Computer Architecture
Lecture 4a:
Memory Performance Attacks

Prof. Onur Mutlu
ETH Zurich
Fall 2021
8 October 2021

Recall: Levels of Transformation

“The purpose of computing is [to gain] insight” (Richard Hamming)
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

Algorithm Problem

Step-by-step procedure that is Algorithm

guaranteed to terminate where | Program/Languag

Runtime System ISA Ey PN

each step is precisely stated

and can be carried out by a

computer VI, 0o, MM (Instruction Set Architecture)
ISA (Architecture)

- Finiteness Interface/contract between

- Definiteness SW and HW.

- Effective computability What th
at the programmer

assumes hardware will

Many algorithms for the same

problem satisfy.
Microarchitecture Digital logic circuits
An implementation of the ISA Building blocks of micro-arch (e.g., gates)

2

Recall: The Power of Abstraction

Levels of transformation create abstractions

o Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

o E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

Abstraction improves productivity
o No need to worry about decisions made in underlying levels

o E.g., programming in Java vs. C vs. assembly vs. binary vs. by
specifying control signals of each transistor every cycle

Then, why would you want to know what goes on
underneath or above?

Recall: Crossing the Abstraction Layers

As long as everything goes well, not knowing what happens
underneath (or above) is not a problem.

What if

The program you wrote is running slow?

The program you wrote does not run correctly?

The program you wrote consumes too much energy?

Your system just shut down and you have no idea why?

Someone just compromised your system and you have no idea how?

What if

a2 The hardware you designed is too hard to program?

a The hardware you designed is too slow because it does not provide the
right primitives to the software?

What if

a2 You want to design a much more efficient and higher performance system?

o U o 0 O

4

Recall: Crossing the Abstraction Layers

= Two key goals of this course are

o to understand how a computing system works underneath the
software layer and how decisions made in hardware affect the
software/programmer

o to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

An Example: Multi-Core Systems

Multi-Core
Chip
=
s ORE 0 '8 ORE 1: &
¥
3 g -
L E : ¥
;*n ‘ ? ™~

I HE =

*Die photo credit: AMD Barcelona

,‘V-'

A Trend: Many Cores on Chip

« Simpler and lower power than a single large core
« Parallel processing on single chip [faster, new applications

Memory Controller

H [=

IBM POWER

Intel Core i7 IBM Cell BE
8 cores 8+1 cores 8 cores

e § o | e Nvidia Fermi Intel SCC Tilera TILE Gx
Sun Niagara Il 448 “cores” 48 cores, networked 100 cores, networked
8 cores

More Recent Multi-Core Systems (1)

- ’“‘"‘"ﬁ 5

TR s oy el B S s L e e
[o ; v n_a i
S e ~: otew i
3 Lo e - 3
i - ' r I i

‘s i

ik e By
na _{;ﬁji R
Lo St P n=

i Yo

;g S] | i Apple M1,
| B 2021

SAFARI Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

More Recent Multi-Core Systems (11

III|l||II||||||l|||Il'""||||_|l[" l"‘"“ II

nL%Ca CHE .

1 Mi8 L3$ Array
L1 E%

IR S Zen3 Core

L3$ Tags'

o
. 1MiBL3$ Array

1 MiB L3$ Array

FPRegister

e 3% Tags
E

: ‘Z.e.n3-fCorev

1 MiB L3$ Array

L3 Cache

LIMe

o (e 1 MiB L3$ Array
256 Kil { . 2% Y

L3 Tags
EPU Control #. Zen3 Core

&
. 1MiBL3$ Array

L3'Cache

FP/Register

1 MiB (35 Array

L3$ Tags'

E

1 EpiRegister.

. 1MiBL3$ Array

L3 Cache

i

' 1 MiB L3 Array
3% Tags

3% Control

¥'1 MiB L33 Array.

L3 Cache . .

