Computer Architecture
Lecture 3d: Data Retention and Memory Refresh

Prof. Onur Mutlu
ETH Zürich
Fall 2021
7 October 2021
Another Example

- DRAM Refresh
DRAM in the System

Multi-Core Chip

*Die photo credit: AMD Barcelona
A DRAM cell consists of a capacitor and an access transistor. It stores data in terms of charge in the capacitor. A DRAM chip consists of (10s of 1000s of) rows of such cells.
DRAM Refresh

- DRAM capacitor charge leaks over time

- The memory controller needs to refresh each row periodically to restore charge
 - Activate each row every N ms
 - Typical N = 64 ms

- Downsides of refresh
 - **Energy consumption**: Each refresh consumes energy
 - **Performance degradation**: DRAM rank/bank unavailable while refreshed
 - **QoS/predictability impact**: (Long) pause times during refresh
 - **Refresh rate limits DRAM capacity scaling**
First, Some Analysis

- Imagine a system with 8 Exabyte DRAM (2^{63} bytes)
- Assume a row size of 8 KiloBytes (2^{13} bytes)

- How many rows are there?
- How many refreshes happen in 64ms?
- What is the total power consumption of DRAM refresh?
- What is the total energy consumption of DRAM refresh during a day?

- A good exercise...
- Brownie points from me if you do it...
Refresh Overhead: Performance

Refresh Overhead: Energy

How Do We Solve the Problem?

- **Observation:** All DRAM rows are refreshed every 64ms.

- **Critical thinking:** Do we need to refresh all rows every 64ms?

- **What if we knew what happened underneath (in DRAM cells) and exposed that information to upper layers?**
Aside: Why Do We Have Such a Profile?

- Answer: Manufacturing is not perfect
- Not all DRAM cells are exactly the same
- Some cells are more leaky than others
- This is called Manufacturing Process Variation
Opportunity: Taking Advantage of This Profile

- Assume we know the retention time of each row exactly.

- What can we do with this information?

- Who do we expose this information to?

- How much information do we expose?
 - Affects hardware/software overhead, power, verification complexity, cost

- How do we determine this profile information?
 - Also, who determines it?

Experimental Infrastructure (DRAM)

DRAM Testing Platform and Method

- **Test platform:** Developed a DDR3 DRAM testing platform using the Xilinx ML605 FPGA development board
 - Temperature controlled

- **Tested DRAM chips:** 248 commodity DRAM chips from five manufacturers (A,B,C,D,E)

- Seven families based on equal capacity per device:
 - A 1Gb, A 2Gb
 - B 2Gb
 - C 2Gb
 - D 1Gb, D 2Gb
 - E 2Gb
RetentionPolicy of DRAM Rows

- **Observation:** Overwhelming majority of DRAM rows can be refreshed much less often without losing data.

 - Only ~1000 rows in 32GB DRAM need refresh every 256 ms, but we refresh all rows every 64 ms.

 - **Key Idea of RAIDR:** Refresh weak rows more frequently, all other rows less frequently.

RAIDR: Eliminating Unnecessary DRAM Refreshes

Liu, Jaiyen, Veras, Mutlu, RAIDR: Retention-Aware Intelligent DRAM Refresh ISCA 2012.
RAIDR: Mechanism

1. Profiling: Identify the retention time of all DRAM rows

- 64-128ms
- >256ms

1.25KB storage in controller for 32GB DRAM memory

→ check the bins to determine refresh rate of a row

RAIDR: Results and Takeaways

- **System**: 32GB DRAM, 8-core; Various workloads
- **RAIDR hardware cost**: 1.25 kB (2 Bloom filters)
- **Refresh reduction**: 74.6%
- **Dynamic DRAM energy reduction**: 16%
- **Idle DRAM power reduction**: 20%
- **Performance improvement**: 9%

