Computer Architecture
Lecture 18b: Multiprocessors

Prof. Onur Mutlu
ETH Zlrich
Fall 2021
26 November 2021

Readings: Multiprocessing

Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

Recommended
o Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

a Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Memory Consistency

= Required

o Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

Readings: Cache Coherence

Required

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

Recommended:
o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)
o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t and 4t revised eds.)

Multiprocessors and
Issues 1n Multiprocessing

Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main (or Original) Goal

a Improve performance (Execution time or task throughput)
Execution time of a program governed by Amdahl’ s Law

Other Goals

a Reduce power consumption
(4N units at freq F/4) consume less power than (N units at freq F)
Why?

a Improve cost efficiency and scalability, reduce complexity
Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space

Types of Parallelism and How to Exploit Them

Instruction Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism

o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)

Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together

o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task

Multiprocessing Fundamentals

10

Multiprocessor Types

Loosely coupled multiprocessors
a No shared global memory address space
o Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
11

Main Design Issues in Tightly-Coupled MP

Shared memory synchronization
o How to handle locks, atomic operations

Cache coherence

o How to ensure correct operation in the presence of private
caches keeping the same memory address cached

Memory consistency: Ordering of all memory operations
o What should the programmer expect the hardware to provide?

Shared resource management

Communication: Interconnects
12

Main Programming Issues in Tightly-Coupled MP

Load imbalance
o How to partition a single task into multiple tasks

Synchronization
o How to synchronize (efficiently) between tasks
o How to communicate between tasks

o Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, ...

Contention
Maximizing parallelism
Ensuring correct operation while optimizing for performance

13

Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading), e.g., switch on L3 miss

Fine grained
o Cycle by cycle
o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous
o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

14

Limits of Parallel Speedup

Parallel Speedup Example

ax* + asx® + ax? + a;x + a,
Assume given inputs: x and each a,

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

16

R — auxt + ax® + I R o 5 10, OO

Sgle. prvesser 14 opee IS (da*gm?"f“)

17

‘2 |
R. = a k" + GX*+ 0,X5r a0 + Qg

———

Three praa-sscf‘s . T3 ({mc:—.‘\mwﬁ”-\ 3 Pf&‘&.)

18

Speedup with 3 Processors

Ty =5 cycles

Specdup whh Ipvressws = 5 S - o s

ZC«.>
Ts

ls T™HS o Fer— cm:w'iq;n?

19

Revisiting the Single-Processor Algorithm

Rewsit Tt

Bete— s\%\e’—pmaésw a\,s(/mv\:

28

|

OLN“ 3= 03X3 3 az_xl = 0,|>6 ""ao

=S :<<(a«x+a3§x + o,_JX + a.)x + Qo

(,"}orf\(f"$ et e ch)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

20

Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel
Speedup

Unfair comparisons
Compare best parallel
algorithm to wimpy serial
algorithm - unfair

Cache/memory effects
More processors -

more cache or memory -
fewer misses in cache/mem

4

Superlinear ‘

P Typical
Success

Sublinear

r—# H# Processors

22

Utilization, Redundancy, Etficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
23

Utilization of a Multiprocessor

MUIWWW\-&MC’S;
U‘Hlfzﬂ—m_ - P muvdh Prec«SSM§ Oqoabs'\ﬂ'ﬁ we USe-
—P —
X =T i
. Tp X1 XX = 10 vpovhens (i "m:r.%un)
X | '
= 10
e 15

(= _Orewn prwme.
P x Up

24

Redmdma.,: ' H—wu mmudh exiva wr'k, due t¢ mdwﬂ%&v\f)

R_ e S OPs- w A p.prvc.bu&— - 10

besk

Op.s wirh, 1 pvec.
R is alwoys = 1

EHf”W Hanw muvon ~esouree Wt uSe Covered v how

rAeCh BSVTC e Con el Gty W

£ e AR [Fymsve 1 gufor Ty b vmivs)
Tbcs\— <h,¢r'\s{1p PP"“R"’tP)NM)

- ey,
K. /7\

Amdahl’s L.aw and
Caveats of Parallelism

Caveats of Parallelism (I)

Specdwp T

: =
: P8k prucss:n.)

w*\y +re (‘ch-,? (dmmﬁkmi /W""&)

_Z;,:: = I - (=o)Tq
P

bse] Sl St 4
L—3 pon- prrattelrzeble oo+

poralld (2ol por-)fenohius
0f-Fhe Smge-orucescec
precyzen

Amdahl’s Law

\5,062(1\/[0 — _Z/f — | /{ —
't
P proc. TP | ip(:' +- (7 "04‘3
il o7 1 ‘@\& bdrhercck fo pedled

Specose

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

28

Amdahl’s Law Implication 1

B T -
<= .asS
a(_:.q

Amdah) 'S

L_onn
i Nusivated

Addmg mue vnd moe
processos grres Jess @ Jess

boefd if oL L

29

Amdahl’s Law Implication 2

. : p‘h Thre bercfA (WP)
+ / : | IS sroll) gL 1
'

30

Caveats of Parallelism (1)

Amdahl’ s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
31

Sequential Bottleneck

=—N=10

=—=N=100

N=1000

—
NN N I e e]

™ 0.36

(parallel fraction)

32

Why the Sequential Bottleneck?

