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ABSTRACT

Interleaved memories are often used to provide the high

bandwidth needed by multiprocessors and high performance
uniprocessors such as vector and VLIW processors. The manner

in which memory locations are distributed across the memory
modules has a significant influence on whether, and for which
types of reference patterns, the full bandwidth of the memory

system is achieved. The most common interleaved memory
architecture is the sequentially interleaved memory in which
successive memory locations are assigned to successive
memory modules. Although such an architecture is the simplest
to implement and provides good performance with strides that

are odd integers, it can degrade badly in the face of even strides,
especially strides that are a power of two.

In a pseudo-randomly interleaved memory architecture,
memory locations are assigned to the memory modules in some
pseudo-random fashion in the hope that those sequences of
references, which are likely to occur in practice, will end up
being evenly distributed across the memory modules. The
notion of polynomial interleaving modulo an irreducible
polynomial is introduced as a way of achieving pseudo-random
interleaving with certain attractive and provable properties.
The theory behind this scheme is developed and the results of
simulations are presented.

Kev words: supercomputer memory, parallel memory,

interleaved memory, hashed memory, pseudo-random
interleaving, memory buffering.

1. INTRODUCTION

The gap that has always existed between the processor
cycle time and that of high-density DRAM memory chips
continues to grow. This le2ds to a considerable performance
mismatch between the rate at which the processor can make
data requests and the rate at which DRAM can service those
requests. This problem is exacerbated by the use of multiple
processors and uniprocessors, such as vector [1] and VLIW
[2,3] processors, which are capable of making multiple
requests per cycle.
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The conventional solution is to provide each processor
with a data cache constructed out of SRAM. The problem is

maintaining cache coherency, at high request rates, across
multiple private caches in a multiprocessor system. The

alternative is to use a shared cache if the additional delay
incurred in going through the processor-cache interconnect is
acceptable. The problem here is that the bandwidth, even with
SRAM chips, is inadequate unless some form of interleaving is
employed in the cache. So once again, the interleaving scheme
used is an issue. Furthermore, data caches are susceptible to
problems arising out of the lack of spatial and/or data locality
in the data reference pattern of many applications. This
phenomenon has been studied and reported elsewhere, e.g., in
[4,5]. Since data caches are essential to achieving good
performance on scalar computations with little parallelism, the
right compromise is to provide a data cache that can be
bypassed when referencing data structures with poor locality.
This is the solution employed in various recent products such
as the Convex C-1 and Intel’s i860.

Interleaved memory systems. Whether or not a data
cache is present, it is important to provide a memory system
with bandwidth to match the processors. This is done by
organizing the memory system as multiple memory tnodules
which can operate in parallel. The manner in which memory
locations are distributed across the memory modules has a
significant influence on whether, and for which types of

reference patterns, the full bandwidth of the tnemory system is
achieved.

Engineering and scientific applications include

computations such as matrix operations (on both dense and

sparse matrices), single- and multi-dimensional fast Fourier
transforms (FFT), interpolation and table lookup. These
generate access patterns with constant stride (both unit and
non-unit), patterns with structure but which do not have
constant stride and access sequences that are irregular and
apparently random. Generally, most applications generate
multiple such access streams that proceed simultaneously in an
interleaved fashion. A good interleaving scheme should be
robust enough to deliver high bandwidth across all such access
pa:tcrns.

In the case of seauentiallv interleaved memorv (SIM~ with

M memory modules, the location with address A is in memory
module (A mod M). SIM works well (in fact optimally) if the
memory references have a stride that is prime relative to M. In
this case, the processor’s references will be uniformly
distributed over all the memory modules, thereby allowing
them to operate in parallel and match the bandwidth
requirements imposed by the processor. On the other hand, SIM
is subject to dramatic performance degradation when the
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memory references have a stride which is a multiple of M. In
this case, all the references are directed to the same memory
module and the performance is that of a non-interleaved

memory. SIM relies heavily on the programmer’s ability to

develop algorithms which generate only odd strides.

In a pseudo-randomlv interleaved memorv (PRIM) system,

the mapping between the address, A, and the memory module is
pseudo-random. PRIM, when properly designed, can be
considerably more robust (i.e., insensitive to the address
reference pattern) than SIM. What is not immediately clear is
how one designs, evaluates and selects a good pseudo-

randomization scheme. In this paper, use is made of the
mathematical theory of G alois fields permitting the design of
fairly robust pseudo-random interleaving schemes which are, at
the same time, random as well as predictable in their behavior.

In Section 2, we study the shortcomings of conventional
interleaving schemes such as SIM, prime degree interleaving
and skewed-storage schemes. In Section 3, we discuss pseudo-
random interleaving with particular emphasis on XOR-based
permutation schemes. In Section 4, we introduce and develop
the concept of polynomial interleaving, establish its
connections to XOR-based permutation schemes, and present a
number of theorems regarding polynomial interleaving.

Section 5 presents the results of simulation runs that were
undertaken to validate the behavior of polynomial interleaving
schemes and compare them with other schemes. We conclude in
Section 6 by outlining a procedure for designing an irreducible
polynomial interleaving scheme.

2. CONVENTIONAL INTERLEAVING SCHEMES

Terminology and assumptions. We shall consider
interleaved memory systems with M memory modules. By and

large, M is a power of 2, and in that case M = 2m. The module

w, corresponding to a particular memory location, is

defined to be the integer between O and M-1 which specifies the
module in which the location is to be found, and the ~

address is the address of that location within the module.

Bank Input BUS (BIB)

Processor M modules

M=2m

BOB Queue

Collatinx
Bank OatPutBUS(BOB)

BatTer -

Fimrre 1. Structure of the processor-memory system that is
considered in this paper. The memory modules receive

requests over the Bank Input Bus (BIB ) and return data over
the Bank Output Bus (BOB). Each memory module has a queue
on the input side (BIB Queue) to buffer requests when the

module is busy and a queue on the output side (BOB Queue) to

buffer returning data while it is arbitrating for the BOB. Since
requests to distinct modules can be serviced out of order, the
Collating Buffer holds returning data until they can be
returned to the processor in order.

