Computer Architecture
Lecture 19b: Memory Ordering
(Memory Consistency)

Prof. Onur Mutlu
ETH Zurich
Fall 2021
2 December 2021

Recall: Ditficulty in Parallel Programming

Little difficulty if parallelism is natura
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
a Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-
performance parallel programs

Performance vs. Correctness
Two metrics that are fundamentally at odds with each other

You can always improve performance at the expense of
correctness

o Forget some critical lock in your program...

o Design your architecture to ignore ordering of operations...

We will see examples of this in fundamental support for
multiprocessor operation (MIMD machines)

o Memory ordering (consistency)

o Cache coherence

There is sometimes a real tradeoff between perf & correctness
o When the application/user can tolerate the resulting “errors”

o Recall EDEN (MICRO19), Heterogeneous Reliability Memory (DSN’14)
3

1]

DEN: Exploiting Perf-Correctness Tradeotf

Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, and Onur Mutlu,

"EDEN: Enabling Energy-Efficient, High-Performance Deep Neural
Network Inference Using Approximate DRAM"

Proceedings of the 52nd International Symposium on

Microarchitecture (MICRO), Columbus, OH, USA, October 20109.

[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Poster (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

[Full Talk Lecture (38 minutes)]

EDEN: Enabling Energy-Efficient, High-Performance
Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci
Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

ETH Zurich
SAFARI 4

https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
http://www.microarch.org/micro52/
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-poster.pdf
https://www.youtube.com/watch?v=oS-bKY75gXQ
https://www.youtube.com/watch?v=B5E95OPTlaw

More on Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory
Yixin Luo Sriram Govindan® Bikash Sharma® Mark Santaniello” Justin Meza

Aman Kansal® Jie Liu® Badriddine Khessib" Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com

SAFARI .

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

More on Performance vs. Correctness

= Very similar to the latency-reliability tradeoff
o Reliability is at the hardware component level

o Correctness is at the program semantic level or hardware
function level

= We have seen examples of the latency-reliability tradeoff
before

o See Lecture 12a: Low-Latency Memory

a https://www.youtube.com/watch?v=mjiabRzGchI&list=PL5Q2
soXY2Zi-Mnk1PxjEIG32HAGILKTOF&index=12

https://www.youtube.com/watch?v=mjiabRzGchI&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=12

Lecture on Latency-Reliability Tradeoft

D-RaNGe Key Idea
Low % chance to fail BEEECE

High % chance to fail with reduced ty.,
with reduced ty,

Fails randomly
with reduced t; .,

Computer Arch. - Lecture 12: Memory Controllers: Performance, Energy, Quality of Service (Fall 2021)

1,055 views * Streamed live on Nov 5, 2021 e 57 GF DISLIKE > SHARE =+ SAVE

@ Lo I S ANALYTICS | EDIT VIDEO
&> 20.4K subscribers

https://www.youtube.com/watch?v=mjiabRzGchI&list=PL5Q2s0XY2Zi-Mnk1PxjEIG32HAGILKTOF&index=12

https://www.youtube.com/watch?v=mjiabRzGchI&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=12

DRAM Latency PUF's

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim1$ Minesh Patel® Hasan Hassan$ Onur Mutlu$t
fCarne gie Mellon University SETH Ziirich

SAFARI 8

https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE

DRAM Latency True Random Number Generator

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim*$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$*
fCarne gie Mellon University SETH Ziirich

SAFARI 9

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

More on D-RaNGe

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim*$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$*
fCarne gie Mellon University SETH Ziirich

SAFARI 10

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

In-DRAM True Random Number Generation

Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,

"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"

Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (25 minutes)]

[SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation
Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun’’ Minesh Patel® A. Giray Yaglk¢® Haocong Luo®
Jeremie S. Kim® F. Nisa Bostanci®' Nandita Vijaykumar®® Oguz Ergin' Onur Mutlu®

SETH Ziirich "TOBB University of Economics and Technology ©University of Toronto

SAFARI 11

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

Memory Ordering in
Multiprocessors

12

Readings: Memory Consistency

Required

o Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

Recommended

o Gharachorloo et al., "Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

o Gharachorloo et al., "Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

o Ceze et al., "BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

13

Memory Consistency vs. Cache Coherence

Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)

o Global ordering of accesses to a// memory /ocations

Coherence is about ordering of operations from different
processors to the same memory location

o Local ordering of accesses to each cache block

14

Ditticulties of Multiprocessing

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-
performance parallel programs

15

Ordering of Operations

Operations: A, B, C, D
o In what order should the hardware execute (and report the
results of) these operations?