- Benefits increase as DRAM scales in density
Reading on RAIDR

- One potential reading for your Homework 1 assignment

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu
Carnegie Mellon University
{jamiel,bjaiyen,rveras,onur}@cmu.edu
If You Are Interested … Further Readings

- Onur Mutlu,
 "Memory Scaling: A Systems Architecture Perspective"
 Technical talk at MemCon 2013 (**MEMCON**), Santa Clara, CA, August 2013.
 Slides (pptx) (pdf) Video

- Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu,
 "Improving DRAM Performance by Parallelizing Refreshes with Accesses"
Takeaway 1

Breaking the abstraction layers (between components and transformation hierarchy levels)
and knowing what is underneath enables you to understand and solve problems
Takeaway 2

Cooperation between multiple components and layers can enable more effective solutions and systems.
Digging Deeper: Making RAIDR Work

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”
Recall: RAIDR: Mechanism

1. Profiling: Identify the retention time of all DRAM rows
 → can be done at design time or during operation

2. Binning: Store rows into bins by retention time
 → use Bloom Filters for efficient and scalable storage
 1.25KB storage in controller for 32GB DRAM memory

3. Refreshing: Memory controller refreshes rows in different bins at different rates
 → check the bins to determine refresh rate of a row

1. Profiling

To profile a row:
1. Write data to the row
2. Prevent it from being refreshed
3. Measure time before data corruption

<table>
<thead>
<tr>
<th>Initially</th>
<th>Row 1</th>
<th>Row 2</th>
<th>Row 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 64 ms</td>
<td>111111111...</td>
<td>111111111...</td>
<td>111111111...</td>
</tr>
<tr>
<td>After 128 ms</td>
<td>110111111...</td>
<td>111111111...</td>
<td>111111111...</td>
</tr>
<tr>
<td></td>
<td>(64–128ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 256 ms</td>
<td></td>
<td>111110111...</td>
<td>111111111...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(128–256ms)</td>
<td>(>256ms)</td>
</tr>
</tbody>
</table>
DRAM Retention Time Profiling

- Q: Is it really this easy?

- A: Ummm, not really...
Two Challenges to Retention Time Profiling

- Data Pattern Dependence (DPD) of retention time
- Variable Retention Time (VRT) phenomenon
Two Challenges to Retention Time Profiling

- **Challenge 1: Data Pattern Dependence (DPD)**
 - Retention time of a DRAM cell depends on its value and the values of cells nearby it.
 - When a row is activated, all bitlines are perturbed simultaneously.

![Diagram of DRAM cell and bitlines](image)
Data Pattern Dependence

- Electrical noise on the bitline affects reliable sensing of a DRAM cell
- The magnitude of this noise is affected by values of nearby cells via
 - Bitline-bitline coupling \rightarrow electrical coupling between adjacent bitlines
 - Bitline-wordline coupling \rightarrow electrical coupling between each bitline and the activated wordline

- Retention time of a cell depends on data patterns stored in nearby cells
 \rightarrow need to find the worst data pattern to find worst-case retention time
DPD: Implications on Profiling Mechanisms

- Any retention time profiling mechanism must handle data pattern dependence of retention time
- Intuitive approach: Identify the data pattern that induces the worst-case retention time for a particular cell or device

- Problem 1: Very hard to know at the memory controller which bits actually interfere with each other due to
 - Opaque mapping of addresses to physical DRAM geometry → logically consecutive bits may not be physically consecutive
 - Remapping of faulty bitlines/wordlines to redundant ones internally within DRAM

- Problem 2: Worst-case coupling noise is affected by non-obvious second order bitline coupling effects
Two Challenges to Retention Time Profiling

- **Challenge 2: Variable Retention Time (VRT)**
 - Retention time of a DRAM cell changes randomly over time
 - a cell alternates between multiple retention time states
 - Leakage current of a cell changes sporadically due to a charge trap in the gate oxide of the DRAM cell access transistor
 - When the trap becomes occupied, charge leaks more readily from the transistor’s drain, leading to a short retention time
 - Called *Trap-Assisted Gate-Induced Drain Leakage*
 - This process appears to be a random process \[Kim+\ IEEE TED’11\]
 - Worst-case retention time depends on a random process → need to find the worst case despite this
An Example VRT Cell