The memory architecture developed in this paper has

applicability to multiprocessors and uniprocesscms capable of
multiple requests per cycle. However, for brevity we shall
restrict our discussion in three ways. Firstly, we only consider

uniprocessors capable of making one request per processor

cycle. Secondly, we restrict our discussion to memory systems
with a single memory bank, i.e., a set of memory modules that
share a single pair of input and output buses. Figure 1
illustrates the class of processor-memory systems that is
considered in this paper. Thirdly, we only consider either a
reference sequence that consists of accesses that are randomly
directed to the M memory modules or one that constitutes an
arithmetic sequence with some fixed stride that is not
necessarily unity.

The processor cycle time is used as the unit of measure. For
the purposes of this paper, we make the (generally true)

assumption that the cycle time of the RAM chip has been
rounded up to a multiple of the processor cycle time. The ratio
between these two cycle times is defined to be the memory

cvcle time. Also, we assume that the buses between the

processors and the memory are capable of transmitting one
request and/or datum every cycle. The avera,ge number of
requests per cycle that the processor-memory cc)mbination are
able to actually sustain will be termed the wed bandwidth

or, more simply, the bandwidth. If the processor is attempting

to make a memory request every cycle, the achieved bandwidth
is also equal to the processor utilization, which is the fraction

of time that the processor is not stalled.

Sequentially interleaved memory (SIM)
architectures. The most common style of interleaved

memory architecture is SIM, consisting of M =, 2m modules,
such that the location with address A, has a module index of
(A mod M) and a word address of (A div M). ‘[n practice, no
division is required; since M is a power of 2, the module index
is the low order m bits of the address and the word address is the

remaining high order bits. In the case of a sequential reference
stream, this ensures maximal bandwidth. Since all the modules
are referenced before the same module is referenced again, if the
degree of interleaving is at least as large as the memory cycle

time, the memory module will be ready to handle another
request by the time it is referenced again. In this case, the
memory system can accept one request every cycle and can keep

Up with the processor. On the other hand, if the reference
sequence has a stride which is a multiple of M, every reference
is to the same memory module and we get no benefit from the
interleaving.

Prime degree interleaving. In general, the achieved
bandwidth, when the reference sequence has a stride of s, is

given by M/gcd(M,s), where gcd stands for the greatest
common divisor. Whenever s is not relatively prime to M, the
bandwidth is degraded. This motivates the use c,f prime degree
interleaving in which the number of memory modules, M, is a
prime number [6]. Making M prime maximizes the number of
strides that are relatively prime to M. Except for strides which
are a multiple of M (in which case bandwidth degrades by a
factor of M), peak bandwidth is consistently achieved. The
drawback is that the computations of the module index and the
word address are no longer trivial. They involve true division,
although the judicious choice of the prime number (e.g., of the

form M = 2ntl) can simplify the computation somewhat.

Skewed-storage schemes. The problem with the two
previous approaches is that, due to the reguhr pattern with
which memory locations are assigned to memory modules, it is
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easy to fmd plausible sequences of references, all of which map
to the same module. To address this problem, skewed-storage
schemes have been suggested in which each successive set of M
memory locations is assigned to the M memory modules with a
skew relative to the previous set. The skew for each set of M
locations could have an obvious pattern to it [7-9] or it could
be pseudo-random [10]. One example of the former type of
scheme is to compute the module index for location A as ((A +
((A div M) mod M)) mod M). The word address is (A div M) as
before. Whereas locations O through M-1 are assigned to
modules O through M-1, respectively, locations M through
2M-1 are assigned with a skew of 1 to modules 1 through M-1
and O, respectively (Figure 2). Stiides that are a multiple of M-1
still suffer since sets of M consecutive references will be to the
same memory module. Furthermore, sequences with strides that

are a multiple of M2 will still all map to the same module.

Nevertheless, this basic idea, of permuting each set of M
consecutive locations differently across the modules, is
valuable and is employed in the pseudo-random interleaving

schemes that are developed in Sections 3 and 4.

Buffering. No interleaving scheme, by itself, can
guarantee high bandwidth when the reference sequence has a
random or irregular pattern of accesses to the memory modules.
An M-way interleaved memory with a random request sequence
will only achieve a bandwidth that is approximately
proportional to ~M modules instead of getting the full benefit
of the M modules [11]. However, if the memory system has
adequate buffering to queue up references to busy modules, the
full bandwidth of M modules can be achieved. Figure 3 shows
the result of a simulation, for the system in Figure 1 with 16-
way interleaving, which confums this. Adequate buffering, at
all points of contention for a resource such as a memory module
or a bus, is needed for full bandwidth with random access
patterns.
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word address, r = a div 8
skew =rmod8
module index = (a+ skew) mod 8

Figure 2. A skewed-storage 8-way interleaving scheme

Conversely, buffering alone is insufficient if the reference

stream has a stride that is not relatively prime to M. Since only
a subset of the modules are being referenced, references to any
given module, which is being referenced, arrive at an average
rate that is greater than the rate at which the module can service
them. This causes the queues to fill up almost immediately and,
thereafter, the processor will be stalled repeatedly.

3. PSEUDO-RANDOM INTERLEAVING

Any assignment of locations to modules with an obvious
pattern is suspect. This suggests the assignment of memory

locations to modules in a pseudo-random fashion in the hope
that no non-artificial sequence of references will exhibit more
than a very short-term concentration to an individual module.
By providing adequate buffering to queue the short clusters, the
full interleaved bandwidth would be achieved.

16-Way Interleaving

Memory Cycle Time = 12

Processor Random Stride

Utilization
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Figore 3. Performance of a sequentially interleaved memo~,
with buffering per module, for a random reference stream.

In this paper, the term phvsical address is used to refer to

the address presented to the memory system after virtual address
translation but prior to randomization and the term ran domized

address is used to refer to the address after the randomizing
mapping. The physical address is represented by A = <~-1, ...

