
Prof. Onur Mutlu
ETH Zürich
Fall 2021

25 November 2021

Computer Architecture
Lecture 17b:

Parallelism and Heterogeneity

Research Opportunities

2

Computer Architecture Research
n If you want to do research in any of the covered topics or any

topic in Comp Arch, HW/SW Interaction & related areas
q We have many projects and a great environment to perform top-

notch research, bachelor’s/master’s/semester projects
q So, talk with me (email, whatsapp, etc.) & apply online

n Many research topics and projects
q Memory (DRAM, NVM, Flash, software/hardware issues)
q Processing in Memory
q Hardware Security
q New Computing Paradigms
q Machine Learning for System Design
q System Design for AI/ML, Health, Genomics, Medicine
q …

3

Computer architecture, HW/SW, systems, bioinformatics, security

Graphics and Vision Processing

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Build fundamentally better architectures

Current Research Mission

Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency and Predictable Architectures

n Architectures for AI/ML, Genomics, Medicine, Health

5

The Transformation Hierarchy

6

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture
(narrow view)

Computer Architecture
(expanded view)

Current Research Mission & Major Topics

n Data-centric arch. for low energy & high perf.
q Proc. in Mem/DRAM, NVM, unified mem/storage

n Low-latency & predictable architectures
q Low-latency, low-energy yet low-cost memory
q QoS-aware and predictable memory systems

n Fundamentally secure/reliable/safe arch.
q Tolerating all bit flips; patchable HW; secure mem

n Architectures for ML/AI/Genomics/Graph/Med
q Algorithm/arch./logic co-design; full heterogeneity

n Data-driven and data-aware architectures
q ML/AI-driven architectural controllers and design
q Expressive memory and expressive systems

7

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Build fundamentally better architectures

Broad research
spanning apps, systems, logic
with architecture at the center

40+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/

SAFARI Newsletter January 2021 Edition
n https://safari.ethz.ch/safari-newsletter-january-2021/

9

https://safari.ethz.ch/safari-newsletter-january-2021/

SAFARI PhD and Post-Doc Alumni
n https://safari.ethz.ch/safari-alumni/

n Minesh Patel (ETH Zurich), MICRO 2020 and DSN 2020 Best Paper Awards; ISCA Hall of Fame 2021
n Damla Senol Cali (Bionano Genomics), SRC TECHCON 2019 Best Student Presentation Award
n Nastaran Hajinazar (ETH Zurich)
n Gagandeep Singh (ETH Zurich), FPL 2020 Best Paper Award Finalist
n Amirali Boroumand (Stanford Univ à Google), SRC TECHCON 2018 Best Student Presentation Award
n Jeremie Kim (ETH Zurich), EDAA Outstanding Dissertation Award 2020; IEEE Micro Top Picks 2019; ISCA/MICRO HoF 2021
n Nandita Vijaykumar (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021
n Kevin Hsieh (Microsoft Research, Senior Researcher)
n Justin Meza (Facebook), HiPEAC 2015 Best Student Presentation Award; ICCD 2012 Best Paper Award
n Mohammed Alser (ETH Zurich), IEEE Turkey Best PhD Thesis Award 2018
n Yixin Luo (Google), HPCA 2015 Best Paper Session
n Kevin Chang (Facebook), SRC TECHCON 2016 Best Student Presentation Award
n Rachata Ausavarungnirun (KMUNTB, Assistant Professor), NOCS 2015 and NOCS 2012 Best Paper Award Finalist
n Gennady Pekhimenko (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021; ASPLOS 2015 SRC Winner
n Vivek Seshadri (Microsoft Research)
n Donghyuk Lee (NVIDIA Research, Senior Researcher), HPCA Hall of Fame 2018
n Yoongu Kim (Software Robotics à Google), TCAD’19 Top Pick Award; IEEE Micro Top Picks’10; HPCA’10 Best Paper Session
n Lavanya Subramanian (Intel Labs à Facebook)

n Samira Khan (Univ. of Virginia, Assistant Professor), HPCA 2014 Best Paper Session
n Saugata Ghose (Univ. of Illinois, Assistant Professor), DFRWS-EU 2017 Best Paper Award
n Jawad Haj-Yahya (Huawei Research Zurich, Principal Researcher)

10

https://safari.ethz.ch/safari-alumni/

A Talk on Our Research & Teaching

11
https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

An Interview on Computing Futures

12https://www.youtube.com/watch?v=8ffSEKZhmvo

https://www.youtube.com/watch?v=8ffSEKZhmvo

Computer Architecture Research
n If you want to do research in any of the covered topics or any

topic in Comp Arch, HW/SW Interaction & related areas
q We have many projects and a great environment to perform top-

notch research, bachelor’s/master’s/semester projects
q So, talk with me (email, whatsapp, etc.) & apply online

n Many research topics and projects
q Memory (DRAM, NVM, Flash, software/hardware issues)
q Processing in Memory
q Hardware Security
q New Computing Paradigms
q Machine Learning for System Design
q System Design for AI/ML, Health, Genomics, Medicine
q …

13

Parallelism and Heterogeneity

14

Today and Tomorrow
n Issues in Parallelism

n Heterogeneous Multi-Core Systems

n Bottleneck Acceleration

15

Some Readings
n Suleman et al., “Accelerating Critical Section Execution with

Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE Micro
Top Picks 2010.

n Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

n Joao et al., “Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs,” ISCA 2013.

n Suleman et al., “Data Marshaling for Multi-Core Architectures,”
ISCA 2010, IEEE Micro Top Picks 2011.

n Grochowski et al., “Best of Both Latency and Throughput,” ICCD
2004.