A cell from E 2Gb chip family
Variable Retention Time

Many failing cells jump from very high retention time to very low

Most failing cells exhibit VRT

Min ret time = Max ret time
Expected if no VRT

A 2Gb chip family

SAFARI
Problem 1: There does not seem to be a way of determining if a cell exhibits VRT without actually observing a cell exhibiting VRT
 - VRT is a memoryless random process \([\text{Kim+ JJAP 2010}]\)

Problem 2: VRT complicates retention time profiling by DRAM manufacturers
 - Exposure to very high temperatures can induce VRT in cells that were not previously susceptible
 → can happen during soldering of DRAM chips
 → manufacturer’s retention time time profile may not be accurate

One option for future work: Use ECC to continuously profile DRAM online while aggressively reducing refresh rate
 - Need to keep ECC overhead in check
More on DRAM Retention Analysis

- Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms"
 Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu*
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
jamiel@alumni.cmu.edu

Ben Jaiyen*
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
bjaiyen@alumni.cmu.edu

Yoongu Kim
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
yoonguk@ece.cmu.edu

Chris Wilkerson
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95054
chris.wilkerson@intel.com

Onur Mutlu
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
onur@cmu.edu
Finding DRAM Retention Failures

- How can we reliably find the retention time of all DRAM cells?

- Goals: so that we can
 - Make DRAM reliable and secure
 - Make techniques like RAIDR work
 → improve performance and energy
Mitigation of Retention Issues [SIGMETRICS’14]

- Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu,

"The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study"
Handling Variable Retention Time [DSN'15]

- Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems"

Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)]
Handling Data-Dependent Failures [DSN’16]

- Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM"
 Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June 2016. [Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM

Samira Khan* Donghyuk Lee†‡ Onur Mutlu*†
*University of Virginia †Carnegie Mellon University ‡Nvidia *ETH Zürich
Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
Handling Both DPD and VRT [ISCA’17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions"
 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]

- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel§‡ Jeremie S. Kim‡§ Onur Mutlu§‡
§ETH Zürich ‡Carnegie Mellon University
In-DRAM ECC Complicates Things [DSN’19]

- Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices"

[Slides (pptx) (pdf)]
[Talk Video (26 minutes)]
[Full Talk Lecture (29 minutes)]
[Source Code for EINSim, the Error Inference Simulator]

Best paper award.

Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel† Jeremie S. Kim‡‡ Hasan Hassan† Onur Mutlu†‡

†ETH Zürich ‡‡Carnegie Mellon University

SAFARI
More on In-DRAM ECC [MICRO’20]

- Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu,
 "Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics"
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Lecture Slides (pptx) (pdf)]
 [Talk Video (15 minutes)]
 [Short Talk Video (5.5 minutes)]
 [Lightning Talk Video (1.5 minutes)]
 [Lecture Video (52.5 minutes)]
 [BEER Source Code]

Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics

Minesh Patel† Jeremie S. Kim‡‡ Taha Shahroodi† Hasan Hassan† Onur Mutlu†‡
†ETH Zürich ‡Carnegie Mellon University

SAFARI
Profiling In The Presence of ECC [MICRO’21]

To Appear in MICRO 2021

HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes

Minesh Patel
ETH Zürich

Geraldo F. Oliveira
ETH Zürich

Onur Mutlu
ETH Zürich

SAFARI
Recall: RAIDR: Mechanism

1. Profiling: Identify the retention time of all DRAM rows
 → can be done at design time or during operation

2. Binning: Store rows into bins by retention time
 → use Bloom Filters for efficient and scalable storage
 1.25KB storage in controller for 32GB DRAM memory

