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Abstract

The Connection Machine Model CM-5 Supercomputer is a
massively parallel computer system designed to offer perfor-
mance in the range of 1 teraflops (1012 floating-point oper-
ations per second). The CM-5 obtains its high performance
while offering ease of programming, flexibility, and reliabil-
ity. The machine contains three communication networks:

a data network, a control network, and a diagnostic net-

work. This paper describes the organization of these three

networks and how they contribute to the design goals of the

CM-5.

1 Introduction

In the design of a parallel computer, the engineering prin-
ciple of economy of mechanism suggests that the machine

should employ only a single communication network to con-

vey information among the processors in the system. Indeed,

many parallel computers contain only a single network: typ-

ically, a hypercube or a mesh. The Connection Machine

Model CM-5 Supercomputer has three networks, however,

and none is a hypercub’e or a mesh. This paper describes

the architecture of each of these three networks and the ra-

tionale behind them.

Figure 1 shows a diagram of the the CM-5 organiza-

tion. The machine contains between 32 and 16,384 process-

ing nodes, each of which contains a 32-megahertz SPARC

processor, 32 megabytes of memory, and a 128-megaflops

vector-processing unit capable of processing 64-bit floating-

point and integer numbers. System administration tasks and

serial user tasks are executed by a collection of control pro-

cessors, which are Sun Microsystems workstation comput-

ers. There are from 1 to several tens of control processors

in a CM-5, each configured with memory and disk according
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Figure 1: The organization of the Connection Machine CM-5. The
machine has three networks: a data network, a control network, and a

diagnostic network. The data and control networks are connected to

processing nodes, control processors, and 1/0 channels via a network

interface.

to the customer’s preference. Input and output is provided

via high-bandwidth 1[0 interfaces to graphics devices, mass

secondary storage, and high-performance networks. Addi-

tional low-speed 1/0 is provided by Ethernet connections to

the control processors. The largest machine, configured with

up to 16,384 processing nodes, occupies a space of approx-

imate ely 30 meters by 30 meters, and is capable of over a

teraflops (10 12 floating-point operations per second).

The processing nodes, control processors, and 1/0 inter-

faces are interconnected by three networks: a data network,

a control network, and a diagnostic network. The data net-

work provides high-performance point-to-point data commu-

nications between system components, The control network

provides cooperative operations, including broadcast, syn-

chronization, and scans (parallel prefix and suffix). It also

provides system management operations, such as error re-

porting. The diagnostic network allows “back-door” access

to all system hardware to test system integrity and to detect

and isolate errors.

The system operates as one or more user partitions. Each

partition consists of a control processor, a collection of pro-

cessing nodes, and dedicated portions of the data and control

networks. Access to system functions is classified as either

privileged or nonprivileged. All nonprivileged system func-

tions, including access to the data and control networks, can

be executed directly by user code without system calls. Con-



sequently, network communication within a user task occurs

without operating system overhead. Access to the diagnos-

tics network, to shared system resources (such as 1/0), and

to other partitions is privileged and must be accomplished

via system calls. Protection and addressing mechanisms en-

sure that no user can interfere with the function or perfor-

mance of another user in another partition. If the system

administrator so desires, a single partition can be timeshared

among a group of users, where each user gets a fair portion

of the available time and cannot otherwise be interfered with

by any other user.

Further details about the CM-5 system can be found in

the CM-5 Technical Summary [23].

When we first set about designing the CM-5, we estab-

lished engineering goals that went beyond mere performance

specifications. We thought hard about issues of scalability

making a machine whose size would be limited only by the

dollars a customer could spend, not by any architectural or

engineering constraint. We thought hard about system is-

sues, including timesharing, 1/0, and user protection. We

thought hard about reliability, since we were designing a

machine which, in its largest configuration, would have well

over 10 times the electronics of our previous supercomputer,

the Connection Machine Model CM-2 Supercomputer.

The following goals drove our networ~ desig&:

The networks must deliver high performance to the users.

We wanted the users to be easily able to program the net-

works to get good performance. We did not want to force

the users to worry constantly about pathological worst

cases, and we wanted the best cases to run well without

the user needing to do anything special.

The networks must scale up to a very large size. We

wanted the logical design of the networks to scale up to

a million processing nodes. We wanted to build SUPER-

computers.

The networks should efficiently support the data-parallel

programming model (see Section 5), but should be flexible

enough to allow us to support other parallel programming

models as well. The data-parallel programming model was

used extensively on the CM-2, and we wanted to be able

to transport our existing high-level programming environ-

ments (Fortran90, *Lisp, and C*) to the CM-5. We also

wanted to be able to run codes written for other machines

competitively.

The networks must be highly reliable and highly available.

The system must notice whenever part of a network fails,

be able to isolate the failure quickly, and be able to quickly

reconfigure the networks around the failure. It was desired

that even if part of a network has failed, the rest of the

network should be able to function correctly with only a

small degradation in performance.

The networks must work in a spaceshared environment.

We wanted a user’s network traffic to be insulated from

other users and 1/0 in other partitions.

The networks must work in a timeshared environment. A

timeshared user must get a fair share of network band-

width. Users must be able to be context-swapped quickly.

Privileged system software must be able to seize control

of a user’s task.
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The networks must be operational as soon as possible.

Time to market was of the essence. Chips and systems

needed to work the first time. We wanted the networks to

be simple enough to engineer quickly, robust enough to re-

spond to last-minute design changes, and easily verifiable.

Consequently, we opted for conservative technology, for

example, copper wires rat her than opt ical fibers. We chose

to use CMOS in order to minimize the risk associated

with new technology. We chose standard-cell technology

in order to be able to make extensive use of the wide vari-

ety of available design tools (such as timing verifiers and

automatic test generators). To achieve high performance

with this conservative technology, we incorporated custom

macro cells for circuits on the critical path. Our attitude

was that there was more performance to be gained by ar-

chitectural improvements than by eking out extra nanosec-

onds in technology. Conservative technologies, with their

well-developed computer-aided design tools, would allow

us to make many more architectural improvements during

the design.

The chips used to build the networks must be organized

in a way to allow technological or architectural improve-

ments to be easily incorporated in subsequent revisions

of the CM-5 system. On the CM-2, both processors and

communication were implemented on the same chip, which

made it difficult to incorporate advanced technology in one

area without impacting the other. We wanted to be able

to incorporate any advances without having to reengineer

a major piece of the system.

The networks should embody both economy of mechanism

and single-minded functionality. We wanted the networks

to be lean and mean. Whenever anyone suggested any-

thing complicated, we viewed it with suspicion. For ex-

ample, the job of the data network is to deliver messages,

nothing else. But it delivers both user messages and mes-

sages to 1/0 devices using the same mechanisms. The

data network does not combine messages, duplicate mes-

sages, or acknowledge delivery of messages. It just focuses

on moving data as fast as possible.

We ended up designing two networks visible to the user

and a network interface that provides an abstract view of

them. We also designed a diagnostic network to provide

“back-door” access to the system. This paper describes the

three networks, the network interface, and how we engi-

neered them to meet our goals. The reader should be aware

that the performance specifications quoted in this paper ap-

ply only to the initial release of the CM-5 system. Because

of our ability to reengineer pieces of the system easily, these

numbers represent only a snapshot of an evolving implemen-

tation of the architecture.

The remainder of this paper is organized as follows. To

begin, Section 2 describes the network interface which pro-

vides the user’s view of the data and control networks. Sec-

tion 3 then describes the data network. A justification for

having both a data and control network is provided in Sec-

tion 4. The control network is then described in Section 5,

and Section 6 describes the diagnostic network. The paper

closes with Section 7, which gives a short history of our de-

velopment pro ject.



