Computer Architecture
Lecture 17a: Emerging Memory
Technologies 11

Prof. Onur Mutlu
ETH Zurich
Fall 2021
25 November 2021

Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory oL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS 2009]) w R
Prototyped at 20nm (Raoux+, IBM JRD 2008) M vV
Expected to be denser than DRAM: can store multiple bits/cell

PCM

Q
Q
Q
Q

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?

SAFARI 2

Solution 2: Emerging Memory Technologies

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA'09, CACM’10, IEEE Micro’10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

Yu+, “"Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
Tavakkol+, "MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,” FAST 2018.
Tavakkol+, “FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives,” ISCA 2018.

Sadrosadati+. “LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Software Cooperative Register Prefetching,”
ASPLOS 2018.

Salkhordeh+, “An Analytical Model for Performance and Lifetime Estimation of Hybrid DRAM-NVM Main Memories,” TC 2019.
Wang+, "Panthera: Holistic Memory Management for Big Data Processing over Hybrid Memories,” PLDI 2019.

Song+, “Enabling and Exploiting Partition-Level Parallelism (PALP) in Phase Change Memories,” CASES 2019.

Liu+, "Binary Star: Coordinated Reliability in Heterogeneous Memory Systems for High Performance and Scalability,” MICRO'19.
Song+, “Improving Phase Change Memory Performance with Data Content Aware Access,” ISMM 2020.

Yavits+, "WoLFRaM: Enhancing Wear-Leveling and Fault Tolerance in Resistive Memories using Programmable Address
Decoders,” ICCD 2020.

Song+, “Aging-Aware Request Scheduling for Non-Volatile Main Memory,” ASP-DAC 2021.

SAFARI 3

Intel Optane Persistent Memory (2019)

= Non-volatile main memory
= Based on 3D-XPoint Technology

It TI M ol T

Assembled in Ylmlﬂ& t
5089-A2-1840-00000209
NMA1XBD128GQS

v~

. A
%]ZBGB Tous
8172665 J26180.90%8
Warranty Void If Label Re od

SAFARI https://www.storagereview.com/intel optane dc persistent memory module pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

PCM as Main Memory: Idea in 2009

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)
One of the 13 computer architecture papers of 2009 selected as Top
Picks by IEEFE Micro.
Selected as a CACM Research Highlight.

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Lee; Engin Ipeki Onur Mutlu: Doug Burgers

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu

SAFARI 5

https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
https://people.inf.ethz.ch/omutlu/pub/lee_isca09_talk.pdf

PCM as Main Memory: Idea in 2009

Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,

"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS) Vol. 30, No. 1,
pages 60-70, January/February 2010.

PHASE-CHANGE TECHNOLOGY AND THE
FUTURE OF MAIN MEMORY

SAFARI 6

https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

More on PCM Based Main Memory

HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu,
"Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-
Change Memories"

ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
December 2014. [Slides (ppt) (pdf)]

Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January 2015.
[Slides (ppt) (pdf)]

Best (student) presentation award.

Efficient Data Mapping and Buffering Techniques for Multilevel Cell
Phase-Change Memories

HANBIN YOON" and JUSTIN MEZA, Carnegie Mellon University
NAVEEN MURALIMANOHAR, Hewlett-Packard Labs

NORMAN P. JOUPP|**, Google Inc.

ONUR MUTLU, Carnegie Mellon University

SAFARI /

https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

More on STT-MRAM as Main Memory

= Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative”
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative

Emre Kiiltiirsay*, Mahmut Kandemir*, Anand Sivasubramaniam*, and Onur Mutluf
*The Pennsylvania State University and TCamegie Mellon University

SAFARI 8

http://users.ece.cmu.edu/~omutlu/pub/sttram_ispass13.pdf
http://www.ispass.org/ispass2013/
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pdf

Hybrid Main Memory

A More Viable Approach: Hybrid Memory Systems

CPU
DRAM PCM
CtrI Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI

Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies

SAFARI

Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable

Memory Systems

SAFARI

12

Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?

