
Widespread application of whole- genome high- 
throughput sequencing (HTS) for the detection of 
genetic variants has shown that differences between 
individuals are typically present as single- nucleotide 
variants (SNVs), small insertions and deletions (indels; 
<50 bp), and structural variations (SVs)1. SVs are extremely 
diverse in type and size, ranging anywhere from ~50 bp 
to well over megabases of sequence, affecting more 
of the genome per nucleotide changes than any other 
class of sequence variant2–6. They comprise a myriad of 
subclasses that consist of unbalanced copy number var-
iants (CNVs), which include deletions, duplications and 
insertions of genetic material, as well as balanced rear-
rangements, such as inversions and interchromosomal 
and intrachromosomal translocations. Additionally, SVs 
include mobile element insertions, multi- allelic CNVs 
of highly variable copy number, segmental duplica-
tions and complex rearrangements that consist of mul-
tiple combinations of these described events. SVs are 
present in every human genome and affect molecular 
and cellular processes, regulatory functions, 3D struc-
ture and transcriptional machinery5,7,8. Thus, increas-
ing our knowledge of SV structure and prevalence is 
necessary to discern the genomics of physiological and  
pathophysiological processes.

Many of the prevalent tools and algorithms to detect 
SVs use short read signatures to infer the presence of SVs  
compared with a reference genome9. Although short- 
read approaches are highly effective at resolving SNVs, 
SV detection is unable to completely overcome the 
limited sequence and insert sizes of standard short- 
read HTS10. There are still considerable limitations on 
what can be achieved in SV analysis owing to technical 

difficulties in resolving exact structures of SVs given 
their substantial diversity and proximity to repetitive 
regions5,9,11–13. SNVs detected by short- read technolo-
gies can be sequence- resolved during the discovery stage 
owing to their smaller size, whereas most SVs require 
computational inference post hoc as they span multiple 
short reads. Because of this, the degree to which contem-
porary genomics has studied SNVs compared with SVs is 
significantly skewed. Specifically, standardized best prac-
tices, robust detection platforms, high- quality reference 
sets and extensive functional data from genome- wide 
association studies are available for SNV research14–20. 
Comparatively, progress in SV analysis is notably lagging 
behind, as detection is suboptimal and reference sets are 
lacking in diversity, sample size and depth.

A considerable increase in the development and 
availability of novel sequencing technologies that lev-
erage specialized flow cells, advanced microfluidics and 
protein pores, among others, has led to platforms that 
produce reads several orders of magnitude longer than 
those generated from short- read HTS, enabling the 
direct detection of many previously indiscernible SVs21 
(Box 1). In this Review, we discuss methods for resolv-
ing SVs in human genomes that bypass the limitations 
of individual short- read approaches through algorith-
mic ensembles and by leveraging new technologies. 
In particular, we discuss the findings of applying new 
technologies to genome assembly and population- scale 
variant mapping as they relate to germline SVs (for 
recent reviews on somatic SVs, see refS22,23). Along with 
integrating SV algorithms, we consider integrating data 
generated from multiple genomic platforms as a way to 
comprehensively detect the broad range of SVs. As each 
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Box 1 | From microarrays to short- read sequencing and beyond

The prevalence of structural variation (Sv) in human genomes has 
historically been determined by the resolution of available 
technologies. molecular cytogenetics techniques, particularly 
chromosome banding and fluorescence in situ hybridization, powered 
seminal work involving the detection of microscopic chromosomal 
aberrations but were unable to identify submicroscopic variants (for 
brief historical perspectives on cytogenetic- based Sv detection, see 
refS22,155). microarrays then became the primary technology to identify 
copy number variants (cNvs) in the 2000s due to improved resolution 
over karyotype- based analysis. Array- comparative genomic 
hybridization enabled the first reports of global SV, identifying ~300 
copy number- variable loci and informing the wide presence of SVs in 
phenotypically normal human genomes56,156. one of the first sequence 
mapping approaches performed with a single fosmid library reported  
a similar number of SVs, ~300 variants11. These numbers were highly 
preliminary as SNP arrays would soon detect 1,447 and 1,320 CNVs 
across 270 individuals157,158. at this time, sequencing- based approaches 
were dropping in cost — their proof- of-principle studies exhibited 
similar sensitivity compared with arrays but with significantly fewer 
samples; one study employed paired- end 454 pyrosequencing in two 
human genomes24 and another used a fosmid- clone-based mapping 
approach in nine human genomes159 to detect ~1,700 and ~1,300 SVs, 
respectively. large, population- scale detection efforts then started to 
emerge. In 2010, high- density microarrays employing millions of probes 
ascertained 11,700 CNVs across 450 individuals2. a sequencing based- 
approach proved to be more comprehensive in 2011; this study applied 
an ensemble approach to ~4× short- read high- throughput sequencing 
(hTS) of 185 individuals to detect a three- fold increase of Svs in 
comparison4.

Throughout these studies, two main advantages made short- read HTS 
superior to microarrays for exhaustive SV detection: the detection of 
balanced variants and sequences not in the reference (novel insertions), 
which are missed by arrays; and higher overall resolution. Thus, short- read 
hTS has been the major driver of progress in Sv detection over the past 
decade given its improved sensitivity over array platforms, although 
arrays are still regularly used for their low cost and high throughput160. 
Improvements in short- read technology have enabled the detection of 
millions of variants, improving the number of detectable SVs from ~2,100 
to ~8,000 SVs per human genome5,43. The emerging sequencing 
technologies discussed in this Review push these estimates further, to 
>25,000 SVs per individual. Shown (see the figure) are selected studies 
that either estimate the extent of SV content or provide estimates of 
detectable SVs according to technology within phenotypically healthy 
human genomes, showing the relationship between detectable SVs and 
available technologies.

For a more comprehensive overview of the methods and algorithms 
used to detect Svs before adoption of the technologies discussed in  
this Review, we suggest the following references: molecular cytogenetics 
techniques, ref.161; the application of molecular cytogenetics to 
understand clinical disorders, ref.162; array and clone- based approaches 
to detect Svs, ref.155; a comprehensive survey of the first Sv detection 
studies, ref.163; short- read discovery and genotyping, refS9,164,165; 
detecting complex SVs, ref.166; and clinically relevant cNvs and  
SV detection from whole- exome sequencing, refS167–169.

Citations for the studies listed in the figure: 
refS2,4,5,11,24,39,43–45,61,95,97,102–105,108,142,156,158,159,170,171. cNv, copy number variant;  
PacBio, Pacific Biosciences; SV, structural variation; WGS, whole- genome 
sequencing.
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approach has different strengths, we highlight individ-
ual strategies, their applications and recent findings. 
We discuss future directions and consider incorporating 
multimodal biological information as a way to interpret 
the impact of SVs in their molecular contexts.

Ensemble algorithms
Sequencing- based SV detection leverages primarily  
signatures that result from mapping discordance 
between a sample read and the reference genome: read- 
pair approaches assess the orientation and distance of 
paired ends; read- depth methods detect deletions or 
duplications based on divergences in mapping depth; 
split- read approaches leverage alignments that map 
over SV breakpoints; and, alternatively, de novo or local 
assembly reassembles contigs before pairwise compar-
ison with a reference24–26. Many early SV callers, such 
as BreakDancer27, CNVnator28 and PEMer29, special-
ized in leveraging only one of four approaches, which 
inherently limits detection (reviewed in ref.9). Hybrid- 
signature algorithms, such as DELLY30, Genome STRiP31, 
LUMPY32 and Manta33, among others34–36, mitigate the 
limited scope of single- approach algorithms, improving 
sensitivity by integrating two or more disparate signatures 
to call putative SVs based on combined supporting evi-
dence. However, even with signal integration, no indi-
vidual caller has been shown to be capable of identifying 
the complete range of SV owing to the large diversity 
in viable detection approaches and the variability in SV 
subtype and size37–39. One strategy to attenuate this issue 
involves detecting SVs using multiple discrete algorithms 
on the same sequence data and integrating the variant 
calls to generate a unified call set (fig. 1A). Combining 
multiple algorithms improves detection by leveraging 
the different heuristic approaches of each individual 
caller and has been shown to increase the concordance of 
SV calls when compared with reference data sets (Box 2, 

TABle 1) developed by large consortium projects40–42. 
From here onwards, we refer to an ‘ensemble algorithm’ as 
the combination and integration of multiple independent  
SV detection algorithms.