2 The CM-5 Network Interface

Early on in the design of the CM-5, we decided to specify

an interface between the processing nodes and the networks

that isolates each from the details of the other, This in-

terface provides three features. First, the interface gives

the processors a simple and uniform view of the networks

(and the networks get a simple and uniform view of the pro-

cessors). Second, the interface provides support for time-

sharing, space-sharing, and mapping out of failed compo-

nents. Third, the interface provides a contract for the im-

plementors which decouples the design decisions made for

the networks from those of the processors.

The processor’s view of the interface is as a collection

of memory-mapped registers. By writing to or reading from

fixed physical memory addresses, data is transferred to or

from the networks, and the interface interprets the particular

address as a command.

A memory mapped interface allows us to use many of

the memory-oriented mechanisms found in off-the-shelf pro-

cessors to deal with network interface issues. To access the

network, a user or compiler reads from or writes to loca-

tions in memory. We regarded the prospect of executing

a system supervisor call for every communication as unac-

ceptable, in part because we wished to support the fine-

grain communication needs of data-parallel computation. A

memory-mapped interface allows the operating system to

deny users access to certain network operations by placing

the corresponding memory-mapped registers on protected

pages of the processor’s address space. The processor’s mem-

ory management unit enforces protection without any addi-

tional hardware,

The interface is broadly organized as a collection of

memory-mapped FIFO’s. Each FIFO is either an outgoing

FIFO to provide data to a network, or an incoming FIFO to

retrieve data from a network. Status information can be ac-

cessed through memory-mapped registers. For example, to

send a message over a network, a processor pushes the data

into an outgoing FIFO by writing to a suitable memory ad-

dress. When a message arrives at a processor, the event is

signaled by interrupting the processor, or alternatively, the

processor can poll a memory-mapped status bit. The data

in the message can then be retrieved by reading from the

appropriate incoming FIFO. This paradigm is identical for

both the data and control networks.

The network interface provides the mechanisms needed

to allow context switching of user tasks. Each user partition

in the CM-5 system can run either batch jobs or a time-

sharing system. When a user is swapped out during time-

sharing, the processors must save the computation state.

Some of this state information is retrieved from the net-

work interface, and the rest is garnered from the networks.

The context-switching mechanism also supports automatic

checkpointing of user tasks.

The interface provides processor-address mapping so

that the user sees a O-based contiguous address space for

the processor numbers within a partition. Each processor

can be named by its physical address or by its relative ad-

dress within the partition. A physical address is the actual

network address as interpreted by the hardware inside the

networks. A relative address gives the index of a processor

relative to the start of a user partition, where failed proces-

sors are mapped out. All processor addresses in user code are

relative addresses. To specify physical addresses requires su-

pervisor privileges. Relative addresses are bounds checked,

so that user code cannot specify addresses outside its parti-

tion.

The user’s view of the networks is independent of a net-

work’s topology. Users cannot direct ly program the wires

of the networks~ as they could on our previous machine,

the CM-2. The reason is simple: the wires might not be

there! Because the CM-5 is designed to be resilient in the

presence of faults, we cannot allow the user to rely on a

specific network topology. One might think topology inde-

pendence would hurt network performance, but we found

this presumption to be less true than we initially imagined.

Because we did not provide the user with access to the wires

of the network, we were able to apply more resources to

generic network capabilities. A further advantage of topol-

ogy independence is that the network technology becomes

decoupled from processor technology. Any future network

enhancements are independent of user code and processor

organization.

An important ramification of the decoupling of the pro-

cessors from the networks is that the networks must assume

full responsibility for performing their functions. The data

network, for example, does not rely on the processors to

guarantee end-to-end delivery, The processors assume that

delivery is reliabl~ nondelivery implies a broken system,

since there is no protocol for retransmission. By guaran-

teeing delivery, additional error-detection circuitry must be

incorporated into the network design, which slightly reduces

its performance, but since the processor does not need to

deal with possible network failures, the overall performance

as seen by a user is much better.

The CM-5 network interface is implemented in large

measure by a single l-micron standard-cell CMOS chip,

with custom macro cells to provide high-performance circuits

where needed. The interface chip is clocked by both the 32-

megahertz processor clock and the 40-megahertz networks

clock. Asynchronous arbiters synchronize the processor side

of the interface with the network side.

Choosing to build a separate network interface allowed

the processor designers to do their jobs and the network

designers to do theirs with a minimum of interference. As a

measure of its success in decoupling the networks from the

processor organization, the same interface chip is used to

interface the network to 1/0 channels, of which there are

many types, including CMIO, VME, FDDI, and HIPPI.

3 The CM-5 Data Network

The basic architecture of the CM-5 data network is a fat-tree

[8, 15]. Figure 2 shows a binary fat-tree. Unlike a computer

scientist’s traditional notion of a tree, a fat-tree is more like

a real tree in that it gets t bicker further from the leaves.

Processing nodes, control processors, and 1/0 channels are

located at the leaves of the fat-tree. (For convenience, we

shall refer to all of these network addresses simply as pro-

cessors.)
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Figure 2: A binary fat-tree. Processors are located at the leaves,
and the internal nodes are switches, Unlike an ordinary binary tree,
the channel capacities of a fat-tree increase as we ascend from leaves
to root. The hierarchical nature of a fat-tree can be exploited to give
each user partition a dedicated subnetwork which cannot be interfered
with by any other partition’s message traffic, The CM-5 data network
uses a 4-ary tree instead of a binary tree.

A user partition corresponds to a subtree in the network.

Messages local to a given partition are routed within the par-

tition’s subtree, thereby requiring no bandwidth higher in

the tree. Access to shared system resources, such as 1/0, is

accomplished through the part of the fat-tree not devoted to

any partition. Thus, message traffic within a partition, be-

tween a partition and an 1/0 device, or between 1/0 devices

does not affect traffic within any other partitions. More-

over, since 1/0 channels can be addressed just like process-

ing nodes, the data network becomes a true “system bus” in

which all system components have a unique physical address

in a single, uniform name-space.

Of critical importance to the performance of a fat-tree

routing network is the communication bandwidth between

nodes of the fat-tree. Most networks that have been pro-

posed for parallel processing, such as meshes and hyper-

cubes, are inflexible when it comes to adapting their topolo-

gies to the arbitrary bandwidths provided by packaging tech-

nology. The bandwidths between nodes in a fat-tree, how-

ever, are not constrained to follow a prescribed mathemat-

ical formula. A fat-tree can be adapted to effectively uti-

lize whatever bandwidths make engineering sense in terms

of cost and performance. No matter how the bandwidths

of the fat-tree are chosen, provably effective routing algo-

rithms exist [8, 14] to route messages near-optimally. The

underlying architecture and mechanism for addressing is not

affected by communication bandwidths: to route a message

from one processor to another, the message is sent up the

tree to the least common ancestor of the two processors, and

then down to the destination.

Because of various implementation trade-offs-including

the number of pins per chip, the number of wires per ca-

ble, and the maximum cable length—we designed the CM-5

data network using a 4-ary fat-tree, rather than a binary

fat-tree. Figure 3 shows the interconnection pattern. The

network is composed of router chips, each with 4 child con-

nections and either 2 or 4 parent connections. Each connec-

tion provides a link to another chip with a raw bandwidth of

20 megabytes/second in each direction. (Some of this band-

width is devoted to addressing, tags, error checking, and

congest ion. ) By selecting at each level of the tree whether

2 or 4 parent links are used, the bandwidths between nodes

Figure 3: The interconnection pattern of the CM-5 data network.
Tbe network is a 4-ary fat-tree in which each internal node is made
up of several router chips. Each router chip is connected to 4 child
chips and either 2 or 4 parent chips.

in the fat-tree can be adjusted. Flow control is provided on

every link.

