Slowdown
SharedShared

AloneAlone
=

Key Observation 3
n Memory-bound application

187

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time
Req

Req

Req Req

Req Req

Key Observation 3
n Non-memory-bound application

188

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

aa-1

a

a-1

Shared

Alone

RSR
RSRa

Shared

Alone

RSR
RSR

) - (1 Slowdown aa +=

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

Outline

189

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Interval Based Operation

190

time

Interval

a

Estimate
slowdown

Interval

Estimate
slowdown

n Measure RSRShared,
n Estimate RSRAlone

an Measure RSRShared,
n Estimate RSRAlone

Measuring RSRShared and α
n Request Service Rate Shared (RSRShared)

q Per-core counter to track number of requests serviced
q At the end of each interval, measure

n Memory Phase Fraction ()
q Count number of stall cycles at the core
q Compute fraction of cycles stalled for memory

Length Interval
Serviced Requests ofNumber

 RSRShared =

α

191

Estimating Request Service Rate Alone (RSRAlone)

n Divide each interval into shorter epochs

n At the beginning of each epoch
q Memory controller randomly picks an application as the

highest priority application

n At the end of an interval, for each application, estimate

PriorityHigh Given n Applicatio Cycles ofNumber
EpochsPriority High During Requests ofNumber RSR

Alone =

192

Goal: Estimate RSRAlone

How: Periodically give each application
highest priority in accessing memory

Inaccuracy in Estimating RSRAlone

193

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

n When an application has highest priority
q Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Time units Service order

Main
Memory

123

Interference Cycles

High Priority

Main
Memory

Time units Service order

Main
Memory

123
Request Buffer

State

Accounting for Interference in RSRAlone Estimation

n Solution: Determine and remove interference cycles from
RSRAlone calculation

n A cycle is an interference cycle if
q a request from the highest priority application is

waiting in the request buffer and
q another application’s request was issued previously

194

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber
EpochsPriority High During Requests ofNumber RSR

Alone =

Outline

195

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

MISE Model: Putting it All Together

196

time

Interval

a

Estimate
slowdown

Interval

Estimate
slowdown

n Measure RSRShared,
n Estimate RSRAlone

an Measure RSRShared,
n Estimate RSRAlone

Outline

197

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Previous Work on Slowdown Estimation
n Previous work on slowdown estimation

q STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]

q FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

q Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

n Basic Idea:

198

Shared

Alone

 Time Stall
 Time Stall

 Slowdown =

Hard

Easy

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

n Advantage 1:
q STFM estimates alone performance while an

application is receiving interference à Hard
q MISE estimates alone performance while giving an

application the highest priority à Easier

n Advantage 2:
q STFM does not take into account compute phase for

non-memory-bound applications
q MISE accounts for compute phase à Better accuracy

199

Methodology
n Configuration of our simulated system

q 4 cores
q 1 channel, 8 banks/channel
q DDR3 1066 DRAM
q 512 KB private cache/core

n Workloads
q SPEC CPU2006
q 300 multi programmed workloads

200

Quantitative Comparison

201

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Sl
ow

do
w

n

Million Cycles

Actual
STFM
MISE

SPEC CPU 2006 application
leslie3d

Comparison to STFM

202

cactusADM

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

0

1

2

3

4

0 50 100
Sl
ow
do
w
n

GemsFDTD

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

soplex

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

wrf

0

1

2

3

4

0 50 100

Sl
ow
do
w
n

calculix

0

1

2

3

4

0 50 100
Sl
ow
do
w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

Outline

203

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Providing “Soft” Slowdown Guarantees
n Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

n Basic Idea
q Allocate just enough bandwidth to QoS-critical

application
q Assign remaining bandwidth to other applications

204

MISE-QoS: Mechanism to Provide Soft QoS

n Assign an initial bandwidth allocation to QoS-critical application
n Estimate slowdown of QoS-critical application using the MISE

model
n After every N intervals

q If slowdown > bound B +/- ε, increase bandwidth allocation
q If slowdown < bound B +/- ε, decrease bandwidth allocation

n When slowdown bound not met for N intervals
q Notify the OS so it can migrate/de-schedule jobs

205

Methodology
n Each application (25 applications in total) considered the

QoS-critical application
n Run with 12 sets of co-runners of different memory

intensities
n Total of 300 multiprogrammed workloads
n Each workload run with 10 slowdown bound values
n Baseline memory scheduling mechanism

q Always prioritize QoS-critical application
[Iyer+, SIGMETRICS 2007]

q Other applications’ requests scheduled in FRFCFS order
[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