Most ensemble algorithms have been developed in- 
house, meaning the combination of algorithms and heu-
ristic filters are unique to individual projects and thus  
non- standardized. However, one or several algorithms 
are typically used to cover each signature type; for exam-
ple, CNVnator can be combined with BreakDancer and 
Pindel to cover read depth, read pair and split reads, 
respectively, although recent approaches use hybrid- 
signature callers as well. Following multi- algorithm 
detection, the resultant calls are merged, combining 
potentially duplicate SVs with delineating SVs called 
uniquely by each algorithm. The methods to integrate, 
combine and score calls vary markedly between studies 
and thus far have used breakpoint confidence interval 
overlap, breakpoint distances, false- discovery rate (FDR) 
cut- off thresholds, read- signature prioritization (split 
reads > read pair > read depth), caller concordance 
and supporting signatures’ thresholds4,5,43–46 (fig. 1B). 
A seventh factor, coordinate overlap, is considered by 
all ensemble algorithm methods to varying degrees. 
Depending on the level of sensitivity a project aims to 

achieve, applications will either intersect calls or take 
a union, decreasing and increasing sensitivity while 
decreasing and increasing the FDR, respectively.

Stand- alone tools for ensemble algorithms help 
standardize these integrative pipelines. SpeedSeq47 
employs LUMPY and CNVnator to cover split- read, 
paired- end and read- depth detection before validating 
calls with a Bayesian likelihood genotyper (SVTyper), 
an approach that is also implemented in the population 
scale- specific svtools48. HugeSeq41, iSVP49, Parliament2 
(ref.50) and SVMerge40 are ensemble algorithm callers 
that primarily intersect by coordinate overlap, which 
require that a call is detected by multiple callers, whereas 
MetaSV51 takes the union and does not require caller 
overlap. SVMerge and MetaSV both validate their con-
sensus calls with local reassembly, but MetaSV prioritizes 
SV signatures with higher resolution (for example, split 
reads over read pairs). Parliament2 allows users to decide 
on a combination of six short- read algorithms before 
merging calls with SURVIVOR52 and genotyping with 
SVTyper47. Ensemble algorithm callers are beginning to 
implement meta- level heuristics to improve precision 
beyond using simple overlap: Parliament2 scores each 
SV call with a caller concordance metric trained on the 
HG002 (also known as NA24385) reference genome50; 
FusorSV53 implements a data- mining method to learn 
how well different SV algorithms perform compared 
with a truth set to promote the most complementary 
and highest performing ensemble; and CN- Learn54, an 
algorithm for whole- exome data, extracts features from a 
truth set and uses these features to train a random forest 
classifier that differentiates CNV calls as true or false.

Population- scale SV detection
Ensemble algorithm approaches have been widely used 
in studies characterizing SV across populations. The 
1000 Genomes Project (1KGP) initially integrated 19 
algorithms to detect SVs in European, Han, Japanese and 
Yoruban individuals to create a sequencing- based SV 
reference map4. This early work provided one of the first 
frameworks for using ensemble approaches to detect SVs 
at the population scale and revealed 51 SV hotspots in 
the genome, 80% of which were dominated by a single 
formation mechanism, non- allelic homologous recom-
bination, some at loci associated with known genetic 
conditions. At the completion of phase 3, the 1KGP had 
sequenced 2,504 individuals across 26 populations and 
investigated all major SV classes in contrast to the dele-
tion focus of the phase 1 marker paper5 (TABle 1). The 
authors generated one of the most comprehensive and 
diverse reference sets of human SVs to date and esti-
mated that typical human genomes contain between 
2,100 and 2,500 SVs that affect ~20 million nucleotides 
(Box 1). Moreover, they found that SVs are enriched for 
expression quantitative trait loci (eQTLs) up to 50-fold 
compared with SNVs. Although the 1KGP set the stage 
for large- scale SV detection by sequencing, the fairly low 
coverage (~6–7×) per sample limited power to detect 
rare variants55.

SV projects with larger and deeper data sets have 
emerged to improve on the 1KGP reference set. One 
study applied svtools to ~18,000 human genomes, 

Short- read HTS
(Short- read high- throughput 
sequencing). Standard 
sequencing where libraries are 
fragmented to ~600–800 bp 
in length. Two ends are 
sequenced ~100–250 bp with 
an unsequenced insert size of 
~100–600 bp.

Flow cells
glass slides containing fluidic 
channels for sequencing 
reactions to occur.

Microfluidics
Devices that precisely 
manipulate and control small 
amounts of fluids.

SV callers
An algorithm designed to 
detect structural variations 
(SVs). each putative SV 
detected by a caller is an 
individual ‘call’. ‘Call’ derives 
from computer science, 
meaning to invoke a particular 
task; detected SVs are the 
result of each performed ‘task’.

Sensitivity
The ability to detect known 
variants correctly. low 
sensitivity implies low ability to 
detect bona fide variants.

Reference data sets
High- resolution structural 
variation data sets typically 
derived from de novo genome 
assemblies, population- scale 
sequencing or projects 
employing multiple orthogonal 
detection methods. reference 
sets are used to benchmark 
detection algorithms and 
determine the novelty and 
rarity of structural variation 
calls.

Ensemble algorithm
A detection method that 
combines the resulting call sets 
from multiple independent 
algorithms.

False- discovery rate
The expected number of calls 
that should be false but are 
marked as true within the final 
call set.

Coordinate overlap
The number of base pairs that 
are identical between two 
different variant calls.
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detecting 118,973 and 241,426 SVs from data sets alig-
ned to Genome Reference Consortium Human Build 37 
(GRCh37) and GRCh38, respectively44. The authors esti-
mated a mean of 4,442 high- confidence SVs per human 
genome (Box 1) and notably found that: ~4 out of 4,442 SVs  
alter exons directly; and ~19 out of 4,442 SVs are rare 
non- coding deletions that, using predictive functional 
annotation, were up to 800 times more likely to be 
strongly deleterious than rare SNVs, exhibiting levels  
of purifying selection comparable with those of small 

loss- of-function variants. To improve rare SV detection, 
the Genome Aggregation Database (gnomAD) system-
atically processed data from fewer individuals (~15,000) 
but at increased mean coverage (~32× versus 20×)43.  
The authors detected 498,257 SVs from an ensemble 
of four algorithms, finding an average of 8,202 SVs 
per human genome (Box 1) non- uniformly distributed 
throughout the genome by SV subclass. This study 
revealed that 253 out of 8,202 SVs in the average genome 
are intragenic and eight out of 8,202 are rare SVs that 
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Fig. 1 | Overview of ensemble algorithms. A | Flowchart outlining the 
major steps in an ensemble algorithm. Step 1, discordantly mapped reads 
result in signatures that are used to infer structural variations (SVs). Step 2, 
multiple independent algorithms detect SVs in parallel. Step 3, filters and 
heuristics based on the project aims are applied to remove false- positives 
and merge calls. Step 4, final decisions are made to designate and preserve 
high- confidence calls, and they are output as a consolidated list of putative 
variants. B | Factors in integrating SV calls. As detection methods vary 
substantially in their resolution and approach, a large variety of heuristics 
have been applied to merge calls derived from different algorithms.  
Ba | Almost all integration methods consider the immediate intuitive option, 
overlap, with a common requirement of 50% reciprocity. Overlap analysis 
can require a minimum or maximum length difference between the called 
SVs to improve stringency. Alternatively to coordinate overlap, one can use 
sequence similarity, as employed by the Genome in a Bottle consortium60. 
Bb | Computing the distance between breakpoints as opposed to overlap is 
useful for higher- resolution methods such as split- read analysis.  
Bc | Algorithms may require that calls to be merged have consistent 

genotypes for additional accuracy. Bd | Read signatures are often prioritized 
such that if two calls overlap, the call supported with a higher- resolution 
read signature is chosen. Be | Calls may be required to have support from a 
minimum number of reads containing a given signature before merging.  
Bf | Intersection, or caller concordance, requires that calls are detected by a 
minimum number of multiple algorithms, most often two. This opposes 
taking the union of calls, which requires no caller overlap. Bg | Breakpoint 
confidence intervals were estimated by local reassembly in the 1000 
Genomes Project phase 1 (ref.4) and by comparisons with high- quality long- 
read SVs39. In both studies, calls were merged if their breakpoint confidence 
intervals overlapped. Bh | Parameters of individual callers can be adjusted to 
better fit a receiver operating characteristic (ROC) curve by benchmarking 
against a truth set of choice, although high- confidence calls within a given 
call set have also been used as a benchmark43. Bi | Projects with orthogonal 
data can adjust caller parameters to keep the false- discovery rate (FDR) at a 
certain threshold (typically <10%) before merging calls5. These factors and 
techniques have been primarily considered for short- read integration but 
they carry over to multiplatform approaches as well.

Purifying selection
A process of natural selection 
where strongly deleterious 
alleles are selectively removed 
from a population.
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likely alter gene function. Strikingly, they found that 57% 
of the human reference genome GRCh37 is covered by at 
least one CNV. The 1KGP and subsequent population- 
scale SV analyses show the potential for SVs to affect 
gene expression and reveal the prodigious ubiquity 
of SVs far beyond the ~12 CNVs per human genome 
estimated in 2004 (ref.56).

