
Computer Architecture

Lecture 19a: Multiprocessors

Prof. Onur Mutlu

ETH Zürich

Fall 2021

2 December 2021

Readings: Multiprocessing

◼ Required

❑ Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

◼ Recommended

❑ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

❑ Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

❑ Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

2

Memory Consistency

◼ Required

❑ Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

3

Readings: Cache Coherence

◼ Required

❑ Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

◼ Recommended:

❑ Culler and Singh, Parallel Computer Architecture

◼ Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

❑ P&H, Computer Organization and Design

◼ Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

4

Multiprocessors and

Issues in Multiprocessing

Remember: Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

6

Why Parallel Computers?

◼ Parallelism: Doing multiple things at a time

◼ Things: instructions, operations, tasks

◼ Main (or Original) Goal

❑ Improve performance (Execution time or task throughput)
◼ Execution time of a program governed by Amdahl’s Law

◼ Other Goals

❑ Reduce power consumption

◼ (4N units at freq F/4) consume less power than (N units at freq F)

◼ Why?

❑ Improve cost efficiency and scalability, reduce complexity

◼ Harder to design a single unit that performs as well as N simpler units

❑ Improve dependability: Redundant execution in space
7

Types of Parallelism and How to Exploit Them

◼ Instruction Level Parallelism

❑ Different instructions within a stream can be executed in parallel

❑ Pipelining, out-of-order execution, speculative execution, VLIW

❑ Dataflow

◼ Data Parallelism

❑ Different pieces of data can be operated on in parallel

❑ SIMD: Vector processing, array processing

❑ Systolic arrays, streaming processors

◼ Task Level Parallelism

❑ Different “tasks/threads” can be executed in parallel

❑ Multithreading

❑ Multiprocessing (multi-core)
8

Task-Level Parallelism: Creating Tasks

◼ Partition a single problem into multiple related tasks
(threads)

❑ Explicitly: Parallel programming

◼ Easy when tasks are natural in the problem

❑ Web/database queries

◼ Difficult when natural task boundaries are unclear

❑ Transparently/implicitly: Thread level speculation

◼ Partition a single thread speculatively

◼ Run many independent tasks (processes) together

❑ Easy when there are many processes

◼ Batch simulations, different users, cloud computing workloads

❑ Does not improve the performance of a single task

9

Multiprocessing Fundamentals

10

Multiprocessor Types

◼ Loosely coupled multiprocessors

❑ No shared global memory address space

❑ Multicomputer network

◼ Network-based multiprocessors

❑ Usually programmed via message passing

◼ Explicit calls (send, receive) for communication

◼ Tightly coupled multiprocessors

❑ Shared global memory address space

❑ Traditional multiprocessing: symmetric multiprocessing (SMP)

◼ Existing multi-core processors, multithreaded processors

❑ Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

◼ Operations on shared data require synchronization
11

Main Design Issues in Tightly-Coupled MP

◼ Shared memory synchronization

❑ How to handle locks, atomic operations

◼ Cache coherence

❑ How to ensure correct operation in the presence of private
caches keeping the same memory address cached

◼ Memory consistency: Ordering of all memory operations

❑ What should the programmer expect the hardware to provide?

◼ Shared resource management

◼ Communication: Interconnects

12

Main Programming Issues in Tightly-Coupled MP

◼ Load imbalance

❑ How to partition a single task into multiple tasks

◼ Synchronization

❑ How to synchronize (efficiently) between tasks

❑ How to communicate between tasks

❑ Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, …

◼ Contention

◼ Maximizing parallelism

◼ Ensuring correct operation while optimizing for performance

13

Aside: Hardware-based Multithreading

◼ Coarse grained

❑ Quantum based

❑ Event based (switch-on-event multithreading), e.g., switch on L3 miss

◼ Fine grained

❑ Cycle by cycle

❑ Thornton, “CDC 6600: Design of a Computer,” 1970.

❑ Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

◼ Simultaneous

❑ Can dispatch instructions from multiple threads at the same time

❑ Good for improving execution unit utilization

14

Limits of Parallel Speedup

15

Parallel Speedup Example

◼ a4x
4 + a3x

3 + a2x
2 + a1x + a0

◼ Assume given inputs: x and each ai

◼ Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

◼ How fast is this with a single processor?

❑ Assume no pipelining or concurrent execution of instructions

◼ How fast is this with 3 processors?