~> ~d the randomized address by B = <bn-l, ... be>. (The-bits

that determine the byte address within a word are not relevant to
this discussion). AH and AL refer to <~-l, . .. al, am> and <~-

1~ ““~ al, so>, (i.e., the high-order and low-order bits),

respectively. BH and BL are similarly defined for B. In an M-

way interleaved memory (where M = 2m), the low-order m bits

of the randomized address, B1,, determine the module index. The

remaining high-order bits, BH, determine the word address

within the selected module. The randomizing function h(.)

maps A to B, i.e., B = h(A). It is highly desirable that h(.)
possess two properties. Firstly, it should be a bijection and,

secondly, as many as possible, preferably all, of the physical
address bits should be used in determining the module address.
One might expect then that regardless of where in the physical
address word the “activity” is (in terms of the address bits
changing), the randomized module address will continue to
change, thereby minimizing clustering.

There is no benefit derived from the randomizing function
modifying <an- 1, ... am> since these address bits do not

determine the module selected but merely permute the memory

locations within the same module, Hardware cost may be
avoided if the randomizing function does not alter these bits.
However, if this is the case, an additional property must exist,

viz., when <am-l, ... ao> go through all 2m combinations with

<an.l, ... ~> fixed, <bm_l, ... bo> should also go through all

2m combinations, i.e., the randomization scheme must apply a

permutation to the 2m addresses. This is a necessary condition
for h(.) to be a bijection.

76



Permutation using the XOR function. It is
desirable that the computation of the randomized address be

inexpensive both in the amount of hardware required as well as
in the time taken to do it. Hence, the idea of randomizing the

physical address by XOR-ing it with another bit pattern is very
attractive [5, 12-15] and, in fact, two machines [5,16] have
been built using such randomization, the former as a
commercial product. Such a mapping is a permutation. The bit
pattern that is XOR-ed with the physical address must keep
changing, else all that we have accomplished is a renaming of
the memory modules.

Assume that the m low order bits, AL, of the physical

address are to be randomized to yield the low order m bits, BL,

of the randomized address, where m~n and n is the number of
physical address bits. Due to the associativity and
commutativity of the XOR function, any randomization
scheme, that is based solely on the XOR function, can be
viewed, with no loss of generality, as being implemented using
a set of m multiple-input XOR gates whose outputs constitute
<b m-l, ... be>. The inputs to each XOR gate are some subset of

<an-l, ... w>. The randomization scheme is completely

specified by the boolean matrix

[

H(n-l,m-1) . . . H(n-1,0)
H= :

H(O,m-1) . . . H(O,O)‘1
where H(i,j) = 1, (i = 0,..,n-l, and j = 0,.., m-l), if and only if
ai is an input to the XOR gate whose output is hj. (Note that

contrary to convention, the rows are nombered from the bottom
upward and the columns from the right to the left). AH is

unaltered to yield BH. If <bm- 1, ... bo> is viewed as a vector,

then it is the result of the vector-matrix product <an.l, ... ~> *

H (where multiplication and addition are to be done modulo 2
and are equivalent to the AND and XOR functions,

respectively).

When <am-l, ... ~> go through all 2m combinations

holding <an-l, ... am> constant, <bin - 1, . .. bo> should also go

through all 2m combinations, i.e., the randomization scheme
should be a permutation. Define the square sub-matrix of H,

[

H(i+q-l,q-1) . . . H(i+q-1,0)
D(q,i) = ~

H(i,q-1) . . . H(i,O)‘1
where l~q~m and OSiSn-q. The mapping is a bijection if
D(m,O) is non-singular, i.e., the bottom m rows of the H-

matrix are linearly independent. For any fixed value of AH,

either AL or BL can each be computed uniquely from the other.

Thus BL is a permutation of AL. However, for each AH, the

permutation is different if the remaining rows of the H-matrix
are suitably chosen. A few of the factors to be considered in
designing an H-matrix are discussed below.

Any H-matrix with a non-singular M(m,O) is minimally
acceptable. However, this does not define a unique H-matrix.
Certain H-matrices may be expected to be better than others.
The purpose of an interleaved memory is to increase the
bandwidth of the memory system by directing successive
references to distinct memory modules. The success of the

interleaving scheme is measured by the extent to which “long”
sequences of “clustered’ (i.e., closely spaced in time) requests
to the same memory module are avoided. The better an H-matrix

is, the less likely is it that some access pattern will result in
long clusters of references to the same module.

One of the benefits of requiring that the fwst m rows of the

H-matrix be linearly independent is that clustering is greatly
reduced for the unit stride (which is the single most important

stride). Since each set of 2m consecutive references is

uniformly distributed across the 2m modules, the clustering
that occurs is less than that which would occur with a truly
random sequence. It is desirable that this benefit be extended to
other strides as well. Good behavior for stiides that are a power
of 2 is ensured by requiring that D(m,i) be non-singular for all
i, l<i~n.m.

This still does not guarantee a good H-matrix. Figure 4b is
an example of an H-matrix, every D(m, i) of which is non-
singular, but which, nevertheless, is a poor chalice. The rows
repeat themselves with a relatively small period k (=4). If one

considers the fiist 2k addresses in a request sequence with stride

2k+l starting at O, the 1‘s in the physical address come in pairs

that are k bit positions apart (Figure 4a). Identical rows, k apart
in the H-matrix, are XOR-ed together, cancelli,ng each other.

Clusters of up to 2k consecutive references will ‘be to the same
module (Figu~e 4e).

B
0000

100010
110011

100 100
.0101

i;oollo

Blllllill
100010000
100100001

(a) (b)

B
0000

0000
0000
0 00

::0

0000
0 00
0 10

(c)

Figure 4. (a) A physical address sequence with a stride of 17.
(b) An H-matrix with repetitive rows. (c) The output sequence
of addresses; long sequences of addresses get mapped to the
same module.

