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Recall: Levels of Transformation
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Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is [to gain] insight” (Richard Hamming)
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is 
guaranteed to terminate where 
each step is precisely stated 
and can be carried out by a 
computer

- Finiteness
- Definiteness
- Effective computability

Many algorithms for the same
problem

ISA
(Instruction Set Architecture)

Interface/contract between 
SW and HW.

What the programmer 
assumes hardware will 
satisfy.

Microarchitecture
An implementation of the ISA

Digital logic circuits
Building blocks of micro-arch (e.g., gates)



Recall: The Power of Abstraction
n Levels of transformation create abstractions

q Abstraction: A higher level only needs to know about the 
interface to the lower level, not how the lower level is 
implemented

q E.g., high-level language programmer does not really need to 
know what the ISA is and how a computer executes instructions

n Abstraction improves productivity
q No need to worry about decisions made in underlying levels
q E.g., programming in Java vs. C vs. assembly vs. binary vs. by 

specifying control signals of each transistor every cycle

n Then, why would you want to know what goes on 
underneath or above?
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Recall: Crossing the Abstraction Layers
n As long as everything goes well, not knowing what happens     

underneath (or above) is not a problem.
n What if

q The program you wrote is running slow?
q The program you wrote does not run correctly?
q The program you wrote consumes too much energy?
q Your system just shut down and you have no idea why?
q Someone just compromised your system and you have no idea how?

n What if
q The hardware you designed is too hard to program?
q The hardware you designed is too slow because it does not provide the 

right primitives to the software?

n What if
q You want to design a much more efficient and higher performance system?
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Recall: Crossing the Abstraction Layers

n Two key goals of this course are 

q to understand how a processor works underneath the 
software layer and how decisions made in hardware affect the 
software/programmer

q to enable you to be comfortable in making design and 
optimization decisions that cross the boundaries of different 
layers and system components
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An Example: Multi-Core Systems
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A Trend: Many Cores on Chip
n Simpler and lower power than a single large core
n Parallel processing on single chip à faster, new applications
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IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



More Recent Multi-Core Systems (I)

8Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


More Recent Multi-Core Systems (II)

9https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



More Recent Multi-Core Systems (III)

10https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared



More Recent Multi-Core Systems (IV)

11https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or 
Scratchpad: 
192KB per SM 
Can be used as L1 Cache 
and/or Scratchpad

L2 Cache:
40 MB shared



Many Cores on Chip
n What we want:

q N times the system performance with N times the cores

n What do we get today?
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Unexpected Slowdowns in Multi-Core
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Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)
Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.



Three Questions
n Can you figure out why the applications slow down if you 

do not know the underlying system and how it works?

n Can you figure out why there is a disparity in slowdowns if 
you do not know how the system executes the programs?

n Can you fix the problem without knowing what is 
happening “underneath”?
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Three Questions: Rephrased & Concise
n Why is there any slowdown?

n Why is there a disparity in slowdowns?

n How can we solve the problem if we do not want that 
disparity?
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Why Is This Important?
n We want to execute applications in parallel in multi-core 

systems à consolidate more and more (for efficiency)
q Cloud computing
q Mobile phones
q Automotive systems

n We want to mix different types of applications together
q those requiring QoS guarantees (e.g., video, pedestrian detection)
q those that are important but less so
q those that are less important

n We want the system to be controllable and high performance

16



17

Why the Disparity in Slowdowns?
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Digging Deeper: DRAM Bank Operation
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DRAM Controllers

n A row-conflict memory access takes significantly longer 
than a row-hit access

n Current controllers take advantage of this fact

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.
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The Problem
n Multiple applications share the DRAM controller
n DRAM controllers designed to maximize DRAM data 

throughput

n DRAM scheduling policies are unfair to some applications
q Row-hit first: unfairly prioritizes apps with high row buffer locality

n Threads that keep on accessing the same row
q Oldest-first: unfairly prioritizes memory-intensive applications

n DRAM controller vulnerable to denial of service attacks
q Can write programs to exploit unfairness



// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}
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A Memory Performance Hog

STREAM

- Sequential memory access 
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming
(in sequence)

random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?

Row Buffer
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T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, request size: 64B
128 (8KB/64B) requests of STREAM serviced 

before a single request of RANDOM
Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Effect of the Memory Performance Hog
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1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux) 

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs 
n Low system performance

Uncontrollable, unpredictable system
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Greater Problem with More Cores

n Vulnerable to denial of service (DoS) 
n Unable to enforce priorities or SLAs
n Low system performance 

Uncontrollable, unpredictable system
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Now That We Know What Happens Underneath

n How would you solve the problem?

n What is the right place to solve the problem?
q Programmer?
q System software?
q Compiler?
q Hardware (Memory controller)?
q Hardware (DRAM)?
q Circuits?

n Two other goals of this course:
q Enable you to think critically
q Enable you to think broadly
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Electrons



Reading on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY), 
pages 257-274, Boston, MA, August 2007. Slides (ppt)

n One potential reading for your Homework 1 assignment
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http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
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Conclusions [USENIX Security’07]

n Introduced the notion of memory performance attacks in 
shared DRAM memory systems

n Unfair DRAM scheduling is the cause of the vulnerability
n More severe problem in future many-core systems

n We provide a novel definition of DRAM fairness
q Threads should experience equal slowdowns

n New DRAM scheduling algorithm enforces this definition
q Effectively prevents memory performance attacks

n Preventing attacks also improves system throughput!



If You Are Interested … Further Readings
n Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

n Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


A Recent Solution: BLISS 
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on 
Computer Design (ICCD), Seoul, South Korea, October 2014. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


More on BLISS: Longer Version
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, 

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in 
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to 
appear in 2016.  arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004, 
Carnegie Mellon University, March 2015.
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim


Many Potential Solutions w/ Tradeoffs

32https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20

https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20


Many Potential Solutions w/ Tradeoffs

33https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21


Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 

Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Memory Channel Partitioning

35https://www.youtube.com/watch?v=MfEMpsnB93E&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=3

https://www.youtube.com/watch?v=MfEMpsnB93E&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=3


Many Potential Solutions w/ Tradeoffs

36https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Distributed DoS in Networked Multi-Core Systems
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Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via 
packet-switched
routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu, 
“Preemptive virtual clock: A Flexible, 
Efficient, and Cost-effective QOS 
Scheme for Networks-on-Chip,“
MICRO 2009.



More on Interconnect Based Starvation
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 268-279, New York, NY, 
December 2009. Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/grot_micro09_talk.pdf


Takeaway

Breaking the abstraction layers 
(between components and 
transformation hierarchy levels) 

and knowing what is underneath

enables you to understand and 
solve problems
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Memory Control is Getting More Complex

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …
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