3. Refreshing: Memory controller refreshes rows in different bins at different rates
 → check the bins to determine refresh rate of a row

2. Binning

- How to efficiently and scalably store rows into retention time bins?
- Use Hardware Bloom Filters [Bloom, CACM 1970]

Bloom Filter

- [Bloom, CACM 1970]
- Probabilistic data structure that compactly represents set membership (presence or absence of element in a set)

- Non-approximate set membership: Use 1 bit per element to indicate absence/presence of each element from an element space of N elements

- Approximate set membership: use a much smaller number of bits and indicate each element’s presence/absence with a subset of those bits
 - Some elements map to the bits other elements also map to

- Operations: 1) insert, 2) test, 3) remove all elements

Bloom Filter Operation Example

Example with 64-128ms bin:

Hash function 1
Hash function 2
Hash function 3

Insert Row 1

Example with 64-128ms bin:

```
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
1 & 1 & 1 = 1
```

Hash function 1

Hash function 2

Hash function 3

Row 1 present? Yes
Bloom Filter Operation Example

Example with 64-128ms bin:

\(<0 \& 1 \& 0 = 0>\)

Hash function 1

Hash function 2

Hash function 3

Row 2 present? No
Bloom Filter Operation Example

Example with 64-128ms bin:

Hash function 1 Hash function 2 Hash function 3

Insert Row 4
Bloom Filter Operation Example

Example with 64-128ms bin:

Row 5 present? Yes (false positive)
Space/Time Trade-offs in Hash Coding with Allowable Errors

In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to “catch” the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods.

Burton H. Bloom

In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hash-coding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency.
Bloom Filters: Pros and Cons

■ Advantages
+ Enables storage-efficient representation of set membership
+ Insertion and testing for set membership (presence) are fast
+ No false negatives: If Bloom Filter says an element is not present in the set, the element must not have been inserted
+ Enables tradeoffs between time & storage efficiency & false positive rate (via sizing and hashing)

■ Disadvantages
-- False positives: An element may be deemed to be present in the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false positives

Benefits of Bloom Filters as Refresh Rate Bins

- **False positives:** a row may be declared present in the Bloom filter even if it was never inserted
 - Not a problem: Refresh some rows more frequently than needed

- **No false negatives:** rows are never refreshed less frequently than needed (no correctness problems)

- **Scalable:** a Bloom filter never overflows (unlike a fixed-size table)

- **Efficient:** No need to store info on a per-row basis; simple hardware → 1.25 KB for 2 filters for 32 GB DRAM system
Use of Bloom Filters in Hardware

- Useful when you can tolerate false positives in set membership tests

- See the following recent examples for clear descriptions of how Bloom Filters are used
3. Refreshing (RAIDR Refresh Controller)

1. Choose a refresh candidate row
2. Determine which bin the row is in
3. Determine if refreshing is needed
Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM
Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands issued for per-row refresh (all accounted for in evaluations)
Overhead of RAIDR in DRAM chip:
- Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)
- Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)
RAIDR: Results and Takeaways

- System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads
- RAIDR hardware cost: 1.25 kB (2 Bloom filters)
- Refresh reduction: 74.6%
- Dynamic DRAM energy reduction: 16%
- Idle DRAM power reduction: 20%
- Performance improvement: 9%

Benefits increase as DRAM scales in density
DRAM Refresh: More Questions

- What else can you do to reduce the impact of refresh?
- What else can you do if you know the retention times of rows?
- How can you accurately measure the retention time of DRAM rows?