SAFARI 13

Data Placement in Hybrid Memory

Memory Controllers

Channel A IDLE|Channel B

Memory A
(Fast, Small)

Memory B
(Large, Slow)

Which memory do we place each page in,
to maximize system performance?

= Memory A is fast, but small
= Load should be balanced on both channels?

= Page migrations have performance and energy overhead
SAFARI 14

Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

SAFARI 15

Key Observation & Idea

e Row buffers exist in both DRAM and PCM

— Row hit latency similar in DRAM & PCM [Lee+ ISCA'09]
— Row miss latency small in DRAM, large in PCM

 Place data in DRAM which

— is likely to miss in the row buffer (low row buffer
locality)=> miss penalty is smaller in DRAM

AND

— is reused many times = cache only the data

worth the movement cost and DRAM space
16

Hybrid vs. All-PCM/DRAM [iccp’12]

S
o0

m16GB PCM BRBLA-Dyn 0©O16GB DRAM

131%

1.2

[
|

=
oo
|

<
@)
|

ed Max. Slowdown

31% better performance than all PCM,

within 29% of all DRAM performance

Normalized Weighted

=
S

i

Z

O _

1B

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.

More on Hybrid Memory Data Placement

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,
and Onur Mutluy,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories"
Proceedings of the 30th IEEE International Conference on Computer
Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides
(pptx) (pdf)
Best paper award (in Computer Systems and Applications
track).

Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur} @cmu.edu, rhardin@mit.edu

SAFARI 18

https://people.inf.ethz.ch/omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pdf

Weaknesses of Existing Solutions

= They are all heuristics that consider only a /imited part of
memory access behavior

= Do not direct/y capture the overall system
performance impact of data placement decisions

= Example: None capture memory-level parallelism (MLP)

o Number of concurrent memory requests from the same
application when a page is accessed

o Affects how much page migration helps performance

SAFARI 19

Importance of Memory-Level Parallelism

Before migration:

Before migration:

1
|
|

requests to Page 1 (Mem. B | requests to Page 2(Mem. B)
| !
|
|

requests to Page 3(Mem. B j
| |

————————————————————— r--' i R R R R R

After migration: :
|

requests to Page 2 :

|

requests to Page 1 GV RVAN

I
T requests to Page 3 Mem. B E
. — (>
fime Migrating one page time Must migrate two pages

reduces stall time by T . to reduce stall time by T:
migrating one page alone
does not help

Page migration decisions need to consider MLP

Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory

SAFARI 21

Utility-Based Hybrid Memory Management

A memory manager that works for any hybrid memory
o e.g., DRAM-NVM, DRAM-RLDRAM

Key Idea

o For each page, use comprehensive characteristics to

calculate estimated wtility (i.e., performance impact)
of migrating page from one memory to the other in the

system

o Migrate only pages with the highest utility
(i.e., pages that improve system performance the most

when migrated)

Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
SAFARI 22

Key Mechanisms of UH-MEM

For each page, estimate utility using a performance model

a Application stall time reduction

How much would migrating a page benefit the performance of the
application that the page belongs to?

o Application performance sensitivity

How much does the improvement of a single application’s
performance increase the overal/ system performance?

Utility = AStallTime;XSensitivity;

Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

Periodically adjust migration threshold

SAFARI 23

Results: System Performance

BALL OFREQ ORBLA mUH-MEM

—_ = = =
AN @ 2 @) IR N
. 1
b |
B
~ i
5

Normalized
Weighted Speedup

O = = = =

© O~ N W.:
|

0% 25% 50% 75% 100%
Workload Memory Intensity Category

UH-MEM improves system performance

over the best state-of-the-art hybrid memory manager

SAFARI 24

Results: Sensitivity to Slow Memory Latency

= We vary tp-p and ty,r of the slow memory
2 g ALL OFREQ ©RBLA mUH-MEM

3 _4 __§2/_9_I_ _____6_(_’[91 __

3.0
2.6 1| | [l I - W W) N
2.2

5 11

trep: X3.0 x4.0 x4.5 x6.0 X7.5
twr: X3.0 x4.0 x12 X16 x20

Slow Memory Latency Multiplier

Weighted Speedup
|

UH-MEM improves system performance

for a wide variety of hybrid memory systems

More on UH-MEM

Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutluy,

"Utility-Based Hybrid Memory Management”

Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.