Based on technology, packaging, and cost considerations,

the CM-5 bandwidths were chosen as follows. Each proces-

sor has 2 connections to the data network, corresponding

to a raw bandwidth of 40 megabytes/second in and out of

each processing node. In the first two levels, each router

chip uses only 2 parent connections to the next higher level,

yielding an aggregate bandwidth of 160 megabytes/second

out of a subtree with 16 processing nodes. All router chips

higher than the second level use all 4 parent connections,

which, for example, yields an aggregate bandwidth of 10 gi-

gabytes/second, in each direction, from one half of a 2K-node

system to the other. The bandwidth continues to scale lin-

early up to 16,384 nodes, the largest machine that Thinking

Machines can currently build. (The architecture itself scales

to over one million nodes.) In larger machines, transmission-

line techniques are used to pipeline bits across long wires,

thereby overcoming the bandwidth limitation that would

otherwise be imposed by wire latency. The machine is de-

signed so that network bandwidth can be enhanced in future

product revisions without affecting the architecture.

The network design provides many comparable paths for

a message to take from a source processor to a destination

processor. As it goes up the tree, a message may have several

choices as to which parent connection to take. This decision

is resolved by pseudorandomly selecting from among those

links that are unobstructed by other messages. After the

message has attained the height of the least common an-

cestor of the source and destination processors, it takes the

single available path of links from that chip down to its desti-

nation. The pseudorandom choice at each level balances the

load on the network and avoids undue congestion caused

by pathological message sets. (Many naive algorithms for

routing on mesh and hypercubic networks suffer from hav-

ing specific message patterns that do not perform well, and

the user is left to program around them.) The CM-5 data

network routes all message sets nearly as well as the chosen

bandwidths allow.

A consequence of the autimatic load balancing within

the data network is that users can program the network in a

straightforward manner and obtain high performance. More-

over, an accurate estimate of the performance of routing a

set of messages through the network can be predicted by us-

ing a relatively simple model [16]. One determines the load
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of messages passing through each arm of the fat-tree and

divides this value by the available bandwidth. The worst-

case such ratio, over all arms of the fat-tree, provides the

estimate.

On random permutations, each processor can provide

data into, and out of, the network at a rate in excess of

4 megabytes/second. When the communication pattern is

more local, such as nearest neighbor within a regular or

irregular two- or three-dimensional grid, bandwidths of 15

megabytes/second per processor are achievable. The net-

work latency ranges between 3 and 7 microseconds, depend-

ing on the size of the machine. All of these empirical values

include the time required for processors to execute the in-

structions needed to put messages into and take messages

out of the network.

The data network is currently implemented from 1-

micron standard-cell CMOS chips, with custom macro cells

to provide high-performance circuits where needed. Each

chip has an 8-bit-wide bidirectional link (4 bits of data in

each direction) to each of its 4 child chips lower in the fat-

tree, and 4 8-bit-wide bidirectional links to its parent chips

higher in the fat-tree. The data-router chip can be viewed

as a crossbar connecting the 8 input ports to the 8 output

ports, but certain input/output connections are impossible

due to the nature of the routing algorithm. For example,

we never route a message from one parent port to another.

When a message is blocked from its desired output port, it

is buffered. Flow control information is passed in the reverse

direction of message traffic to prevent buffer overflow. When

multiple messages compete for the same output port, the

arbitration is fair and prevents any link from being starved.

We designed only one chip to do message routing, and we use

the same chip for communication between chips on the same

circuit board as between chips that are in different cabinets.

Interchip data is sent on differential pairs of wires, which

increases the pin count of the chips, but which provides out-

standing noise immunity and reduces overall power require-

ments. We rejected using separate transceivers at the pack-

aging boundaries, because it would have increased power

consumption, board real estate, and the number of different

chips we would have needed to design, debug, test, stock,

etc. The diagnostics can independently test each conductor

of each differential signal, because differential signals are so

immune to noise that they sometimes work even with broken

wires.

The first 2 levels of the data network are routed through

backplanes. The wires on higher Ievels are run through ca-

bles, which can be either 9 or 26 feet in length. The longer

cables maintain multiple bits in transit. The wires in cables

are coated with expanded Teflon, which has a very low di-

electric constant. The cables reliably carry signals in excess

of 90 percent of the speed of light.

The data network chips are clocked synchronously by

a 40-megahertz clock. The clock is distributed with very

low skew—even for the biggest machines—by locally gen-

erating individual clocks and adjusting their phases to be

synchronous with a centrally broadcast clocking signal.

Messages routed by the data network are formatted as

shown in Figure 4. The beginning of the message contains

routing instructions that tell how high the message is to go

Figure 4: The format of messages in the data aetwork. Each mes-

sage contains routing instructions, a length field that indicates how

many data words are in the message, a tag field that indexes an in-

terrupt vector in the processor, data words, and a cyclic redundancy

check.

in the tree and then the path it is to follow downward after it

reaches its zenith. The routing instructions are chip-relative

instructions that allow each chip to make a simple, local de-

cision on how to route the message. Following the routing

instructions is a field that indicates the length of the data in

32-bit words. Currently, the CM-5 network interface allows

between 1 and 5 words. Longer messages must be broken

into smaller pieces. Following the length field is a 4-bit tag

field that can be used to distinguish among various kinds

of messages in the system. The network interface interprets

some of these tags as system messages, and the rest are avail-

able to the user. When a message arrives at a processor, the

tag indexes a 16-bit mask register in the network interface,

and if the corresponding mask bit is 1, the processor is in-

terrupted. After the tag comes the data itself, and then a

field that provides an integrity check of the message using a

cyclic redundancy code (CRC).

Because we desired to build very large machines, we

deemed it essential to monitor and verify the data network

dynamically, because the chances of a component failure

increase with the size of the system. Message integrity is

checked on every link and through every switch. If a mes-

sage is found to be corrupted, an error is signaled, Messages

snake their way through the switches in a manner similar

to cut-through [13] or worm-hole [3, 4] routing, and so by

the time that a data-router chip has detected an error, the

head of the message may have traveled far away. To avoid

an avalanche of errors, the complement of a proper CRC is

appended to the message. Any chip that discovers the com-

plement of a proper CRC signals a secondary error. Thus, a

typical error causes one chip to signal a primary error with

a trail of chips reporting secondary errors, although there is

some positive probability that a primary error is reported

as a secondary error. Diagnostic programs can easily isolate

the faulty chip or link based on this information, which is

accessible through the diagnostic network, Lost and repli-

cated messages can be detected by counters on each chip and

in the network interfaces that maintain the number of mes-

sages that pass on each link. Using a variation on Kirchoff’s

current law, the number of messages entering any region of

the network, including the entire network or a single chip,

must eventually equal the number of messages leaving the

region. This condition is checked for the entire data network

by the control network (see Section 5).

Once a faulty processor node, network chip, or inter-

connection link has been identified, the fault is mapped out

of the system and quarantined. The network interface al-

lows for mapping faulty processing nodes out of the network

address space. The rest of the control network ignores all

signals from the mapped-out portion, thereby allowing the
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system to remain functional while servicing and testing the

mapped-out portion.

When a chip or link in the data network fails, there are

two mechanisms to map around the fault. Either the net-

work can be configured to route messages away from the

failure, or processing nodes that might use the chip or link

can be mapped out. By picking the better of the two al-

ternatives, the system can guarantee either that at most 6

percent of the network is lost or that at most 1/64 of the

processing nodes are mapped out.

The network has a contract with processors that guar-

antees all messages are delivered. The contract says, ‘The

data network promises to eventually accept and deliver all

messages injected into the network by the processors as long

as the processors promise to eventually eject all messages

from the network when they are delivered to the processors. ”

The data network is acyclic from inputs to outputs, which

precludes deadlock from occurring if this contract is obeyed.