1 Mi8 £3% Array

L3% Tags

1 MiB'L3$ Array.

: L3 Cache

1 MiB L3 Array
L3% Tags

L33 Control

Y1 mis L3s Array

L3 Cache - .,

‘1 MiB L3$ Array
L3$ Tags

L3$ Control

1 MiB L33 Array.

L3 Cache ,

1 Mig L3§"Array

L35 Tags L3$ Control

1 MiB L3 Array

L3 Cache

1 M8 13§ Array

L38.Tags L3 Control

1mMiBLIs Array o

L3 Cache

1 MiB L3$ Array

L3$ Tags L3$ Control

1 MiB L3 Array
.

‘L3 Cache -

1 Mi8 L3§ Array

L3$ Tags L3$ Control

1 MiB L3$ Array

13 Cache -

", 1 MiB L3$ Array

135 Tags

1 MiB L3$ Array

L3 Cache

1 MiB L3$ Array

138 Tags

1 MiB L3$ Array

‘L3 €ache

1 MiB L3$ Array

138 Tags

1 MiB L3$ Array

‘L3 Cache -

b, 1 MiB L3$ Array

13§ Tags

1 MiB L3$ Array

‘L3 Cache ;

AMD Ryzen 5000, 2020

T s | R
"'—.*

‘System’

i -
Iy
Lg t) H

L2 €acha.: instruction | "
7 R
" | 25sxis I

s
_‘ o 2Level B'B 3
] Rkt Cache
ol "'Zen3 Core

mmg- " 11DCache; -

|32kiB L1 Data Cache |

L(t ache
- Zen3 Core
=1 DCache

| |32is {1 pata (a(he‘
L2loris) |

@1 Tnstruction
Cache {
| 256'ki8 A

Juas:
¥ 2|Level BT8

Zen3 Coré
L1 DCache:

| |32kiB L1 Data Cache |
wzone | |

Tnstruction 13
i Tt
:

o ‘L1DCache
Zen3 Coré
Ll DCache

uCode ROM

FP Register

FPU Control

uCode ROM

2
g
[
&

FPU Control

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
9512 KB per core

L3 Cache:
32 MB shared

https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

More Recent Multi-Core Systems (111)

e R RS |5\ POVWER10,
2020
s 28 B Local MBI i 3t isiste o
.%-’..5.3.'32::".;.2 Cores:

64 MB L3 Hémlsphere §3ET

15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

E4
@
3
.0
<
@
@
3
-1
5
@
®
-
®
O
z

(INO 8xg) Bujeubis Aowa

190ULOINU] [Dd ‘J8I8N|) |eddy ‘Kiowen ' dNS

JO8ULOIBU]| |Dd ‘J8IsN|) 1820y ‘Kiowel ‘dNS

L3 Cache:
120 MB shared

X
3
2
& - ; +
4 > < Ty riey ; g < : y 4
PCle Gen 5 : 9N PCle Gen 5 0

5 . I, AP %' X P AXON
FOWraNOnN -VSIgnaIing ()_(16) SRR e, G Signaling (x16) 8 ow9r

https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/ 10

More Recent Multi-Core Systems (1V)

il l!.,w,. L
X

g

Cores:
128 Streaming Multiprocessors

L1 Cache or

Scratchpad:

192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

7 NN CEEEEEE BEE U EEE

Nvidia Ampere, 2020

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon 11

Many Cores on Chip

What we want:
a2 N times the system performance with N times the cores

What do we get today?

12

Unexpected Slowdowns in Multi-Core

High priority

) /
> 304

3

2.5 — Memory Performance Hog
/ Low priority

. / /

Slowdown

1.07
1
0.5 -
0 |
matlab gcc
(Core 0) (Core 1)

Moscibroda and Mutlu, *Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

13

Three Questions

Can you figure out why the applications slow down if you
do not know the underlying system and how it works?

Can you figure out why there is a disparity in slowdowns if
you do not know how the system executes the programs?

Can you fix the problem without knowing what is
happening “underneath”?

14

Three Questions: Rephrased & Concise

Why is there any slowdown?

Why is there a disparity in slowdowns?

How can we solve the problem if we do not want that
disparity?

15

Why Is This Important?

We want to execute applications in parallel in multi-core
systems [consolidate more and more (for efficiency)

o Cloud computing
a2 Mobile phones
a2 Automotive systems

We want to mix different types of applications together

o those requiring QoS guarantees (e.qg., video, pedestrian detection)
o those that are important but less so

o those that are less important

We want the system to be controllable and high performance

16

Why the Disparity in Slowdowns?

unfairness

= |
[]
L2 L2
CACHE CACHE
A\ #7
INTERCONNECT
I I

Multi-Core
Chip

DRAM MEMORY CONTROLLER/

AB}RA*D ABILQA*‘B#QA*

A
M M M M
Bank Bank Bank Bank

\ Shared DRAM
Memory System

17

We Ended Here 1in Last Lecture

Digoing Deeper: DRAM Bank Operation

Access Address:
(Row 0, Column 0)
(Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address @

Column address GS—X Column mux/

Row decoder

Columns

—————————————————————————

Data

This view of a bank is an
abstraction.