[Slides (pptx) (pdf)]

Utility-Based Hybrid Memory Management

Yang Li' Saugata Ghose! Jongmoo Choi? Jin Sun' Hui Wang* Onur Mutlu™ T
[Carnegie Mellon University t Dankook University *Beihang University TETH Ziirich

SAFARI 26

https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17.pdf
https://cluster17.github.io/
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pdf

Challenge and Opportunity

Enabling
an Emerging Technology
to Augment DRAM

Managing Hybrid Memories

SAFARI

Another Challenge

Designing Effective
Large (DRAM) Caches

SAFARI

One Problem with Large DRAM Caches

= A large DRAM cache requires a large metadata (tag +
block-based information) store

= How do we design an efficient DRAM cache?

Metadata:
X 2 DRAM

N

Access X

SAFARI 29

Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

€ DRAM row >

Cache block 0 [Cache block 1 \ Cache block 2 ng Tig ng

Benefit: No on-chip tag storage overhead
Downsides:

o Cache hit determined only after a DRAM access
a Cache hit requires two DRAM accesses

SAFARI 30

Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small

SAFARI

31

Idea 3: Dynamic Data Transfer Granularity

Some applications benefit from caching more data
o They have good spatial locality

Others do not
o Large granularity wastes bandwidth and reduces cache utilization

Idea 3: Simple dynamic caching granularity policy
o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Different sampled row sets follow different fixed caching
granularities

o The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum

SAFARI 32

TIMBER Performance

SRAM

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and

Reduced channel
contention and
improved spatial locality

Region

TIM

TIMBER

TIMBER-Dyn

33

Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

TIMBER Energy Efficiency

o
00

Fewer migrations reduce
transmitted data and
channel contention

o
»

Normalized Performance per Watt
(for Memory System)
o o
N o))

SRAM Region TIM TIMBER TIMBER-Dyn

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

34

On Large DRAM Cache Design

Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,

"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza* Jichuan Chang’ HanBin Yoon® Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University tHewlett-Packard Labs
{meza, hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com

SAFARI 35

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs - We assume perfect way
prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use
different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

| Scheme || DRAM CacheHit | DRAM CacheMiss || Replacement Traffic | Replacement Decision | Large Page Caching |
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec. data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,
frequency based

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

SAFARI

36

Banshee [MICRO 2017]

= Tracks presence in cache using TLB and Page Table
o No tag store needed for DRAM cache
o Enabled by a new lightweight lazy TLB coherence protocol

= New bandwidth-aware frequency-based replacement policy

2.0

Norm. Speedup
> o

=
o

0.0

SAFARK.

o=@ PBanshee

o=p Alloy

E=E TDC

¥=i(Unison
|1 00%| 66% 50%

DRAM Cache Latency

20t

Norm. Speedup

o
&

o
o

—
&)}

—
o

| a=n Alloy

o=@ Banshee

/i

E=m TDC
=3¢ Unison

8X 14X] 2X
DRAM Cache Bandwidth 37

More on Banshee

Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,

"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu' Christopher J. Hughes® Nadathur Satish® Onur Mutlu® Srinivas Devadas!
'MIT “Intel Labs ETH Zirich