Recommended reading:
DRAM Refresh: Summary and Conclusions

- DRAM refresh is a critical challenge
 - in scaling DRAM technology efficiently to higher capacities

- Several promising solution directions
 - Eliminate unnecessary refreshes [Liu+ ISCA’12]
 - Reduce refresh rate w/ online profiling and detect/correct any errors [Khan+ SIGMETRICS’14, Qureshi+ DSN’15, Patel+ ISCA’17]
 - Parallelize refreshes with accesses [Chang+ HPCA’14]

- Examined properties of retention time behavior [Liu+ ISCA’13]
 - Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN’15]

- Many avenues for overcoming DRAM refresh challenges
 - Handling DPD/VRT phenomena
 - Enabling online retention time profiling and error mitigation
 - Exploiting application behavior
More Information on Refresh-Access Parallelization

- Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing Refreshes with Accesses"

[Summary] [Slides (pptx) (pdf)]
Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

- **Refresh**
 - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
 - Leakage current of cell access transistors increasing

- **tWR**
 - Contact resistance between the cell capacitor and access transistor increasing
 - On-current of the cell access transistor decreasing
 - Bit-line resistance increasing

- **VRT**
 - Occurring more frequently with cell capacitance decreasing
Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

- Refresh
 - Difficult to build high-aspect ratio cell capacitors, decreasing cell capacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
We Will Dig Deeper More
In This Course

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”
Foreshadowing: Limits of Charge Memory

- Difficult charge placement and control
 - Flash: floating gate charge
 - DRAM: capacitor charge, transistor leakage

- Data retention and reliable sensing become difficult as charge storage unit size reduces
An unfortunate tale about Samsung's SSD 840 read performance degradation

An avalanche of reports emerged last September, when owners of the usually speedy Samsung SSD 840 and SSD 840 EVO detected the drives were no longer performing as they used to.

The issue has to do with older blocks of data: reading old files consistently slower than normal as slow as 30MB/s whereas newly-written files ones used in benchmarks, perform as fast as new – around 500 MB/s for the well-regarded SSD 840 EVO. The reason no one had noticed (we reviewed the drive back in September 2013) is that data has to be several weeks old to show the problem. Samsung promptly admitted the issue and proposed a fix.

Why is old data slower?

Retention loss!
Retention loss

Charge leakage over time

One dominant source of flash memory errors [DATE ‘12, ICCD ‘12]

Side effect: Longer read latency
NAND Flash Error Types

- Four types of errors [Cai+, DATE 2012]

- Caused by common flash operations
 - Read errors
 - Erase errors
 - Program (interference) errors

- Caused by flash cell losing charge over time
 - Retention errors
 - Whether an error happens depends on required retention time
 - Especially problematic in MLC flash because threshold voltage window to determine stored value is smaller
Flash Experimental Testing Platform

Observations: Flash Error Analysis

- Raw bit error rate increases exponentially with P/E cycles
- **Retention errors are dominant** (>99% for 1-year ret. time)
- Retention errors increase with retention time requirement

Safari Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012.
More on Flash Error Analysis

Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis

Yu Cai1, Erich F. Haratsch2, Onur Mutlu1 and Ken Mai1
1Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
2LSI Corporation, 1110 American Parkway NE, Allentown, PA
1\{yucai, onur, kenmai\}@andrew.cmu.edu, 2erich.haratsch@lsi.com
Solution to Retention Errors

- Refresh periodically

- Change the period based on P/E cycle wearout
 - Refresh more often at higher P/E cycles

- Use a combination of in-place and remapping-based refresh

Flash Correct-and-Refresh [ICCD’12]

- Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime"

Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides (ppt)(pdf)

Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime

Yu Cai¹, Gulay Yalcin², Onur Mutlu¹, Erich F. Haratsch³, Adrian Cristal², Osman S. Unsal² and Ken Mai¹
¹DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
²Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain
³LSI Corporation, 1110 American Parkway NE, Allentown, PA
More on Flash Error Analysis [Intel Tech J’13]

- Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,
 "Error Analysis and Retention-Aware Error Management for NAND Flash Memory"

Best paper session.
Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, "Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation"

Abstract

 Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation

Yixin Luo† Saugata Ghose† Yu Cai† Erich F. Haratsch‡ Onur Mutlu§†

†Carnegie Mellon University ‡Seagate Technology §ETH Zürich
Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
More Up-to-date Version

