
Computer Architecture
Lecture 4a:

Memory Performance Attacks

Prof. Onur Mutlu
ETH Zürich
Fall 2021

8 October 2021

Recall: Levels of Transformation

2

Microarchitecture

ISA (Architecture)

Program/Languag
e

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is [to gain] insight” (Richard Hamming)
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is
guaranteed to terminate where
each step is precisely stated
and can be carried out by a
computer

- Finiteness
- Definiteness
- Effective computability

Many algorithms for the same
problem

ISA
(Instruction Set Architecture)

Interface/contract between
SW and HW.

What the programmer
assumes hardware will
satisfy.

Microarchitecture
An implementation of the ISA

Digital logic circuits
Building blocks of micro-arch (e.g., gates)

Recall: The Power of Abstraction
■ Levels of transformation create abstractions

❑ Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

❑ E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

■ Abstraction improves productivity
❑ No need to worry about decisions made in underlying levels
❑ E.g., programming in Java vs. C vs. assembly vs. binary vs. by

specifying control signals of each transistor every cycle

■ Then, why would you want to know what goes on
underneath or above?

3

Recall: Crossing the Abstraction Layers
■ As long as everything goes well, not knowing what happens

underneath (or above) is not a problem.

■ What if
❑ The program you wrote is running slow?
❑ The program you wrote does not run correctly?
❑ The program you wrote consumes too much energy?
❑ Your system just shut down and you have no idea why?
❑ Someone just compromised your system and you have no idea how?

■ What if
❑ The hardware you designed is too hard to program?
❑ The hardware you designed is too slow because it does not provide the

right primitives to the software?

■ What if
❑ You want to design a much more efficient and higher performance system?

4

Recall: Crossing the Abstraction Layers
■ Two key goals of this course are

❑ to understand how a computing system works underneath the
software layer and how decisions made in hardware affect the
software/programmer

❑ to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

5

An Example: Multi-Core Systems

6

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

A Trend: Many Cores on Chip
■ Simpler and lower power than a single large core
■ Parallel processing on single chip 🡪 faster, new applications

7

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

More Recent Multi-Core Systems (I)

8Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

More Recent Multi-Core Systems (II)

9https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

More Recent Multi-Core Systems (III)

10https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

More Recent Multi-Core Systems (IV)

11https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or
Scratchpad:
192KB per SM
Can be used as L1 Cache
and/or Scratchpad

L2 Cache:
40 MB shared

Many Cores on Chip
■ What we want:

❑ N times the system performance with N times the cores

■ What do we get today?

12

Unexpected Slowdowns in Multi-Core

13

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)
Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

Three Questions
■ Can you figure out why the applications slow down if you

do not know the underlying system and how it works?

■ Can you figure out why there is a disparity in slowdowns if
you do not know how the system executes the programs?

■ Can you fix the problem without knowing what is
happening “underneath”?

14

Three Questions: Rephrased & Concise
■ Why is there any slowdown?

■ Why is there a disparity in slowdowns?

■ How can we solve the problem if we do not want that
disparity?

15

Why Is This Important?
■ We want to execute applications in parallel in multi-core

systems 🡪 consolidate more and more (for efficiency)
❑ Cloud computing
❑ Mobile phones
❑ Automotive systems

■ We want to mix different types of applications together
❑ those requiring QoS guarantees (e.g., video, pedestrian detection)
❑ those that are important but less so
❑ those that are less important

■ We want the system to be controllable and high performance

16

17

Why the Disparity in Slowdowns?

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRA
M

Bank
0

DRA
M

Bank
1

DRA
M

Bank
2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRA
M

Bank
3

We Ended Here in Last Lecture

Digging Deeper: DRAM Bank Operation

19

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:
This view of a bank is an
abstraction.

Internally, a bank consists of
many sub-arrays of cells
(transistors & capacitors) and
other structures that enable
access to sub-arrays & cells

20

DRAM Controllers

■ A row-conflict memory access takes significantly longer
than a row-hit access

■ Current controllers take advantage of this fact

■ Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

■ This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

21

The Problem
■ Multiple applications share the DRAM controller
■ DRAM controllers designed to maximize DRAM data

throughput

■ DRAM scheduling policies are unfair to some applications
❑ Row-hit first: unfairly prioritizes apps with high row buffer locality

■ Threads that keep on accessing the same row
❑ Oldest-first: unfairly prioritizes memory-intensive applications

■ DRAM controller vulnerable to denial of service attacks
❑ Can write programs to exploit unfairness

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

22

A Memory Performance Hog

STREAM

📫 Sequential memory access
📫 Very high row buffer locality (96% hit rate)
📫 Memory intensive

RANDOM

📫 Random memory access
📫 Very low row buffer locality (3% hit rate)
📫 Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming
(in sequence)

random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

23

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, request size: 64B
128 (8KB/64B) requests of STREAM serviced

before a single request of RANDOM
Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

24

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

■ Vulnerable to denial of service (DoS)
■ Unable to enforce priorities or SLAs
■ Low system performance

Uncontrollable, unpredictable system

25

Greater Problem with More Cores

■ Vulnerable to denial of service (DoS)
■ Unable to enforce priorities or SLAs
■ Low system performance

Uncontrollable, unpredictable system

26

Now That We Know What Happens Underneath

■ How would you solve the problem?

■ What is the right place to solve the problem?
❑ Programmer?
❑ System software?
❑ Compiler?
❑ Hardware (Memory controller)?
❑ Hardware (DRAM)?
❑ Circuits?

■ Two other goals of this course:
❑ Enable you to think critically
❑ Enable you to think broadly

27

Microarchitecture

ISA (Architecture)

Program/Languag
e

Algorithm

Problem

Logic

Devices

Runtime System
(VM, OS, MM)

Electrons

Reading on Memory Performance Attacks
■ Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY),
pages 257-274, Boston, MA, August 2007. Slides (ppt)

■ One potential reading for your Homework 1 assignment

28

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

29

Conclusions [USENIX Security’07]

■ Introduced the notion of memory performance attacks in
shared DRAM memory systems

■ Unfair DRAM scheduling is the cause of the vulnerability
■ More severe problem in future many-core systems

■ We provide a novel definition of DRAM fairness
❑ Threads should experience equal slowdowns

■ New DRAM scheduling algorithm enforces this definition
❑ Effectively prevents memory performance attacks

■ Preventing attacks also improves system throughput!

If You Are Interested … Further Readings
■ Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

■ Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

■ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

30

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

A Recent Solution: BLISS
■ Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

31

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

More on BLISS: Longer Version
■ Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

32

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

Many Potential Solutions w/ Tradeoffs

33https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20

https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20

Many Potential Solutions w/ Tradeoffs

34https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

https://www.youtube.com/watch?v=0nnI807nCkc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=21

Memory Channel Partitioning
■ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December 2011.
Slides (pptx)

35

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Memory Channel Partitioning

36https://www.youtube.com/watch?v=MfEMpsnB93E&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=3

https://www.youtube.com/watch?v=MfEMpsnB93E&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=3

Many Potential Solutions w/ Tradeoffs

37https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Distributed DoS in Networked Multi-Core Systems

38

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

 Cores connected via
 packet-switched
 routers on chip

 ~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

More on Interconnect Based Starvation
■ Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY,
December 2009. Slides (pdf)

39

http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/grot_micro09_talk.pdf

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

40

Memory Control is Getting More Complex

■ Heterogeneous agents: CPUs, GPUs, and HWAs
■ Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …

Computer Architecture
Lecture 4a:

Memory Performance Attacks

Prof. Onur Mutlu
ETH Zürich
Fall 2021

8 October 2021