A contract between programmer and microarchitect
o Specified by the ISA

Preserving an “expected” (more accurately, “agreed upon”)

order simplifies programmer’s life
o Ease of debugging; ease of state recovery, exception handling

Preserving an “expected” order usually makes the hardware

designer’s life difficult

o Especially if the goal is to design a high performance processor: Recall load-
store queues in out of order execution and their complexity

16

Memory Ordering in a Single Processor

Specified by the von Neumann model
Sequential order

o Hardware executes the load and store operations in the order
specified by the sequential program

Out-of-order execution does not change the semantics

o Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

Advantages: 1) Architectural state is precise within an execution.

2) Architectural state is consistent across different runs of the program
- Easier to debug programs

Disadvantage: Preserving order adds overhead, reduces
performance, increases complexity, reduces scalability

https://www.youtube.com/watch?v=- JCpTWnEgc&list=PL50Q2s0XY2Zi uej3aY39YB5pfW4SJ7LIN&index=17

17

https://www.youtube.com/watch?v=-_JCpTWnEqc&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=17

Memory Ordering in a Dataflow Processor

A memory operation executes when its operands are ready
Ordering specified only by data dependencies

Two operations can be executed and retired in any order if
they have no dependency

Advantage: Lots of parallelism = high performance

Disadvantage: No precise state (or ordering) semantics

o Precise state is very hard to maintain (No specified order)
- Very hard to debug

o Order can change across runs of the same program
- Very hard to debug

https://www.youtube.com/watch?v=pIAWMSNVt 8&list=PL50Q2s0XY2Zi uej3aY39YB5pfW4SJ7LIN&index=19 18

https://www.youtube.com/watch?v=pIAWMSNVt_8&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=19

Memory Ordering in a MIMD Processor

Each processor’'s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

Multiple processors execute memory operations
concurrently

How does the memory see the order of operations from all
pProcessors?

o In other words, what is the ordering of operations across
different processors?

19

Why Does This Even Matter?

Ease of debugging

o It is useful to have the same execution done at different times
to have the same order of execution > Repeatability

Correctness |

o Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

Performance and overhead

o Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

20

When Could Order Affect Correctness?

= When protecting shared data

21

Protecting Shared Data

Threads are not allowed to update shared data concurrently
o For correctness purposes

Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

Only one thread can execute a critical section at
a given time

o Mutual exclusion principle

A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to

protect shared data
22

Supporting Mutual Exclusion

Programmer needs to make sure mutual exclusion
(synchronization) is correctly implemented

o We will assume this, i.e., threads are properly synchronized
o But, correct parallel programming is an important topic

o Reading: Dijkstra, “"Cooperating Sequential Processes,” 1965.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWDQ1xx/EWD
123.html

See Dekker’s algorithm for mutual exclusion

Programmer relies on hardware primitives to support correct
synchronization

If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

If hardware primitives are correct but not easy to reason about

or use, programmer’s life is still tough
23

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

Protecting Shared Data

Assume P1 is in critical section.
Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),
which means P2 should not enter the critical section.

fi= ¢ 71:2555
|)

A [Pzt X Fz(” :
2 IF[(F=20) § y IFLA=
Crtticol Seckin() CrjutSchn()
]:1:¢ FZ;"ﬂ
3
- ELSE §

24

A Question

Can the two processors be in the critical section at the
same time given that they both obey the von Neumann

model?

Answer: yes
[A

25

Incorrect Result: Both Processors in Critical Section

Tim
OJL P’l A [S%FITA)
. F.:icwp\d-bfﬂ"‘
P1'$ Jiew
o A Sont o ey

1 Jf P»,: 3 (WFZ.?“'O)
. F) Sot-7o .
EE[WJ);:MVM

:‘-_ Mom . serds Fo (0) b Py

Fel X R 0T "8 ow) covisre
FOY Y [P0 d
’ Lcsu # sy Sl +
3 1Y ‘
'. 160+ Mem- ComplekeS A
Fi= 1 s~ mernor
Tov LAE]

Po: % (sok Fast)
® F7,31 Wi}mw

Pz s

. X S0 ontrno™]

Poy (3es+-F1==0)

Y (req F1) Sed-J0 renh.
Y (lvad FHSH”

Mo S S ‘):1 (0) o P2
Y (load F) coplihe

£2 21 nmemory
700 LATE)

26

What Happened?