To send a message, a processor writes the destination pro-

cessor address and data to be sent to a memory-mapped

outgoing FIFO in its network interface. The processor then

checks whether the message was accepted by the network.

If not, which may occur because flow control information

indicates that the network has not removed enough of a pre-

vious message from the outgoing FIFO, the processor can

try again later. The processor may not block or spin when

attempting to put a message into the network, however, be-

cause that would violate the contract. Inst cad, the processor

must attempt to receive any messages that have arrived. In

the current implementation, the processor is involved in all

transactions with the network.

Although the simple contract above can implement the

sending of data through the network in a deadlock-free man-

ner, it is not strong enough to allow some communication

protocols to be implemented straightforwardly. For exam-

ple, suppose each processor wishes to fetch a vrdue from an-

other processor, and the processors have finite buffer space.

The message traffic for this protocol corresponds to a round

trip in the network: a request from one processor to an-

otb er, followed by a response from the other to the one. In

this scenario, one processor may receive requests for data

from many processors, but unfortunately, be unable to send

responses because its outgoing FIFO to the data network is

busy. The outgoing FIFO will eventually free, according to

the contract, but only if the processor continues to accept

delivery of messages from the network. With finite buffer

space, however, there is a limit to how many requests it can

handle. When it runs out of buffer space, the processor will

be forced to refuse delivery, thereby breaking the contract,

and deadlock may result.

With buffer space proportional to the number of pro-

cessors in the system, it is possible to construct a “round-

trip” protocol that precludes deadlock. The key idea is to

have at most a bounded number of messages outstanding

between any two processors at a time. A processor X does

not attempt to send a message to another processor Y un-

til Y informs X that it has room to handle the message.

This protocol, which has been implemented on some parallel

computing systems, including the CM-5, requires substantial

bookkeeping.

The CM-5, however, provides another way to solve the

round-trip problem in a simple fashion requiring no book-

keeping and only constant buffer space. Each processor has

2 outgoing and 2 incoming FIFO’s in its interface to the data

network: a left port and a right port. The topology of the

network is such that all links reachable from the left port

are unreachable from the right port and vice versa. Thus,

the data network is really two independent, interleaved net-

works. To implement the round-trip protocol, requests can

be sent on the left side of the network, and responses re-

turned on the right side. If a processor cannot send a re-

sponse on the right side and KIS constant-size buffer is full,

he stops receiving on the left side. Since any processor re-

questing data has a place to put it, however, the processors

can satisfy the contract on the right side and the responses

will eventually clear out. Because the responses on the right

side will event ually clear out, a processor can always even-

tually accept every request that arrives on the left side, and

thus the processors satisfy the contract on the left side. Con-

sequently, deadlock cannot occur.

In fact, deadlock cannot occur even if responses are sent

on both sides of the data network, as long as requests are sent

on one side only. The data network requires no more than

two sides, even when there are many intermediate destina-

tions, because such a communication pattern can be broken

into a collection of round trips.

The CM-5 programming systems (Fortran90, C*, and

*Lisp) never allow a user to deadlock, because they imple-

ment deadlock-free protocols for communication. Deadlock

can occur, however, if a programmer chooses to program

the individual processing nodes directly. All he need do

is break the contract that the processing nodes have with

the data network: he writes code that sends messages but

never attempts to receive them. This danger may seem quite

alarming, but it is no more alarming than the danger that

a user writes an infinite loop. On the CM-5, the user can

send and receive messages without executing a system call,

as is required on many other systems. By giving the user

direct access to the network, the user can in some circum-

stances obtain greater efficiency than he could obtain with

the communication routines available in the standard system

libraries. If he does deadlock himself, or write an infinite

loop, he does not affect any other user.

Each user partition in the CM-5 system is capable of

being run in either a batch or a timesharing mode. The

requirement for timesharing raises the issue of what should

be done with messages that are in transit in the routing

network when a user’s timeslice has expired and another user

must be given access to the partition. The system cannot

afford to wait until the user completes his communication,

since the communication may not terminate for a very long

time, and it in fact may not ever complete if the user has

deadlocked himself.

We considered several solutions to the problem of swap-

ping users, For example, we considered entering a special

routine that would pull messages out of the router and dis-

card them. This solution was considered too expensive, be-

cause the user would be constantly forced to checkpoint the

computation so that the discarded messages could be recon-

structed. Moreover, if the user fills the network with mes-
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sages that are all addressed to the same processing node,

then the time to empty the router would be proportional to

the machine size, which was deemed unacceptably long.

This problem of swapping users is solved in the CM-5 by

putting the data network into all-fall-down mode. Instead

of trying to route messages to their destinations, the net-

work misroutes each one down through the network so they

are distributed evenly among the processing nodes. In the

worst case, no node receives only a small number of misdi-

rect ed messages, even if all were headed for the same desti-

nation processor. The all-fall-down messages are then saved

in memory with the user’s state. When the user’s task is re-

sumed, the system resends them to their true destinations.

Even if a timeshared user deadlocks, this context-switching

mechanism precludes him from unduly affecting the other

users who are sharing his partition.

In summary, the CM-5 data network provides fast point-

to-point communication of data, but as importantly, it pro-

vides a flexible solution to many system problems.

4 Synchronized MIMD

The CM-5 is a synchronized MIMD machine. Whereas the

data network in the CM-5 is responsible for moving data

efficiently between pairs of processors, the CM-5’s control

network provides an infrastructure for the coordination and

synchronization of an entire set of processors. Much aa a

conventional microprocessor is divided into control and dat-

apath [10, Chapter 5], we found that partitioning commu-

nication into a control network and a data network led to

a simpler, more efficient design. This section discusses why

we adopted a synchronized MIMD execution model for the

CM-5.

A major design goal of the CM-5 was to support the data-

parullel programming model [2, 11] efficiently. The basic

idea of data parallelism is that processing large amounts of

data usually implies that the same operations are performed

on all elements of large sets of data. Consequently, these

operations can be performed in parallel. For example, an

operation might be specified for all pixels of digitized image,

in which case it can be performed in parallel on each of

the pixels. Data-parallel languages—such as Fortran90, C*,

and *Lisp—allow the programmer to express such operations

naturally. The programmer applies parallel operations to an

entire set of data simultaneously, and the system efficiently

multiplexes the computation onto the processing nodes of

the machine.

Traditionally, the data-parallel model has been sup-

ported by so-called single instruction stream, multiple data

stream (SIMD) parallel computers, such as our previous ma-

chine, the Connection Machine CM-2. SIMD machines typi-

cally have two networks. Besides a message-routing network,

these machines employ a broadcast network over which a

front-end processor distributes instructions to the individual

processing nodes in the system. All processing nodes receive

and execute the same instruction at the same time. Based

on data in its memory, however, a processor may decline to

execute an instruction and sit idle instead. In machines like

the CM-2, the broadcast network is embellished with an OR

network, which can compute a logical OR of boolean values,

one value per processing node, and distribute the result back

to the processing nodes.

There are many advantages of using a SIMD architecture

to execute data-parallel code. When a parallel operation is

apphed to a large set of data, each processor receives can

receive the same instructions and execute the same code,

thereby causing the operation to be applied to each of the

individual elements. Since SIMD machines are highly syn-

chronized, it is also easy to coordinate processors to per-

form cooperative actions. Moreover, all processors are doing

much the same thing, and thus the broadcasting of instruc-

tions saves the need to implement instruction-fetch units in

all of the processing nodes.

SIMD machines are less efficient, however, when different

processors wish to execute different sections of code. The

machine must step through each section of code serially while

processors not interested in the particular section of code

being executed sit idle. This loss of efficiency limits the

flexibility of SIMD machines.