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, "Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery"
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery

YU CAI, SAUGATA GHOSE
Carnegie Mellon University

ERICH F. HARATSCH
Seagate Technology

YIXIN LUO
Carnegie Mellon University

ONUR MUTLU
ETH Zürich and Carnegie Mellon University
Complete Lecture on Flash Memory & SSDs

Computer Architecture - Lecture 26: Flash Memory and Solid-State Drives (ETH Zürich, Fall 2020)

https://www.youtube.com/watch?v=rninK6KWBBeM&list=PL5Q2soXY2Zi9xidylqBxUz7xRPS-wisBN&index=47
Profiling for DRAM Data Retention Failures
Finding DRAM Retention Failures

- How can we reliably find the retention time of all DRAM cells?

- Goals: so that we can
 - Make DRAM reliable and secure
 - Make techniques like RAIDR work
 → improve performance and energy
Mitigation of Retention Issues [SIGMETRICS’14]

- Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study"
Key Observations:

- **Testing** alone cannot detect all possible failures
- **Combination** of ECC and other mitigation techniques is much more effective
 - But degrades performance
- **Testing** can help to reduce the **ECC strength**
 - Even when starting with a **higher strength ECC**

Towards an Online Profiling System

1. Initially Protect DRAM with Strong ECC
2. Periodically Test Parts of DRAM
3. Mitigate errors and reduce ECC

Run tests periodically after a short interval at smaller regions of memory
Handling Variable Retention Time [DSN'15]

- Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems"
 Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi† Dae-Hyun Kim† Samira Khan‡ Prashant J. Nair† Onur Mutlu‡
†Georgia Institute of Technology
‡Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu
{samirakhan, onur}@cmu.edu
Insight: Avoid retention failures \Rightarrow Upgrade row on ECC error

Observation: Rate of VRT $>>$ Rate of soft error (50x-2500x)

AVATAR mitigates VRT by increasing refresh rate on error
RESULTS: REFRESH SAVINGS

AVATAR reduces refresh by 60%-70%, similar to multi rate refresh but with VRT tolerance.

Retention Testing Once a Year can revert refresh saving from 60% to 70%.
AVATAR gets \(\frac{2}{3} \text{rd} \) the performance of NoRefresh. More gains at higher capacity nodes.
AVATAR reduces EDP,
Significant reduction at higher capacity nodes
Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM"
[Slides (pptx) (pdf)]
Handling Data-Dependent Failures [MICRO’17]

- Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,

Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content

Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content

Samira Khan* Chris Wilkerson† Zhe Wang† Alaa R. Alameldeen† Donghyuk Lee† Onur Mutlu*

*University of Virginia †Intel Labs ‡Nvidia Research *ETH Zürich
Handling Both DPD and VRT [ISCA’17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions"

- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures
The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel Jeremie S. Kim
Onur Mutlu
Leaky Cells

→

Periodic DRAM Refresh

→

Performance + Energy Overhead
Goal: find all retention failures for a refresh interval $T >$ default (64ms)
Process, voltage, temperature

Variable retention time

Data pattern dependence
Characterization of 368 LPDDR4 DRAM Chips

1. Cells are more likely to fail at an increased (refresh interval | temperature)

2. Complex tradeoff space between profiling (speed & coverage & false positives)
refresh interval

operate here

profile here

temperature

REACH PROFILING
Reach Profiling

A new DRAM retention failure profiling methodology

+ Faster and more reliable than current approaches

+ Enables longer refresh intervals
REAPER Outline

1. DRAM Refresh Background
2. Failure Profiling Challenges
3. Current Approaches
4. LPDDR4 Characterization
5. Reach Profiling
6. End-to-end Evaluation
Experimental Infrastructure