Let’s Examine Fach Processotr’s View

| j e/ F,:1 ‘10' O”F'L:“
01 P;Z{rzm « 23 compdie fiorn
" Pye diew Py 's Jiow
° ‘~' “1"""“1 o)(\ ' +o o0 ’
% N (3es-F4==0)
> P &(Wﬁ*ﬁ) . Y (
‘ Jo rnom. -‘)’ re F‘l) SeAJU e
) [r?a?)ﬁbw;md b o:d £yShorkd
| on0LS Fz,(O)‘}vﬁ [Tl sodlS F-g(o)‘J'DPz.
[@ vad F) coplde Q e C"’f’u"
P, Y Crires Ty =3a CrdreASedn()
(
F1:1 N\ ’
Tou LATE]
)
Py's VIEW R's View
_a
Py and P2 A—%%—%X o= I
Saw ornn(:ers)rvd" /A’ . >< ><__3A
orde of oPIINS A .
M wwvwf\f N ROUTH ‘
C AONOT BE CURRECT

For P1:
A appeared to
happen before X

For P2:
X appeared to
happen before A

28

The Problem

The two processors did NOT see the same order of
operations to memory

The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

As a result, each processor thought the other was not in
the critical section

29

How Can We Solve The Problem?

Idea: Sequential consistency

All processors see the same order of operations to memory

i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

30

Sequential Consistency

Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

A multiprocessor system is sequentially consistent if:

o the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

o the operations of each individual processor appear in this
sequence in the order specified by its program

This is @ memory ordering model, or memory model
o Specified by the ISA

31

Programmer’s Abstraction

Memory is a switch that services one load or store at a time

from any processor

All processors see the currently serviced load or store at the

same time
Each processor’s operations are serviced in program order

MEMORY

32

Sequentially Consistent Operation Orders

Potential correct global orders (all are correct):

ABXY
AXBY
AXYB
XABY
XAYB
XYAB

Which order (interleaving) is observed depends on
implementation and dynamic latencies

33

Consequences of Sequential Consistency

Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

- No correctness issue
- Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

- Debugging is still difficult (as order changes across runs)

34

Lamport Paper trom 1979

Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution
is achieved if the results produced are the same as would be produced
by executing the program steps in order. For a multiprocessor
computer, such a correct execution by each processor does not
guarantee the correct execution of the entire program. Additional
conditions are given which do guarantee that a computer correctly
executes multiprocess programs.

Index Terms—Computer design, concurrent computing, hardware
correctness, multiprocessing, parallel processing.

A high-speed processdr may execute operations in a different
order than is specified by the program. The correctness of the 35

Issues with Sequential Consistency?

Nice abstraction for programming, but two issues:
o Too conservative ordering requirements

o Limits the aggressiveness of performance enhancement
techniques

Is the total global order requirement too strong?

o Do we need a global order across all operations and all
processors?
o How about a global order only across all stores?
Total store order memory model; unique store order model
o How about enforcing a global order only at the boundaries of
synchronization?
Relaxed memory models
Acquire-release consistency model
36

Issues with Sequential Consistency?

Performance enhancement techniques that could make SC
implementation difficult

Out-of-order execution

o Loads happen out-of-order with respect to each other and
with respect to independent stores =2 makes it difficult for all
processors to see the same global order of all memory
operations

Caching
o A memory location is now present in multiple places

o Prevents the effect of a store to be seen by other processors
- makes it difficult for all processors to see the same global
order of all memory operations

37

Weaker Memory Consistency

The ordering of operations is important when the order
affects operations on shared data - i.e., when processors
need to synchronize to execute a “program region”

Weak consistency

o Idea: Programmer specifies regions in which memory
operations do not need to be ordered
a "Memory fence” instructions delineate those regions

All memory operations before a fence must complete before
fence is executed

All memory operations after the fence must wait for the fence to
complete

Fences complete in program order
o All synchronization operations act like a fence

38

Examples ot Weak Consistency Models

Gharachorloo et al., "Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

LOAD LOAD STORE STORE LOAD LOAD STORE | | STORE
i l l Y l Y Y
LOAD STORE LOAD STORE LOAD STORE LOAD STORE
Sequential Consistency (SC) Processor Consistency (PC)
A consistency model imposes restrictions on the order of shared u
memory accesses initiated by each process. The strictest model, A4 C‘imnqt perform
originally proposed by Lamport [15], is sequential consistency until u is performed
(SC). Sequential consistency requires the execution of a parallel v

program to appear as some interleaving of the execution of the
parallel processes on a sequential machine. Processor consis-
tency (PC) was proposed by Goodman [9] to relax some of the
restrictions imposed by sequential consistency. Processor con-
sistency requires that writes issued from a processor may not be
observed in any order other than that in which they were issued.
However, the order in which writes from two processors occur,
as observed by themselves or a third processor, need not be
identical. Sufficient constraints to satisfy processor consistency
are specified formally in [8].

