
Computer Architecture
Lecture 17a: Emerging Memory

Technologies II

Prof. Onur Mutlu
ETH Zürich
Fall 2021

25 November 2021

Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?

2

Solution 2: Emerging Memory Technologies
n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
n Tavakkol+, “MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,” FAST 2018.
n Tavakkol+, “FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives,” ISCA 2018.
n Sadrosadati+. “LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Software Cooperative Register Prefetching,”

ASPLOS 2018.
n Salkhordeh+, “An Analytical Model for Performance and Lifetime Estimation of Hybrid DRAM-NVM Main Memories,” TC 2019.
n Wang+, “Panthera: Holistic Memory Management for Big Data Processing over Hybrid Memories,” PLDI 2019.
n Song+, “Enabling and Exploiting Partition-Level Parallelism (PALP) in Phase Change Memories,” CASES 2019.
n Liu+, “Binary Star: Coordinated Reliability in Heterogeneous Memory Systems for High Performance and Scalability,” MICRO’19.
n Song+, “Improving Phase Change Memory Performance with Data Content Aware Access,” ISMM 2020.
n Yavits+, “WoLFRaM: Enhancing Wear-Leveling and Fault Tolerance in Resistive Memories using Programmable Address

Decoders,” ICCD 2020.
n Song+, “Aging-Aware Request Scheduling for Non-Volatile Main Memory,” ASP-DAC 2021.

3

Intel Optane Persistent Memory (2019)

n Non-volatile main memory
n Based on 3D-XPoint Technology

4
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

PCM as Main Memory: Idea in 2009
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)
One of the 13 computer architecture papers of 2009 selected as Top
Picks by IEEE Micro.
Selected as a CACM Research Highlight.

5

https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
https://people.inf.ethz.ch/omutlu/pub/lee_isca09_talk.pdf

PCM as Main Memory: Idea in 2009
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

6

https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

More on PCM Based Main Memory
HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu,
"Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-
Change Memories"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
December 2014. [Slides (ppt) (pdf)]
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 2015.
[Slides (ppt) (pdf)]
Best (student) presentation award.

7

https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

More on STT-MRAM as Main Memory
n Emre Kultursay, Mahmut Kandemir, Anand

Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

8

http://users.ece.cmu.edu/~omutlu/pub/sttram_ispass13.pdf
http://www.ispass.org/ispass2013/
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pdf

Hybrid Main Memory

9

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies

11

Challenge and Opportunity

12

Heterogeneous,
Configurable,
Programmable

Memory Systems

Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative

n When to migrate data?

n How to design a scalable and efficient large cache?

n …

13

Data Placement in Hybrid Memory

n Memory A is fast, but small
n Load should be balanced on both channels?
n Page migrations have performance and energy overhead

14

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in,
to maximize system performance?

Cores/Caches

Memory Controllers

Data Placement Between DRAM and PCM
n Idea: Characterize data access patterns and guide data

placement in hybrid memory

n Streaming accesses: As fast in PCM as in DRAM

n Random accesses: Much faster in DRAM

n Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

n Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

15

Key Observation & Idea
• Row buffers exist in both DRAM and PCM
– Row hit latency similar in DRAM & PCM [Lee+ ISCA’09]

– Row miss latency small in DRAM, large in PCM

• Place data in DRAM which
– is likely to miss in the row buffer (low row buffer

locality)à miss penalty is smaller in DRAM
AND

– is reused many times à cache only the data
worth the movement cost and DRAM space

16

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31% better performance than all PCM,
within 29% of all DRAM performance

31%

29%

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.

More on Hybrid Memory Data Placement
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,

and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories"
Proceedings of the 30th IEEE International Conference on Computer
Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides
(pptx) (pdf)
Best paper award (in Computer Systems and Applications
track).