SAFARI 38

https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

= Merging of memory and storage
o e.g., a single interface to manage all data

= New applications
o e.g., ultra-fast checkpoint and restore

= More robust system design
o e.g., reducing data loss

= |Processing tightly-coupled with memory

o e.dg., enabling efficient search and filtering

SAFARI 3

Recall: Processing Using Memory

In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

SAFARI H

In-DRAM Bulk Bitwise AND/OR

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. GibbonsT, Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI 42

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Ambit: Bulk-Bitwise in-DRAM Computation

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,

'Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using

Commodity DRAM Technology"
Proceedings of the 50th International Symposium on

Microarchitecture (MICRO), Boston, MA, USA, October 2017,
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*® Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu*® Phillip B. Gibbons® Todd C. Mowry”

!Microsoft Research India 2NVIDIA Research 3Intel ZETH Ziirich °Carnegie Mellon University

SAFARI 3

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

In-DRAM Bulk Bitwise Execution Paradigm

Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich

visesha@microsoft.com onur .mutlu@inf.ethz.ch

SAFARI 4

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

SIMDRAM Framework for in-DRAM Computing

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!-? *Geraldo F. Oliveira' Sven Gregorio' Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®
Juan Gémez-Luna! Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of lllinois at Urbana—Champaign

SAFARI +

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Lecture on RowClone & Processing using DRAM

Mindset: Memory as an Accelerator

mini-CPU! ' GPU GPU :
CPU CPU core | bnroughput] khroughput) :
video
core
cPU cPU] el
; : : [throughput)| Kthroughput)| :
core core e MG core |} Memory
LLC
X Specialized
Memory Controller compute-capability
in memory.

Memory Bus

<« p» »l 43.4sl /20348 L2 imilar to a “co entional” accelerator n» 0 é] O o2

LJd

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Arch. - Meeting 3: RowClone: In-Memory Data Copy and Initialization (Fall 2021)

292 views * Streamed live on Oct 7, 2021 e 21 GP 0 > SHARE =+ SAVE
@ Onur Mutlu.Lectures SUBSCRIBED l‘\
&> 19.1K subscribers ©

https://www.youtube.com/watch?v=n6Pwalgax E&list=PL502s0XY2Zi 7UBNmMCOB8Yr5ISWTGOyH4&index=4 40

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

Lecture on Processing using Memory (I)

Key Ildea and Applications

* Low-cost Inter-linked subarrays (LISA)

— Fast bulk data movement between subarrays
— Wide datapath via isolation transistors: 0.8% DRAM chip area

Subarray |

AL AL - AL AL

Subarray 2
* LISA is a versatile substrate — new applications
Fast bulk data copy: Copy latency 1.363ms—0.148ms (9.2x)
— 66% speedup, -55% DRAM energy
In-DRAM caching: Hot data access latency 48.7ns—21.5ns (2.2x)
— 5% speedup
Fast precharge: Precharge latency 13.1ns—5.0ns (2.6x)

Jup

© ETH ZURICH D-ITET
Computer Architecture - Lecture 6: Processing using Memory (Fall 2021)

802 views * Streamed live on Oct 15, 2021

e Onur Mutlu Lectures ANALYTICS EDIT VIDEO

N 19.9K subscribers
>

https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL50Q2s0XY2Zi-Mnk1PxjEIG32HAGILKTOF&index=6

e 28 CJ 0 > SHARE =+ SAVE

47

https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6

Lecture on Processing using Memory (11)

ETHzirich SAFRIM

In-DRAM NOT Operation

0 =———7T"3Vop] =7 2Vpp +6 R s o 1VDD
source | I = M e source I I 1 H e source l I S A source I} =l
g o A - e
pcc - DCC DCC rLI”‘ DCC

| e - e

IIT‘ e

T . f

Ly 2] 3] o
0 Wop 0 0

Initial State After Charge Sharing Activated d-wordline Activated n-wordline

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MiCRO 2017.