16

Heterogeneity (Asymmetry)

17

Heterogeneity (Asymmetry) à Specialization

n Heterogeneity and asymmetry have the same meaning
q Contrast with homogeneity and symmetry

n Heterogeneity is a very general system design concept (and
life concept, as well)

n Idea: Instead of having multiple instances of a “resource” to
be the same (i.e., homogeneous or symmetric), design some
instances to be different (i.e., heterogeneous or asymmetric)

n Different instances can be optimized to be more efficient in
executing different types of workloads or satisfying different
requirements/goals
q Heterogeneity enables specialization/customization

18

Why Asymmetry in Design? (I)
n Different workloads executing in a system can have different

behavior
q Different applications can have different behavior
q Different execution phases of an application can have different behavior
q The same application executing at different times can have different

behavior (due to input set changes and dynamic events)
q E.g., locality, predictability of branches, instruction-level parallelism, data

dependencies, serial fraction in a parallel program, bottlenecks in parallel
portion of a program, interference characteristics, …

n Systems are designed to satisfy different metrics at the same
time
q There is almost never a single goal in design, depending on design point
q E.g., Performance, energy efficiency, fairness, predictability, reliability,

availability, cost, memory capacity, latency, bandwidth, …
19

Why Asymmetry in Design? (II)
n Problem: Symmetric design is one-size-fits-all
n It tries to fit a single-size design to all workloads and

metrics

n It is very difficult to come up with a single design
q that satisfies all workloads even for a single metric
q that satisfies all design metrics at the same time

n This holds true for different system components, or
resources
q Cores, caches, memory, controllers, interconnect, disks,

servers, …
q Algorithms, policies, …

20

Asymmetry Enables Customization

n Symmetric: One size fits all
q Energy and performance suboptimal for different “workload” behaviors

n Asymmetric: Enables customization and adaptation
q Processing requirements vary across workloads (applications and phases)
q Execute code on best-fit resources (minimal energy, adequate perf.)

21

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

We Have Already Seen Examples (Before)
n CRAY-1 design: scalar + vector pipelines
n Modern processors: scalar instructions + SIMD extensions
n Decoupled Access Execute: access + execute processors

n Thread Cluster Memory Scheduling: different memory
scheduling policies for different thread clusters

n RAIDR: Heterogeneous refresh rates in DRAM
n Heterogeneous-Latency DRAM (Tiered Latency DRAM)
n Hybrid memory systems

q DRAM + Phase Change Memory
q Fast, Costly DRAM + Slow, Cheap DRAM
q Reliable, Costly DRAM + Unreliable, Cheap DRAM

n Heterogeneous cache replacement policies
22

An Example Asymmetric Design: CRAY-1
n CRAY-1
n Russell, “The CRAY-1

computer system,”
CACM 1978.

n Scalar and vector modes
n 8 64-element vector

registers
n 64 bits per element
n 16 memory banks
n 8 64-bit scalar registers
n 8 24-bit address registers

23

Remember: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Take turns accessing memory

Remember: Throughput vs. Fairness

25

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation è unfairness

thread C thread Bthread A

Does not starve

not prioritized è
reduced throughput

Single policy for all threads is insufficient

Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.

Remember: Achieving the Best of Both Worlds

26

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

27

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness
Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.

Remember: Heterogeneous Retention Times in DRAM

28Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

29

Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

30

Short Bitline

Low Latency

Approximating the Best of Both Worlds
Long Bitline
Small Area
Long Bitline

Low Latency

Short BitlineOur Proposal
Small Area

Short Bitline è Fast
Need

Isolation
Add Isolation

Transistors

High Latency

Large Area

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

31

Approximating the Best of Both Worlds

Low Latency

Our Proposal
Small Area

Long Bitline
Small Area
Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline
Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Heterogeneous Interconnects (in Tilera)
n 2D Mesh
n Five networks
n Four packet switched

q Dimension order routing,
wormhole flow control

q TDN: Cache request
packets

q MDN: Response packets
q IDN: I/O packets
q UDN: Core to core

messaging

n One circuit switched
q STN: Low-latency, high-

bandwidth static network
q Streaming data

32Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007.

Aside: Examples from Life
n Heterogeneity is abundant in life

q both in nature and human-made components

n Humans are heterogeneous
n Cells are heterogeneous à specialized for different tasks
n Organs are heterogeneous
n Cars are heterogeneous
n Buildings are heterogeneous
n Rooms are heterogeneous
n …

33

General-Purpose vs. Special-Purpose
n Asymmetry is a way of enabling specialization

n It bridges the gap between purely general purpose and
purely special purpose
q Purely general purpose: Single design for every workload or

metric
q Purely special purpose: Single design per workload or metric
q Asymmetric: Multiple sub-designs optimized for sets of

workloads/metrics and glued together

n The goal of a good asymmetric design is to get the best of
both general purpose and special purpose

34

Asymmetry Advantages and Disadvantages
n Advantages over Symmetric Design

+ Can enable optimization of multiple metrics
+ Can enable better adaptation to workload behavior
+ Can provide special-purpose benefits with general-purpose
usability/flexibility

n Disadvantages over Symmetric Design
- Higher overhead and more complexity in design, verification
- Higher overhead in management: scheduling onto asymmetric
components
- Overhead in switching between multiple components can lead
to degradation

35

Yet Another Example
n Modern processors integrate general purpose cores and

GPUs
q CPU-GPU systems
q Heterogeneity in execution models and ISAs
q Contrast with Heterogeneity in only microarchitecture

36

n Memory system
q Applications are increasingly data intensive
q Data storage and movement limits performance & efficiency

n Efficiency (performance and energy) à scalability
q Enables scalable systems à new applications
q Enables better user experience à new usage models

n Predictability and robustness
q Resource sharing and unreliable hardware causes QoS issues
q Predictable performance and QoS are first class constraints

Three Key Problems in Future Systems

37

Commercial Asymmetric Design Examples
n Integrated CPU-GPU systems (e.g., Intel SandyBridge)

n CPU + Many Hardware Accelerators (e.g., your cell phone)

n Heterogeneous Multi-Core Sytems
q ARM big.LITTLE
q IBM Cell

n CPU + FPGA Systems (many examples)