In contrast to global approaches, some projects focus 
on detecting SVs from populations that derive from a 
recent common ancestry. SVs were twice analysed in 
~750 genomes derived from 250 Dutch families, once 
for de novo SVs and then for phased SVs (note that SVs 
were defined as variants >20 bp in this project), reveal-
ing Dutch- specific SVs and SV hotspots undetected by 
the 1KGP45,57. Similar work used an ensemble algorithm 
to detect SVs in 1,070 Japanese individuals to develop 
a Japanese- specific reference panel58. An increase in 
similar population- specific SV detection projects 
will be necessary to shift the diversity gap in genetics 
research and help identify rare SVs specific to ancestral 
backgrounds59. Indeed, some groups are still extremely 
under- represented; for example, Hispanic and Latin 
American individuals make up only 7.8%43 and 16%44 of 
recent data sets, respectively.

Limitations
Studies that use ensemble algorithms are confounded 
by highly variable coverage, which has ranged from 3× 
to 90× in different projects, leading to the application 
of ad hoc heuristics and filtering which appreciably 
influence sensitivity and detection outcomes. Projects 
employ anywhere from three to 19 distinct algorithms 
— variations in sensitivity and precision between algo-
rithm choices directly affect the consensus call set, as the 
accuracy of ensembles is highly influenced by algorithm 
combinations38. The truth sets used to benchmark calls 

and the filters applied for stringency are also highly 
variable, leading to parameterizations that sacrifice 
precision for recall, or vice versa. Additionally, stand- 
alone ensemble algorithm tools are largely immature 
and mostly rely on simple overlap. Larger projects opti-
mize ensemble algorithms with truth sets generated 
from validation data, implementing FDR cut- offs and 
tuning receiver operating characteristic curves. However, 
stand- alone methods do not possess specifically gener-
ated benchmarks, making it difficult to implement these 
methods. The development of standardized variant 
benchmarks is an active area of research that may help 
formalize the development of ensemble algorithms by 
providing high- quality reference data sets that are thor-
oughly validated computationally and experimentally42,60. 
Furthermore, ensemble algorithms focused on integrat-
ing only short- read data do not overcome the limitations 
of short- insert sizes; they continue to poorly detect small 
insertions and suffer in repetitive regions39,61,62.

Emerging genomic technologies
A plethora of emerging technologies seek to expand 
beyond the capabilities of short reads. Connected- 
molecule strategies, such as linked reads, Strand- seq 
and high- throughput chromosome conformation cap-
ture (Hi- C), expand upon short reads by inferring long 
connections between distally mapped short- read pairs. 
These strategies are similar to long- insert short- read 
libraries (reviewed elsewhere63), which trade lowered 
sequence coverage for high physical coverage, improving 
and decreasing power to detect large and small variants, 
respectively. Alternatively, single- molecule strategies gen-
erate contiguous reads tens to hundreds of kilobases long, 
thus enabling direct detection of many SVs and improv-
ing alignment of unique reads in repetitive regions. 
Single- molecule strategies exist in two dominant forms: 
long- read sequencing by Pacific Biosciences (PacBio) 
and Oxford Nanopore Technologies (ONT); and opti-
cal mapping by Bionano. Comparatively, connected- 
molecule strategies have high specificity for defined size 
ranges and SV subtypes, whereas single- molecule strat-
egies have higher overall sensitivity. Many of the above 
technologies are thoroughly reviewed in ref.21.

Connected- molecule strategies
Linked reads. Numerous methods, such as pooled- clone 
sequencing and Illumina Synthetic Long Reads, repre-
sent ‘synthetic long reads’ or linked reads, which use 
specific library preparations to infer long- range infor-
mation from existing short- read sequences64,65. The 10x 
Genomics Linked- Reads (LR) platform is currently the 
most commonly used synthetic long- read platform. 
This technology partitions and barcodes diluted high- 
molecular-weight DNA using a microfluidic device prior 
to short- read sequencing; the origin of the short- read 
fragments can be determined from their respective bar-
codes, and long- range information is reconstructed in 
silico66. Additionally, linked reads retain their underlying 
short- read information and have greatly increased phys-
ical coverage resulting from coverage of the constructed 
molecule combined with coverage of each underlying 
short fragment. The physical coverage makes linked 

Phased SVs
(Phased structural variations). 
Variants that are assigned to a 
paternal haplotype, often 
computed using family trio or 
heterozygous single- nucleotide 
variant data.

Receiver operating 
characteristic curves
Plots of the true positive rate 
against the false positive rate 
showing the relationship 
between sensitivity and 
specificity.

Connected- molecule 
strategies
genomic methods that connect 
shorter reads of a DNA 
molecule together to provide 
long- range information.

Sequence coverage
The average number of times a 
given locus is covered by a 
sequence read.

Physical coverage
The average number of times a 
given locus is covered by the 
cumulative length of the reads, 
including unsequenced inserts.

Single- molecule strategies
genomic methods that read the 
entirety of long strands of DNA.

Specificity
The ability to detect the 
absence of variants correctly. 
low specificity implies many 
false positives.

Box 2 | Structural variation reference sets

reference data sets are essential for the development of structural variation (Sv) 
discovery methods. Many algorithms validate detection ability by benchmarking 
against or training with data sets released by population- scale sequencing, de novo 
genome assemblies or projects that perform comprehensive discovery with multiple 
orthogonal platforms5,39,43–45,58,60,61,75,97,103–105,107,108,119,142,172. The type of chosen reference 
sets should be appropriate for each application; for example, highly curated  
discovery sets are appropriate for benchmarking detection methods, whereas population-  
scale sets are useful for determining call set novelty or rarity. These data sets differ in 
sample size, ancestry, depth, platform, merging methodology, sensitivity and specificity, 
all of which should be considered before deciding which set is right to utilize, as biases 
influenced by these choices are inherently passed to the applications that employ 
them. Reference sets also vary widely when it comes to orthogonal validation, whereby 
some reference sets employ multiple orthogonal platforms but others perform none, 
opting to maximize quality metrics instead. Given this large variation, projects often 
use more than one reference set to maximize inclusivity and avoid overfitting. 
Reference sets undergo an iterative process where newer data sets are typically more 
sensitive and exhaustive due to technological improvements. Thus, developing 
algorithms should focus their benchmarks on more recent resources to avoid 
confounding issues stemming from technological limitations in legacy data. Indeed, a 
recent study found numerous batch effects within the 1000 Genomes Project release 
set173. Selected sequencing- driven reference data sets representing phenotypically 
‘normal’ individuals are listed in TABle 1. We chose data sets that include Sv calls, focus 
on collections with available raw data and list orthogonal data from multiple sources for 
some reference sets. additional resources can be found in dbvar174.
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Table 1 | A list of currently available reference data sets

Selected reference 
data sets

Reference type, platform 
and coverage

Raw data 
publicly 
available

Sample 
number

SVs detected Description; orthogonal validation if 
applicable

1KGP phase 35 Population- scale Y 2,504 68,818 Individuals across 26 populations; PCR , 
orthogonal short- read platforms, PacBio 
and microarraysIllumina short- read, 7.4

1KGP — high 
coverage

Population- scale N/A 2,504 N/A High coverage sequencing of the individuals 
from phase 3 of the 1KGPIllumina short- read, ~30

Genome of the 
Netherlands  
release 6.145

Population- scale N 769 59,358* (>20 bp) 769 individuals from 250 Dutch families;  
PCR amplification of breakpoint junctions 
followed by Sanger or short- read sequencingIllumina short- read, 12

Tohoku Medical 
Megabank 
Organization, 1KJPN58

Population- scale N 1,070 56,697* (>100 bp) Individuals of Japanese ancestries; digital 
droplet PCRIllumina short- read, 32.4

GTEx142 Population- scale N 147 23,602 SVs detected across 13 different human 
tissues; microarray dataIllumina short- read, 49.9

Abel et al.44 Population- scale N 17 ,795 118,973 (GRCh37) Individuals of African American, Latino, Finnish 
European, non- Finnish European, East Asian, 
Pacific Islander and South Asian ancestriesIllumina short- read, ≥20 241,426 (GRCh38)

Sherman et al.207 Population- scale Y 910 125,715 Novel insertion detection in individuals of 
African ancestriesIllumina short- read, 30–40

gnomAD- SV43 Population- scale N/A 14,216 498,257 Individuals of African, East Asian, European, 
Latino and admixed ancestriesIllumina short- read, 32

Venter/HuRef170,208,209 Highly curated Y 1 808,346* De novo assembly of a European–American 
adult man; Sanger sequencing- based 
assembly , a wide suite of microarray data, and 
BAC and fosmid libraries

Sanger reads, 7.5

10x Genomics LR , 42

Illumina short- read, 92, 36

Illumina 2 kb mate- pair, 7

Illumina 5 kb mate- pair, 6

IIlumina 12 kb mate- pair, 3

CHM161,97 Highly curated Y 1 20,602 De novo assembly of a haploid human 
hydatidiform mole; short- reads and Sanger 
capillary- based sequencing; target sequencing 
of BAC clones, de novo PacBio assemblies, 
Sanger sequencing and targeted PCR