Internally, a bank consists of
U many sub-arrays of cells
< (transistors & capacitors) and
other structures that enable
access to sub-arrays & cells

Row Buffer EONFLICT !

19

DRAM Controllers

A row-conflict memory access takes significantly longer
than a row-hit access

Current controllers take advantage of this fact

Commonly used scheduling policy (FR-FCFS) [Rixner 20007*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM ...,” US Patent 5,630,096, May 1997.

20

The Problem

Multiple applications share the DRAM controller

DRAM controllers designed to maximize DRAM data
throughput

DRAM scheduling policies are unfair to some applications

a2 Row-hit first: unfairly prioritizes apps with high row buffer locality
Threads that keep on accessing the same row

o Oldest-first: unfairly prioritizes memory-intensive applications

DRAM controller vulnerable to denial of service attacks
o Can write programs to exploit unfairness

21

A Memory Performance Hog

// initialize large arrays A, B // initialize large arrays A, B
for (j=0; j<N; j++) { for (j=0; j<N; j++) {
[index = j*linesize; | streaming lindex = rand(); | random
Alindex] = B[index]; (in sequenge) Alindex] = B[index];
} }
STREAM RANDOM
1 Sequential memory access @@ Random memory access
% Very high row buffer locality (96% hit rate)@@ Very low row buffer locality (3% hit rate)
@ Memory intensive @@ Similarly memory intensive

Moscibroda and Mutlu, "Memory Performance Attacks,” USENIX Security 2007.

22

What Does the Memory Hog Do’

||||||
IIIIII
IIIIII
IIIIII
——————————————————————————
||||||
||||||

O T
Q B e
(5 N Y (R T T T T
S R ¢) R s S A
TO: Row 6 S
10 : FRoyw 1B

Memory Request Buffer Row Buffer

\ /

Row size: 8KB, request size: 64B
128 (8kB/64B) requests of STREAM serviced
before a single request of RANDOM

Moscibroda and Mutlu, "Memory Performance Attacks,” USENIX Security 2007.

23

FEttect of the Memory Performance Hog

2X slowdown

2:5

1.5

Slowdown

0.57

STREAM Virtual PC

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

24

Greater Problem with More Cores

/.74

4.72

1.85

1.05

Slowdown
O~ N WDNUuUloOh N @

libquantum hmmer h264ref omnetpp

« Vulnerable to denial of service (DoS)
« Unable to enforce priorities or SLAS
« Low system performance

Uncontrollable, unpredictable system

SAFARI 25

Greater Problem with More Cores

> 7
c 4 c ©
3 3 5
o 3 O 4
© ©
= 2 3 3
e, 2 2
v | V) |

0 0

zeus art Ibm omnet apsi vortex

« Vulnerable to denial of service (DoS)
« Unable to enforce priorities or SLAS
« Low system performance

Uncontrollable, unpredictable system

SAFARI

26

Now That We Know What Happens Underneath

= How would you solve the problem?

« What is the right place to solve the problem?

Programmer?

System software?

Compiler?

Hardware (Memory controller)?
Hardware (DRAM)?

Circuits?

U U U 0o U 0O

= Two other goals of this course:
o Enable you to think critically
o Enable you to think broadly

Problem

Algorithm

Program/Languag

Runtime System

ISA (Architecture)

27

Reading on Memory Performance Attacks

Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service

in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY),

pages 257-274, Boston, MA, August 2007. Slides (ppt)

One potential reading for your Homework 1 assignment

Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems

Thomas Moscibroda Onur Mutlu

Microsoft Research
{moscitho,onur } @microsoft.com

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

Conclusions [USENIX Security’07]

Introduced the notion of memory performance attacks in
shared DRAM memory systems

Unfair DRAM scheduling is the cause of the vulnerability
More severe problem in future many-core systems

We provide a novel definition of DRAM fairness
a Threads should experience equal slowdowns

New DRAM scheduling algorithm enforces this definition
o Effectively prevents memory performance attacks

Preventing attacks also improves system throughput!