18

https://people.inf.ethz.ch/omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pdf

Weaknesses of Existing Solutions
n They are all heuristics that consider only a limited part of

memory access behavior

n Do not directly capture the overall system
performance impact of data placement decisions

n Example: None capture memory-level parallelism (MLP)
q Number of concurrent memory requests from the same

application when a page is accessed
q Affects how much page migration helps performance

19

Importance of Memory-Level Parallelism

20

requests to Page 1

requests to Page 3

requests to Page 1

requests to Page 3

time

Before migration:

After migration:

requests to Page 2

requests to Page 2

time

Before migration:

After migration:

Mem. B

Mem. B

Mem. A

Mem. A

Mem. B

Mem. A

T T

Migrating one page
reduces stall time by T

Must migrate two pages
to reduce stall time by T:
migrating one page alone

does not help

Mem. B

Page migration decisions need to consider MLP

Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory

21

Utility-Based Hybrid Memory Management
n A memory manager that works for any hybrid memory

q e.g., DRAM-NVM, DRAM-RLDRAM

n Key Idea
q For each page, use comprehensive characteristics to

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the
system

q Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

n Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
22

Key Mechanisms of UH-MEM
n For each page, estimate utility using a performance model

q Application stall time reduction
How much would migrating a page benefit the performance of the
application that the page belongs to?

q Application performance sensitivity
How much does the improvement of a single application’s
performance increase the overall system performance?

n Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

n Periodically adjust migration threshold

23

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = ∆𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒!×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦!

Results: System Performance

24

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0% 25% 50% 75% 100%

N
or

m
al

iz
ed

W
ei

gh
te

d
Sp

ee
du

p

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

14%

5%3%

9%

UH-MEM improves system performance
over the best state-of-the-art hybrid memory manager

Results: Sensitivity to Slow Memory Latency
n We vary 𝑡"#$ and 𝑡%" of the slow memory

25

1.8

2.2

2.6

3.0

3.4

3.8

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
ei

gh
te

d
Sp

ee
du

p

Slow Memory Latency Multiplier

ALL FREQ RBLA UH-MEM

13%13%

8% 6%
14%

UH-MEM improves system performance
for a wide variety of hybrid memory systems

𝑡!"#:
𝑡$!:

More on UH-MEM
n Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,

and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

26

https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17.pdf
https://cluster17.github.io/
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pdf

Challenge and Opportunity

Enabling
an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
27

Another Challenge

28

Designing Effective
Large (DRAM) Caches

One Problem with Large DRAM Caches
n A large DRAM cache requires a large metadata (tag +

block-based information) store
n How do we design an efficient DRAM cache?

29

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X à DRAM

X

Idea 1: Tags in Memory
n Store tags in the same row as data in DRAM

q Store metadata in same row as their data
q Data and metadata can be accessed together

n Benefit: No on-chip tag storage overhead
n Downsides:

q Cache hit determined only after a DRAM access
q Cache hit requires two DRAM accesses

30

Cache block 2Cache block 0 Cache block 1
DRAM row

Tag
0

Tag
1

Tag
2

Idea 2: Cache Tags in SRAM
n Recall Idea 1: Store all metadata in DRAM

q To reduce metadata storage overhead

n Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q Cache only a small amount to keep SRAM size small

31

Idea 3: Dynamic Data Transfer Granularity
n Some applications benefit from caching more data

q They have good spatial locality
n Others do not

q Large granularity wastes bandwidth and reduces cache utilization

n Idea 3: Simple dynamic caching granularity policy
q Cost-benefit analysis to determine best DRAM cache block size
q Group main memory into sets of rows
q Different sampled row sets follow different fixed caching

granularities
q The rest of main memory follows the best granularity

n Cost–benefit analysis: access latency versus number of cachings
n Performed every quantum

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

W
ei

gh
te

d
Sp

ee
du

p

33

TIMBER Performance

-6%

Reduced channel
contention and

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

0

0.2

0.4

0.6

0.8

1

1.2

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

 p
er

 W
at

t
(fo

r M
em

or
y

Sy
st

em
)

34

TIMBER Energy Efficiency

Fewer migrations reduce
transmitted data and
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

On Large DRAM Cache Design

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

35

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

36

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

Banshee [MICRO 2017]

n Tracks presence in cache using TLB and Page Table
q No tag store needed for DRAM cache
q Enabled by a new lightweight lazy TLB coherence protocol

n New bandwidth-aware frequency-based replacement policy

37

More on Banshee
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

38

https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering

39

Recall: Processing Using Memory

40

In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

41

In-DRAM Bulk Bitwise AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

42

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Ambit: Bulk-Bitwise in-DRAM Computation
n Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