PacBio, ~40

PacBio, 62.4

CHM1397,210 Highly curated Y 1 20,470 Haploid human hydatidiform mole; target 
sequencing of BAC clones, de novo PacBio 
assemblies, Sanger sequencing and targeted 
PCR

PacBio, 66.3

ONT, 32

10x Genomics LR , 50

Bionano OM, 430

Hi- C, 40

Illumina short- read, ~30

HX1103 Highly curated Y 1 20,175 De novo assembly of a Chinese adult man

PacBio, 103

Bionano OM, 101

Illumina short- read, 143

AK1104 Highly curated Y 1 18,210 De novo assembly of a Korean adult man;  
BAC clone assemblyPacBio, 101

Bionano OM, 97 & 108

10x Genomics LR , 30

Illumina short- read, 72

Audano et al.108 Population- scale Y 15 99,604 Individuals of African, Asian, European, 
American and South Asian ancestries;  
BAC and fosmid librariesPacBio, ~57
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Selected reference 
data sets

Reference type, platform 
and coverage

Raw data 
publicly 
available

Sample 
number

SVs detected Description; orthogonal validation if 
applicable

Swe1 & Swe2105 Highly curated N 2 17 ,936 (Swe1) One Swedish man and one Swedish woman

PacBio, 78.8 (Swe1) 17,687 (Swe2)

PacBio, 77.8 (Swe2)

Bionano OM, >100

Levy- Sakin et al.119 Population- scale Y 156 15,601 156 samples from the 1KGP; concordance 
with 10x Genomics LRBionano OM, 79

10x Genomics LR , 60

Pendleton et al. &  
Jain et al., 
NA12878102,172

Highly curated Y 1 34,237 Two separate de novo assemblies of a white, 
adult woman; PCRPacBio, 22 and 24

Bionano OM, 80

ONT, 26a

Genome in a Bottle, 
NA12878

Highly curated Y 1 10,594 One white, adult woman

PacBio, ~44

Wong et al.75 Population- scale Y 17 1,842 De novo assembly and non- reference 
insertion detection in individuals of African, 
American, East Asian, European and South 
Asian ancestries; insertions >2kb were 
validated with OM

10x Genomics LR , 60

Genome in a Bottle 
HG005 (son), HG006 
(father), HG007 
(mother)211,212

Highly curated Y 3 59,973 A preliminary call set containing deletions and 
insertions from a Han Chinese family trioIllumina short- read, 300 (son), 

100 (parent)

Complete Genomics, 98

Ion Proton, 1,036

Bionano OM, 57

PacBio, 60 (son), 30 (parents)

Genome in a Bottle 
HG002 (son), HG003 
(father), HG004 
(mother)60

Highly curated Y 3 12,745 Contains high- confidence deletions and 
insertions from an Ashkenazi family trio; 
concordance across multiple triosIllumina short- read, ~300, 

~14.5, ~25, ~208.5, ~101, ~100

10x Genomics LR , 47 
(mother), 36 (father), 86 (son)

Complete Genomics, ~101, 
100

Ion Proton, 1,020

Bionano OM, 92 (mother), 87 
(father), 112 (son)

PacBio, ~31 (parent), 69 (son)

ONT, 0.017 (son)

Human Genome 
Structural Variation 
Consortium39

Highly curated Y 3 (data 
available 
for 9)

103,985 Three family trios of Han Chinese, Puerto 
Rican and Yoruban Nigerian ancestries; 
concordance across multiple genomic 
platforms

PacBio. ~40

ONT, 18.9

Illumina short-read, 74.5

Illumina 3 kb mate-pair, 3

Illumina 7 kb mate-pair, 1.1

10x Genomics LR , 82.4

Bionano, N/A

Tru- Seq SLR , 3.47

Strand- seq, N/A

Hi- C, 19.49

A version of this table with additional information can be found online as Supplementary Table 1. 1KGP, 1000 Genomes Project; BAC, bacterial artificial 
chromosome; GTEx, genotype–tissue expression; Hi- C, high- throughput chromosome conformation capture; LR , linked reads; N/A , not available; OM, optical 
mapping; ONT, Oxford Nanopore technologies; PacBio, Pacific Biosciences; SV, structural variation. aMedian coverage depth.

Table 1 (cont.) | A list of currently available reference data sets
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reads well suited for SV detection, whereas the low 
error rate and long molecule length (up to 100 kb) make 
the method useful for haplotype phasing67. Detection 
methods such as Long Ranger66,68 and GROC- SVs69 
leverage read clouds, which are clusters of short reads 
thought to derive from the same underlying molecule 
due to identical barcodes. Read- cloud methods look 
at two criteria: the density of overlapping barcodes, 
where sudden increases or drops in barcode ‘coverage’ 
determine SV breakpoints; and distant genomic loci 
that share more barcode overlap than would occur by 
chance (fig. 2). GROC- SVs additionally performs local 
reassembly to detect complex SVs 10–100 kb in length. 
A second approach analyses split alignments within 
long- read ‘molecules’ reconstructed from shared bar-
codes, analogous to split reads. LinkedSV70, NAIBR71 
and VALOR2 (refS72,73) are SV callers that use split- 
molecule approaches to detect SVs, whereas ZoomX74 
considers discrepancies in molecule coverage.

Linked- read approaches have various strengths 
owing to their barcoding, a key feature being the abil-
ity to determine whether fragments mapping to distant 
genomic loci derive from the same molecule, which 
makes the visual interpretation of translocations and 
large SVs exceptionally effective66. Linked reads are able 
to detect similar amounts of deletions compared with 
single- molecule approaches but there is a discrepancy 
in detectable insertions68. Whereas assembly- based 
linked- read studies have found megabases of novel 
insertional sequence across different populations75,76, 
single- molecule approaches will typically detect more 
insertion events77. This may result from the fact that 
linked reads have a coverage drawback compared with 
single- molecule reads: no molecule within a read cloud 
has complete coverage of the DNA fragment. Hence, 
there are substantial gaps between the read pairs under-
lying each molecule, decreasing mappability in repet-
itive regions. The decrease in insertion detection may 
also result from the higher algorithmic difficulty of 
calling insertions through mapping versus assembly 
approaches, which use simple pairwise comparisons78. 
Indeed, one of the most widely used algorithms, Long 
Ranger, cannot currently call insertions. However, 
recent efforts to develop algorithms that augment the 
mapping of linked reads to repetitive regions are improv-
ing the ability of linked reads to detect novel sequence 
insertions77,79.

Strand- seq. Strand- seq independently sequences tem-
plate DNA strands by incorporating bromodeoxyuridine 
into the non- template strand during replication, fol-
lowed by UV- induced photolysis at bromodeoxyuridine 
sites to selectively ablate the nascent strand80. As libraries 
only contain independent parental strands, Strand- seq 
is especially suited for haplotype phasing. The inher-
ent directionality enables highly efficient detection of 
inversions, which manifest as segments of opposing 
strand orientation39,81 (fig. 2). Indeed, Strand- seq has 
been used to identify polymorphic inversions, showing 
that they are enriched in certain chromosomes over  
others, and revealing that the reference genome carries 
the minor allele or is misoriented at many inverted loci81.  

Large deletions and duplications can be detected by 
read- depth approaches, whereas translocations are 
detected as changes in template state, as implemented 
in BAIT82. However, Strand- seq requires many enzy-
matic clean- up steps that ultimately reduce sequence 
coverage to an average of 0.01–0.05× per library, which 
makes it inappropriate to detect smaller- sized SVs until 
improvements in single- cell library preparation are 
made83. Additionally, as inversions and translocations in 
Strand- seq look similar to sister chromatid exchanges, 
events must be consistent across multiple libraries for 
identification; thus, SV detection by Strand- seq requires 
preparation of many individual single cells.