29

If You Are Interested ... Further Readings

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors”

Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via

Application-Aware Memory Channel Partitioning”

Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

30

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

A Recent Solution: BLISS

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

The Blacklisting Memory Scheduler:
Achieving High Performance and Fairness at Low Cost
Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, Onur Mutlu

Carnegie Mellon University
{Isubrama,donghyul,visesh,harshar,onur} @cmu.edu

SAFARI 3

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

More on BLISS: Longer Version

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,
and Onur Mutluy,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling”
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

BLISS: Balancing Performance, Fairness
and Complexity in Memory Access Scheduling

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu

SAFARI 32

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

Many Potential Solutions w/ Tradeoffs

Computer Architecture

Lecture 11a: Memory Controllers

Prof. Onur Mutlu
ETH Zlrich N
Fall 2020
29 October 2020

© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 11a: Memory Controllers (ETH Zirich, Fall 2020)

5,226 views * Oct 31, 2020 e 81 G0 2> SHARE =+ SAVE ...

@ Onur Mutlu .Lectures ANALYTICS EDIT VIDEO
&> 19.1K subscribers

SAFARI https://www.voutube.com/watch?v=TeG7730aiMQ&list=PL 5Q2s0XY 2Zi9xidylgBxUz7xRPS-wisBN&index=20 33

https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20

Many Potential Solutions w/ Tradeoffs
g

l"'"“i

Designing QoS-Aware Memory Systems: Approaches

Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

o QoS-aware memory controllers

o QoS-aware interconnects

o QoS-aware caches

Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

o Source throttling to control access to memory system

o QoS-aware data mapping to memory controllers

o QoS-aware thread scheduling to cores

© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 11b: Memory Interference and QoS (ETH Zirich, Fall 2020)

1,118 views - Oct 31,2020 e 20 GP 0) SHARE =+ SAVE

@ ?gn:J; :ljl;g:rit:iﬂ"es ANALYTICS EDIT VIDEO
«T> .

S A FA R l https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=21

34

https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December 2011.
Slides (pptx)

Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Lavanya Subramanian Onur Mutlu
Pennsylvania State University Carnegie Mellon University Carnegie Mellon University

smuralid@cse.psu.edu Isubrama@ece.cmu.edu onur@cmu.edu

Mahmut Kandemir Thomas Moscibroda
Pennsylvania State University Microsoft Research Asia
kandemir@cse.psu.edu moscitho@microsoft.com

35

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Memory Channel Partitioning

Data Mapping in Current Systems

Core

Red Memory
App Controller

Core

Blue —" Memory
App Controller

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Arch - Lecture 3: Example Paper Review: Memory Channel Partitioning (Spring '21)

864 views * Streamed live on Mar 11, 2021 e 29 GJ 0 > SHARE =+ SAVE
@ LU Se RS ANALYTICS | EDIT VIDEO
&> 19.1K subscribers

SAFARI https://www.youtube.com/watch?v=MfEMpsnBI3E&list=PL5Q2s0XY2Zi_awYdjmWVIUegsbY7TPGWA&index=3 36

https://www.youtube.com/watch?v=MfEMpsnB93E&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=3

Many Potential Solutions w/ Tradeofts
DA\

An Example of Bad Channel Partitioning

-

— —

A

14 P PR 20029/ 2:59:25

£ '//
//""4'7

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zrich, Spring 2020)

964 views - Nov 7, 2020 e 23 GJ0 2 SHARE =+ SAVE ...

@ Onur Mutlu »LeCthes ANALYTICS EDIT VIDEO
&> 19.1K subscribers

S A FA R l https://www.youtube.com/watch?v=Axye9VgQT7w&list=PL5Q2s0XY 2Zi9xidylgBxUz7xRPS-wisBN&index=26 37

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Distributed DoS in Networked Multi-Core Systems

Attackers Stock option pricing application
(Cores 1-8) (Cores 9-64)

§: W 3

Cores connected via
packet-switched
routers on chip

_ﬁ
L
L
L
L
i

,_
pu—
p—
p—
:
:
:

~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,"
MICRO 2009.

“ 'S 3 ' (" " a " "
™
=
=

/17
%

More on Interconnect Based Starvation

Boris Grot, Stephen W. Keckler, and Onur Mutlu,
"Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY,
December 2009. Slides (pdf)

Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot Stephen W. Keckler Onur Mutlut
Department of Computer Sciences fComputer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{bgrot, skeckler@cs.utexas.eduj} onur@cmu.edu

SAFARI 39

http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/grot_micro09_talk.pdf

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

40

Memory Control 1s Getting More Complex

CPU CPU CPU CPU

Shared Cache HWA HWA

vy
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
« Main memory interference between CPUs, GPUs, HWAs

Many goals, many constraints, many metrics ...

SAFARI

Computer Architecture
Lecture 4a:
Memory Performance Attacks

Prof. Onur Mutlu
ETH Zurich
Fall 2021
8 October 2021