• 368 2y-nm LPDDR4 DRAM chips
 - 4Gb chip size
 - From 3 major DRAM vendors

• Thermally controlled testing chamber
 - Ambient temperature range: \{40°C – 55°C\} ± 0.25°C
 - DRAM temperature is held at 15°C above ambient
LPDDR4 Studies

1. Temperature
2. Data Pattern Dependence
3. Retention Time Distributions
4. Variable Retention Time
5. Individual Cell Characterization
• New failing cells continue to appear over time
 - Attributed to variable retention time (VRT)
• The set of failing cells changes over time
New failing cells continue to appear over time - Attributed to variable retention time (VRT)

The set of failing cells changes over time

Error correction codes (ECC) and online profiling are necessary to manage new failing cells

[Graph showing Long-term Continuous Profiling with a representative chip from Vendor B, 2048ms, 45°C]
Single-cell Failure Probability (Cartoon)

Probability of Read Failure

Refresh Interval (s)

idealized cell
(retention time = 3s)
Probability of Read Failure

Refresh Interval (s)

- **idealized cell** (retention time = 3s)
- **actual cell**

\[N(\mu, \sigma) \mid \mu = 3s \]
Single-cell Failure Probability (Real)

Read Failure Probability vs. Refresh Interval (s)

- Probability increases as refresh interval increases.
- Probability approaches 1.00 at higher intervals.

SAFARI
Single-cell Failure Probability (Real)
Single-cell Failure Probability (Real)
Single-cell Failure Probability (Real)

operate here

Read Failure Probability

Refresh Interval (s)

SAFARI
Single-cell Failure Probability (Real)

Read Failure Probability vs. Refresh Interval (s)

operate here
Single-cell Failure Probability (Real)

operate here

Read Failure Probability

Refresh Interval (s)

operate here

hard to find

SAFARI
Single-cell Failure Probability (Real)

Read Failure Probability

Refresh Interval (s)

operate here

profile here

hard to find

SAFARI
Read Failure Probability

Refresh Interval (s)

Single-cell Failure Probability (Real)

operate here

profile here

easy to find

hard to find

SAFARI
Single-cell Failure Probability (Real)

Read Failure Probability vs. Refresh Interval (s)

operate here

profile here

operate here

profile here

easy to find

false positives

hard to find

Read Failure Probability

Sheet 22/36

SAFARI
Any cell is more likely to fail at a *longer* refresh interval OR a *higher* temperature.
REAPER Outline

1. DRAM Refresh Background
2. Failure Profiling Challenges
3. Current Approaches
4. LPDDR4 Characterization
5. Reach Profiling
6. End-to-end Evaluation
Reach Profiling

Key idea: profile at a *longer refresh interval* and/or a *higher temperature*

![Graph showing temperature versus refresh interval with a point labeled 'operate here']
Reach Profiling

Key idea: profile at a *longer refresh interval* and/or a *higher temperature*
Reach Profiling

Key idea: profile at a *longer refresh interval* and/or a *higher temperature*

• Pros

- **Fast + Reliable:** reach profiling searches for cells where they are most likely to fail

• Cons

- **False Positives:** profiler may identify cells that fail under profiling conditions, but not under operating conditions
Towards an Implementation

Reach profiling is a **general methodology**

3 key questions for an implementation:

- What are desirable profiling conditions?
- How often should the system profile?
- What information does the profiler need?
Three Key Profiling Metrics

1. **Runtime**: how long profiling takes

2. **Coverage**: portion of all possible failures discovered by profiling

3. **False positives**: number of cells observed to fail during profiling but never during actual operation
Three Key Profiling Metrics

1. **Runtime**: how long profiling takes

2. **Coverage**: portion of all possible failures discovered by profiling

We explore how these three metrics change under **many** different profiling conditions.
Evaluation Methodology

• Simulators
 - Performance: Ramulator [Kim+, CAL’15]
 - Energy: DRAMPower [Chandrasekar+, DSD’11]

• Configuration
 - 4-core (4GHz), 8MB LLC
 - LPDDR4-3200, 4 channels, 1 rank/channel