Hi- C. Hi- C involves sequencing crosslinked chroma-
tin to provide information about DNA sequences that 
may be distant in the linear genome but proximal in 3D 
space84. Hi- C read pairs can span megabases, making 
the method useful for detecting large SVs, especially 
translocations. However, as Hi- C relies on the presence 
of digestion sites kilobases apart in the linear genome, 
its resolution is limited. Hi- C also relies on underlying  
read pairs and suffers from low sequence coverage,  

Fig. 2 | Structural variation signatures in single- molecule 
and connected- molecule strategies. Emerging 
technologies vary in how they detect structural variations 
(SVs). 10x Genomics Linked-Reads detect SVs based 
on barcode overlap between genomic loci. Split-molecule 
approaches infer SVs from splitting of linked reads, 
examples of which are displayed below each barcode 
matrix (each colour represents a shared barcode and linked 
molecules are separated by haplotype; only homozygous 
variants are shown for simplicity). Strand-seq determines 
SVs based on read depth or sudden changes in mapping 
orientation. For deletions and duplications, only two of 
four possible daughter cell configurations are shown for 
simplicity (Watson–Watson (WW) and Watson–Crick 
(WC); Crick–Crick not shown). For inversions, only a 
homozygous inversion in Watson–Watson and Crick–Crick 
daughter cells are shown as Watson–Crick daughter cells 
mask homozygous inversions (homozygous for simplicity ; 
for more detail on inversion detection, see ref.81). High- 
throughput chromosome conformation capture (Hi-C) 
detects SVs by looking for unusually high-frequency 
contacts between genomic loci. Underneath each 
interaction matrix is a schematic of the expected 
chromosomal contacts resulting from each SV. Single- 
molecule sequencing methods infer SVs based on  
discordant mapping signatures that can involve one 
(intra-read) or many (inter-read) reads. SVs derive from 
intra-read signatures, which result from reads that span 
an entire SV, or inter-read signatures, which require 
multiple reads to cover the event. Insertions differ from 
deletions by an increase in the expected distance 
between the two split pairs marked by the white soft-clip 
between the reads, and inversions involve reads that map 
best to the complementary strand. Optical maps detect 
SVs based on increased presence, absence or change in 
the orientation of restriction enzyme sites compared with 
a reference (blue, sample; green, reference). Resolution 
is dependent on the distribution of restriction enzyme 
sites. chr, chromosome; H1, haplotype 1; H2, haplotype 2; 
ONT, Oxford Nanopore Technologies; PacBio, Pacific 
Biosciences.
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as do linked reads and Strand- seq. Chromosomal inter-
actions derived from Hi- C are represented in a contact- 
frequency heat map across all possible pairs of genomic 
loci. Interactions between proximal loci are shown in the 
diagonal, and contacts off of the diagonal are indicative 
of long- range interactions. Unusually elevated contact 
frequencies between distal loci represent possible dele-
tions, inversions and translocations, whereas elevated 
contact frequencies at proximal loci are indicative of 
duplications85 (fig. 2). Although Hi- C has been used to 
detect predominantly translocations within cancer cells, 
methods to detect other SVs, such as HiCNV, which uses 
read coverage to detect CNVs, are starting to emerge85–89. 
Delineating potential SVs from regular fluctuations in 
3D structure remains a notable challenge. Recent work 
shows that large CNVs can affect chromatin organization 
across the chromosome, further confounding the ability 
to differentiate between variation in chromatin inter-
action and putative rearrangements90. To address this 
problem, Hi- C Breakfinder uses a probabilistic model 
that incorporates information about expected spatial fea-
tures when determining aberrant contact frequencies91. 
However, most of the intrachromosomal SVs detected 
by this method are >2 Mb in size, as distinction from 
local interactions is still difficult. Additionally, Hi- C cur-
rently requires cell culture of millions of cells, although 
recent developments aim to decrease this limitation92. 
A deeper understanding of 3D architecture will be nec-
essary before Hi- C can reliably call SVs independent  
of orthogonal support.

Single- molecule strategies
Single- molecule real- time sequencing. PacBio single- 
molecule real- time (SMRT) sequencing leverages a 
stationary polymerase attached to the bottom of a nano-
sized well and passages single DNA strands through 
the enzyme to produce long reads that significantly 
improve unambiguous mappability across the genome93. 
Algorithms detect SVs from SMRT data by leveraging 
intra- read and inter- read signatures (fig. 2). Intra- read 
signatures enable the direct detection of SVs and are 
derived from reads spanning entire SV events, resulting 
in a missing sequence (deletion) or a soft- clip (insertion) 
within properly aligned flanking sequences. Inter- read 
signatures involve multiple reads and detect SVs from 
inconsistencies in orientation, location and size during 
mapping, analogous to short read signatures. After signa-
ture detection, callers typically cluster and merge similar 
signatures from multiple reads, delineate proximal but 
different signatures and choose the highest quality reads 
that support the putative SV. CORGi94, PBHoney95, pbsv, 
Sniffles96, SMRT- SV61,97 and SVIM98 detect SVs through 
combinations of intra- read and inter- read signatures 
but differ in their discovery heuristics. Sniffles filters 
SVs by evaluating similarities between breakpoint posi-
tion and size, and additionally clusters SVs supported 
by the same set of reads to detect nested SVs96. SVIM 
evaluates how signature clusters overlap each other 
or nearby breakpoints to differentiate between inter-
spersed duplications, tandem duplications and novel 
sequence insertions98. Some methods, such as CORGi 
and SMRT- SV, locally reassemble loci with SV signatures 

and call SVs based on consensus sequences derived 
from these assemblies61,94,97. NextSV integrates Sniffles 
and PBHoney analogous to the ensemble algorithm  
approaches discussed above99.

Single- molecule sequencing studies have so far 
been used to investigate fewer genomes than short- 
read studies due to higher operational costs, a large 
input DNA requirement and lower sample through-
put. Thus, although many short- read studies sequence 
across numerous genomes, long reads have been mostly 
applied to single- genome assemblies. Although the  
base- calling error rate for PacBio sequencing is higher 
than for short reads, this can be overcome by increasing 
coverage or utilizing circular consensus sequencing100. It is 
pertinent to note that higher SMRT coverage results in 
more accurate consensus sequences but at a trade- off for 
shorter median read lengths due to enzyme degradation 
— researchers must determine the ideal coverage accord-
ing to project aims101. Nonetheless, these single- molecule 
applications are challenging the SV detection landscape 
and its reliance on short- read technology. Sequencing of 
the CHM1 human hydatidiform mole genome served as 
a proof of concept for using long reads to resolve SVs, 
detecting >20,000 SVs in this haploid genome compared 
with ~2,500 SVs per diploid genome in the 1KGP5,61 
(Box 1). A recent analysis found that PacBio long reads 
were approximately three times more sensitive than a 
short- read ensemble maximized for sensitivity, implying 
that a large subset of SVs, many 50–2,000 bp in length, 
are unresolvable without long reads39. Approximately 
half of the novel variants detectable by long reads are 
insertions ~500 bp in length embedded within mobile 
elements and tandem repeats (Box 3). SMRT assembly 
or SV detection in 19 other human genomes found 
comparably large magnitudes of SVs and exhibited 
the corresponding insertional bias39,60,96,97,102–107. As it is 
impossible to tell the difference between a novel inser-
tion or missing sequence in the reference, the magnitude 
of SVs that have been detected questions the complete-
ness of the human reference genome. To investigate this 
issue, one study performed SV discovery in 15 individ-
uals sequenced using long- read technology to an aver-
age ~57× and found 86,761 SVs absent from the 1KGP 
and the Genomes of the Netherlands project data sets108.  
A substantial amount of the SVs shared between these  
15 genomes are not present in the GRCh38 version of the 
human reference sequence, which implies it may con-
tain errors or minor alleles at many SV loci. Remarkably, 
~50% of the detected SVs intersect genes or regulatory 
elements108. Overall, long- read technology enables detec-
tion of previously unresolvable SVs and may be pivotal 
in deciding how the field of genomics evolves from using 
a single human reference genome.

Nanopore sequencing. Algorithms to detect SVs from 
nanopore sequencing are still emerging but have grad-
ually become available, primarily through studies 
utilizing ONT. During nanopore sequencing, a single- 
stranded DNA is threaded through a protein pore, and 
DNA sequences are discriminated based on the changes 
in electric current elicited by different bases109,110. 
As nanopore sequencing is a variation of single- molecule 

Base- calling error
errors in determining the 
respective nucleotide from  
raw signals during sequencing.

Circular consensus 
sequencing
A single- molecule real- time 
(SMrT) sequencing method 
that improves accuracy 
through multiple passes  
of the template molecule.
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sequencing, the signatures to detect SVs are similar to 
those used in PacBio data (fig. 2). Callers that detect 
SVs from nanopore data include NanoSV111, Picky112, 
Sniffles96 and SVIM98; the latter three also detect SVs 
from PacBio data. Both NanoSV and Picky leverage split 
reads to detect SVs and apply heuristics that consider 
coordinates, orientation and breakpoint sites. NanoSV 
iteratively clusters all reads that support a breakpoint 
junction, whereas Picky stitches together split reads 
with surrounding reads and calls SVs from the best 
alignments. Studies that use ONT find similar numbers 
of SVs as PacBio detection but show many nanopore- 
specific small deletions111,112. However, one study found 
the overwhelming majority of ~10,000 unique ONT SVs 
to be small deletions located within repeat regions and 
likely derived from base- calling errors, compared with 
~800 unique PacBio SVs, of which ~40% overlapped 
repeats96. Another study found that ONT SV algorithms 
detect small SVs poorly113. ONT provides improved read 
lengths, lower adaptation costs and higher throughput 
than PacBio, while still being effective at detecting 

many SVs. However, reduced specificity owing to high 
error rates make ONT less suitable for smaller SVs  
(<100–200 bp), although recent improvements aiming 
to reduce base- calling errors may mitigate this issue. 
Overall, the single- molecule approaches provided by 
PacBio and ONT enable highly sensitive SV detection 
and are the most powerful methods to detect novel 
sequence insertions.