38

Increasing Heterogeneity in Modern Systems

n Heterogeneous agents: Large & Small CPUs, GPUs, HWAs
n Heterogeneous memories: Fast & Slow DRAM, NVM
n Heterogeneous interconnects: Control, Data, Synchronization
n …

39

Large
CPU

Large
CPU Small

CPU
Small
CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Current SoC Architectures: Heterogeneity

40Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Multi-Core System Design:
A Heterogeneous Perspective

41

Many Cores on Chip
n Simpler and lower power than a single large core
n Large scale parallelism on chip

42

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

With Many Cores on Chip
n What we want:

q N times the performance with N times the cores when we
parallelize an application on N cores

n What we get:
q Amdahl’s Law (serial bottleneck)
q Bottlenecks in the parallel portion

43

Caveats of Parallelism
n Amdahl’s Law

q f: Parallelizable fraction of a program
q N: Number of processors

q Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

n Maximum speedup limited by serial portion: Serial bottleneck
n Parallel portion is usually not perfectly parallel

q Synchronization overhead (e.g., updates to shared data)
q Load imbalance overhead (imperfect parallelization)
q Resource sharing overhead (contention among N processors)

44

Speedup =
1

+1 - f f
N

The Problem: Serialized Code Sections
n Many parallel programs cannot be parallelized completely

n Causes of serialized code sections
q Sequential portions (Amdahl’s “serial part”)
q Critical sections
q Barriers
q Limiter stages in pipelined programs

n Serialized code sections
q Reduce performance
q Limit scalability
q Waste energy

45

Example from MySQL

46

Open database tables

Perform the operations
….

Critical
Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

Sp
ee

du
p

Today

Asymmetric

Demands in Different Code Sections
n What we want:

n In a serialized code section à one powerful “large” core

n In a parallel code section à many wimpy “small” cores

n These two conflict with each other:
q If you have a single powerful core, you cannot have many

cores
q A small core is much more energy and area efficient than a

large core

47

“Large” vs. “Small” Cores

48

• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence

speculation

• In-order
• Narrow Fetch e.g. 2-wide
• Shallow pipeline
• Simple branch predictor

(e.g. Gshare)
• Few functional units

Large
Core

Small
Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Large vs. Small Cores
n Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.

49

Meet Large: IBM POWER4
n Tendler et al., “POWER4 system microarchitecture,” IBM J

R&D, 2002.

n A symmetric multi-core chip…
n Two powerful cores

50

IBM POWER4
n 2 cores, out-of-order execution
n 100-entry instruction window in each core
n 8-wide instruction fetch, issue, execute
n Large, local+global hybrid branch predictor
n 1.5MB, 8-way L2 cache
n Aggressive stream based prefetching

51

IBM POWER5
n Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE

Micro 2004.

52

Meet Small: Sun Niagara (UltraSPARC T1)

53

n Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.

Niagara Core
n 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
n Round robin thread selection (unless cache miss)
n Shared FP unit among cores

54

Remember the Demands
n What we want:

n In a serialized code section à one powerful “large” core

n In a parallel code section à many wimpy “small” cores

n These two conflict with each other:
q If you have a single powerful core, you cannot have many

cores
q A small core is much more energy and area efficient than a

large core

n Can we get the best of both worlds?
55

Performance vs. Parallelism

56

Assumptions:

1. Small core takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

Tile-Large Approach

n Tile a few large cores
n IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)

57

Large
core

Large
core

Large
core

Large
core

“Tile-Large”

Tile-Small Approach

n Tile many small cores
n Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)

58

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

“Tile-Small”

Can We Get the Best of Both Worlds?
n Tile Large

+ High performance on single thread, serial code sections (2
units)
- Low throughput on parallel program portions (8 units)

n Tile Small
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

n Idea: Have both large and small on the same chip à
Performance asymmetry

59

Asymmetric Multi-Core

60

Asymmetric Chip Multiprocessor (ACMP)

n Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)
+ Execute parallel part on small cores and large core for high

throughput (12+2 units)

61

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

“Tile-Small”

Large
core

Large
core

Large
core

Large
core

“Tile-Large”

Accelerating Serial Bottlenecks

62

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP Approach

Single thread à Large core

Performance vs. Parallelism

63

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

ACMP Performance vs. Parallelism

6464

Large
core

Large
core

Large
core

Large
core

“Tile-Large”

Large
Cores

4 0 1

Small
Cores

0 16 12

Serial
Performance

2 1 2

Parallel
Throughput

2 x 4 = 8 1 x 16 = 16 1x2 + 1x12 = 14

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

“Tile-Small”

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Area-budget = 16 small cores

Amdahl’s Law Modified
n Simplified Amdahl’s Law for an Asymmetric Multiprocessor
n Assumptions:

q Serial portion executed on the large core
q Parallel portion executed on both small cores and large cores
q f: Parallelizable fraction of a program
q L: Number of large processors
q S: Number of small processors
q X: Speedup of a large processor over a small one

65

Speedup =
1

+ f
S + X*L

1 - f
X

Caveats of Parallelism, Revisited
n Amdahl’s Law

q f: Parallelizable fraction of a program
q N: Number of processors

q Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

n Maximum speedup limited by serial portion: Serial bottleneck
n Parallel portion is usually not perfectly parallel

q Synchronization overhead (e.g., updates to shared data)
q Load imbalance overhead (imperfect parallelization)
q Resource sharing overhead (contention among N processors)

66

Speedup =
1

+1 - f f
N

Accelerating Parallel Bottlenecks
n Serialized or imbalanced execution in the parallel portion

can also benefit from a large core

n Examples:
q Critical sections that are contended
q Parallel stages that take longer than others to execute

n Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

67

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

68

http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/

Contention for Critical Sections

69

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

70

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Critical
Section
Accelerated
by 2x