To avoid such problems, and in the absence then of any
better theory at that time, the H-matrix for the C!ydra 5 [5] was
designed to be random. The rows of the H-matrix were selected

randomly, without replacement, from the set of 25 bit patterns
with odd parity (m was equal to 6, n was less than 32). The
non-singularity of D(q,O), for 2SqS6, was obtained by
perturbing this random ordering of rows to the minimum extent
necessary. Although this procedure was rather ad hoc, the
randomizing function implemented in the Cydra 5 works quite
well as can be seen in Figure 5. More extensive measurements

have been conducted on the Cydra 5 memory system. They
demonstrate the robustness of pseudo-randomly interleaved
memory in the face of multiple concurrent requests streams with
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different strides or different offsets. Some of these
measurements have been reported in [5].

4. IRREDUCIBLE POLYNOMIAL INTERLEAVING

The unsatisfactory aspect of the ad hoc design of the Cydra
5’s H-matrix is that it is very difficult, if not impossible, to
develop any theory that predicts performance as a function of

stride. Before describing an interleaving strategy that comes
closer to allowing such prediction, it is instructive to
summarize the lessons learned from the previously described
interleaving schemes. Prime degree interleaving is very
effective except for strides that are a multiple of M but the
required division makes it unattractive. Skewed-storage
schemes, which are one example of permutation schemes,
partially reduce the sensitivity to bad strides, but are less
attractive from an implementation viewpoint than are XOR-
based permutation schemes. XOR-based permutation schemes
are simple to implement but lack enough underlying theory to
assist in their design. In contrast, with sequential and prime
degree interleaving it is quite straightforward to specify the
performance for any stride. It would be nice to be able to
combine such predictability with the relative stride
insensitivity of permutation schemes and the implementation
attractiveness of the H-matrix. An approach that comes close
to meeting these goals is developed next.

MB/s
Cydrs 5 with 32-Way Interleave

2ro

160. \ /

\ I 1/

120 \ I 7 \
I

80

40

04 f
1234 567891011121314 1516

Stiide

Figure 5. Performance of the Cydra 5 pseudo-randomly
interleaved memory system with and without randomization
using arandom H-matrix.

Consider the class of polynomials whose coefficients are
in the Galois Field GF(2) [17], i.e., the coefficients take on the
values O or 1 and addition, subtraction and multiplication are
performed modulo 2. (Note that this makes addition and
subtraction the equivalent of the XOR operation, and

multiplication the equivalent of the AND operation). Such
polynomials are said to be defined over the field GF(2) and the
addition, subtraction, multiplication and division of such
polynomials is similar to that for conventional polynomials
except that the coefficient arithmetic is that for GF(2). (Note
also that the implementation of arithmetic with these
polynomials is thesame as that for binary numbers except that
there is no carry or borrow). An irreducible rrolvnomial is a

polynomial over GF(2) that is divisible by no other
polynomial over GF(2) which is of order greater than O. As a
matter of convention, we shall refer to the integer, obtained by
setting x = 2 in the polynomial A(x), as A, and vice versa, i.e.,

if A ‘<an.l, ... al, ~>, then A(x) = an-lxn-l+ ..+alx+ao.

When no confusion can arise, we shall resort to the somewhat
sloppy, but convenient, practice of referring to a polynomial
A(x) by its associated integer A (e.g., polynomial 19 is

X4+X+1) and ascribing to polynomials the properties of their
associated integers (e.g., an even polynomial is one in which

the coefficient of X“ is O).

Let P(x) bea polynomial of orderm, and let A(x) be the
polynomial oforder nthatis associated with the address, A,of

amemory location. Then A(x) can be uniquely represented [17]
as

A(x) = V(x)*p(x) + R(x)

where V(x) and R(x) are polynomials over GF(2) and R(x) is of
order less than m. With the polynomial interleaving scheme

defined by P(x) for M (= 2m) memory modules, the integer R is
used as the module index. (We shall, shortly, present an
inexpensive technique for computing R). The integer V could
be used as the word address within the module. However, this
would require the unnecessary computation of the polynomial
quotient. Instead, we choose to use, as the word address, the
integer Q defined by the polynomial Q(x), where

A(x) = Q(x)*xm + R’(X),

i.e., the word address is merely the high order bits of the
physical address A. Thus, the randomized address B that is the
result of applying the randomizing function to the physical
address A is given by the integer associated with the
polynomial

B(x) = Q(x)*xm + R(x).

Thus polynomial interleaving is analogoos to conventional
interleaving except that we use polynomial arithmetic modulo

a polynomial rather than integer arithmetic modulo an integer
to compute the module index. For much the same reason that it
is attractive to choose a prime as the modulus integer, we shall
find it desirable to choose an irreducible polynomial as the
modulus polynomial.

Computation of R(x). Let Ri(x) = xi mod P(x).

Bearing in mind that A(x) = ~-lxn-l+ ..+ ~,

R(x) = A(x) mod P(x)

= [~-lxn-l+ ..+ ~] mod P(x)

= [ (~-IXn-l) mod P(x)+..+(aoxO )mod P(x) ] mod P(x)

however, since each of the terms in the square brackets is a

polynomial of order less than n, so must their sum.
Consequently,

R(x) = (~-~xn-l) mod P(x)+.. +(wxO )mod P(x)

= ~.l(xn-l mod P(x)) +..+~(xO mod P(x)), since ai = 0,1

= ~.lRn-l(x)+..+a@ o(x)

If the Ri(x) are pre-computed, R(x) can be computed by adding

Up those Ri(x) for which the corresponding ai is 1. This is

equivalent to using an H-matrix in which the i-th row (from the
bottom) consists of the coefficients of Ri(x).

It is interesting to note that the rows of such an H-matrix
constitute the successive states of a feedback shift register.