In contrast with the SIMD machine organization is the

multiple instruction stream, multiple data stream (MIMD)

organization of a parallel computer. In a MIMD machine,

each processor executes its own instruction stream, and thus

there is no loss of efficiency when processors execute differ-

ent code. Typically, processors in MIMD machines commu-

nicate among themselves using message-passing techniques

[18, 19] or through shared memory [6, 7], but there is little or

no architectural support for coordinating and synchronizing

sets of processors. A programmer must synthesize aggregate

operations himself, resulting in considerable code complex-

ity and loss in performance. Thus, the greater flexibility of

MIMD comes at a great cost.

In the CM-5, we abandoned the SIMD architecture of its

predecessor, the CM-2, in favor of a MIMD execution model,

but we salvaged SIMD’S best attributes: the ability to share

data among processors efficiently and the ability to quickly

synchronize sets of processors. To support the sharing of

data, the control network provides a fast broadcast mecha-

nism. To support the synchronization of sets of processors,

the control network provides fast ‘[barrier synchronization.”

These two mechanisms allow data-parallel code to be exe-

cuted efficiently on what is otherwise a MIMD machine. We

now briefly discuss how each of these mechanisms supports

the data-parallel programming model.

To execute a data-parallel program on the CM-5, the

control processor broadcasts a section of the data-parallel

program to the processing nodes, rather than broadcasting

the entire instruction stream, as in a typical SIMD machine.

The idea of distributing a single program to multiple proces-

sors has been dubbed “SPMD,” for single-program, multiple

data [5]. Unlike shared-memory machines, in which pro-

cessors must individually fetch the program from a central

memory, however, in the CM-5, the cent rol processor broad-

casts the program to the processing nodes over the control

network, and then the processors execute the program lo-

cally.

As long as a processor in a data-parallel programming

environment does not communicate with other processors,

it can execute code without worrying where in the code

the other processors are. When processors communicate,
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however, program correctness often demands that proces-

sors know when it is safe to proceed to code after the com-

munication step. In particular, a processor may not know

for a given communication pattern whether it will receive

zero, one, or more messages, and thus it cannot determine

whether it can proceed without some knowledge of whether

other processors still have messages to send it. Consequently,

the CM-5 provides a synchronization mechanism to inform

all processors of the termination of message routing on the

data network.

The CM-5 provides barrier synchronization (see, for ex-

anlpIe, [12, 20, 5]) via its control network. In barrier synchro-

nization, a point in the code is designated as a barrier. No

processor is allowed to cross the barrier until all processors

have reached the barrier. In addition, the barrier mechanism

in the CM-5 can check whether message routing is complete

in the data network. By providing barrier synchronization in

hardware, we avoided the complicated protocols that users

often implement by hand on MIMD machines that are not

synchronized, Since our mechanism is a parallel one, we also

avoid the performance problems endemic in machines that

support barriers through the use of shared semaphores.

We discovered four implementation advantages of syn-

chronized MIMD over SIMD. First, the bandwidth in and

out of a processing node is a critical resource. A program

is typically much shorter than the instruction stream it gen-

erates. By broadcasting a program to the processing nodes,

rather than sending its entire instruction stream, less of the

bandwidth into a node is required for instructions, and hence

more is available for communicating the user’s data. Second,

since processing nodes fetch their instructions locally, we

were able to build the CM-5 from standard microprocessors

rather than having to design our own. At the time of this

decision, high-performance RISC microprocessors were just

becoming available. We decided they were a good technology

curve to ‘{ride” and would allow us to focus more of our inter-

naf effort on networks and vector units, the bread and butter

of high-performance computing. Third, the implementation

of a control network gave us a platform to solve other system

coordination problems. For example, if a user hangs up one

or all of his processors, the operating system can broadcast

a message that causes the processors to trap to supervisor

code. Fourth, our synchronized MIMD architecture can ex-

ecute more traditional MIMD code. For example, we have

been able to port message-passing applications from other

MIMD machines, and in many cases, simplified them con-

siderably by replacing their elaborate protocols with simple

uses of our control network.

To summarize, the synchronized MIMD architecture of

the CM-5 simply and efficiently provides the flexibility of

MIMD and the SIMD ability to coordinate sets of proces-

sors.

5 The CM-5 Control Network

There are three general classes of operations on the control

network: broadcasting, combining, and global operations.

Separate FIFO’s in the network interface correspond to each

type of control-network function. A processor pushes a mes-

sage into one of the outgoing FIFO’s, and shortly after all

processors have pushed messages, the result becomes avail-

able to all processors as messages in their respective incom-

ing FIFO’S.

Every operation on the control network potentially in-

volves every processing node. Broadcast messages from

the control processor are replicated at nodes in the tree

and distributed to the subtrees. Other operations, such as

scans (parallel prefix), require input from all processors and

provide output to all processors. The control network is

pipelined, so that severaJ messages can be sent before any

are received. To provide further flexibility, each processing

node can set up the network interface to abstain from certain

control-network operations, These operations complete as if

the abstaining processors had provided “identity” data, but

without making them waste processing cycles. Overall, the

control network is designed to support cooperative functions

that require little bisection bandwidth, and hence, which can

be implemented efficiently on a simple tree.

Broadcasting

A processor may broadcast a message through the control

network to all other processors in its partition. The control

network supports four kinds of broadcasting: user broadcast,

supervisor broadcast, interrupt broadcast, and utility broad-

cast. User and supervisor broadcasts are essentially identi-

cal, except that supervisor broadcasts are privileged oper-

ations. These broadcast operations can be used to down-

load code and to distribute data. An interrupt broadcast

is a privileged operation that causes every processor to re-

ceive an interrupt. Interrupt broadcasts provide the ability

to “grab the attention” of all processors in the user parti-

tion, which is especially useful for implementing operating

system functions, such as swapping timeshared users. The

utility broadcast is used by the operating system to configure

partitions and to perform other sorts of system operations.

Only one processor may broadcast at a time, but broad-

casts are pipelined so that the broadcasting processor can

fully utilize the broadcast bandwidth of the network. If,

while one processor is broadcasting, another processor sends

a broadcast message, the control network signals an error

when the competing messages collide. The number of si-

multaneous pipelined broadcasts supported by the control

network depends upon the height of the network partition.

The current implementation of the CM-5 provides the user

with up to 8 words in a broadcast and the supervisor with

up to 4 words.

Combining

The control network supports four different types of com-

bining operations: reduction, forward scan (parallel prefix),

backward scan (parallel suffix), and router done.

Reduction combines messages from each processor with

one of five operators on 32-bit words: bitwise logical OR,

bitwise logical XOR, signed maximum (which also works

for IEEE floating-point numbers), signed addition, and un-

signed addition. (The two addition operators differ in how

overflow is reported. ) A reduction operation combines the

values provided by all processors and delivers a copy of the

result to all processors. Reductions over other commonly oc-
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curring operators (such as bitwise logical AND) can be easily

synthesized from these and local processor operations.

A forward scan operation delivers to the ith processor

the result of applying one of the five reduction operators to

the values in the preceding i – 1 processors (in the linear

order given by data network address). For example, a for-

ward scan of the vector (3, 2, 0,4, 2, 6, 5, 8) with the operator

+ yields the vector (O, 3,5,5,9,11,17, 22). A backward scan

provides similar functionality in the reverse direction. Scans

can be segmented: if a “segment start” bit in the network in-

terface is set, the scan starts over at that point. An excellent

discussion of scans can be found in [2].

