

468 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Replication: When shared data are being simultaneously read, the caches
make a copy of the data item in the local cache. Replication reduces both
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing
shared data, so many multiprocessors introduce a hardware protocol to maintain
coherent caches. Th e protocols to maintain coherence for multiple processors are
called cache coherence protocols. Key to implementing a cache coherence protocol
is tracking the state of any sharing of a data block.

Th e most popular cache coherence protocol is snooping. Every cache that has a
copy of the data from a block of physical memory also has a copy of the sharing
status of the block, but no centralized state is kept. Th e caches are all accessible via
some broadcast medium (a bus or network), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as
implemented with a shared bus, but any communication medium that broadcasts
cache misses to all processors can be used to implement a snooping-based
coherence scheme. Th is broadcasting to all caches makes snooping protocols
simple to implement but also limits their scalability.

Snooping Protocols
One method of enforcing coherence is to ensure that a processor has exclusive
access to a data item before it writes that item. Th is style of protocol is called a write
invalidate protocol because it invalidates copies in other caches on a write. Exclusive
access ensures that no other readable or writable copies of an item exist when the
write occurs: all other cached copies of the item are invalidated.

Figure 5.42 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action. To see how this protocol ensures coherence,
consider a write followed by a read by another processor: since the write requires
exclusive access, any copy held by the reading processor must be invalidated (hence
the protocol name). Th us, when the read occurs, it misses in the cache, and the
cache is forced to fetch a new copy of the data. For a write, we require that the
writing processor have exclusive access, preventing any other processor from being
able to write simultaneously. If two processors do attempt to write the same data
simultaneously, one of them wins the race, causing the other processor’s copy to be
invalidated. For the other processor to complete its write, it must obtain a new copy
of the data, which must now contain the updated value. Th erefore, this protocol
also enforces write serialization.

 5.10 Parallelism and Memory Hierarchy: Cache Coherence 469

One insight is that block size plays an important role in cache coherency. For
example, take the case of snooping on a cache with a block size of eight words,
with a single word alternatively written and read by two processors. Most protocols
exchange full blocks between processors, thereby increasing coherency bandwidth
demands.

Large blocks can also cause what is called false sharing: when two unrelated
shared variables are located in the same cache block, the full block is exchanged
between processors even though the processors are accessing diff erent variables.
Programmers and compilers should lay out data carefully to avoid false sharing.

Elaboration: Although the three properties on pages 466 and 467 are suf! cient to
ensure coherence, the question of when a written value will be seen is also important. To
see why, observe that we cannot require that a read of X in Figure 5.41 instantaneously
sees the value written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor very shortly beforehand, it may be
impossible to ensure that the read returns the value of the data written, since the written
data may not even have left the processor at that point. The issue of exactly when a
written value must be seen by a reader is de! ned by a memory consistency model.

Hardware/
Software
Interface

false sharing When two
unrelated shared variables
are located in the same
cache block and the
full block is exchanged
between processors even
though the processors
are accessing diff erent
variables.

FIGURE 5.42 An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches. We assume that neither cache initially holds X
and that the value of X in memory is 0. Th e CPU and memory contents show the value aft er the processor
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both
the contents of B’s cache and the memory contents of X are updated. Th is update of memory, which occurs
when a block becomes shared, simplifi es the protocol, but it is possible to track the ownership and force the
write-back only if the block is replaced. Th is requires the introduction of an additional state called “owner,”
which indicates that a block may be shared, but the owning processor is responsible for updating any other
processors and memory when it changes the block or replaces it.

Processor activity Bus activity
Contents of

CPU AÕs cache
Contents of

CPU BÕs cache

Contents of
memory

location X

0

00XrofssimehcaCXsdaerAUPC

CPU B reads X Cache miss for X 0 0 0

01XrofnoitadilavnIXot1asetirwAUPC

CPU B reads X Cache miss for X 1 1 1