Impact of Critical Sections on Scalability
n Contention for critical sections leads to serial execution

(serialization) of threads in the parallel program portion
n Contention for critical sections increases with the number of

threads and limits scalability

71

MySQL (oltp-1)
0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

Sp
ee

du
p

Today

Asymmetric

A Case for Asymmetry
n Execution time of sequential kernels, critical sections, and

limiter stages must be short

n It is difficult for the programmer to shorten these
serialized sections
q Insufficient domain-specific knowledge
q Variation in hardware platforms
q Limited resources
q Performance-debugging tradeoff

n Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

n Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

72

An Example: Accelerated Critical Sections
n Idea: HW/SW ships critical sections to a large, powerful core in an

asymmetric multi-core architecture

n Benefit:
q Reduces serialization due to contended locks
q Reduces the performance impact of hard-to-parallelize sections
q Programmer does not need to (heavily) optimize parallel code à fewer

bugs, improved productivity

n Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

n Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA
2010, IEEE Micro Top Picks 2011.

73

Accelerated Critical Sections

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-
Interconnect

Critical Section
Request Buffer
(CSRB)

1. P2 encounters a critical section (CSCALL)
2. P2 sends CSCALL Request to CSRB
3. P1 executes Critical Section
4. P1 sends CSDONE signal

Core executing
critical section

P4P3P2
P1

Accelerated Critical Sections (ACS)

n Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

75

A = compute()

LOCK X
result = CS(A)

UNLOCK X

print result

Small CoreSmall Core Large Core
A = compute()

CSDONE Response

CSCALL Request
Send X, TPC,

STACK_PTR, CORE_ID

PUSH A
CSCALL X, Target PC

…
…
…

Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

TPC:

POP result
print result

…
…
…
…

…
…
…

Waiting in
Critical Section
Request Buffer

(CSRB)

False Serialization
n ACS can serialize independent critical sections

n Selective Acceleration of Critical Sections (SEL)
q Saturating counters to track false serialization

76

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section
Request Buffer
(CSRB)

4

4

A

B

32

5

To large core

From small cores

ACS Performance Tradeoffs
n Pluses

+ Faster critical section execution
+ Shared locks stay in one place: better lock locality
+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

n Minuses
- Large core dedicated for critical sections: reduced parallel
throughput
- CSCALL and CSDONE control transfer overhead
- Thread-private data needs to be transferred to large core: worse
private data locality

77

ACS Performance Tradeoffs
n Fewer parallel threads vs. accelerated critical sections

q Accelerating critical sections offsets loss in throughput
q As the number of cores (threads) on chip increase:

n Fractional loss in parallel performance decreases
n Increased contention for critical sections

makes acceleration more beneficial

n Overhead of CSCALL/CSDONE vs. better lock locality
q ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

n More cache misses for private data vs. fewer misses
for shared data

78

Cache Misses for Private Data

79

Private Data:
NewSubProblems

Shared Data:
The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs
n Fewer parallel threads vs. accelerated critical sections

q Accelerating critical sections offsets loss in throughput
q As the number of cores (threads) on chip increase:

n Fractional loss in parallel performance decreases
n Increased contention for critical sections

makes acceleration more beneficial

n Overhead of CSCALL/CSDONE vs. better lock locality
q ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

n More cache misses for private data vs. fewer misses
for shared data
q Cache misses reduce if shared data > private data

80

This problem can be solved

See Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010.

ACS Comparison Points

n Conventional
locking

81

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

n Conventional
locking

n Large core executes
Amdahl’s serial part

n Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

n Workloads: 12 critical section intensive applications
q Data mining kernels, sorting, database, web, networking

n Multi-core x86 simulator
q 1 large and 28 small cores
q Aggressive stream prefetcher employed at each core

n Details:
q Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q Small core: 2GHz, in-order, 2-wide, 5-stage
q Private 32 KB L1, private 256KB L2, 8MB shared L3
q On-chip interconnect: Bi-directional ring, 5-cycle hop latency

82

ACS Performance

83

0
20
40
60
80

100
120
140
160

pa
ge

mine
pu

zzl
e

qs
ort

sq
lite

tsp

ipl
oo

ku
p

olt
p-1

olt
p-2

sp
ecj

bb

web
ca

ch
e

hm
ean

Sp
ee

du
p

ov
er

 S
C

M
P

Accelerating Sequential Kernels
Accelerating Critical Sections

Equal-area comparison
Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores
ACMP = 1 large and 28 small cores

269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

84

0
0.5

1
1.5

2
2.5

3
3.5

0 8 16 24 32
0

0.5
1

1.5
2

2.5
3

0 8 16 24 32
0

1

2

3

4

5

0 8 16 24 32
0
1
2
3
4
5
6
7

0 8 16 24 32
0

0.5
1

1.5
2

2.5
3

3.5

0 8 16 24 32
0
2
4
6
8

10
12
14

0 8 16 24 32

0
1
2
3
4
5
6

0 8 16 24 32
0

2

4

6

8

10

0 8 16 24 32
0

2

4

6

8

0 8 16 24 32
0
2
4
6
8

10
12

0 8 16 24 32
0

0.5
1

1.5
2

2.5
3

0 8 16 24 32
0
2
4
6
8

10
12

0 8 16 24 32

Sp
ee

du
p

ov
er

 a
 s

m
al

l c
or

e

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2(h) iplookup (k) specjbb (l) webcache(g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary
n Critical sections reduce performance and limit scalability

n Accelerate critical sections by executing them on a powerful
core

n ACS reduces average execution time by:
q 34% compared to an equal-area SCMP
q 23% compared to an equal-area ACMP

n ACS improves scalability of 7 of the 12 workloads

n Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

85

More on Accelerated Critical Sections
n M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,

"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures"
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)

86

https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

Generalization?

87

Bottleneck Identification and
Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"

Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), London, UK, March 2012.