Early on in the design of the CM-5, we decided to

support scans in hardware. Our experience with the

CM-2 showed that many high-performance data-parallel

algorithms—including both combinatorial and numerical

algorit hms—make extensive use of scans. The operations

that were selected (OR, XOR, etc. ) reflect a compromise

between making the hardware fast and simple and providing

sufficient building blocks out of which other operations could

be constructed. For instance, OR can be used to implement

AND (DeMorgan’s law), so there is no need to implement

both. As a more sophisticated example, segmented reduc-

tions, which are not provided directly by the hardware, can

be implemented by using two segmented scans, one forward

and one backward. Since the control network is pipelined,

the overhead of doing both is minimal.

The router-done operation is a specialized reduction that

lets the processors know when communications involving the

data network are complete. In the data-parallel program-

ming model, this operation is often required so that proces-

sors know when it is safe to proceed to the next data-parallel

operation.

The basic idea behind the implementation of router-done

is “Kirchoff’s current law.” When all processors have com-

pleted sending their messages and the number of messages

that entered the data network equals the number that have

left, the routing cycle is complete. The network interfaces

keep track of the number of messages that enter and leave the

data network. After a processor has completed sending all its

messages, it pushes a message into the outgoing router-done

FIFO. When all processors have sent messages into their

outgoing FIFO ‘s, the control network continually monitors

the difference between the total number of messages put into

the data network and the number removed from the data

network. When this number becomes zero, each processor

receives a message in its incoming router-done FIFO inform-

ing it that the data network is done routing messages. Using

this “Kirchoff” method has the additional benefit that if a

hardware error causes messages to be lost or created, the

error can be detected and signaled, either by a failure of the

router-done operation to complete on the one hand or by

the unexpected arrival of a message after the router-done

operation has completed on the other.

Global operations

The global operations supported by the CM-5 control net-

work include one synchronous OR operation and two iden-

tical asynchronous OR operations. The synchronous OR

is similar to an OR reduction, except that a processors

input and out put each consist of only a single bit. Each

asynchronous OR operates continuously without waiting for

all processors to participate. Processors are free to change

their inputs at any time and sample the output. The asyn-

chronous OR can be used for signaling conditions and excep-

tions. The transition of an asynchronous OR from O to 1 can

be used to signal an interrupt. One of the two asynchronous

OR’s is privileged, and the other is nonprivileged.

The synchronous OR or any of the various combining

operations can be used to implement split-phase barrier syn-

chronization [22]. (In independent work [9], this type of syn-

chronization has been called a @.ay barrier.) In a split-phase

barrier, the barrier is a region of code with an entry and an

exit. (If the region is empty, an ordinary barrier result s.)

When a processor enters the split-phase barrier, it pushes an

input message into an appropriate outgoing FIFO. Shortly

after all other processors have pushed their messages, they

all receive messages from the corresponding incoming FIFO,

and each can infer that all have entered the barrier. The

advantage of a split-phase barrier over an ordinary barrier

is that the processor can execute code while waiting for the

barrier to complete. Thus, just as the instruction following

a delayed branch in a RISC architecture can compensate for

the latency of the branch, the code between barrier entry and

exit can compensate for the latency of synchronization. The

router-done operation couples barrier synchronization with

the test of whether routing on the data network has com-

pleted, so that no processor abandons its effort to receive

messages until all processors are done sending them.

At the end of a user’s timeslice during timesharing, the

control network can be flushed in a manner similar to a

broadcast operation, aborting any user-level control-network

operations in progress. The network interfaces retain the val-

ues that the user has pushed into the control network until

the corresponding operation has completed, however. These

values are saved as part of the user’s state. When the user’s

task is resumed, the saved values can be used to reinitiate

the control-network operations.

The control network also detects certain kinds of com-

munication errors and distributes them throughout the sys-

tem. For example, if two processors attempt to perform

different combining operations, an error is signaled. More

importantly, hard errors detected by the data network and

the network interfaces are collected by the control network.

These error signals are combined using a logical OR and

are redistributed to all the processors so that the operating

system can isolate them and recover if possible.

Organization of the control network

The architecture of the control network is that of a com-

plete binary tree with processing nodes, control processors,

and 1/O channels at the leaves. When a CM-5 system is con-

figured, each user partition is assigned to a subtree of the

network. Processing nodes are located at the leaves of the

subtree, and a control processor is mapped into the partition

as an additional leaf.

The control network is implemented using a l-micron

CMOS standard-cell chip that contains custom macro cells
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Figure 5: The format of messages in the control network. Each
message contains a field that indicates the type of message, a 32-bit
word of data, some synchronization bits, and various other flags. The
message is checked using a cyclic redundancy code.

to implement high-performance circuitry. Like the data net-

work chip, it uses a 40-megahertz clock. Three binary-tree

nodes are packaged on each chip. There are 4 n-bit-wide

bidirectional links (6 bits in the up direction and 5 bits in

the down direction) to 4 child chips lower in the tree and

1 n-bit-wide bidirectional link to a parent. As in the data

network, interchip signals are sent on differential pairs of

wires.

Unlike data network packets, control network packets

have a fixed length of 65 bits. (There is actually, in ad-

dition, a 5-bit packet used during system initialization to

align the 65-bit packet boundaries so that a node can pro-

cess the same fields in arriving messages at the same time.)

The general format is illustrated in Figure 5. It is bro-

ken into two parallel streams, a major stream and a mi-

nor stream. The minor stream contains a variety of control

bits, including various error and status flags, several flow-

control bits, and a bit to implement segmented scans. The

major stream begins with a packet description field, which

defines thepacket type-single-source, multiple-source, idle,

or atJstaim--as well asthespecific operation-user broadcast,

supervisor broadcast, interrupt, scan (including combiner),

reduce, etc. Then comes a 32-bit word of data. The major

stream ends with a field containing the global synchroniza-

tion bits. The entire packet is checked using a cyclic re-

dundancy code (CRC), which is the last information in the

packet to be transmitted.

The four packet types are processed differently by the

control network. Whereas single-source packets are used

to implement broadcasting, scans and reductions employ

multiple-source packets. Idle packets are used as ‘Tiller” and

are sent when a control network node has nothing better to

ship. The abstain packet allows a control network node to

proceed when it would otherwise wait for a multiple-source

packet.

When a processor initiates a broadcast or interrupt

through the control network, its network interface inserts

a single-source message into the tree at a leaf. This message

proceeds up to the root node of the user’s tree, where it is

turned around and distributed to all the processors in the

partition. An error is signaled if two single-source packets

from different sources meet at a control network node. If

it meets with other kinds of packets, a single-source packet

has priority. There isnobuffering forsingle-source packets.

Flow control for single-source packets is implemented by the

network interface on an end-to-end basis.

Processing multiple-source packets is more involved.

When a processor initiates a cooperative operation such as

a scan, the network interface inserts a multiple-source mes-

sage into the tree. At each internal node, a multiple-source

message waits until its sibling’s message has arrived. While

a message is waiting, the node sends idle messages up the

tree. When thesibling’s message arrives, arithmetic or logi-

cal operations combine the two messages into one, which is

sent up the tree. To implement scans, the message or its sib-

ling may be put aside in another buffer to combine later with

a value coming from the node’s parent. When a multiple-

source message finally reaches the root, it is sent downward.

As it reencounters the internal nodes of the tree, it is repli-

cated or further combined with waiting messages. (A good

overview of the implementation of scans can be found in [2].)

While a multiple-source packet is waiting for a sibling

or a parent, other packets arriving on the same input can

be processed. If the newly arriving packet is a single-source

packet, it proceeds ahead of the waiting packet, thereby giv-

ing priority, for example, to supervisor broadcasts and inter-

rupts. If the new packet is another multiple-source packet, it

is queued in the buffer behind the packets already wzdting.

Multiple-source packets thus maintain a consistent order,

which allows two or more combining operations on the con-

trol network to be pipelined properly. Flow control in the

network precludes buffers from overflowing.