43

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

In-DRAM Bulk Bitwise Execution Paradigm
n Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

44

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

SIMDRAM Framework for in-DRAM Computing
n Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

45

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Lecture on RowClone & Processing using DRAM

46https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

Lecture on Processing using Memory (I)

47https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6

https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6

Lecture on Processing using Memory (II)

48https://www.youtube.com/watch?v=k56x2qcaXWY&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=7

https://www.youtube.com/watch?v=k56x2qcaXWY&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=7

Pinatubo: RowClone and Bitwise Ops in PCM

49https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

50https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

New: In-Memory
Crossbar Array Operations

51

In-Memory Crossbar Array Operations
n Some emerging NVM technologies have crossbar array

structure
q Memristors, resistive RAM, phase change mem, STT-MRAM, …

n Crossbar arrays can be used to perform dot product
operations using “analog computation capability”
q Can operate on multiple pieces of data using Kirchoff’s laws

n Bitline current is a sum of products of wordline V x (1 / cell R)
q Computation is in analog domain inside the crossbar array

n Need peripheral circuitry for D->A and A->D conversion of
inputs and outputs

52

In-Memory Crossbar Computation

53Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

In-Memory Crossbar Computation

i1 i2 i3 i4()

w11 w12 w13w14

w24

w34

w44

w23

w33

w43

w22

w32

w42

w21

w31

w41

o1o2 o3 o4()=

w11 w12 w13 w14

w24

w34

w44

w23

w33

w43

w22

w32

w42

w21

w31

w41

i1

i2

i3

i4

o1 o2 o3 o4

Required Peripheral Circuitry

S&H S&H S&H S&H

Shift & Add

ADC

DAC

AnalogD
ig
ita
l

Digital
DAC: Digital to Analog
ADC: Analog to Digital
S&H: Sample and Hold
Shift and add: used to summarize the final output

An Example of 2D Convolution

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
- Kernel) / Stride + 1Input feature map

Output feature map

Mapping Computation onto the Crossbar

…

… ……

…
…

A NVM cell

A weight value

64

PIM Array

Padding: 2
Stride: 1

64

22
4
3
3

64
64

3
3

224

64

3*
3*
64
=5
76

224*224

A convolution
operation in
neural network
application

An NVM-based
PIM array

Input Kernel Output

An Overview of NVM-Based PIM System

NVM-based PIM array:
core processing unit for vector-matrix multiplication

Non-linear function array:
processing unit for non-linear functions (e.g., ReLU operations in neural networks)

Multiplier array:
handles element-wise operations

Example Readings on NVM-Based PIM

n Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

n Chi+, “PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory”,
ISCA 2016.

n Prezioso+, “Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors”,
Nature 2015

n Ambrogio+, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature 2018.

59

Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering

60

TWO-LEVEL STORAGE MODEL
CP

U
M

EM
O

RY
ST

O
RA

G
E

VOLATILE
FAST

BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

Ld/St

FILE
I/O

DRAM

61

TWO-LEVEL STORAGE MODEL
CP

U
M

EM
O

RY
ST

O
RA

G
E

VOLATILE
FAST

BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

Ld/St

FILE
I/O

DRAM

62

PCM, STT-RAM
NVM

Non-volatile memories combine
characteristics of memory and storage

Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

63

Two-Level Store

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well

64

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

CPU
PERSISTEN

T
M

EM
O

RY

Provides an opportunity to manipulate
persistent data directly

Ld/St

NVM

65

The Persistent Memory Manager (PMM)

66

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {

2 // data in file.dat is persistent
3 FILE myData = "file.dat";

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 FILE myData = "file.dat";

8 myData[n] = value; // value is persistent
9 }

1 int main(void) {

2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 int *myData = PersistentObject.open("file.dat");