88

http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/

Bottlenecks in Multithreaded Applications
Definition: any code segment for which threads contend (i.e. wait)

Examples:

n Amdahl’s serial portions
q Only one thread exists à on the critical path

n Critical sections
q Ensure mutual exclusion à likely to be on the critical path if contended

n Barriers
q Ensure all threads reach a point before continuing à the latest thread arriving

is on the critical path

n Pipeline stages
q Different stages of a loop iteration may execute on different threads,

slowest stage makes other stages wait à on the critical path

89

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list
repeat

Lock A
Traverse list A
Remove X from A

Unlock A
Compute on X
Lock B

Traverse list B
Insert X into B

Unlock B
until A is empty

90

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

91

MySQL running Sysbench queries, 16 threads

92

Bottleneck Identification and Scheduling (BIS)

n Key insight:
q Thread waiting reduces parallelism and

is likely to reduce performance
q Code causing the most thread waiting

à likely critical path

n Key idea:
q Dynamically identify bottlenecks that cause

the most thread waiting
q Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

93

Bottleneck Identification and Scheduling (BIS)

while cannot acquire lock
Wait loop for watch_addr

acquire lock
…
release lock

Critical Sections: Code Modifications

…
BottleneckCall bid, targetPC
…

targetPC: while cannot acquire lock
Wait loop for watch_addr

acquire lock
…
release lock
BottleneckReturn bid

94

BottleneckWait bid, watch_addr

…

… Used to keep track of
waiting cycles
Used to enable

acceleration

95

Barriers: Code Modifications
…
BottleneckCall bid, targetPC
enter barrier
while not all threads in barrier

BottleneckWait bid, watch_addr
exit barrier
…

targetPC: code running for the barrier
…
BottleneckReturn bid

96

Pipeline Stages: Code Modifications

BottleneckCall bid, targetPC
…

targetPC: while not done
while empty queue

BottleneckWait prev_bid
dequeue work
do the work …
while full queue

BottleneckWait next_bid
enqueue next work

BottleneckReturn bid

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

97

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

n Performance-limiting bottleneck identification and
acceleration are independent tasks

n Acceleration can be accomplished in multiple ways
q Increasing core frequency/voltage
q Prioritization in shared resources [Ebrahimi+, MICRO’11]
q Migration to faster cores in an Asymmetric CMP

98

Large core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

99

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

100

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0bid=x4500, waiters=1, twc = 1bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5bid=x4500, waiters=2, twc = 7bid=x4500, waiters=2, twc = 9bid=x4500, waiters=1, twc = 9bid=x4500, waiters=1, twc = 10bid=x4500, waiters=1, twc = 11bid=x4500, waiters=0, twc = 11bid=x4500, waiters=1, twc = 3bid=x4500, waiters=1, twc = 4bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

101

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

102

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

Scheduling Buffer (SB)
bid=x4700, pc, sp, core1

Acceleration
Index Table (AIT)

BottleneckCall x4600
Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

ß twc < Threshold

ß twc > Threshold

Execute locallyExecute remotely

BIS Mechanisms
n Basic mechanisms for BIS:

q Determining Thread Waiting Cycles ü
q Accelerating Bottlenecks ü

n Mechanisms to improve performance and generality of BIS:
q Dealing with false serialization
q Preemptive acceleration
q Support for multiple large cores

103

Hardware Cost
n Main structures:

q Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

q Scheduling Buffers (SB): one table per large core,
as many entries as small cores

q Acceleration Index Tables (AIT): one 32-entry table
per small core

n Off the critical path

n Total storage cost for 56-small-cores, 2-large-cores < 19 KB

104

BIS Performance Trade-offs
n Faster bottleneck execution vs. fewer parallel threads

q Acceleration offsets loss of parallel throughput with large core counts

n Better shared data locality vs. worse private data locality
q Shared data stays on large core (good)
q Private data migrates to large core (bad, but latency hidden with Data

Marshaling [Suleman+, ISCA’10])

n Benefit of acceleration vs. migration latency
q Migration latency usually hidden by waiting (good)
q Unless bottleneck not contended (bad, but likely not on critical path)

105

Evaluation Methodology

n Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications
q Data mining kernels, scientific, database, web, networking, specjbb

n Cycle-level multi-core x86 simulator
q 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT
q 1 large core is area-equivalent to 4 small cores

n Details:
q Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q Small core: 4GHz, in-order, 2-wide, 5-stage
q Private 32KB L1, private 256KB L2, shared 8MB L3
q On-chip interconnect: Bi-directional ring, 2-cycle hop latency

106

BIS Comparison Points (Area-Equivalent)
n SCMP (Symmetric CMP)

q All small cores

n ACMP (Asymmetric CMP)
q Accelerates only Amdahl’s serial portions
q Our baseline

n ACS (Accelerated Critical Sections)
q Accelerates only critical sections and Amdahl’s serial portions
q Applicable to multithreaded workloads

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

n FDP (Feedback-Directed Pipelining)
q Accelerates only slowest pipeline stages
q Applicable to pipeline-parallel workloads (rank, pagemine)

107

BIS Performance Improvement

108

Optimal number of threads, 28 small cores, 1 large core

n BIS outperforms ACS/FDP by 15% and ACMP by 32%
n BIS improves scalability on 4 of the benchmarks

barriers, which ACS
cannot accelerate

limiting bottlenecks change over timeACS FDP

Why Does BIS Work?

109

n Coverage: fraction of program critical path that is actually identified as bottlenecks
q 39% (ACS/FDP) to 59% (BIS)

n Accuracy: identified bottlenecks on the critical path over total identified bottlenecks
q 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

110

Performance increases with:

1) More small cores
n Contention due to bottlenecks

increases
n Loss of parallel throughput due

to large core reduces

2) More large cores
n Can accelerate

independent bottlenecks
n Without reducing parallel

throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary
n Serializing bottlenecks of different types limit performance of

multithreaded applications: Importance changes over time

n BIS is a hardware/software cooperative solution:
q Dynamically identifies bottlenecks that cause the most thread waiting

and accelerates them on large cores of an ACMP
q Applicable to critical sections, barriers, pipeline stages

n BIS improves application performance and scalability:
q Performance benefits increase with more cores

n Provides comprehensive fine-grained bottleneck acceleration
with no programmer effort

111

More on Bottleneck Identification & Scheduling
n Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,

"Bottleneck Identification and Scheduling in Multithreaded
Applications"
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

112

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

Improving on BIS?