Computer Architecture - Lecture 7: Processing using Memory Il (Fall 2021)

630 views + Streamed live on Oct 21, 2021 e 30 GP 0) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
& 19.9K subscribers

https: //www.youtube.com/watch?v=k56x2gcaXWY&list=PL502s0XY2Zi-Mnk1PxiEIG32HAGILKTOF&index=7 43

https://www.youtube.com/watch?v=k56x2qcaXWY&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=7

Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou**, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?, Qualcomm Inc.*, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’

SAFARI https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf 49

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

All data via the
Narrow DDR bus

D &,

Row-ADR

Operand Row 1
\\ Operand Row 2 Operand Row 1
1 . Operand Row 2
\] OpolRia Rowi { Operand Row n
Result Row Result Row <

VM-based Main Memory
(a) Conventional Approach (b) Pinatubo

Figure 2: Overview: (a) Computing-centric ap-

proach, moving tons of data to CPU and write back.

(b) The proposed Pinatubo architecture, performs

n-row bitwise operations inside NVM in one step.

SAFARI https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf 50

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

New: In-Memory
Crossbar Array Operations

In-Memory Crossbar Array Operations

= Some emerging NVM technologies have crossbar array
structure

o Memristors, resistive RAM, phase change mem, STT-MRAM, ...

= Crossbar arrays can be used to perform dot product
operations using “analog computation capability”

o Can operate on multiple pieces of data using Kirchoff's laws
= Bitline current is a sum of products of wordline V x (1 / cell R)
o Computation is in analog domain inside the crossbar array

= Need peripheral circuitry for D->A and A->D conversion of
inputs and outputs

SAFARI >2

In-Memory Crossbar Computation

—DAC 0\/’4\.

—DAC

]
R
R
N

V1

\

11 =V1.G1

V2
G2

12 =V2.G}

-DAC

|=11+12= AIIZ)C
(a) Multiply-Accumulate operation (b) Vector-Matrix Multiplier

Fig. 1. (a) Using a bitline to perform an analog sum of products operation.
(b) A memristor crossbar used as a vector-matrix multiplier.

SA FAR' Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator 53
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

In-Memory Crossbar Computation

b5eH

I — K TYAR o Y 7k
V2

N %
i G (A .

T 'FIEI_HWI'&_HWIH' _
MART SN Fg il
A O i,

V,”— w‘lvlllh T A
AT AR

(|

(01 O2 O3 04)

SAFARI

Required Peripheral Circuitry

DAC: Digital to Analog
ADC: Analog to Digital
S&H: Sample and Hold
Shift and add: used to summarize the final output

Digital

SAFARI

An Example of 2D Convolution

Output feature map

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
Input feature map - Kernel) / Stride + 1

SAFARI

Mapping Computation onto the Crossbar

Input Kernel Output
64 64
A convolution q,‘\?‘
)) Padding: 2 64
operation in o
64 Stride: 1 A N
neural network P N
application 3 /“"“‘3
N
....... 1224:‘224
—(A NVM cell
_ © :
An NVM-based S \ A weight value
PIM array Il
q--
o
g — PIM Array
™

SAFARI

An Overview of NVM-Based PIM System

T (T
. Normal memory Private
Memory interconnects data ports
Subarrays

Memory
Controller LR % . . :‘
- -V o -
: Buffer Subarrays| | .- sti|eo > =
c i g = -
: 0000000000000 = g 2w . . b
B | i EE||=ES o
NVM- Processing S E S= 2
DRAM || based Subarrays =12 . . 5
pm . - =

NVM-based PIM array:

core processing unit for vector-matrix multiplication
Non-linear function array:

processing unit for non-linear functions (e.g., ReLU operations in neural networks)
Multiplier array:

handles element-wise operations

SAFARI

Example Readings on NVM-Based PIM

= Shafiee+, "ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

= Chi+, "PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory”,
ISCA 2016.

= Prezioso+, “Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors”,
Nature 2015

= Ambrogio+, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature 2018.