Parallel machines have the
sequential bottleneck

2 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

<

There are other causes as well:

o Single thread prepares data and
spawns parallel tasks (usually
sequential)

33

Another Example of Sequential Bottleneck (I)

InitPriorityQueue(PQ); LEGEND
) A.E: Amdahl’s serial part
SpawnThreads(); @ B: Parallel Portion
ForEach Thread: C1,C2: _Criticz_;ll_ Section_s
D: Outside critical section

while (problem not solved)

Lock (X)
SubProblem = PQ.remove(); @
Unlock(X);

Solve(SubProblem);
If(problem solved) break;
NewSubProblems = Partition(SubProblem);

Lock(X)
PQ.insert(NewSubProblems); @

Unlock(X)

.

PrintSolution(); @

Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009. 34

Another Example of Sequential Bottleneck (II)

time

. T2 C o2y @ b1 X Jummnnnn @ .
A T3 C 1) AR D 2] X) C
X X
I }

begin 0 1 2 3 4 5 6 end

Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009. 35

Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
36

Bottlenecks in Parallel Portion: Another View

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some “code segments” may be on
the critical path of execution; some are not

37

Remember: Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:

loop {

Compute

lock(A)
Update shared data|

unlock(A)

N

C

T1[
T2 [

38

Remember: Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving to the barrier is on the critical path

Each thread: ldle barrier
loop1 {
 ompute T
} T2 ¢ ;
barrier
loop2 { | I ! timE

Compute

}

39

Remember: Stages of Pipelined Programs

loop {

Loop iterations are statically divided into code segments called stages
Threads execute stages on different cores
Thread executing the slowest stage is on the critical path

Computel | A

Compute2 | B

Compute3| C

}

40

Ditticulty in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
a Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
41

We Have Already Seen

Examples

In Previous Two lLectures

= Lecture 17b: Parallelism and Heterogeneity

a https://www.youtube.com/watch?v=GLzG rEDn9A&list=PL50
250XY2Zi-Mnk1PxjiEIG32HAGILKTOF&index=18

= Lecture 18a: Bottleneck Acceleration
o https://www.youtube.com/watch?v=P8I3SMAbyYw&list=PL50

250XY2Zi-Mnk1PxjEIG32HAGILKTOF&index=19

43

https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=18
https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

More on Accelerated Critical Sections

= M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures”
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)
One of the 13 computer architecture papers of 2009 selected
as Top Picks by IEEE Micro.

Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt

University of Texas at Austin ~ Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu

44

https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

More on Bottleneck Identification & Scheduling

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications”
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

Bottleneck Identification and Scheduling
in Multithreaded Applications

José A. Joao M. Aater Suleman Onur Mutlu Yale N. Patt
ECE Department Calxeda Inc. Computer Architecture Lab. ECE Department
The University of Texas at Austin g3ter.suleman®calxeda.com Carnegie Mellon University =~ The University of Texas at Austin
joao@ece.utexas.edu onur@cmu.edu patt@ece.utexas.edu

45

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

More on Utility-Based Acceleration

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs

José A. Joao ' M. Aater Suleman # Onur Mutlu ¢ Yale N. Patt

" ECE Department § : § Computer Architecture Laboratory
The University of Texas at Austin pﬂgﬁg ?-g(nsﬁgﬂg Carnegie Mellon University

. Austin, TX, USA Pittsburgh, PA, USA
{joao, patt}@ece.utexas.edu suleman@hps.utexas.edu onur@cmu.edu

46

http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

More on Bottleneck Identification & Scheduling

= M., Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures”
Proceedings of the 3/th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June
2010. Slides (ppt)
One of the 11 computer architecture papers of 2010 selected
as Top Picks by IEEE Micro.

Data Marshaling for Multi-core Architectures

M. Aater Suleman+ Onur Mutlu§ José A. Joaot Khubaibt Yale N. Patty

TThe University of Texas at Austin §Carnegie Mellon University
{suleman, joao, khubaib, patt}@hps.utexas.edu onur@cmu.edu

47

https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Computer Architecture
Lecture 18b: Multiprocessors

Prof. Onur Mutlu
ETH Zlrich
Fall 2021
26 November 2021