Since Xi = Xi-l*X, for i21, Ri(x) = @i-l(x) *x) mod P(x). If the

coefficient of xm-l in Ri-l (x) is O, then Ri(x) is of order less

than m and Ri(x) = Ri- l(x)*x, i.e., the contents of the i-th row

(from the bottom) are obtained by shifting the contents of the

(i-1)-th TOW to the left. If, however, the coefficient of Xm- 1 in
Ri-l(x) 1s 1, then Ri(x) is of order m and
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Ri(x) = @i-l(x)-x m-l)*x + (xm-1 mod P(x)),

i.e., the contents of the i-th row are obtained by shifting the
contents of the (i-1)-th row to the left, ignoring the bit that
shifts out to the left, and then XOR-ing in the coefficients of

the polynomial P(x) -xm-l.

Properties of polynomial interleaving. The
foIlowing theorems are useful in proving certain important
properties of polynomial interleaving.

Theorem 1. Let P(x) be a polynomial of order m over

GF(2). The polynomial interleaving scheme in which the
physical address A = <an-1, ... al, ao> is mapped into the

randomized address B = <bn-l, ... bl, be>, where

B(x) = (A(x) div xm)*xm + (A(x) mod P(x)),

is a permutation scheme.

Proof Let AH and AL refer to <an-l, ... al, am> and <am-l, ...

al ~ w>, (i.e., the high-order and low-order bits), respectively.
Let BH and BL be similarly defined for <bn - 1, ... bl, bo>.

Consider the 2m physical addresses which all have the same
high order bits. Since for any physical address the high-order
bits of the physical and randomized address are identical, BH

for all of the 2m randomized addresses is identical. Let the
randomized low-order bits for two distinct physical low-order

bits, AL1 and AL2 be BL1 and BL2, respectively. Let AD(x) =

AL1(X)-AL2(X) # O, and let BD(x) = BL1(x)-BL2(x). Since

BL1(X) = AL1(X) mod P(x) and BL2(x) = AL2(x) mod P(x),

BD(x) = AD(x) mod P(x). Since AD (x) is a lower order

polynomial than P(x), BD(x) # O. Therefore, BL1 # BL2 if AL1

# AL2. In other words, all of the 2m randomized indices are

distinct and the randomization function is a permutation
scheme ■

Figure 6. Assignment of memory locations to memory
modules in the polynomial interleaving scheme defined by
the polynomial 19.

Figure 6 shows the manner in which memory locations are
assigned to memory modules with the polynomial interleaving
defined by the polynomial 19 for m = 4. Note that each set of
16 memory locations is permuted in a different way.

Lemma. If P(x) is of order m and is odd, i.e., the coefficient

of X“ # O, then xi mod P(x) # O for any i20.

Proof We know ,that xi is not divisible by P(x) for any

i<m. Assume that X1 is divisible by P(x) for some i>m.

Therefore, xi = P(x)* Q(x)*xj where Q(x) is odd and j20. Let d =

i-j >m. Therefore, Xd = P(x)*Q(x) where d2m. This means that

the coefficient of X“ in P(x)*Q(x) is equal to O. But this is
impossible since P(x) and Q(x) are both odd polynomials.

Therefore, xi is not divisible by P(x) and xi mod P(x) # O for
any i>O ■

Theorem 2. Consider the H-matrix corresponding to a

polynomial interleaving scheme defined by the polynomial
P(x). If P(x) is odd (i.e., the associated integer P is odd), then
all of the square sub-matrices, D(m,i), of the H-matrix are non-

singular and all strides of the form S = S0*2k for any l&O are

statistically identical in their behavior to that of the stride S0.

Proof The rows of the matrix D(m,i) consist of the

coefficients of xj mod P(x), for j = i,.., i+lm-l. D(m,i) is

singular if it is possible to find coefficients, c j = i,.., i+m-l,

over GF(2) such that (cixl+.. +ci+m-l x i+m-l~’mod p(x)= ()

Since (CiXi+..+Ci+m-l X‘+m-l) = (cixO+..+ci+.m-lxm-l) *xi,

(CiXi+..+Ci+m_lX i+m- 1) mod P(x) = O if either (cix”+..+ci+m.

~xm-l) mod P(x)= O or xi mod P(x) = O. The former cannot be

true since (cixO+..+ci+m-l xm-l) is of lower order than P(x) and

the latter cannot be true by the above lemma. Therefore, all
D(m,i) are non-singular.

Let { Ai), i = O,..,j, be a reference sequence with stride S =

So*2k for some k20. Let Bi = So*i, i.e., { Bi ] is the reference

sequence with stride So. Therefore, Ai = Bi*2k, Ai(x) =

Bi(x)*xk, and %(x) mod P(x) = [(Bi(x) mod F’(x)) * Xk] mod

P(x). Consider first any i and j such that Bi and Bj map into the

same module, i.e., Bi(x) mod P(x) = Bj(x) mod P(x) = R(x). In

this case, Ai(x) mod P(x) = Aj(x) mod P(x) = [R(x)*xk] mod

P(x). Consider next any i and j such that Bi ancl Bj do not map

into the same module, i.e., Bi(x) mod P(x) = Ri(X) # Bj(x) mod

F’(x) = Rj(X). In this case, Ai(x) mod P(x)= [Ri(x)*xk] mod

P(x) # Aj(x) mod P(x) = [Rj(x)*xk] mod P(x) since Ri(x)*xk #

R j(x)* Xk and D(m,k) is non-singular for all k20.

Consequently, Ai and Aj map into the same modtde if and only

if Bi and Bj map into the same module. In ether words, the

sequence { Ai] is equivalent to the sequence { Bi } except that the

modules have been renamed by a permutation. Hence, the
statistics for { Ai} and { Bi} are identical E

As a result of this theorem, we need onlly examine odd
strides to fully understand the behavior of a polynomial
interleaving scheme that is defined by an odd modulus
polynomial. In a virtual memory system, the high order bits of
the virtual address are replaced by the corresponding bits of the
physical address. Unless a conscious effort is made to avoid it,
this mapping has the effect of randomizing the high order bits
of the address. Because of this, only those strides need be
considered that are less than the page size divided by the word
size.