Optical mapping. Optical mapping, an alternative to 
sequencing- based technologies, linearizes single DNA 
strands in nanochannels and intermittently marks them 
with a nicking endonuclease to create physical maps 
known as genome maps114–116. Optical mapping- based 
methods call SVs by comparing divergences in the nicks 
of DNA strands against an in silico digested reference: 
missing or extra labels and the spacing between labels 
are used to determine deletions or insertions; repeated 
labels indicate repeats and copy number changes; the 
presence of unique nicks on non- reference loci indicate 
translocations; and reversed nicking patterns indi cate 

Box 3 | Confounding complexity

The detection studies discussed have revealed that structural variations (SVs) consisting of complex arrangements 
are more prevalent than previously perceived in both phenotypically ‘normal’ individuals and individuals with  
disease5,43,45,61,102,119,127,128,132,146,148,152,153. Additionally, new technologies have identified substantial amounts of SVs  
in areas that are difficult to resolve with short reads. These loci are either extremely low in complexity, such as 
tandem repeats, telomeres and mobile element insertions, or high in complexity, such as segmental duplications, 
centromeres, the major histocompatability complex and other areas of high olymorphism5,39,61,97,103–105,108,114,117–119,125,175. 
Indeed, mechanisms behind Sv formation, such as non- allelic homologous recombination and replication- based 
mechanisms, are dependent on local repeat structures, which leads to breakpoints within repetitive regions 
(reviewed in ref.176). ‘Complexity’ confounds detection in two ways: in terms of complex SV events and in terms  
of the variable complexity at genomic loci. It is essential to consider specialized methods that can leverage new 
technologies to detect SVs in complex regions and detect SVs of complex arrangements, and methods that 
reassemble complex regions to decrease unambiguous mapping. Indeed, specific tools — such as SDA177, which 
resolves segmental duplications, corGI94, which resolves complex events, and rMETL178, which detects mobile 
element insertions, and other tools taking a specificity- first approach — will help in resolving difficult- to-detect  
SVs that cannot be ascertained from generalized whole- genome approaches due to complicated genomic loci or 
irregular compounded structure (see the table). Eventually, generalized SV detection methods should implement the 
strategies used from specialized callers or be utilized concurrently for a more comprehensive assessment of 
genome- wide SV.

Method Detection URL

Sniffles96 Complex SVs https://github.com/fritzsedlazeck/Sniffles

CORGi94 Complex SVs https://github.com/zstephens/CORGi

HySA132 Complex SVs https://bitbucket.org/xianfan/hybridassemblysv

GROC-SVs69 Complex SVs https://github.com/grocsvs/grocsvs

TSD179 Complex SVs https://github.com/menggf/tsd

local-rearrangements180 Complex SVs https://github.com/mcfrith/local-rearrangements

gemtools181 Complex SVs, SV phasing https://github.com/sgreer77/gemtools

SDA177 Segmental duplications https://github.com/mvollger/SDA

rMETL178 Mobile element insertions https://github.com/hitbc/rMETL

adVNTR182 Variable number tandem repeats https://github.com/mehrdadbakhtiari/adVNTR

PacmonsTR183 Tandem repeats https://github.com/alibashir/pacmonstr

RepeatHMM184 Microsatellites https://github.com/WGLab/RepeatHMM

nplvn185 NAHR-mediated inversions https://github.com/haojingshao/npInv

VALOR2 (ref.73) Segmental duplications https://github.com/BilkentCompGen/valor

PALMER Mobile element insertions https://github.com/mills-lab/PALMER

tandem-genotypes186 Tandem repeats https://github.com/mcfrith/tandem-genotypes

NAHR, non-allelic homologous recombination; SV, structural variation.
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inversions (fig. 2). The generated DNA fragments are up  
to 1 Mb long, making optical mapping well suited to 
detect large genomic rearrangements, particularly inser-
tions, and effective at identifying SVs within repetitive 
regions75,117–119. Optical mapping excels at deconvolut-
ing zygosity as long as there is sufficient coverage such 
that molecules spanning each haplotype can be directly 
observed118. Due to reliance on restriction enzyme sites, 
optical mapping does not produce a sequence and 
therefore lacks base- pair resolution, instead providing 
breakpoint estimations based on the most proximal 
nicks. As a result, optical mapping detects substantially 
fewer SVs than long- read methods and is typically 
limited to sizes of ~6 kb and larger, although newer 
applications improve resolution by utilizing more than 
one restriction enzyme21,75,107,118–120. Thus, most optical 
mapping applications detect large SVs through de novo 
assembly of genome maps but use short- read sequenc-
ing to detect smaller variants103,104. New detection algo-
rithms such as OMSV120 and Bionano Solve121 call SVs 
without de novo assembly by using alignment- based 
strategies. It is important to note that optical mapping 
suffers from a high error rate, whereby errors manifest 
as missing or extra labels from incomplete and uneven 
stretching of individual molecules in their nanochan-
nels117,120. Resolution and error rate notwithstanding, 
optical mapping is amplification- free and significantly 
cheaper than HTS even at 60× coverage, making it an 
economical choice to investigate large cohorts118. Recent 
work used optical mapping on 154 genomes from the 
1KGP to find ~60 Mb of sequence not present in the ref-
erence genome as well as 55 loci in the genome that are 
both structurally complex and harbour complex SVs119.

Multiplatform discovery
Currently, no single method or technology has been 
shown to be comprehensive enough to detect all SV 
within a genome. Multiplatform approaches that com-
bine strengths of various genomic platforms to enhance 
detection of SVs across all types and sizes have emerged 
as a result. The platforms discussed can be employed 
in combination to complement strengths and mitigate 
weaknesses60. Due to their high base- calling accuracy, 
bioinformatic maturity and affordability, short reads 
are regularly used to correct errors in long reads, a pro-
cess known as ‘polishing’ (reviewed and evaluated else-
where78,122–124), whereas newer technologies are used for 
exhaustive variant detection and resolution of complex 
structures. A practical example includes combining 
short- read sequencing at higher coverage (>30×) with 
lower- coverage single- molecule sequencing (~10×) to 
optimize economy and sensitivity. The use of individual 
technologies depends on logistical variables such as cost, 
required resolution and project scope. Technical variables 
including sensitivity, variant size, repetitive nature of the 
target region and haplotype information must be consid-
ered as well. An overview of each technology is provided 
in TABle 2, with additional information on advantages 
and disadvantages provided in Supplementary Table 2.

Multiplatform discovery is often used to investigate 
SVs in cancer (Box 4). Two studies on leukaemia and 
prostate cancer genomes integrated short reads with 

optical mapping and found that many SVs detected 
uniquely by optical mapping have breakpoints within 
regions of low mappability, whereas SVs detected 
uniquely by short reads are typically smaller and below 
the resolution of optical mapping125,126. An analysis com-
bining an ensemble algorithm, linked reads and long- 
insert libraries to detect and phase SVs in the K562 and 
HepG2 cell cancer genomes identified thousands of 
calls unique to each platform127,128. Similarly, combining 
optical mapping, short reads and Hi- C to detect SVs in 
eight different cancer genomes reported that only 20% of 
interchromosomal translocations were detected by two 
or more platforms, demonstrating the necessity of multi-
platform discovery to detect all variants91. In another 
study, short reads were used not to improve sensitivity 
across the detection size spectrum but to resolve ambigu-
ity in unique, unaligned optical mapping fragments from 
a liposarcoma genome129. Whereas optical mapping was 
necessary to reveal large fragments, the short read signa-
tures provided the necessary resolution to reveal ~6 SV  
breakpoints within the unaligned maps, suggesting that 
the fragments consisted of complex SVs.

Genome assemblies typically integrate platforms 
when detecting SVs to increase sensitivity and produce 
orthogonal validation, known as a hybrid assembly. In one 
example, assembly of the HG001 genome (also known as 
NA12878) merged PacBio contigs with optical genome 
maps to create highly contiguous scaffolds with an N50 
of 28.8 Mb (ref.102). As 55% of inversions called from 
these scaffolds were enriched for arrangement com-
plexity and colocalization with other SVs, they would be 
difficult to detect without the improved contiguity from 
integration. A similar approach was used in another 
study105. Also, a team generated short- read and long- 
read sequences for the HS1011 genome and detected 
SVs by combining an ensemble algorithm, PacBio and 
hybrid local reassembly130. Although the authors found 
many SVs overlapping from the three approaches, they 
revealed bona fide SVs that were unique to their respec-
tive detection method. Additionally, hybrid reassembly 
detection performed with an FDR <10%, whereas popu-
lar short- read callers (BreakDancer, CNVnator, DELLY 
and Pindel) exhibited FDRs between 31% and 80%, 
showing greatly improved detection with integration. 
A recent comprehensive multiplatform discovery of 
SVs integrated nine platforms across three family trios, 
discovering ~27,622 SVs per genome39. This study com-
bined an ensemble algorithm, PacBio, optical mapping, 
Strand- seq and long- insert libraries to detect deletions, 
insertions and inversions, with additional technologies 
applied for phasing, assembly and orthogonal valida-
tion (TABle 1). PacBio contributed the highest number 
of unique deletions and insertions, and Strand- seq 
contributed the highest number of inversions; each 
platform identified high- confidence unique calls. Each 
of these studies illustrates that combining platforms is 
necessary for comprehensive detection across the full  
range of SVs.