• Workloads
 - 20 random 4-core benchmark mixes
 - SPEC CPU2006 benchmark suite
Simulated End-to-end Performance

![Diagram showing end-to-end system performance gain for different refresh intervals (ms) with three different profiling methods: Brute-force profiling, REAPER, and Ideal profiling. The x-axis represents the refresh interval in ms, and the y-axis shows the system performance gain in percentage. The diagram includes data for 64 Gb.]
Simulated End-to-end Performance

- Brute-force profiling
- REAPER
- Ideal profiling

64 Gb

end-to-end system performance gain

- 30%
- 20%
- 10%
- 0%
- -10%
- -20%

refresh interval (ms)

- 128
- 256
- 512
- 768
- 1024
- 1280
- 1536
- no ref

Repofile rarely

Repofile often
Simulated End-to-end Performance

- Brute-force profiling
- REAPER
- Ideal profiling

64 Gb

- Refresh interval (ms)
 - 128
 - 256
 - 512
 - 768
 - 1024
 - 1280
 - 1536
 - no ref

End-to-end system performance gain

- Reprofile rarely
- Reprofile often
Simulated End-to-end Performance

On average, REAPER enables:
- **16.3%** system performance improvement
- **36.4%** DRAM power reduction

REAPER enables longer refresh intervals, which are unreasonable using brute-force profiling.
Other Analyses in the Paper

• **Detailed LPDDR4 characterization data**
 - Temperature dependence effects
 - Retention time distributions
 - Data pattern dependence
 - Variable retention time
 - Individual cell failure distributions

• **Profiling tradeoff space characterization**
 - Runtime, coverage, and false positive rate
 - Temperature and refresh interval

• **Probabilistic model for tolerable failure rates**

• **Detailed results for end-to-end evaluations**
Problem:
- DRAM refresh performance and energy overhead is high
- Current approaches to retention failure profiling are slow or unreliable

Goals:
1. Thoroughly analyze profiling tradeoffs
2. Develop a **fast** and **reliable** profiling mechanism

Key Contributions:
1. **First** detailed characterization of 368 LPDDR4 DRAM chips
2. **Reach profiling:** Profile at a **longer refresh interval** or **higher temperature** than target conditions, where cells are more likely to fail

Evaluation:
- 2.5x faster profiling with **99%** coverage and **50%** false positives
- REAPER enables **16.3% system performance improvement** and **36.4% DRAM power reduction**
- Enables longer refresh intervals that were previously unreasonable
Handling Both DPD and VRT [ISCA’17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions"
 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]

- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel‡‡ Jeremie S. Kim‡§ Onur Mutlu‡‡
§ETH Zürich ‡Carnegie Mellon University
In-DRAM ECC Complicates Things [DSN'19]

- Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices"

- Slides (pptx) (pdf)
- Talk Video (26 minutes)
- Full Talk Lecture (29 minutes)
- Source Code for EINSim, the Error Inference Simulator

Best paper award.

Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel† Jeremie S. Kim‡† Hasan Hassan† Onur Mutlu‡‡

†ETH Zürich ‡Carnegie Mellon University
More on In-DRAM ECC [MICRO’20]

- Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu,
 "Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics"

[Slides (pptrx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (15 minutes)]
[Short Talk Video (5.5 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Lecture Video (52.5 minutes)]
[BEER Source Code]

Best paper award.

Bit-Exact ECC Recovery (BEER):
Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics

Minesh Patel† Jeremie S. Kim‡‡ Taha Shahroodi† Hasan Hassan† Onur Mutlu‡‡
†ETH Zürich ‡Carnegie Mellon University
Profiling In The Presence of ECC [MICRO’21]

To Appear in MICRO 2021

HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes

Minesh Patel
ETH Zürich

Geraldo F. Oliveira
ETH Zürich

Onur Mutlu
ETH Zürich