Pef inition: The references of a reference sequence

{ ao,al,..] are said to be short-term eaui-distrib~ over the M

memory modules if it is possible to define an integer k such
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that the references in any sub-sequence { ak+i*M,..,ak+(i+ l)M.

1}, for i20, are all to distinct memory modules.

Theorem 3. In the polynomial interleaving scheme defined

by an odd polynomial P(x), all strides that are of the form 2k
are short-term equi-distributed.

Proofi Since polynomial interleaving is a permutation
scheme (Theorem 1), the reference sequence with a stride of 1 is
short-term equi-distributed. Therefore, by Theorem 2, all strides

of the form 2k, for k20, are short-term equi-distributed ■

Definition: Consider the reference sequence

{ AO,A l,..,AK ). Let Ki be the number of references in the

reference sequence to memory module i. The reference sequence
is said to be lon~-term eaui-distributed over the M memory

modules if Ki/K tends to l/M as K tends to =.

Hvrro thesis. In the polynomial interleaving scheme

defined by an odd polynomial P(x), all odd strides are long-term
equi-distributed E

All experiments conducted to date confirm the above
hypothesis and it is believed to be true although a proof has
not yet presented itself. If this hypothesis is correct, then by
Theorem 2, all even strides, too, are long-term equi-distributed.
However, even if the hypothesis is true, it does not preclude the
possibility of extensive clustering of references to memory
modules, i.e., the absence of short-term equi-distribution.
Analogous ta conventional interleaving, we would expect to
see marked clustering if a reference sequence { ~,A1,. .,AK )

were such that all the polynomials Ai(x) modulo P(x), CKiSK,

mapped into a subset of the M modules.

Theorem 4. With the 2m -way polynomial interleaving

scheme defined by a (not necessarily irreducible) polynomial
P(x) and with a reference sequence (AO,Al,..,AK] such that the

greatest common divisor of P(x) and Ai(x), for all (KiSK, is the

polynomial G(x) of order q, only 2m-q memory modules are

referenced over the whole reference sequence.

Proof Define Qi(x) such that Ai(x) = Qi(x)*G(x), for all

O~KK, and defime T(.x) such mat p(x) = T(x)* G(x). Then for all

OSKK, Ai(x) mod P(x)= (Qi(x)*G(x)) mod (T(x)*G(x)) = Qi(x)

mod T(x). Since T(x) is of order m-q, all module indices

corresponding to (Ai) must be less than 2m-q, i.e., only 2m-q

modules are referenced over the sequence { Ai} E

Such a situation would arise if {AO,Al,..,AK ] constituted

an arithmetic sequence with stride S, such that Ai(x) =

S(x)* i(x), O~iSK, where i(x) is the polynomial associated with
the integer i. One way in which this can occur is if the
binary representation of S contains sparse l’s, i.e., 1’s
separated by relatively long sequences of 0’s. Let k be the
shortest run length in S of O’s between two consecutive 1‘s. We
shall term a stride of this type a k-suarse stride. With a k-sparse

stride, for all i, 0SiS2k, ~(x) = S(x)* i(x). This is because, over

the stated range of i, the partial binary products, when added, do
not generate any carry. Binary and polynomial arithmetic are

identical over this range. By Theorem 4, the performance of the

polynomial interleaving scheme over the sequence

{ AO,A1,..,AK ), where K = 2k, is determined by the order of

G(x), the greatest common divisor of S(x) and P(x). In

particular, if S(x) is a multiple of P(x), G(x) = P(x), the order of
G(x) = m, and only a single module is referenced over the
sequence{AO,A1 ,..,AK }. The possibility that n, the order of

G(x), is greater than O but less than m is eliminated if P(x) is an
irreducible polynomial, thus minimizing the opportunity for
strides that concentrate their references over significant
periods of time to a subset of the M memory modules. On the

positive side, if a k-sparse stride polynomial is relatively
prime to P(x), the reference sequence {~, A1,..,AK], where K =

2k, is short-term equi-distributed.

Definitio~ An element, B, of the field of polynomials

modulo the irreducible polynomial P(x) is said to be a prim itive

element or a generator of the field if for each element, ~, of the

field, where v # O, p = 13k, for some k such that M&2m-1.

Definitio n: A polynomial interleaving scheme defined by

the polynomial P(x) such that P(x) is irreducible and x is a
primitive element is termed an irreducible uolvnomial (1-PoIv]

interleaving scheme.

In cases where P(x) is irreducible but x is not a primitive
element, all the benefits of I-poly interleaving can be achieved
by using an H-matrix whose i-th row (from the bottom) is

given by ili mod P(x), where ~ is a primitive element. However,
for the sake of brevity, we shall not discuss this possibility

any further.

Thearem 5. In an I-poly interleaving scheme defined by

the irreducible polynomial P(x) of order m, Xk+l is not

divisible by P(x) for any k < 2m-1 and is divisible by P(x) fork
= 2m-1, i.e., fie rows of the H-matrix have a maximal period of

2m-1.

Proof Let Xd be the smallest power of x such that Xd+l is

divisible by P(x). Xd+l is divisible by P(x) if and only if Xd

mod P(x) = X“ mod P(x) = 1, i.e., if row d of the H-matrix is the

same as row O. Since the rows of the H-matrix constitute the
successive states of a feedback shift register, this would
correspond to the period of the shift register being of length d.
From feedback shift register theory (page 316 of [17]) we know
that the period, for a shift register corresponding to the
irreducible polynomial P(x) of order m and when x is a

primitive element, is of length 2m -1. Therefore, Xk+l is not

divisible by P(x) for any k < 2m-1 and is divisible by P(x) fork

= 2m-1 ■

Note that the successive states of a feedback shift register
and, thus, the rows of the H-matrix, constitute a pseudo-random
sequence which is of maximal period if P(x) is irreducible and x
is a primitive element. Randomness in the rows of the H-matrix
was called out as a desirable property in the discussion at the
end of Section 3. Pseudo-randomness of this sort provides most
of the benefits of randomness but also makes it possible to
prove certain properties of the interleaving scheme which
would be difficult or impossible with true randomness.