113

Utility-Based Acceleration of
Multithreaded Applications

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-

Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

114

https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/joao_isca13_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/joao_isca13_talk.pdf

Bottlenecks

T0
T1
T2
T3

Barrier 1 Barrier 2

T0
T1
T2
T3

Barrier 1 Barrier 2

Accelerating Critical Sections (ACS), Suleman et al., ASPLOS’09

Bottleneck Identification and Scheduling (BIS), Joao et al., ASPLOS’12

115

Lagging Threads

116

T0

T1

T2

T3

Barrier 1

Progress P0 =

P1 =

P2 =

P3 =

40%

50%

30%

40%

Barrier 2t1 Barrier 2t2

Lagging thread = potential future bottleneck

T2: Lagging thread

Execution time reduction

Two Problems

117

1) Do we accelerate bottlenecks or lagging threads?

2) Multiple applications: which application do we accelerate?

T0
T1
T2
T3

Application 1

T0
T1
T2
T3

Application 2

t1

Acceleration decisions need to consider both:
- the criticality of code segments
- how much speedup they get

from any running application
for bottlenecks and lagging threads

Utility-Based Acceleration (UBA)

n Goal: identify performance-limiting bottlenecks or
lagging threads from any running application
and accelerate them on large cores of an ACMP

n Key insight: A New Utility of Acceleration metric
that combines speedup and criticality of each code segment

n Utility of accelerating code segment c of length t
on an application of length T:

118

T
TUc

D
= ÷

ø
ö

ç
è
æ
D
D

´÷
ø
ö

ç
è
æ´÷

ø
ö

ç
è
æ D=

t
T

T
t

t
t

Local Speedup
of Segment

Fraction of Exec Time
Spent on Segment

Global
Criticality
of Segment

Utility-Based Acceleration (UBA)

Bottleneck
Identification

Lagging Thread
Identification

Acceleration
Coordination

Set of Highest-Utility
Lagging Threads

Set of Highest-Utility
Bottlenecks

Large core control

119

UBA Results

120

2-application workloads, 60 small cores, 1 large core

UBA outperforms BIS and another alternative approach by ~8%.

551

More on Utility-Based Acceleration

n Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

121

http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

Better Bottleneck Acceleration

122

Handling Private Data Locality:
Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"

Proceedings of the 37th International Symposium on Computer Architecture (ISCA),
pages 441-450, Saint-Malo, France, June 2010.

123

http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/

Staged Execution Model (I)
n Goal: speed up a program by dividing it up into pieces
n Idea

q Split program code into segments
q Run each segment on the core best-suited to run it
q Each core assigned a work-queue, storing segments to be run

n Benefits
q Accelerates segments/critical-paths using specialized/heterogeneous cores
q Exploits inter-segment parallelism
q Improves locality of within-segment data

n Examples
q Accelerated critical sections, Bottleneck identification and scheduling
q Producer-consumer pipeline parallelism
q Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)
q Special-purpose cores and functional units

124

125

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

126

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

127

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances
of S0

Instances
of S1

Instances
of S2

128

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

n Accelerated Critical Sections [Suleman et al., ASPLOS 2009]
q Idea: Ship critical sections to a large core in an asymmetric CMP

n Segment 0: Non-critical section
n Segment 1: Critical section

q Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

n Producer-Consumer Pipeline Parallelism
q Idea: Split a loop iteration into multiple “pipeline stages” where

one stage consumes data produced by the previous stage à each
stage runs on a different core
n Segment N: Stage N

q Benefit: Stage-level parallelism, better locality à faster execution

129

130

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data
n Accelerated Critical Sections [Suleman et al., ASPLOS 2010]

q Idea: Ship critical sections to a large core in an ACMP
q Problem: Critical section incurs a cache miss when it touches data

produced in the non-critical section (i.e., thread private data)

n Producer-Consumer Pipeline Parallelism
q Idea: Split a loop iteration into multiple “pipeline stages” à each

stage runs on a different core
q Problem: A stage incurs a cache miss when it touches data

produced by the previous stage

n Performance of Staged Execution limited by inter-segment
cache misses

131

132

What if We Eliminated All Inter-segment Misses?

133

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache
block written by one segment
and consumed by the next
segment

Generator instruction:
The last instruction to write to an
inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea
n Observation: Set of generator instructions is stable over

execution time and across input sets

n Idea:
q Identify the generator instructions
q Record cache blocks produced by generator instructions
q Proactively send such cache blocks to the next segment’s

core before initiating the next segment

n Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

134

Data Marshaling

1. Identify generator
instructions

2. Insert marshal
instructions

1. Record generator-
produced addresses

2. Marshal recorded
blocks to next coreBinary containing

generator prefixes &
marshal Instructions

Compiler/Profiler Hardware

135

Data Marshaling

1. Identify generator
instructions

2. Insert marshal
instructions

1. Record generator-
produced addresses

2. Marshal recorded
blocks to next coreBinary containing

generator prefixes &
marshal Instructions

Hardware

136

Compiler/Profiler

137

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Mark as Generator
Instruction

Inter-segment data

138

Marshal Instructions

LOAD X
STORE Y

G: STORE Y
MARSHAL C1

LOAD Y
….

G:STORE Z
MARSHAL C2

0x5: LOAD Z
….