16

17

18

Speedup with 3 Processors

19

Revisiting the Single-Processor Algorithm

20

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

21

Superlinear Speedup

◼ Can speedup be greater than P with P processing
elements?

◼ Unfair comparisons

Compare best parallel

algorithm to wimpy serial

algorithm → unfair

◼ Cache/memory effects

More processors →

more cache or memory →

fewer misses in cache/mem

22

Utilization, Redundancy, Efficiency

◼ Traditional metrics

❑ Assume all P processors are tied up for parallel computation

◼ Utilization: How much processing capability is used

❑ U = (# Operations in parallel version) / (processors x Time)

◼ Redundancy: how much extra work is done with parallel
processing

❑ R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

◼ Efficiency

❑ E = (Time with 1 processor) / (processors x Time with P processors)

❑ E = U/R
23

Utilization of a Multiprocessor

24

25

Amdahl’s Law and

Caveats of Parallelism

26

Caveats of Parallelism (I)

27

Amdahl’s Law

28

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

29

Amdahl’s Law Implication 2

30

Caveats of Parallelism (II)

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ Parallel portion is usually not perfectly parallel

❑ Synchronization overhead (e.g., updates to shared data)

❑ Load imbalance overhead (imperfect parallelization)

❑ Resource sharing overhead (contention among N processors)
31

Speedup =
1

+1 - f
f

N

Sequential Bottleneck

32

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

◼ Parallel machines have the
sequential bottleneck

◼ Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

◼ There are other causes as well:

❑ Single thread prepares data and
spawns parallel tasks (usually
sequential)

33

Another Example of Sequential Bottleneck (I)

34Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Another Example of Sequential Bottleneck (II)

35Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Bottlenecks in Parallel Portion

◼ Synchronization: Operations manipulating shared data
cannot be parallelized

❑ Locks, mutual exclusion, barrier synchronization

❑ Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

◼ Load Imbalance: Parallel tasks may have different lengths

❑ Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

◼ Resource Contention: Parallel tasks can share hardware
resources, delaying each other

❑ Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

36

Bottlenecks in Parallel Portion: Another View

◼ Threads in a multi-threaded application can be inter-
dependent

❑ As opposed to threads from different applications

◼ Such threads can synchronize with each other

❑ Locks, barriers, pipeline stages, condition variables,
semaphores, …

◼ Some threads can be on the critical path of execution due
to synchronization; some threads are not

◼ Even within a thread, some “code segments” may be on
the critical path of execution; some are not

37

Remember: Critical Sections

◼ Enforce mutually exclusive access to shared data

◼ Only one thread can be executing it at a time

◼ Contended critical sections make threads wait → threads

causing serialization can be on the critical path

38

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C

Remember: Barriers

◼ Synchronization point

◼ Threads have to wait until all threads reach the barrier

◼ Last thread arriving to the barrier is on the critical path

39

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}

Remember: Stages of Pipelined Programs

◼ Loop iterations are statically divided into code segments called stages

◼ Threads execute stages on different cores

◼ Thread executing the slowest stage is on the critical path

40

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C

Difficulty in Parallel Programming

◼ Little difficulty if parallelism is natural

❑ “Embarrassingly parallel” applications

❑ Multimedia, physical simulation, graphics

❑ Large web servers, databases?

◼ Difficulty is in

❑ Getting parallel programs to work correctly

❑ Optimizing performance in the presence of bottlenecks

◼ Much of parallel computer architecture is about

❑ Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

❑ Making programmer’s job easier in writing correct and high-
performance parallel programs

41

We Have Already Seen

Examples

42

In Previous Two Lectures

◼ Lecture 17b: Parallelism and Heterogeneity

❑ https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q
2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=18

◼ Lecture 18a: Bottleneck Acceleration

❑ https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q
2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

43

https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=18
https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

More on Accelerated Critical Sections
◼ M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,

"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures"
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)
One of the 13 computer architecture papers of 2009 selected
as Top Picks by IEEE Micro.

44

https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

More on Bottleneck Identification & Scheduling

◼ Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications"
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

45

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

More on Utility-Based Acceleration

◼ Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

46

http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

More on Data Marshaling

◼ M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June
2010. Slides (ppt)
One of the 11 computer architecture papers of 2010 selected
as Top Picks by IEEE Micro.

47

https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Computer Architecture

Lecture 19a: Multiprocessors

Prof. Onur Mutlu

ETH Zürich

Fall 2021

26 December 2021