Lack of space prevents proof of further properties. For
instance, in the case of an I-poly interleaving scheme defined
by an irreducible polynomial P(x) of order m, and a K*K
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matrix, (K = 2k, k < 2m -l), which is aligned on a 22 k

boundary, the following access patterns demonstrate short-

term equi-distribution: (a) all row access (b) all column access
(c) access along the main diagonal (d) access along the main
anti-diagonal.

5. MEASUREMENTS

Measurements were performed by simulating a processor-
memory system of the form shown in Figure 1 with one
processor and 16-way interleaved memory. The memory cycle
time was 12 with an access time of 8 cycles which presents a
lower bound on the latency of a memory request. Each
simulation was run for 16,384 cycles with the processor
making a memory reference every cycle unless stalled. The
reference sequence consisted either of an arithmetic sequence
with a constant stride or a random sequence. The objectives

were to validate the theory of Section 4, demonstrate the

effectiveness of I-poly interleaving and to compare it with

sequential interleaving and the random H-matrix scheme of the

Cydra 5. In addition, the series of simulations described below,

and the order in which they are performed, is intended to be

illustrative of the procedure that one might employ in
designing a pseudo-randomly interleaved memory system. The
memory system design parameters that affect performance the

most are the degree of interleaving, the memory cycle time, the
interleaving scheme and the amount of buffering provided per
memory module. The fwst two are fixed for the purposes of this
discussion. There is one other parameter of importance. Due to
program dependence or hardware limitations, there is a limit
to the memory latency that a processor can tolerate.
Sophisticated compilers can increase the program’s tolerance
for long latencies by various forms of instruction re-ordering,
but when this limit is reached, the processor stalls. VLIW
processors [2,3] impose an explicit upper bound on the
acceptable latency. In the Cydra 5, this latency bound can be
varied under program control by depositing the desired value in
the memorv latencv re~ister (MLR] [5]. The compiler

determines the most appropriate value based on its success in
re-ordering the code to make it latency-tolerant. For
architectures other than VLIW, the MLR value may be
interpreted as a fuzzy measure of the latency tolerance of the
processor-program pair.

Mean, BIB QueueLength
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Figure 7. Average BIB Queue length (assuming unbounded

buffer capacity per memory module) for all odd strides

between 1 and 63 and all odd fourth-order modulus
polynomials.

The first set of simulations were performed to demonstrate

the merit of selecting an irreducible polynomial as the
modulus. They were conducted assuming unboundled BIB (Bank

Input Bus) Queue capacity and an unbounded MLR value. For
these simulations alone, the memory cycle time was set at 16
cycles so that, with the processor making a request every cycle,
the memory system would be operating in a state of saturation.
This was done to exaggerate and thereby highlight the effects
of the temporal clustering of references. The figure of merit
used, as a measure of the extent of temporal clustering, is the
average BIB Queue length. Figure 7 shows this statistic for all
odd fourth-order polynomials and for all odd stri,des between 1
and 63. Notice the relatively short queue lengths for the

irreducible polynomials 19 and 25. The other irreducible
polynomial, 31, does not behave as well because x is not a
primitive element when p = 31. Polynomial 19 was used as the
modulus polynomial for I-poly interleaving in the rest of the
simulations. Also, so as to correspond to a more realistic
design poin~ the memory cycle time was selected to be 12 (less
than the degree of interleaving) since it is well understood from
queuing theory that it is inadvisable to operate any queueing

system at, or close to, saturation.
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Figure 8. Frequency distribution of processor utilization with
SIM, I-poly interleaving and Cydra 5 PRIM for strides 1
through 64 and for BIB Queue capacities of 4 and 8. (The
buffer capacity is irrelevant with SIM).

In a realizable system, the BIB Queue capacity is finite and
whenever a BIB Queue fills up, the processor stalls. Ultimately,

the most meaningful figure of merit is the processor
utilization, i.e., the fraction of time that the processor is not
stalled. So, the objective of the second set of simulations was
to understand the amount of BIB Queue capacity needed in order
to avoid stalling the processor too frequently. To isolate the
influence of this parameter, the MLR value was left unbounded.
A subset of the simulation results are shown in Figure 8 which
compares sequential interleaving (SIM) with I-poly 19
interleaving and Cydra 5 PRIM for BIB Queue {capacities of 4
and 8 and for strides from 1 through 64. With SIM, the BIB
Queue capacity is irrelevant; the queue never builds up for odd
strides and the BIB Queue will overflow, regardless of its
capacity, for even strides. The plots show the cumulative
fraction of the 64 strides that yield a processor utilization that
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is less than or equal to a given value. Consider fust a BIB Queue
capacity of 4. Cydra 5 PRIM has the least variability in its
performance and SIM has the most. The processor utilization
for Cydra 5 PRIM is between 0.65 and 0.90 for the middle 80%
of the strides but is between 0.16 and 1.00 for SIM (for the

same percentage of strides). The other side of the coin is that
SIM achieves full performance for 50% of all strides whereas
Cydra 5 PRIM does so for only 10% of all strides. I-poly
interleaving is intermediate between SIM and Cydra 5 PRIM in
every respect. With both PRIM schemes, the worst 50% of the
strides behaved better than the worst 50% of the strides for SIM
by factors of between 1.3 and 4. The best 50% of PRIM strides
were never worse than the best 50% of SIM strides by more
than a factor of 1.2.. Notice that even the worst stride with I-
poly interleaving is better than a quarter of all the strides with
SIM.