8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

The Persistent Memory Manager (PMM)
n Exposes a load/store interface to access persistent data

q Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n Manages data placement, location, persistence, security
q To get the best of multiple forms of storage

n Manages metadata storage and retrieval
q This can lead to overheads that need to be managed

n Exposes hooks and interfaces for system software
q To enable better data placement and management decisions

n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

67

Efficient Data Mapping among Heterogeneous Devices

n A persistent memory exposes a large, persistent address space
q But it may use many different devices to satisfy this goal
q From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash
q And other NVM devices in between

n Performance and energy can benefit from good placement of
data among these devices
q Utilizing the strengths of each device and avoiding their weaknesses,

if possible
q For example, consider two important application characteristics:

locality and persistence

68

69

Efficient Data Mapping among Heterogeneous Devices

70

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

Efficient Data Mapping among Heterogeneous Devices

71

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

à place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applications or system software can provide hints for data placement

Evaluated Systems
n HDD Baseline

q Traditional system with volatile DRAM memory and persistent HDD storage
q Overheads of operating system and file system code and buffering

n NVM Baseline (NB)
q Same as HDD Baseline, but HDD is replaced with NVM
q Still has OS/FS overheads of the two-level storage model

n Persistent Memory (PM)
q Uses only NVM (no DRAM) to ensure full-system persistence
q All data accessed using loads and stores
q Does not waste time on system calls
q Data is manipulated directly on the NVM device

72

Performance Benefits of a Single-Level Store

73

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

74

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges

n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

75

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage

76

Challenge and Opportunity

77

A Unified Interface to
All Data

Intel Optane Persistent Memory (2019)

n Non-volatile main memory
n Based on 3D-XPoint Technology

78
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

UPMEM Processing-in-DRAM Engine (2019)

79

n Processing in DRAM Engine
n Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all
memory is persistent?

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it

n Many alternatives in-between…

80

CRASH CONSISTENCY PROBLEM

81

Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in
inconsistent memory state

CURRENT SOLUTIONS
Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
82

CURRENT SOLUTIONS

83

void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain,

&updatePair);
pair->second = data;

}

Example Code
update a node in a persistent hash table

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

CURRENT SOLUTIONS

84

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

CURRENT SOLUTIONS

85

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

CURRENT SOLUTIONS

86

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

CURRENT SOLUTIONS

87

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

CURRENT SOLUTIONS

88

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

Prohibited
Operation

Burden on the programmers

OUR APPROACH: ThyNVM

89

Goal:
Software transparent consistency in

persistent memory systems

Key Idea:
Periodically checkpoint state;

recover to previous checkpt on crash

ThyNVM: Summary

90

• Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

• Overlaps checkpointing and execution to
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM
with zero cost consistency

A new hardware-based
checkpointing mechanism

Running

time

Checkpointing Running Checkpointing

time

Epoch 0
Epoch 1

Epoch 2

Epoch 0 Epoch 1Running Checkpointing Running Checkpointing

Running Checkpointing

Epoch 0 Epoch 1

2. OVERLAPPING
CHECKPOINTING AND EXECUTION

More About ThyNVM

92

n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence

93

Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

94

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

Consistency Support for Persistent Memory
n Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu,

"Loose-Ordering Consistency for Persistent Memory"
Proceedings of the 32nd IEEE International Conference on Computer
Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]
[Erratum]

95

https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_iccd14.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_lu_iccd14-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_lu_iccd14-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/loose-ordering-consistency-for-persistent-memory_iccd14-erratum.txt

Another Key Challenge in Persistent Memory

Security and
Data Privacy Issues

96

Security and Privacy Issues of NVM

n Endurance problems à Wearout attacks

n Hybrid memories à Performance attacks

n Data not erased after power-off à Privacy breaches

97

Conclusion

98

The Future of Emerging Technologies is Bright

n Regardless of challenges
q in underlying technology and overlying problems/requirements

99

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, Refer to Flash Memory
n A very “doubtful” emerging technology

q for at least two decades

100https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

Many Research & Design Opportunities
n Enabling completely persistent memory

n Computation in/using NVM based memories

n Hybrid memory systems

n Security and privacy issues in persistent memory

n Reliability and endurance related problems

n Virtual memory systems for NVM à virtual block interface

n … 101

Computer Architecture
Lecture 17a: Emerging Memory

Technologies II

Prof. Onur Mutlu
ETH Zürich
Fall 2021

25 November 2021