When to send (Marshal)

Where to send (C1)

DM Support/Cost
n Profiler/Compiler: Generators, marshal instructions
n ISA: Generator prefix, marshal instructions
n Library/Hardware: Bind next segment ID to a physical core

n Hardware
q Marshal Buffer

n Stores physical addresses of cache blocks to be marshaled
n 16 entries enough for almost all workloads à 96 bytes per core

q Ability to execute generator prefixes and marshal instructions
q Ability to push data to another cache

139

DM: Advantages, Disadvantages
n Advantages

q Timely data transfer: Push data to core before needed
q Can marshal any arbitrary sequence of lines: Identifies

generators, not patterns
q Low hardware cost: Profiler marks generators, no need for

hardware to find them

n Disadvantages
q Requires profiler and ISA support
q Not always accurate (generator set is conservative): Pollution

at remote core, wasted bandwidth on interconnect
n Not a large problem as number of inter-segment blocks is small

140

141

Accelerated Critical Sections with DM

Small Core 0

Marshal
Buffer

Large Core

LOAD X
STORE Y

G: STORE Y
CSCALL

LOAD Y
….

G:STORE Z
CSRET

Cache Hit!

L2
Cache

L2
CacheData Y

Addr Y

Critical
Section

Accelerated Critical Sections: Methodology

n Workloads: 12 critical section intensive applications
q Data mining kernels, sorting, database, web, networking
q Different training and simulation input sets

n Multi-core x86 simulator
q 1 large and 28 small cores
q Aggressive stream prefetcher employed at each core

n Details:
q Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q Small core: 2GHz, in-order, 2-wide, 5-stage
q Private 32 KB L1, private 256KB L2, 8MB shared L3
q On-chip interconnect: Bi-directional ring, 5-cycle hop latency

142

143

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

ine

puzzl
e

qso
rt

tsp

maze

nque
en

sq
lite

iploo
ku

p

mys
ql-1

mys
ql-2

web
ca

ch
e

hmea
n

Sp
ee

du
p

ov
er

 A
C

S

DM
Ideal

168 170

8.7%

144

Pipeline Parallelism

Core 0

Marshal
Buffer

Core 1

LOAD X
STORE Y

G: STORE Y
MARSHAL C1

LOAD Y
….

G:STORE Z
MARSHAL C2

0x5: LOAD Z
….

Cache Hit!

L2
Cache

L2
CacheData Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

n Workloads: 9 applications with pipeline parallelism
q Financial, compression, multimedia, encoding/decoding
q Different training and simulation input sets

n Multi-core x86 simulator
q 32-core CMP: 2GHz, in-order, 2-wide, 5-stage
q Aggressive stream prefetcher employed at each core
q Private 32 KB L1, private 256KB L2, 8MB shared L3
q On-chip interconnect: Bi-directional ring, 5-cycle hop latency

145

146

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

bla
ck

co
mpre

ss

de
du

pD

de
du

pE

fer
ret

im
ag

e

mtw
ist

ran

k

sig
n

hm
ean

Sp
ee

du
p

ov
er

 B
as

el
in

e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

n High coverage of inter-segment misses in a timely manner
n Medium accuracy does not impact performance

q Only 5.0 and 6.8 cache blocks marshaled for average segment
147

0
10
20
30
40
50
60
70
80
90
100

ACS Pipeline

Pe
rc
en
ta
ge

Coverage
Accuracy
Timeliness

Scaling Results

n DM performance improvement increases with
q More cores
q Higher interconnect latency
q Larger private L2 caches

n Why? Inter-segment data misses become a larger bottleneck
q More cores à More communication
q Higher latency à Longer stalls due to communication
q Larger L2 cache à Communication misses remain

148

149

Other Applications of Data Marshaling

n Can be applied to other Staged Execution models
q Task parallelism models

n Cilk, Intel TBB, Apple Grand Central Dispatch
q Special-purpose remote functional units
q Computation spreading [Chakraborty et al., ASPLOS’06]
q Thread motion/migration [e.g., Rangan et al., ISCA’09]

n Can be an enabler for more aggressive SE models
q Lowers the cost of data migration

n an important overhead in remote execution of code segments
q Remote execution of finer-grained tasks can become more

feasible à finer-grained parallelization in multi-cores

Data Marshaling Summary
n Inter-segment data transfers between cores limit the benefit

of promising Staged Execution (SE) models

n Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core
q Significantly reduces cache misses for inter-segment data
q Low cost, high-coverage, timely for arbitrary address sequences
q Achieves most of the potential of eliminating such misses

n Applicable to several existing Staged Execution models
q Accelerated Critical Sections: 9% performance benefit
q Pipeline Parallelism: 16% performance benefit

n Can enable new modelsà very fine-grained remote execution
150

More on Bottleneck Identification & Scheduling

n M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June
2010. Slides (ppt)

151

https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Other Uses of Asymmetry

152

Use of Asymmetry for Energy Efficiency
n Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The

Potential for Processor Power Reduction,” MICRO 2003.

n Idea:
q Implement multiple types of cores on chip
q Monitor characteristics of the running thread (e.g., sample energy/perf

on each core periodically)
q Dynamically pick the core that provides the best energy/performance

tradeoff for a given phase
n “Best core” à Depends on optimization metric

153

Use of Asymmetry for Energy Efficiency

154

Use of Asymmetry for Energy Efficiency
n Advantages

+ More flexibility in energy-performance tradeoff
+ Can execute computation to the core that is best suited for it (in terms of

energy)

n Disadvantages/issues
- Incorrect predictions/sampling à wrong core à reduced performance or

increased energy
- Overhead of core switching
- Disadvantages of asymmetric CMP (e.g., design multiple cores)
- Need phase monitoring and matching algorithms

- What characteristics should be monitored?
- Once characteristics known, how do you pick the core?