Integration of SV calls from differing technologies 
is analogous to ensemble algorithm approaches. Most 
methods are in- house and consider coordinate over-
lap, breakpoint proximity, mapping orientation, read 

Hybrid assembly
A genome assembly that 
leverages sequencing data 
from multiple platforms to 
reconstruct the original 
sequence, using the orthogonal 
data to extend the contig 
lengths or to branch contigs  
to one another.

N50
A number that denotes the 
minimum contig size for which 
50% of the nucleotide 
sequence is contained within. 
A larger N50 implies a more 
contiguous assembly.
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Table 2 | Algorithms to detect genome- wide SVs from ensemble, single- molecule and connected- molecule approaches

Platform Method Approach SVs detected

Ensemble 
algorithms

SVMerge40 PE, SR and RD signals with integration of two specialized insertion callers; calls are 
merged on overlap with coordinate thresholds and validated by local reassembly

DEL , INS, INV, CNG, 
CPX

HugeSeq41 PE, SR and RD signals, along with breakpoint junction mapping; calls are 
merged by 50% reciprocal coordinate overlap

DEL , DUP, INS, INV

iSVP49 PE, SR and RD signals; additional calls are made with GATK HaplotypeCaller, 
which uses local reassembly ; calls are merged by overlap

DEL

MetaSV51 PE, SR and RD signals, along with breakpoint junction mapping; calls are 
merged by overlap that prioritizes read signatures by their respective resolution 
and are refined with local reassembly

DEL , DUP, INS, INV, TRX

SpeedSeq47 PE and SR signals, along with a Bayesian likelihood genotyper ; uses an RD caller 
to annotate the copy number at each variant locus

DEL , DUP, INS, INV, TRX, 
CNG

Parliament2 (ref.50) User choice of six individual callers; calls are merged based on coordinate 
overlap and scored with a precision metric trained on HG002

DEL , DUP, INS, INV, TRX

FusorSV53 Fits a model that determines which combination of eight individual callers 
performs best according to a user- input truth set

Dependent on input 
truth set

10x Genomics 
Linked- Reads

Long Ranger66 Read- pair barcode overlap between distant loci and changes in barcode density DEL , DUP, INV, TRX

GROC- SVs69 Read- pair barcode overlap between distant loci and changes in barcode 
density ; SVs are reconstructed with local reassembly

Reports reconstructed 
breakpoints that can 
derive from any SV type

LinkedSV70 Molecule barcode overlap between distant loci and barcodes from two 
distance loci mapped to adjacent positions

DEL , DUP, INV, TRX

VALOR2 (refS72,73) SR signatures from linked molecules, read- pair signatures and molecule depth 
for filtering

DEL , DUP, INV, TRX, 
INV–DUP, INV–TRX

Novel- X77 Assembly of unmapped reads with reads of associated barcodes to obtain anchors 
in unique sequence; these reassembled contigs are then mapped to the reference

INS

NAIBR71 Combines SR signatures from linked molecules with the PE signatures from the 
underlying short reads into a probabilistic model

DEL , DUP, INS, INV, TRX

ZoomX74 Changes in linked molecule coverage DEL , DUP, INV, TRX

Strand- Seq BAIT82 Changes in the ratio of reads mapped in opposing directionality and sudden 
changes in template state that are consistent across loci

DEL , DUP, INV, TRX

Invert.R81 Changes in the ratio of reads mapped to opposing directionalities INV

Hi- C HiCNV +  HiCtrans89 RD of restriction enzyme fragments and high- frequency interchromosomal 
contacts

DEL , DUP, TRX

Hi- C Breakfinder91 Clusters of interaction frequencies that deviate from expected DEL , DUP, INV, TRX

PacBio PBHoney95 Unmapped split- read tails (PBHoney- Tails) and intra- read discordance 
(PBHoney- Spots)

DEL , INS, INV, TRX

pbsv SR and intra- read signatures DEL , DUP, INS, INV, TRX

SMRT- SV61,97 Local assembly at loci with intra- read or inter- read signatures; SVs subsequently 
called from consensus sequences derived from each assembly

DEL , DUP, INS, INV

Sniffles96,a] SR and intra- read signatures DEL , DUP, INS, INV, 
CPX, TRX

NextSV99 Combines calls from PBHoney and Sniffles by union (sensitive call set) or 
intersect (stringent call set)

DEL , DUP, INS, INV, 
CPX, TRX

CORGi94 Chooses the highest scoring putative SV from a collection of possible SVs 
generated by realigning loci with split- read and intra- read signatures multiple 
times

DEL , DUP (tandem, 
dispersed), INS, INV, 
CPX, CNG

SVIM98,a SR and intra- read signatures DEL , DUP (tandem, 
dispersed), INS, INV

Oxford Nanopore NanoSV111 SR signatures and evidence from reads that map to putative breakpoint junctions DEL , DUP, INS, INV, TRX

Picky112,b SR signatures from long- read alignments that are linked together to improve 
coverage

DEL , DUP, INS, INV, TRX

Optical mapping OMSV120 Discordance in the number of and distances between restriction label sites DEL , DUP, INS, INV, TRX

Bionano Solve Discordance in the number of and distances between restriction label sites DEL , DUP, INS, INV, TRX

Multiplatform MultiBreak- SV131 Clusters all possible short- read and long- read alignments that support a 
putative SV into a combined probabilistic model

DEL , INV, TRX

HySA132 Clusters short reads with PE and SR signals with long reads; SVs are called from 
contigs assembled by the reads in each cluster

DEL , INS, CPX

A version of this table with additional information is available as Supplementary Table 2. CNG, copy number gain; CPX, complex rearrangement; DEL , deletions; 
DUP, duplications; Hi- C, high- throughput chromosome conformation capture; INS, insertion; INV, inversion; PacBio, Pacific Biosciences; PE, paired end; RD, read 
depth; SR , split read; SV, structural variation; TRX, translocation. aAlso able to detect SVs from Oxford Nanopore data. bAlso able to detect SVs from PacBio data.
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support, putative SV type and resolution of the underly-
ing technology. There are few stand- alone multiplatform 
detection tools; most combine short and long reads, for 
example, MultiBreak- SV131 and HySA132. MultiBreak- SV  
considers all possible short- read and long- read align-
ments that support a putative SV in a combined 

probabilistic model, whereas HySA clusters short reads 
with paired- end and split- read signals with the long 
reads that support them, before calling SVs from con-
tigs assembled with the long reads in each cluster. New 
platform ensemble tools are expected to develop as the 
cost of sequencing continues to drop and access to new 
technologies improves.

Integrating SVs with biological information
Despite the computational and technological improve-
ments described, we are still unable to interpret the 
functional consequences of the vast majority of variants. 
Strategies to ascertain functional impact are necessary 
now more than ever given the expansive increase in 
detectable and novel SVs. Moving forwards, integrating 
SV detection across layers of biological information shows 
promise for elucidating the biological impact of variants.

Studies using short reads have shown the potential of 
integrative frameworks in interpreting SV function, and 
now a subset of studies employing the emerging detec-
tion methods discussed are starting to integrate SVs with 
layered biological data, such as gene expression, epigenet-
ics and 3D genome structure, to understand the effects of 
SVs holistically133–140. Building on seminal work showing 
that CNVs affect expression phenotypes distinctly from 
SNVs141, a recent study detected SVs with an ensemble 
algorithm before mapping SV expression quantitative 
trait loci. This study found that SVs had a larger median 
effect and were up to 53 times more likely to affect gene 
expression compared with SNVs or indels142. Indeed, 
other studies integrating emerging detection methods 
with expression data, long- read transcriptome sequenc-
ing and assembly have revealed the high potential for 
rearrangements to affect genes, demonstrating differen-
tial expression, alternatively spliced transcripts and com-
plex gene fusions resulting from novel SVs75,104,126,143–149. 
Although the transcriptome is often integrated with  
SV calls, given its immediacy to the genome, more efforts 
to integrate the methylome are emerging and so far have 
revealed inconsistent methylation patterns around 
SVs127,128,150,151, suggesting complex regulatory conse-
quences. Another data type that should be considered 
with SVs are small variants and their effects. For exam-
ple, nanopore sequencing analysis identified a hetero-
zygous point mutation and an exon- disrupting deletion 
in an individual, when the typical disease genotype 
involved biallelic point mutations144. Additionally, a study 
investigating non- recurrent SVs with arrays, short reads 
and long reads found enrichment of de novo SNVs and 
indels near SV breakpoints, the majority of which were 
intragenic152. These studies imply and show the potential 
for multimodal integration to provide insight into the 
biological mechanisms affected by SVs.