206

A Look at One Workload

207

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

Sl
ow
do
w
n AlwaysPrioritize

MISE-QoS-10/1
MISE-QoS-10/3
MISE-QoS-10/5
MISE-QoS-10/7
MISE-QoS-10/9

QoS-critical non-QoS-critical

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications

Slowdown Bound = 10 Slowdown Bound = 3.33 Slowdown Bound = 2

Effectiveness of MISE in Enforcing QoS

208

Predicted
Met

Predicted
Not Met

QoS Bound
Met 78.8% 2.1%

QoS Bound
Not Met 2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
ar

m
on

ic
 S

pe
ed

up

Number of Memory Intensive Applications

AlwaysPrioritize
MISE-QoS-10/1
MISE-QoS-10/3
MISE-QoS-10/5
MISE-QoS-10/7
MISE-QoS-10/9

209

Higher performance when bound is looseWhen slowdown bound is 10/3
MISE-QoS improves system performance by 10%

Outline

210

1. Estimate Slowdown
q Key Observations
q Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Other Results in the Paper
n Sensitivity to model parameters

q Robust across different values of model parameters

n Comparison of STFM and MISE models in enforcing soft
slowdown guarantees
q MISE significantly more effective in enforcing guarantees

n Minimizing maximum slowdown
q MISE improves fairness across several system configurations

211

Summary
n Uncontrolled memory interference slows down

applications unpredictably
n Goal: Estimate and control slowdowns
n Key contribution

q MISE: An accurate slowdown estimation model
q Average error of MISE: 8.2%

n Key Idea
q Request Service Rate is a proxy for performance
q Request Service Rate Alone estimated by giving an application highest

priority in accessing memory
n Leverage slowdown estimates to control slowdowns

q Providing soft slowdown guarantees
q Minimizing maximum slowdown

212

MISE: Pros and Cons

n Upsides:
q Simple new insight to estimate slowdown
q Much more accurate slowdown estimations than prior

techniques (STFM, FST)
q Enables a number of QoS mechanisms that can use slowdown

estimates to satisfy performance requirements

n Downsides:
q Slowdown estimation is not perfect - there are still errors
q Does not take into account caches and other shared resources

in slowdown estimation

213

More on MISE
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

214

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending MISE to Shared Caches: ASM
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture

(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

215

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Computer Architecture
Lecture 13: Memory Controllers II:

Performance & Service Quality

Prof. Onur Mutlu
ETH Zürich
Fall 2021

11 November 2021

Other Ways of
Handling Memory Interference

Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

218

Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q QoS-aware memory controllers
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
q Source throttling to control access to memory system
q QoS-aware data mapping to memory controllers
q QoS-aware thread scheduling to cores

219

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”

44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels

221

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

222

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

223

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

n Goal
q Eliminate harmful interference between applications

n Basic Idea
q Map the data of badly-interfering applications to different

channels

n Key Principles
q Separate low and high memory-intensity applications
q Separate low and high row-buffer locality applications

224Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low

memory-intensity applications in shared memory channels

225

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

226

High row-buffer locality applications interfere with low
row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

227

Hardware

System
Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Interval Based Operation

228

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Observations

n Applications with very low memory-intensity rarely
access memory
à Dedicating channels to them results in precious
memory bandwidth waste

n They have the most potential to keep their cores busy
à We would really like to prioritize them

n They interfere minimally with other applications
à Prioritizing them does not hurt others

229

Integrated Memory Partitioning and Scheduling (IMPS)

n Always prioritize very low memory-intensity
applications in the memory scheduler

n Use memory channel partitioning to mitigate
interference between other applications

230Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Hardware Cost
n Memory Channel Partitioning (MCP)

q Only profiling counters in hardware
q No modifications to memory scheduling logic
q 1.5 KB storage cost for a 24-core, 4-channel system

n Integrated Memory Partitioning and Scheduling (IMPS)
q A single bit per request
q Scheduler prioritizes based on this single bit

231Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Performance of Channel Partitioning

232

1%

5%

0.9

0.95

1

1.05

1.1

1.15
No

rm
al

ize
d

Sy
st

em
 P

er
fo

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

An Example of Bad Channel Partitioning

233

Combining Multiple Interference Control Techniques

n Combined interference control techniques can mitigate
interference much more than a single technique alone can
do

n The key challenge is:
q Deciding what technique to apply when
q Partitioning work appropriately between software and

hardware

234

MCP and IMPS: Pros and Cons

n Upsides:
q Keeps the memory scheduling hardware simple
q Combines multiple interference reduction techniques
q Can provide performance isolation across applications mapped

to different channels
q General idea of partitioning can be extended to smaller

granularities in the memory hierarchy: banks, subarrays, etc.

n Downsides:
q Reacting is difficult if workload changes behavior after

profiling
q Overhead of moving pages between channels restricts benefits

235

More on Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

236https://www.youtube.com/watch?v=yEYEzFwAY9g

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
https://www.youtube.com/watch?v=yEYEzFwAY9g

