466

Chapter 5 Large and Fast: Explolting Memory Hlerarchy

This simple model could easily be extended with more states to try to improve
performance. For example, the Compare Tag state does both the compare and the
read or write of the cache data in a single clock cycle. Often the compare and cache
access are done in separate states to try to improve the clock cycle time. Another
optimization would be to add a write buffer so that we could save the dirty block
and then read the new block first so that the processor doesn't have to wait for two
memory accesses on a dirty miss. The cache would then write the dirty block from
the write buffer while the processor is operating on the requested data.

[Section 5.12, goes into more detail about the FSM, showing the full controller
in a hardware description language and a block diagram of this simple cache.

Parallelism and Memory Hierarchy:
Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single chip,
these processors very likely share a common physical address space. Caching shared
data introduces a new problem, because the view of memory held by two different
processors is through their individual caches, which, without any additional
precautions, could end up seeing two different values. Figure 5.41 illustrates the
problem and shows how two different processors can have two different values
for the same location. This difficulty is generally referred to as the cache coherence
problem.

Informally, we could say that a memory system is coherent if any read of a data
item returns the most recently written value of that data item. This definition,
although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared memory programs.
The first aspect, called coherence, defines what values can be returned by a read. The
second aspect, called consistency, determines when a written value will be returned
by a read.

Let’s look at coherence first. A memory system is coherent if

1. Aread by a processor P to alocation X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read
by P, always returns the value written by P. Thus, in Figure 5.41, if CPU A
were to read X after time step 3, it should see the value 1.

2. Aread by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two accesses. Thus, in
Figure 5.41, we need a mechanism so that the value 0 in the cache of CPU B
is replaced by the value 1 after CPU A stores 1 into memory at address X in
time step 3.

5.10 Parallellsm and Memory Hlerarchy: Cache Coherence

467

3. Writes to the same location are serialized; that is, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, if CPU B stores 2 into memory at address X after time step 3,
processors can never read the value at location X as 2 and then later read
itas 1.

The first property simply preserves program order—we certainly expect this
property to be true in uniprocessors, for example. The second property defines
the notion of what it means to have a coherent view of memory: if a processor
could continuously read an old data value, we would clearly say that memory was
incoherent.

The need for write serialization is more subtle, but equally important. Suppose
we did not serialize writes, and processor P1 writes location X followed by P2
writing location X. Serializing the writes ensures that every processor will see the
write done by P2 at some point. If we did not serialize the writes, it might be the
case that some processor could see the write of P2 first and then see the write of P1,
maintaining the value written by P1 indefinitely. The simplest way to avoid such
difficulties is to ensure that all writes to the same location are seen in the same
order, which we call write serialization.

Basic Schemes for Enforcing Coherence

In a cache coherent multiprocessor, the caches provide both migration and
replication of shared data items:

B Migration: A data item can be moved to a local cache and used there in a
transparent fashion. Migration reduces both the latency to access a shared
data item that is allocated remotely and the bandwidth demand on the shared

memory.
Memory

Time Cache contents for | Cache contents contents for
step for CPUB location X

0 0

1 CPU Areads X 0

2 CPU B reads X 0

3 CPU A stores 1 into X 1

FIGURE 5.41 The cache coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains the variable and
that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but
similar complications. After the value of X has been written by A, As cache and the memory both contain the
new value, but B's cache does not, and if B reads the value of X, it will receive 0!

468

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

B Replication: When shared data are being simultaneously read, the caches
make a copy of the data item in the local cache. Replication reduces both
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing
shared data, so many multiprocessors introduce a hardware protocol to maintain
coherent caches. The protocols to maintain coherence for multiple processors are
called cache coherence protocols. Key to implementing a cache coherence protocol
is tracking the state of any sharing of a data block.

The most popular cache coherence protocol is snooping. Every cache that has a
copy of the data from a block of physical memory also has a copy of the sharing
status of the block, but no centralized state is kept. The caches are all accessible via
some broadcast medium (a bus or network), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as
implemented with a shared bus, but any communication medium that broadcasts
cache misses to all processors can be used to implement a snooping-based
coherence scheme. This broadcasting to all caches makes snooping protocols
simple to implement but also limits their scalability.

Snooping Protocols

One method of enforcing coherence is to ensure that a processor has exclusive
access to a data item before it writes that item. This style of protocol is called a write
invalidate protocol because it invalidates copies in other caches on a write. Exclusive
access ensures that no other readable or writable copies of an item exist when the
write occurs: all other cached copies of the item are invalidated.