An important requirement of the control network was

that it be able to connect a control processor to each user

partition, The control processor executes the scalar part of

the data-parallel code, while the processing nodes execute

the parallel part. We considered having scalar code executed

by one or all of the processing nodes, but eventually decided

that having a control processor associated with each parti-

tion would simplify matters. First, since the system cost of

the control processor is very low compared with the multi-

tude of processing nodes, we can afford to run it with large

amounts of memory and with additional architectural fea-

tures to enhance its performance. Consequently, the control

processor is able to more efficiently execute scalar code than

can a processing node. Second, the data-parallel code that

runs on the earlier CM-2 machine is already split into scalar

and parallel parts, Porting this code to the CM-5 was eas-

ier, since we could maintain the same split. Finally, since

the control processor has a connection to an Ethernet, the

user partition can run a standard Unix which communicates

across the attached Ethernet.

In case of a fault in a CM-5 processing node, network

chip, or interconnection link, the control network—like the

data network—can be configured to map the fault out of the

system. The diagnostic network (see Section 6) can set in-

ternal switches within the control network to map out parts

of the control network. Since the computations performed

by the control network depend only on the control network

being a binary tree, and not on its being a complete binary

tree, computations within the control network can safely ig-

nore the mapped-out portions of the system.

In addition, the control network has some additional

switching capability to map around faults in the control net-

work itself and to be able to connect any of the control pro-

cessors to any partition. This additional switching capability

is implemented as follows. Conceptually, each switch of the

control network has 2 parents and 4 children and contains

two binary-tree nodes which can be statically configured so
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that either can connect to any pair of children. By con-

necting these chips in a manner similar to the data network

fat-tree, any control processor can be connected to any parti-

tion, subject to the availability of bandwidth. For example,

if there are only 4 control network channels into a subtree,

one cannot connect 5 control processors to 5 partitions in

the subtree. Short of this bandwidth restriction, however,

any connection of control processors to legal partitions can

be implemented using an off-line routing algorithm similar

to that in [15, Theorem 1].

In summary, the CM-5 control network provides the

mechanisms to allow data-parallel code to be executed ef-

ficiently, as well as allowing more general kinds of parallel

models to be implemented. Its structure as a binary tree

provides an inexpensive way to provide the advantages of

both traditional SIMDand traditional MIMD architectures.

6 The CM-5 Diagnostic Network

During the design of the CM-5, great emphasis was placed on

system availability. Despite conservative design techniques

and the use of proven circuit and interconnect technologies,

the sheer size of the largest CM-5 systems forced us to aban-

don any attempt to achieve high availability by depending

solely on inherent component reliability. Instead, our strat-

egy relies on two architectural features of the machine: di-

agnosability which allows missing or broken hardware tO be
detected and isolated; and configurability, which allows most

of the machine to operate when portions are broken or be-

ing serviced. This section shows how this strategy is imple-

mented on the CM-5 through the use of a diagnostic network,

the one network in the system that the user never sees.

One strategy to diagnose a parallel computer is to cre-

ate diagnostic programs running on the processor nodes that

exercise the processor nodes and various communications

networks. When some part of the system fails to function

correctly—for example, the data router fails to deliver a mes-

sage or the control network produces the wrong answer for

a combine operation, the diagnostic program itself may fail,

because its correctness depends on the correct functioning

of the system. We call such diagnostic programs function-

ality dependent. Our experience with the CM-1 and CM-2

exposed many of the limitations of functionality-dependent

diagnostics. They are exceedingly difficult to write, they

have nebulous coverage, and they lack precision in reporting

the root cause of error conditions.

In contrast, diagnostics that are functionality indepen-

dent rely on specific test structures, rather than the failure

of normal system operation, to detect faults in the system.

Using this kind of design-for-testability strategy, it becomes

possible to view the CM-5 (or any sequential machine, for

that matter) in terms of registers connected by combina-

tional logic and wires. This change in perspective permits

commercially available software tools to be used to generate

high-coverage tests automatically for chips, boards, and the

wiring that connects them. Moreover, when these tests fail,

they provide specific information on the location and extent

of the failure.

In the CM-5, design for test ablity starts at the chip level.

All CM-5 VLSI components support the IEEE 1149.1 testa-

bility architecture standard [I], also known as JTAG, for the

Joint Test Action Group which originated the standard. 1

At the system level, the CM-5 diagnostic network provides

parallel access to all system components from a diagnostic

processor. The JTAG standard and the diagnostic network

combine to form a diagnostic system which can quickly per-

form an in-system check of the integrity (over 99 percent

single stuck-at fault coverage) of all CM-5 chips that sup-

port the JTAG standard and all networks.

Let us briefly review the JTAG interface standard. The

JTAG standard provides a 4-pin interface for each chip in a

system. On each chip, two pins provide input and output, re-

spectively, for a selectable scan chain within the chip. 2 The

standard specifies the boundary scan register (BSR) which

connects all 1/0 pads in the chip into a bit-serial shift reg-

ister. Two other pins serve as clock and control inputs. By

scanning data in and out of chips, the BSR can be used to

apply stimulus to the chip core for chip tests, or to monitor

inputs and control outputs of the chip for connectivity y tests.

In the CM-5, we extended the JTAG standard to include

full internal scan in all proprietary chips. Details of this de-

sign are described in [24]. The use of a full internal scan. .
allows software for automatically generating test patterns to

generate a set of scan vectors with very high fault coverage.

The vectors can be applied through the JTAG interface to

test individual chips when they ar~ manufactured and pack-

aged. Later, when the chips are assembled into a system, the

same tests can be applied through the diagnostic network.

The JTAG interface is designed to extend to multichip

systems. When more than one chip is incorporated in a

system, the scan paths are linked together in series by con-

necting the output from one scan path to the input of the

next in a daisy-chain fashion. The clock and control pins are

connected in parallel so that these signals can be broadcast

to all chips in the chain.

Previous designs have focused on reducing the length

of very long scan chains by placing scan-controllable bypass

elements in the scan chain [21]. Unfortunately, testing all the

chips in the system still requires serial access to each one.

Even with ideally short test times on the order of seconds

per device, this method would be unacceptably slow for an

entire 16,384-node CM-5 comprising many tens of thousands

of devices. Moreover, this method fails to take advantage

of the inherent parallelism that can be achieved by testing

large numbers of identical system components. For these

reasons, it was evident early on in the desi~n of the CM-5

that we needed a parallel strategy for supporting scan-based

diagnostics.

The CM-5 diagnostic network provides simple and reli-

able access to the system components of the CM-5. It pro-

vides scan access to all chips supporting the JTAG standard,

and programmable ad hoc access to non-J TAG chips. The

lIn the current implementation of the CM-5 architecture, neither

the SF’ARC processor nodes nor the DRAM chips support the JTAG

interface. Given the growing acceptance of JTAG standard, however,

it is likely that off-the-shelf processors and memory will support the

standard in the near future. The cM-5 architecture is designed to in-

corporate these JTAG-supporting chips when they become available.
2Thi~ ~~e of the term (,scan~> ha~ nothing whatsoever to do with

parallel prefix and suffix computations, as discussed in Section 5.
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diagnostic network itself is completely testable and diagnos-

able. The diagnostic network is able to map out and ignore

parts of the machine that are faulty or powered down. It

can be partitioned consistently with user partitions. The

network is able to select and access groups of system chips

in parallel, including:

s

e

●

●

●

a single chip;

a single type of chip;

the chips within a user partition;

the chips associated with a geographical portion of the

system, e.g., a given board, backplane, cabinet, etc.; and

unions and intersections of previously specified sets of

chips.

The diagnostic network is organized as a (not necessarily

complete) binary tree, at the root of which sit one or more

diagnostic processors, and at the leaves of which are pods.