Interleaving schemes with low variability in performance
are favored as the BIB Queue capacity increases. Both PRIM
schemes yield better performance for all strides as capacity

increases. However, the advantage that the higher variability
scheme had, on the well-behaved strides, over the lower
variability scheme disappears because processor utilization
cannot increase beyond 1.0. So, whereas on the poorly-
behaved strides Cydra 5 PRIM does somewhat better than I-
poly 19, and both do significantly better than SIM, SIM and I-
poly 19 never do much better than Cydra 5 PRIM. Ahnost all of
the strides for PRIM are better than 50% of all the strides with
SIM. With a buffer capacity of 8 or more, almost all strides
yield a processor utilization of better than 0.8. Although not
evident from Figure 8, the simulation results show that perfect
processor utilization is achieved for stride 1 as long as there is

the ability to buffer at least two requests per memory module
(the request currently being served and a second one that causes
the processor to stall). With a BIB Queue capacity of 8, both
PRIM schemes appear to be unquestionably better than SIM,
and Cydra 5 PRIM is better than I-poly 19. (The lack of
adequate buffering is probably the cause for the relatively
disappointing behavior of a random H-matrix scheme evaluated
in [10]). Figure 3 shows that if a 16-way interleaved memory

system is to perform well for a random stride, a BIB Queue
capacity of about 8 is needed. So, the BIB Queue capacity was
fixed at 8 in the remaining experiments.

The penalty for buffering is the greater latencies incurred
in making a memory request. The results shown in Figure 8 do
not take this into account. The third set of simulations were
performed to understand how processor utilization behaved as a
function of the MLR value. The results for MLR values of 12
and 56 are shown in Figure 9 for all three interleaving schemes.
Once again, SIM is insensitive to the MLR value as long as it
is not less than 8. For odd strides, the request is back in 8
cycles. For even strides, the queues tend to grow in an
unbounded fashion and it makes little difference whether the

processor is stalled because the BIB Queue fills up or because
the MLR limit is exceeded. Both PRIM schemes pay a
significant penalty for an MLR value of 12 and a relatively

small one for an MLR value of 56. (Note that with a memory
cycle time of 12, 56 cycles corresponds to the delay
experienced by a request which finds 4 requests in tiont of it in
the BIB Queue). Most of the discussion about Figure 8 is
applicable here at a qualitative level. Once again, Cydra 5
PRIM demonstrates less variability than I-poly 19 which, in
turn, is less variable than SIM. Once again, as the MLR value is
increased, schemes with higher variability lose whatever
advantage they had in the case of well-behaved strides. If

sufficiently high MLR values are acceptable, PRIM using a
random H-matrix does best. For low values of MLR, the

evidence is inconclusive; each scheme can be shown to be best
depending on the relative importance assigned to each stride.

6. CONCLUSION

XOR-based PRIM, implemented using an H-matrix,
provides most of the attributes of a good interleaving scheme
implementation simplicity and robustness in the face of
varying address patterns. In addition, I-poly interleaving
allows one to prove certain important properties regarding its
behavior. The major hardware cost associated with PRIM is the
buffering that is required per memory module for it to perform
well. However, if one assumes the viewpoint that buffering is
required with any interleaving scheme that wishes to perform
well on random or irregular access patterns, then it is not a

relative disadvantage of PRIM.
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Figure 9. Frequency distribution of processor utilization with
SIM, I-poly interleaving and Cydra 5 PRIM for strides 1

through 64 and for MLR values of 12 and 56. (The MLR value
is irrelevant with SIM).

The major performance penalty of PRIM results from the
increase in memory access time caused by pseudo-
randomization. When the processor makes requests at the peak
memory rate, queues will build up, to a greater nr lesser extent,
at the memory modules for all strides. If the processor and
program, in conjunction, can tolerate the increase in latency,
PRIM is the better solution; by arranging for the program to

make requests well in advance of attempting to use the data,
consistently good performance can be achieved across all
strides. Most high performance processor architectures tend to
be designed to cope with long memory latencies and, for them,
PRIM is the prefemed choice. On the other hand, if latency
cannot be tolerated, PRIM offers mediocre performance for
most strides whereas SIM provides either very good or very
poor performance depending on the stride. However, it has
been observed that, in practice, most programs are not latency-
tolerant are unable to generate high request rates.
Consequently, the memory system is not congested, and all
interleaving schemes behave quite similarly, The data cache

should be used for workloads which have adequate locality of
reference, whether or not they are latency-tolerant. In this case
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the interleaving scheme is irrelevant since memory is only
accessed on a cache line basis.

The comparison between the two PRIM schemes, Cydra 5’s
random H-matrix and I-poly interleaving, shows that in most
ways I-poly interleaving is intermediate between the random H-
matrix and SIM. For lower values of MLR, I-poly interleaving
does better than the random H-matrix for a larger percentage of
strides. For sufficiently high MLR values, the random H-matrix
seems to perform best. It is indeed remarkable that the random
H-matrix, that was designed as an act of desperation, does so
well! However, there is still the nagging doubt that, perhaps,
stumbling upon this H-matrix was pure luck and that the next

random H-matrix designed would not fare as well.

The design of an M-way (M = 2m ) I-poly interleaved
memory requires that all the irreducible polynomials of order m
be tested to select the most desirable one. The testing consists,
firstly, of checking whether x is a primitive element. (If not,
some other primitive element should be used to define the H-
matrix). Next, all of the of k-sparse multiples of the modulus
polynomial should be generated for k22. It is desirable that
this list consist only of very large integers, thereby reducing
the number of troublesome strides. Lastly, it is desirable that as
many as possible of these k-sparse multiples be prime numbers
since this minimizes the number of integer sub-multiples of k-

sparse strides, which have some of the bad properties of the k-
sparse stride.

In this paper we have only considered single access
patterns that have a constant or random stride. In reality, the
reference patterns generated by a program consist of many
interleaved sequences of this type and of finite length.
Furthermore, in a multiprocessor system, there will be a
number of such composite sequences of references going on
simultaneously. A complete discussion of this is beyond the
scope of this paper. Suffice it to say that as the sequences get

more complex, they generally start behaving more and more
like a random sequence. Thus the variability that is seen across
all strides diminishes and converges towards the performance

that the memory system is capable of with a random stride.
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