SAFARI

59

Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 60

TWO-LEVEL STORAGE MODEL

5

2 [Al VOLATILE
FAST

) i BYTE ADDR
NONVOLATILE

S SLOW

. BLOCK ADDR

61

TWO-LEVEL STORAGE MODEL

>
o
O

VOLATILE

FAST
BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

MEMORY

STORAGE

Non-volatile memories combine

characteristics of memory and storage

Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

__ Two-Level Store
Load/Store __ fopgh, fread, fwrite, ...

Processor
and caches

........
........
........

TR Persistent (e:g- Phase-Change)
Main Memory Storegeot$SD/HDD)

SAFARI 63

Unified Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager !
Processor
and caches

Load/Store Feedback

i 1
Persistent (e.g., Phase-Change) Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 64
Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

P ',.1!
ST BB T CTUTUTT
afnfitatimins! Wetiiputamtteorind titan i i

™
s 3

wn
<&
O -
D2
< 5

Provides an opportunity to manipulate
persistent data directly

65

The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRaM | Fiash | Nvm |[HDD]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

The Persistent Memory Manager (PMM)

= Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

= Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

67

Etticient Data Mapping among Heterogeneous Devices

A persistent memory exposes a large, persistent address space
o But it may use many different devices to satisfy this goal

o From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

o And other NVM devices in between

Performance and energy can benefit from good placement of

data among these devices

o Utilizing the strengths of each device and avoiding their weaknesses,
if possible

o For example, consider two important application characteristics:
locality and persistence

08

Etticient Data Mapping among Heterogeneous Devices

A
Less Locality

More Locality
Ve >
Temporary Persistent

69

Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

More Locality
Ve >
Temporary Persistent

70

Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

Frequently-updated index for a
Content Delivery Network (CDN)
- place in DRAM

More Locality X
Ve >
Temporary Persistent

Applications or system software can provide hints for data placement

71

Evaluated Systems

= HDD Baseline

o Traditional system with volatile DRAM memory and persistent HDD storage

o Overheads of operating system and file system code and buffering

= NVM Baseline (NB)

Q

Q

Same as HDD Baseline, but HDD is replaced with NVM
Still has OS/FS overheads of the two-level storage model

= Persistent Memory (PM)

Q

Q

Q

Uses only NVM (no DRAM) to ensure full-system persistence
All data accessed using loads and stores

Does not waste time on system calls

Data is manipulated directly on the NVM device

72

Performance Benefits of a Single-l.evel Store

M User CPU [User Memory B Syscall CPU [Syscall I/O

1.0 ~24X

£ 08 \

|_

5 \

i

B 04

\

S 0.2

= ~oX
0 e

HDD 2-level NVM 2-level Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 73
SAFARI Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

M User CPU [Syscall CPFU m DRAM [] NVM @ HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
SAFARI Storage and Memory,” WEED 2013.

74

On Persistent Memory Benetits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,

"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Enerqgy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza* Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University ~ 'Pennsylvania State University ~ *Intel Labs SAMD Research

SAFARI 7>

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage

SAFARI

Challenge and Opportunity

A Unified Interface to
All Data

SAFARI

Intel Optane Persistent Memory (2019)

= Non-volatile main memory
= Based on 3D-XPoint Technology

It TI M ol T

Assembled in Ylmlﬂ& t
5089-A2-1840-00000209
NMA1XBD128GQS

v~

. A
%]ZBGB Tous
8172665 J26180.90%8
Warranty Void If Label Re od

.
SAFARI https://www.storagereview.com/intel optane dc persistent memory module pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

H 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM LUPMEM UPMEM LIPMIEM UPMEM UPMEM
PiM PrinA PiM P PN P PIM
chip chip chi i ¢ hip chip chip

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 79
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 8

CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

inconsistent memory state

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (asposag, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

82

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (asposag, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

. =T T TS
Example Code

update a node in a persistent hash table

 ee—————————————————————————————————

vold hashtable update (hashtable t* ht,
~void *key, void *data)