Each pod is a physical subsystem, such as a board, which

directly supports the JTAG interface. At any given time, a

single diagnostic processor controls the diagnostic network.

From the root of the tree, an individual pod can be addressed

by giving a binary number, each bit of which corresponds to

a level in the tree and specifies a path from the root to the

leaf bit i of the address specifies whether the addressed leaf

is in the left or right subtree of the node at level i. If the

height of the tree is h, then h bits are sufficient to specify

any leaf.

The diagnostic network allows groups of pods to be ad-

dressed according to a “hypercube address” scheme. For a

tree of height h, a diagnostic virtual address is an h-digit

number in which each digit is a O, 1 or B. The B (“both”)

digit is a “wild-card” that matches both O and i. For ex-

ample, in a height-6 tree, the address OOB1OB addresses the

set {000100, 000101,001100,001101}, or {4, 5,12, 13}. The

addressing scheme can also be used to address the internal

nodes of the diagnostic network by specifying addresses with

fewer than h digits.

The decoding logic to implement the diagnostic virtual

addressing scheme is based on the notion of steering ‘(tokens”

down the tree, as is illustrated in Figure 6. The mechanism

works as follows. A token is inserted at the root of the tree

together with a diagnostic virtual address, which is piped

digit-serially into the root of the tree, high-order digit first.

The root selects its right, its left, or both of its subtrees based

on the high-order digit. If both subtrees are selected, the

token splits into two tokens. Subsequent digits then steer the

tokens and subsequent digits down the selected paths. When

the end of the address is encountered, the nodes holding

tokens are considered to be selected, and nodes on paths

from them to the root provide the conduit for control.

Tokens and their paths from the root stay in place until

a subsequent address erases them or until they are explicitly

erased. This feature can be employed to combine two sets

of selected nodes. For conceptual simplicity, suppose each

of the two sets of nodes is in a separate subtree of the root.

First, the left set is selected using a O as the high-order digit

and pushing a token down the appropriate paths. Next, the

right set is selected using a i as the high-order digit and

pushing a token down the appropriate paths. The left set

Figure 6: Steering a token down the diagnostic network. The ad-
dress is decoded digit-serially, where each digit is , , or , repre-

senting a selection of the left subtree, right subtree, or both subtrees,

respectively. The example shows the selection made by the address

remains intact, but is temporarily inaccessible from the root

because the right set is being selected. Finally, we push

another token with an address of B to select the root itself

and cause it to enable both its children, thereby merging the

two sets. More complicated set unions are possible using this

basic mechanism.

Most of this mechanism is hidden from the diagnos-

tic engineer. Software extends the diagnostic virtual ad-

dress within pods to address individual chips. Software also

converts between the diagnostic network addresses and two

other kinds of addresses: geographical addresses, which spec-

ify cabinets, backplane, slot type, slots, etc.; and network

address es, which give the locations of components accord-

ing to the data and control networks’ view of the machine.

In general, important subsets of geographical addresses can

be specified with one diagnostic virtual address. Important

subsets of network addresses—for example, all data network

chips at a given height in the machine, or all boards contain-

ing processing nodes in some contiguous range—typically

take a combination of at most h diagnostic virtual addresses,

where h is the number of bits in the address. The most im-

portant aspect of the addressing scheme, however, is that

the time to access the various subsets does not grow by more

than a small additive amount when the size of the machine

doubles.

Having addressed a subset of the pods in the system, scan

vectors can be applied in parallel to detect errors. JTAG

serial data and control inputs are broadcast to all selected

pods. Each pod provides a scan output signal that can be

OR’ed or AND’ed with the corresponding signals from the

other selected pods. The choice of an OR or AND combiner

depends on what the diagnostic processor is expecting for a

scan result. If the expected bit is a 1, the AND combiner

is chosen. The result of the combining will be a 1 if and
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only if all selected pods assert a 1. Similarly, if t he expected

output is a O, the OR combiner is chosen. The result of the

combining will be a O if and only if all selected pods assert

a O. If an error is detected in a group of selected pods, the

offending pod can be isolated either by addressing each pod

in the group individually one at a time, or by a divide-and-

conquer methodology. Within a pod, standard techniques

for finding errors within a serial chain of JTAG interfaces

are used to isolate the error to the chip level.

Since the diagnostic network is a tree, it is relatively easy

to make it self diagnosing. Each level beneath the root can

be tested by the levels above. Moreover, since there is not

much logic in the diagnostic network, the probability of the

network itself failing is much less than the probability that

other parts of the system fail. Moreover, since the network

is a tree, most of its logic is near the leaves, so that when a

part of the diagnostic network does fail, only a small part of

the tree is likely to be isolated. We did not mind relying on

relatively few components near the root, since any small set

of components is quite reliable—it is only large aggregates

which have a high probability of failing.

The current implementation of the diagnostic network

uses essentially two off-the-shelf chips. The address decoding

of a binary node is implemented with a P22V1O 24-pin PAL,

and the finite-state control of a node is implemented with a

P18V8 20-pin PAL. The chips can be clocked at any speed

up to about 1 megahertz. In some places in the system,

to save chips, address decoding of a 4-ary or 8-ary node is

implemented directly as a single-chip PAL, rather than by

using several separate binary-node PAL ‘s.

7 Conclusion

We conclude this paper with a brief history of our imple-

mentation effort.

Work on the CM-5 architecture was begun in the latter

part of 1987. We performed network simulations that led

us, by January 1988, to choose a fat-tree architecture for the

data network. By May 1988, most of the data network logic

had been designed and verified, although several changes

were implemented during the summer of 1988. A register-

transfer-level (RTL) description of the data network chip was

completed in early 1989, and the data network architecture

was frozen. A gate-level description of the data network chip

was completed by the early summer of 1989. The JTAG

diagnostic interface was debugged using the data network

chip design as a framework. The data network chip also

served as the guinea pig for system and chip timing software.

The chip was submitted for fabrication in May 1990.

The MIMD-plus-control-network design was proposed in

early 1988, but we did not officially decide to use it until

May 1989. Until then, we maintained other potential de-

sign alternatives. Work on the control network chip and

the network interface proceeded concurrently. By the end

of summer 1989, RTL models of both were simulating suc-

cessfully. Gate-level models were implemented by the end

of December 1989, and the control network architecture and

network interface were frozen shortly thereafter. In May

1990, both the control network chip and the interface chip

were submitted for fabrication.

The strategy of the diagnostic network was laid out in

1988, but work did begin on it in earnest until the fall of

1989. Most of the work involved implementing the JTAG

interface on the various chips. The design of the diagnostic

network itself took only a few months, but considerable effort

in 1990 and 1991 went into diagnostic software.

In the latter part of 1990, our attention turned to system

integration. We received and tested the data network chips

in July 1990, the control network chips in August, and the

interface chips in September. Within two days after the in-

terface chips arrived, we had assembled the networks for a 2-

node machine and powered it up, a feat due in large measure

to our functional verification methodology [17]. That same

day, the operating system—which had been developed on a

simulator—functioned correctly on the machine. By year’s

end, we had successfully constructed several small machines,

including a 64-node machine, some of which were dedicated

to software development.

The year 1991 began with an effort to build a 256-node

machine using a completely new mechanical design. Initially,

it had been more important to make machines available to

our software engineers than to construct a large machine.

To test the limits of our physical design, however, we needed

to build large machines. The 256-node machine was begun

in February, and finished in March. The time frame was

dominated by the build time in manufacturing. In May, we

built a 544-node machine, which was shipped in August to

the Minnesota Supercomputer Center on behalf of the Army

High Performance Computer Research Center.

In October 1991, the Connection Machine Model CM-5

Supercomputer was publicly announced.
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