Examples ot Weak Consistency Models

Gharachorloo et al., "Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

ACQUIRE A |1 ACQUIRE A | 1
LOAD/STORE] \ ﬁ
. 5 LOAD/STORE | [LOAD/STORE | |ACQUIRE B
A more relaxed consistency model can be derived by relating y * 9 ¢ 4
memory request ordering to synchronization points in the pro- LOAD/STORE : ' L
.) LOAD/STORE | | LOAD/STORE | ['TOAD/STORE
gram. The weak consistency model (WC) proposed by Dubois) .
et al. [4, 5] is based on the above idea and guarantees a con- RELEASE A[3 | ¢ O
sistent view of memory only at synchronization points. As an ! RELEASE Al 3 LOAD/STORE
example, consider a process updating a data structure within a LOAD/STORE

critical section. Under SC, every access within the critical sec- : 4 m

tion is delayed until th_e previous access completes. But such LOAD/STORE RELEASE B
delays are unnecessary if the programmer has already made sure

that no other process can rely on the data structure to be con- ! Release Consistency (RC)
sistent until the critical section is exited. Weak consistency ACQUIRE B |5
exploits this by allowing accesses within the critical section to ¥ u
be pipelined. Correctness is achieved by guaranteeing that all LOAD/STORE v cannot perform
previous accesses are performed before entering or exiting each T 6 ‘ until u 1s performed
critical section. LOAD/STORE v
! LOAD/STORE | LOADs and STOREs can
RELEASE B| 7 ’ perform in any order as long
LOADJ.STORE as local data and control
Weak Consistency (WC) dependences are observed

Figure 1: Ordering restrictions on memory accesses.
40

More on Weak Consistency

Dubois et al., "Memory Access Buffering in
Multiprocessors,” ISCA 1986.

Dubois et al., "Memory Access Dependencies in Shared-
Memory Multiprocessors,” IEEE TSE 1990.

41

Examples ot Weak Consistency Models

Gharachorloo et al., "Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

ACQUIRE A |1
{
, ,)) LOAD/STORE
Release consistency (RC) [8] is an extension of weak consis- . ,
tency that exploits further information about synchronization by ¢ -
classifying them into acquire and release accesses. An acquire LOAD/STORE
synchronization access (e.g., a lock operation or a process spin-]
ning for a flag to be set) is performed to gain access to a set of RELEASE A| 3
shared locations. A release synchronization access (e.g., an un- I
lock operation or a process setting a flag) grants this permission. LOAD/STORE
An acquire is accomplished by reading a shared location until [
an appropriate value is read. Thus, an acquire is always associ- .
ated with a read synchronization access (see [8] for discussion LOAD/STORE
of read-modify-write accesses). Similarly, a release is always)
associated with a write synchronization access. In contrast to ACQUIRE B |5
WC, RC does not require accesses following a release to be de- i
layed for the release to complete; the purpose of the release is to LOAD/STORE
signal that previous accesses are complete, and it does not have : 6
anything to say about the ordering of the accesses following LOAD/STORE
it. Similarly, RC does not require an acquire to be delayed for
its previous accesses. The data-race-free-0 (DRFO) [2] model '
RELEASE B| 7
Weak Consistency (WC)

ACQUIRE A

P

Y

ACQUIRE B

Y

LOAD/STORE LOAD/STORE
] L]
] 2 L] 4

LOAD/STORE LOAD/STORE
Y

RELEASE A

mwr

LOAD/STORE
6

]
LOAD/STORE

RELEASE B

Release Consistency (RC)

u

v cannot perform
until u 1s performed

v

LOAD/STORE
[}
(]

LOAD/STORE

LOADs and STORESs can
perform in any order as long
as local data and control
dependences are observed

Figure 1: Ordering restrictions on memory accesses.

42

More on Release Consistency

= Gharachorloo et al., "Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors,” ISCA
1990.