155

Asymmetric vs. Symmetric Cores
n Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
+ Schedule computation to the core type that can best execute it

n Disadvantages
- Need to design more than one type of core. Always?
- Scheduling becomes more complicated

- What computation should be scheduled on the large core?
- Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources
156

How to Achieve Asymmetry
n Static

q Type and power of cores fixed at design time
q Two approaches to design “faster cores”:

n High frequency
n Build a more complex, powerful core with entirely different uarch

q Is static asymmetry natural? (chip-wide variations in frequency)

n Dynamic
q Type and power of cores change dynamically
q Two approaches to dynamically create “faster cores”:

n Boost frequency dynamically (limited power budget)
n Combine small cores to enable a more complex, powerful core
n Is there a third, fourth, fifth approach?

157

Asymmetry via Frequency Boosting

Asymmetry via Boosting of Frequency
n Static

q Due to process variations, cores might have different
frequency

q Simply hardwire/design cores to have different frequencies

n Dynamic
q Annavaram et al., “Mitigating Amdahl’s Law Through EPI

Throttling,” ISCA 2005.
q Dynamic voltage and frequency scaling

159

EPI Throttling
n Goal: Minimize execution time of parallel programs while

keeping power within a fixed budget

n For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism
q P = EPI •IPS
q P = fixed power budget
q EPI = energy per instruction
q IPS = aggregate instructions retired per second

n Idea: For a fixed power budget
q Run sequential phases on high-EPI processor
q Run parallel phases on multiple low-EPI processors

160

EPI Throttling via DVFS
n DVFS: Dynamic voltage frequency scaling

n In phases of low thread parallelism
q Run a few cores at high supply voltage and high frequency

n In phases of high thread parallelism
q Run many cores at low supply voltage and low frequency

161

Possible EPI Throttling Techniques
n Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.

162

Boosting Frequency of a Small Core vs. Large Core

n Frequency boosting implemented on Intel Nehalem, IBM
POWER7

n Advantages of Boosting Frequency
+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

n Disadvantages
- Does not improve performance if thread is memory bound
- Does not reduce Cycles per Instruction (remember the

performance equation?)
- Changing frequency/voltage can take longer than switching to a

large core
163

A Case for
Asymmetry Everywhere

Onur Mutlu,
"Asymmetry Everywhere (with Automatic Resource Management)"

CRA Workshop on Advancing Computer Architecture Research: Popular
Parallel Programming, San Diego, CA, February 2010.

Position paper

164

http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-talk.pdf
http://iacoma.cs.uiuc.edu/acar1/
http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-position-paper.pdf

Asymmetry Enables Customization

n Symmetric: One size fits all
q Energy and performance suboptimal for different phase behaviors

n Asymmetric: Enables tradeoffs and customization
q Processing requirements vary across applications and phases
q Execute code on best-fit resources (minimal energy, adequate perf.)

165

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere
n Design each hardware resource with asymmetric, (re-

)configurable, partitionable components
q Different power/performance/reliability characteristics
q To fit different computation/access/communication patterns

166

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Thought Experiment: Asymmetry Everywhere

n Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase
q Satisfy performance/SLA with minimal energy
q Dynamically stitch together the “best-fit” chip for each phase

167

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Phase 1
Phase 2
Phase 3

Thought Experiment: Asymmetry Everywhere

n Morph software components to match asymmetric HW
components
q Multiple versions for different resource characteristics

168

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Version 1
Version 2
Version 3

Many Research and Design Questions
n How to design asymmetric components?

q Fixed, partitionable, reconfigurable components?
q What types of asymmetry? Access patterns, technologies?

n What monitoring to perform cooperatively in HW/SW?
q Automatically discover phase/task requirements

n How to design feedback/control loop between components and
runtime system software?

n How to design the runtime to automatically manage resources?
q Track task behavior, pick “best-fit” components for the entire workload

169

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

170

n Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+
ASPLOS’12,ISCA’13]

n Programmer can write less optimized, but more likely correct programs

Serial Parallel

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

171

n Execute each code block on the most efficient execution backend
for that block [Fallin+ ICCD’14]
n Enables a much more efficient and still high performance core design

OoO
Backend

VLIW Backend

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

172

n Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies
n More efficient and higher performance than general purpose hierarchy

Streaming

Random
access

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

173

n Execute bandwidth-sensitive threads on a bandwidth-optimized
network, latency-sensitive ones on a latency-optimized network
[Das+ DAC’13]
n Higher performance and energy-efficiency than a single network

Latency optimized NoC

Bandwidth
optimized
NoC

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

174

n Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

n Higher performance and energy-efficiency than symmetric/free-for-all

Latency sensitive

Bandwidth
sensitive

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

175

n Have multiple different memory scheduling policies apply them to
different sets of threads based on thread behavior [Kim+ MICRO
2010, Top Picks 2011] [Ausavarungnirun+ ISCA 2012]
n Higher performance and fairness than a homogeneous policy

Memory intensiveCompute intensive

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

176

n Build main memory with different technologies with different
characteristics (e.g., latency, bandwidth, cost, energy, reliability)
[Meza+ IEEE CAL’12, Yoon+ ICCD’12, Luo+ DSN’14]
n Higher performance and energy-efficiency than homogeneous memory

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

DRAM Phase Change Memory

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

177

n Build main memory with different technologies with different
characteristics (e.g., latency, bandwidth, cost, energy, reliability)
[Meza+ IEEE CAL’12, Yoon+ ICCD’12, Luo+ DSN’14]
n Lower-cost than homogeneous-reliability memory at same availability

Reliable DRAM Less Reliable DRAM

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

178

n Design each memory chip to be heterogeneous to achieve low
latency and low energy at reasonably low cost [Lee+ HPCA’13,
Liu+ ISCA’12]
n Higher performance and energy-efficiency than single-level memory

Heterogeneous-Latency DRAM
Heterogeneous-Refresh-Rate DRAM

Prof. Onur Mutlu
ETH Zürich
Fall 2021

25 November 2021

Computer Architecture
Lecture 17b:

Parallelism and Heterogeneity