{

list t* chain = get chain(ht, key);
palir t* pair; -
palr t updatePalr,

updaEePalr first = key;
palr = (palr t¥*) llSt find(chain,

&updatePair) ;
palr—->second = data;

CURRENT SOLUTIONS

vold TMhashtable update(TMARCGDECL
hashtable t* ht, void *key,

void*data) {
list t* chain = get chain(ht, key);
palir t* pair; -
palr t updatePair;
updatePair.first = key;
palr = (pair t*) TMLIST FIND (chain,
N supdatePair) ;

palr—->second = data;

CURRENT SOLUTIONS

Manual declaration of persistent components

void TIMhashtable update(TMARCGDECL

85

CURRENT SOLUTIONS

Manual declaration of persistent components

void TIMhashtable update(TMARCGDECL
get chain (ht, key)

Need a new implementation

86

CURRENT SOLUTIONS

Manual declaration of persistent components

void TIMhashtable update(TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

87

CURRENT SOLUTIONS

Manual declaration of persistent components

void TIMhashtable update(TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers

OUR APPROACH: ThyNVM

Goal:
Software transparent consistency in
persistent memory systems

Key ldea:
Periodically checkpoint state;
recover to previous checkpt on crash

89

ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency

2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

— —
Epoch 0 Epoch 1 ‘

Epoch O
Epoch 1
Epoch 2

More About ThyNVM

Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,

'ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"

Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]

[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*" Jishen Zhao* Samira Khan” Jongmoo Choi*" Yongwei Wu* Onur Mutlu®

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia *Dankook University

SAFARI)2

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI

Tools/Libraries to Help Programmers

Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,

"NVMove: Helping Programmers Move to Byte-Based
Persistence"

Proceedings of the 4th Workshop on Interactions of NVIM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.

[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware

SAFARI 74

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

Consistency Support for Persistent Memory

Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu,

"Loose-Ordering Consistency for Persistent Memory"
Proceedings of the 32nd IEEE International Conference on Computer
Design (ICCD), Seoul, South Korea, October 2014.

[Slides (pptx) (pdf)]

[Erratum]

Loose-Ordering Consistency for Persistent Memory

Youyou Lu T, Jiwu Shu T §, Long Sun T and Onur Mutlu ¥
TDepartment of Computer Science and Technology, Tsinghua University, Beijing, China
State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China
1:Computer Architecture Laboratory, Carnegie Mellon University, Pittsburgh, PA, USA
luyy(09 @mails.tsinghua.edu.cn, shujw @tsinghua.edu.cn, sun-112 @mails.tsinghua.edu.cn, onur @cmu.edu

SAFARI 75

https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_iccd14.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_lu_iccd14-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_lu_iccd14-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_iccd14-erratum.txt

Another Key Challenge in Persistent Memory

Security and
Data Privacy Issues

SAFARI

Security and Privacy Issues of NVM

Endurance problems - Wearout attacks

Hybrid memories = Performance attacks

Data not erased after power-off - Privacy breaches

SAFARI

97

Conclusion

98

The Future of Emerging Technologies is Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI 7

It In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
o for at least two decades

% FAPER Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Cai, Saucata GHosg, EricH F. HaratscH, Yixin Luo, anp ONUR MuTLU

ABSTRACT | wane flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems:; error recovery; fault
today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

SAFARI https:/ /arxiv.org/pdf/1706.08642 10

https://arxiv.org/pdf/1706.08642

Many Research & Design Opportunities

= Enabling completely persistent memory

= Computation in/fusing NVM based memories

= Hybrid memory systems

= Security and privacy issues in persistent memory
= Reliability and endurance related problems

= Virtual memory systems for NVM - virtual block interface

SAFARI 101

Computer Architecture

Lecture 17a: Emerging Memory
Technologies 11

Prof. Onur Mutlu
ETH Zurich
Fall 2021
25 November 2021