43

Tradeoffs: Weaker Consistency

Advantage

o No need to guarantee a very strict order of memory
operations

- Enables the hardware implementation of performance
enhancement techniques to be simpler

- Can be higher performance than stricter ordering

Disadvantage

a More burden on the programmer or software (need to get the
“fences” correct)

Another example of the programmer-microarchitect tradeoff

44

More on Weak Consistency Models

Gharachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

Abstract

The memory consistency model supported by a multiprocessor
directly affects its performance. Thus, several attempts have
been made to relax the consistency models to allow for more
buffering and pipelining of memory accesses. Unfortunately,
the potential increase in performance afforded by relaxing the
consistency model is accompanied by a more complex program-
ming model. This paper introduces two general implementation
techniques that provide higher performance for all the models.
The first technique involves prefetching values for accesses that
are delayed due to consistency model constraints. The second
technique employs speculative execution to allow the proces-
sor to proceed even though the consistency model requires the
memory accesses to be delayed. When combined, the above
techniques alleviate the limitations imposed by a consistency
model on buffering and pipelining of memory accesses, thus
significantly reducing the impact of the memory consistency
model on performance.

Two Example Questions

46

Example Question I

= Question 4 in
o http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

4. Sequential Consistency [30 points]

Two threads (A and B) are concurrently running on a dual-core processor that implements a sequen-
tially consistent memory model. Assume that the value at address 0x1000 is initialized to O.

Thread A Thread B

X1: st 0x1, (0x1000) Y1l: st 0x3, (0x1000)
X2: 1d $r1, (0x1000) Y2: 1d $r3, (0x1000)
X3: st 0x2, (0x1000) Y3: st 0x4, (0x1000)
X4: 1d $r2, (0x1000) Y4: 1d $r4, (0x1000)

(a) List all possible values that can be stored in $r3 after both threads have finished executing.

47

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

Example Question I (Continued)

(b) After both threads have finished executing, you find that ($rl, $r2, $r3, $r4) = (1, 2, 3, 4).
How many different instruction interleavings of the two threads produce this result?

(c) What is the total number of all possible instruction interleavings? You need not expand factorials.

(d) On a non-sequentially consistent processor, is the total number of all possible instruction inter-
leavings less than, equal to, or greater than your answer to question (c)?

48

Example Question 11

= Question 8 in
o https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=final-fs19.pdf

8 Memory Consistency [35 points]

A programmer writes the following two C code segments. She wants to run them concurrently on a
multicore processor, called SC, using two different threads, each of which will run on a different core.
The processor implements sequential consistency, as we discussed in the lecture.

Thread TO Thread T1
Instr. T0.0 X[0] = 2; Instr. T1.0 X[0] = 1;
Instr. T0.1 flag[0] = 1; Instr. T1.1 X[0] += 2;
Instr. T0.2 a = X[0]1%x2; Instr. T1.2 while(flag[0] == 1);
Instr. T0.3 b = Y[0]-1; Instr. T1.3 a = flag[0];
Instr. T0.4 c = X[0]; Instr. T1.4 X[0] = 2;
Instr. T1.5 Y[0] = 10;

X and flag have been allocated in main memory. Thread 0 and Thread 1 have their private processor
registers to store the values of a , b, and c. A read or write to any of these variables generates a single
memory request. The initial values of all memory locations and variables are 1. Assume each line of the
C code segment of a thread is a single instruction.

(a) [5 points| Do you find something that could be wrong in the C code segments? Explain your answer.

49

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=final-fs19.pdf

Example Question II (Continued)

(b) [10 points] What could be possible final values of X [0] in the SC processor, after executing both C
code segments? Explain your answer. Provide all possible values.

(c) [5 points| What could be possible final values of a in the SC processor, after executing both C code
segments? Explain your answer. Provide all possible values.

(d) |5 points| What could be possible final values of b in the SC processor, after both threads finish
execution? Explain your answer. Provide all possible values.

(e) [10 points| With the aim of achieving higher performance, the programmer tests her code on a new
multicore processor, called NC, that does not implement memory consistency. Thus, there is no
guarantee on the ordering of instructions as seen by different cores.

What is the final value of X[0] in the NC processor, after executing both threads? Explain your
answer.

50

Computer Architecture
Lecture 19b: Memory Ordering
(Memory Consistency)

Prof. Onur Mutlu
ETH Zurich
Fall 2021
2 December 2021