Figure 5.42 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action. To see how this protocol ensures coherence,
consider a write followed by a read by another processor: since the write requires
exclusive access, any copy held by the reading processor must be invalidated (hence
the protocol name). Thus, when the read occurs, it misses in the cache, and the
cache is forced to fetch a new copy of the data. For a write, we require that the
writing processor have exclusive access, preventing any other processor from being
able to write simultaneously. If two processors do attempt to write the same data
simultaneously, one of them wins the race, causing the other processor’s copy to be
invalidated. For the other processor to complete its write, it must obtain a new copy
of the data, which must now contain the updated value. Therefore, this protocol
also enforces write serialization.

5.10 Parallelism and Memory Hierarchy: Cache Coherence

469

Contents of

Contepts of Contepts of memory

Processor activity Bus activity CPU AQOs cache| CPU BOs cache| location X
0
CPUAreads X Cache miss forX 0 0
CPU B reads X Cache miss for X 0 0 0
CPUAwrites a1 toX Invalidation for X 1 0
CPUBreads X Cache miss for X 1 1 1

FIGURE 5.42 An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches. We assume that neither cache initially holds X
and that the value of X in memory is 0. The CPU and memory contents show the value after the processor
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both
the contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs
when a block becomes shared, simplifies the protocol, but it is possible to track the ownership and force the
write-back only if the block is replaced. This requires the introduction of an additional state called “owner,”
which indicates that a block may be shared, but the owning processor is responsible for updating any other
processors and memory when it changes the block or replaces it.

One insight is that block size plays an important role in cache coherency. For
example, take the case of snooping on a cache with a block size of eight words,
with a single word alternatively written and read by two processors. Most protocols
exchange full blocks between processors, thereby increasing coherency bandwidth
demands.

Large blocks can also cause what is called false sharing when two unrelated
shared variables are located in the same cache block, the full block is exchanged
between processors even though the processors are accessing different variables.
Programmers and compilers should lay out data carefully to avoid false sharing.

Elaboration: Although the three properties on pages 466 and 467 are suflcient to
ensure coherence, the question of when a written value will be seen is also important. To
see why, observe that we cannot require that a read of X inFigure 5.41 instantaneously
sees the value written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor very shortly beforehand, it may be
impossible to ensure that the read returns the value of the data written, since the written
data may not even have left the processor at that point. The issue of exactly when a
written value must be seen by a reader is de'ned by a memory consistency model.

Hardware/
Software
Interface

false sharingWhen two
unrelated shared variables
are located in the same
cache block and the

full block is exchanged
between processors even
though the processors

are accessing different
variables.

470

Chapter 5 Large and Fast: Explolting Memory Hlerarchy

oﬂl'-m

DEPENDABILITY

We make the following two assumptions. First, a write does not complete (and allow
the next write to occur) until all processors have seen the effect of that write. Second,
the processor does not change the order of any write with respect to any other memory
access. These two conditions mean that if a processor writes location X followed by
location Y, any processor that sees the new value of Y must also see the new value of
X. These restrictions allow the processor to reorder reads, but forces the processor to
finish a write in program order.

Elaboration: Since input can change memory behind the caches and since output
could need the latest value in a write back cache, there is also a cache coherency
problem for I/0 with the caches of a single processor as well as just between caches
of multiple processors. The cache coherence problem for multiprocessors and 1/0
(see Chapter 6), although similar in origin, has different characteristics that affect the
appropriate solution. Unlike 1/0, where multiple data copies are a rare event—one to
be avoided whenever possible—a program running on multiple processors will normally
have copies of the same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status
of shared blocks is distributed, a directory-based cache coherence protocol keeps the
sharing status of a block of physical memory in just one location, called the directory.
Directory-based coherence has slightly higher implementation overhead than snooping,
but it can reduce traffic between caches and thus scale to larger processor counts.

71
HH Parallelism and Memory Hierarchy:

<w»4 Redundant Arrays of Inexpensive Disks

This online section describes how using many disks in conjunction can offer much
higher throughput, which was the orginal inspiration of Redundant Arrays of
Inexpensive Disks (RAID). The real popularlity of RAID, however, was due more to
the much greater dependability offered by including a modest number of redundant
disks. The section explains the differences in performance, cost, and dependability
between the different RAID levels.

AN
aﬂ Advanced Material: Implementing Cache

w4 Controllers

This online section shows how to implement control for a cache, just as we
implemented control for the single-cycle and pipelined datapaths in Chapter 4.
This section starts with a description of finite-state machines and the implemention
of a cache controller for a simple data cache, including a description of the cache
controller ina hardware description language. It then goes into details of an example
cache coherence protocol and the difficulties in implementing such a protocol.