Fundamental Interference Control Techniques

n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

237

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:///Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip BoundaryOn-chip
Off-chip

239

The Problem with “Smart Resources”

n Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

n Explicitly coordinating mechanisms for different
resources requires complex implementation

n How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

240

Source Throttling: A Fairness Substrate

n Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

241

Fairness via Source Throttling (FST)

n Two components (interval-based)

n Run-time unfairness evaluation (in hardware)
q Dynamically estimates the unfairness (application slowdowns)

in the memory system
q Estimates which application is slowing down which other

n Dynamic request throttling (hardware or software)
q Adjusts how aggressively each core makes requests to the

shared resources
q Throttles down request rates of cores causing unfairness

n Limit miss buffers, limit injection rate

242

243

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)
2-Throttle up App-slowest

}

FST
Unfairness Estimate

App-slowest
App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Dynamic Request Throttling
n Goal: Adjust how aggressively each core makes requests to

the shared memory system

n Mechanisms:
q Miss Status Holding Register (MSHR) quota

n Controls the number of concurrent requests accessing shared
resources from each application

q Request injection frequency
n Controls how often memory requests are issued to the last level

cache from the MSHRs

244

Dynamic Request Throttling
n Throttling level assigned to each core determines both

MSHR quota and request injection rate

245

Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128

System Software Support

n Different fairness objectives can be configured by
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) =

Estimated Slowdown(i) x Weight(i)

246

Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone
provides the best performance

n Combined approaches are even more powerful
q Source throttling and resource-based interference control

247

Source Throttling: Ups and Downs
n Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize

à throughput loss due to too much throttling
à can be difficult to find an overall-good configuration

248

More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

249

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

250

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference

(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

251

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each

other to be scheduled together on cores sharing the memory
system

252

Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the

controller

253

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

254

Many-Core On-Chip Communication

255

Memory
Controller

Shared
Cache Bank$

$

Light

Heavy

Applications

Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
256

Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications?

How to reduce communication distance?

257

How to prioritize applications to improve throughput?

Application-to-Core Mapping

258

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

Step 1 — Clustering

259

Inefficient data mapping to memory and caches

Memory
Controller

Step 1 — Clustering

Improved Locality

260

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p
BASE BASE+CLS A2C

261

System performance improves by 17%

Network Power

262

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 N
oC

 P
ow

er

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

263

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling
n An example from scheduling in compute clusters (data

centers)
n Data centers can be running virtual machines

264

Virtualized Cluster

265

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically
schedule VMs onto

hosts?

Distributed Resource Management
(DRM) policies

Conventional DRM Policies

266

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory Capacity

CPU

Based on operating-system-level metrics
e.g., CPU utilization, memory capacity
demand

Microarchitecture-level Interference

267

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App
• VMs within a host compete for:
– Shared cache capacity
– Shared memory bandwidth

Can operating-system-level metrics capture the
microarchitecture-level resource interference?

Microarchitecture Unawareness

268

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level metrics

CPU Utilization Memory Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level metrics

LLC Hit Ratio Memory Bandwidth

2% 2267 MB/s

98% 1 MB/s

VM

App

Memory Capacity

CPU

Impact on Performance

269

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU SWAP

Impact on Performance

270

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU

We need microarchitecture-
level interference awareness in

DRM!

A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level
shared resource interference
– Shared cache capacity
– Shared memory bandwidth

• Key Idea:
– Monitor and detect microarchitecture-level shared

resource interference
– Balance microarchitecture-level resource usage across

cluster to minimize memory interference while
maximizing system performance

271

A-DRM: Architecture-aware DRM

272

OS+Hypervisor

VM

App

VM

App

A-DRM: Global Architecture –
aware Resource Manager

Profiling Engine

Architecture-aware
Interference Detector

Architecture-aware
Distributed Resource
Management (Policy)

Migration Engine

Hosts Controller

CPU/Memory
Capacity

Profiler

Architectural
Resource

•••

Architectural
Resources

More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

273

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)
+ Less intrusive to hardware (less need to modify the hardware
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads and data between cores and
machines
-- Does not work (well) if all threads are similar and they
interfere

274

Summary

275

Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?
276

Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective at reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling,
memory partitioning
q All approaches are effective at reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

277

Summary: Memory Interference and QoS

n QoS-unaware memory à
uncontrollable and unpredictable system

n Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques
and closing the interaction with software

278

What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n DRAM designs to reduce interference
n Interference issues in near-memory processing
n …

279

What the Future May Bring

n Memory QoS techniques for heterogeneous SoC systems
q Many accelerators, processing in/near memory, better

predictability, higher performance

n Combinations of memory QoS/performance techniques
q E.g., data mapping and scheduling

n Fundamentally more intelligent designs that use machine
learning

n Real prototypes

280

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

281

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

282

https://github.com/CMU-SAFARI/SoftMC