Ideally, the field moves towards integration across 
multiple layers that can reveal relationships and recon-
struct molecular contexts (for a strategy that can be 
generalized to functionally interpret SVs within mul-
tiple molecular contexts, see figure 6 in ref.8). Linked 
reads found that the androgen receptor gene AR was 
co- amplified with upstream tandem duplications 
in cancer cells153. Whereas DNase I hypersensiti vity 
peaks and increased nucleosome spacing predicted 

Box 4 | Detecting structural variation in disease

Structural variations (SVs) are associated with diverse diseases and are a notable 
hallmark of cancer genomes187. Long reads, linked reads, high-throughput chromosome 
conformation capture (hi-c) and optical mapping resolve structures that short 
reads struggle to detect in the majority of cancers such as interchromosomal 
and intrachromosomal translocations, complex rearrangements, chromoplexy, 
chromothripsis, chained fusions and extremely large (>30 kb) SVs69,74,87,127–129,145,188–192. 
Pacific Biosciences (PacBio) reads were used to analyse the breast cancer cell line 
SKBR3, detecting >17,000 SVs, including SVs that overlap COSMIC, which are 
somatically acquired cancer-specific mutations148. The single-molecule approach 
detected 76% more SVs than an ensemble of three short-read callers (with two-caller 
concordance), most of which derive from repetitive regions. The long reads enabled 
identification of clustered, complex translocations and inverted duplications that 
amplified the oncogene ERBB2 to >32 copies148, as later confirmed in a separate 
long-read analysis96, providing insight into a possible breast cancer-specific 
mechanism. Linked reads have been used to detect and phase translocations and 
gene fusions in cancer genomes, finding loci where heterozygous SVs have an 
impact on allele-specific expression127,128. Another linked-reads study resolved 
an extremely complex haplotype-specific SV in a lung cancer cell line where one 
haplotype harbours an EML4–ALK gene fusion and the other an ALK–PTPN3 fusion66. 
Another study also used linked reads to study the genomic architecture of the AR 
oncogene in castration-resistant prostate cancer and found that SVs were likely  
to inactivate tumour suppressor genes in complex patterns where each haplotype 
could harbour a different type of inactivating Sv153. each of these findings are 
examples of complex genomic architectures now resolvable through the improved 
resolution of emerging technologies.

Copy number variants (CNVs) and de novo mutations play pertinent roles in the 
aetiology of several neuropsychiatric diseases such as intellectual disability, 
schizophrenia and, particularly, autism spectrum disorder (ASD)193–195. application of 
ensemble algorithms in ASD family genomes has revealed CNVs that disrupt known 
neurodevelopmental genes; clustering of de novo SNVs proximal to de novo CNV 
regions196; an abundance of complex duplication-associated SVs197; and elevated 
numbers of de novo CNVs compared with unaffected individuals198. However, it is 
pertinent to note the challenges and disagreement in extrapolating the association 
between rare non-coding variants and ASD risk; a dearth of both rigorous analytical 
approaches and replicated associations between studies notably hampers the 
interpretation of non-coding Svs in these diseases46,199,200.

emerging methods have additionally been applied to mendelian disorders, clinical 
phenotypes and structural haplotypes to identify Svs that are traditionally difficult to 
characterize. For example, optical mapping was effective at detecting the D4Z4 
repeats in facioscapulohumeral muscular dystrophy, which are challenging to resolve 
with classic techniques due to their size150,188. In individuals in whom short reads were 
uninformative, PacBio sequencing was able to detect disease-causal SVs, such as a 
de novo ~2.1-kb SV overlapping PRKAR1A in Carney complex143 and a 4.6-kb repeat 
expansion201 and 12.4-kb deletion202 in benign adult familial myoclonic epilepsy located 
in GA-rich and GC-rich regions, respectively. Similarly, in a patient with glycogen 
storage disease type 1a, for whom whole-exome and Sanger sequencing failed to 
determine a genetic cause, nanopore sequencing detected a compound heterozygous 
structure containing a point mutation and a 7.1-kb deletion in G6PC on separate 
alleles144. New detection methods have also identified complex SVs that are 
insufficiently resolved with short reads in patients with congenital abnormalities 
and severe quality-of-life disorders; they contain numerous breakpoints, cluster closely 
with other SVs, affect considerable nucleotides and are flanked by repetitive 
sequences111,148,203–206. In a final example, optical mapping was used to construct and 
determine the frequency of segmental duplication haplotypes LCR22A and LCR22D, 
which are involved in 22q11 deletion syndrome and escape short-read resolution. The 
large fragment sizes of optical mapping enabled the authors to find extensive CNVs, 
differing by up to 1.75 Mb between individuals, and revealed that the reference genome 
does not represent the major allele at this locus175.
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an enhancer within the duplicated region, Hi- C data 
showed that the duplications and AR lie within the 
same topologically associating domain (TAD), and paired 
RNA sequencing (RNA- seq) revealed increased expres-
sion of AR in samples with the upstream SV. Together, 
the findings were indicative of duplication of a distal 
enhancer element that resulted in upregulation of the 

oncogene (fig. 3). In another example, investigators com-
bined short reads, optical mapping and Hi- C to detect 
large and complex SVs in cancer cells, which can pos-
sibly disrupt the TAD structure8,91,154. RNA- seq analysis 
of cancer genes within disrupted TADs revealed that 
TADs containing an SV show greater allelic bias and 
altered gene expression in cis, suggesting that the SVs 
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Fig. 3 | Resolving the molecular context behind structural variants by 
integrating multimodal information. a | Layers of biological data that can 
be integrated with structural variation (SV) calls to interpret a possible 
mechanistic chain of events. Each layer possesses quantifiable readouts that 
can be tested for association with genomic variants. Studies have focused 
less on the integration with more distal layers, such as the proteome, 
metabolome and microbiome (later two not shown), but future efforts 
focused here should have just as much potential to be informative. b | Linked 
reads detect tandem duplications (DUPs) upstream of AR153. Previous studies 
showed that this region contains an enhancer (green boxes) for AR, which is 
consistent with DNase I hypersensitivity peaks. Hi- C (high- throughput 
chromosome conformation capture) analysis showed that both the enhancer 
and the gene body are located within the same topologically associating 
domain (TAD), further suggesting their interaction. Paired expression data 
from multiple samples showed that DUP of the enhancer leads to increased 
AR expression when compared with cases without the DUP. Integration of 
layered data suggests that tandem DUPs cause gain of an enhancer element 
that drives AR expression in castration- resistant prostate cancer. c | A 3.4-kb 

deletion (DEL) was detected in the T47D cancer cell line by optical mapp ing 
and the read depth from short- read high- throughput sequencing91. 
The authors used histone 3 lysine 27 acetylation (H3K27ac) chromatin 
immuno precipitation followed by sequencing (ChIP–seq) data to determine 
that the DEL overlapped an enhancer element (green box) and Hi- C data to 
determine that the enhancer interacts with an upstream promoter (yellow 
oval) to regulate GNB4. Comparisons of expression data against human 
mammary epithelial cells (HMECs) revealed increased expression of nearby 
genes, but GNB4 expression was notably decreased in T47D cells. This 
information taken together illustrates that decreased expression of GNB4 
may result from DEL of a downstream enhancer in spite of amplification of 
the gene body. ATAC- seq, assay for transposase- accessible chromatin using 
sequencing; CPX, complex rearrangement; eQTLs, expression quantitative 
trait loci; H3K4me3, methylation of lysine 4 on histone H3; Indels, insertions 
and deletions; INS, insertion; INV, inversion; MEI, mobile- element insertion; 
SNP, single- nucleotide polymorphism; TRX, translocation. Part b adapted 
with permission from ref.153, Elsevier. Part c adapted from ref.91, Springer 
Nature Limited.
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create new TADS (so- called neo- TADs) that rewire 
regulatory environments. In a final example, optical 
mapping and short reads detected a 3.4-kb deletion in 
a copy number- amplified region91. Histone 3 lysine 27 
acetylation (H3K27ac) chromatin immunoprecipitation 
followed by sequencing (ChIP–seq) peaks predicted that 
part of the removed sequence acted as an enhancer. 
Hi- C linked the deleted enhancer to upstream GNB4, 
and RNA- seq revealed decreased expression of GNB4 
but increased expression of all other proximal genes91.  
These relationships, discovered by integrating multi-
modal data, paint a clearer picture of the role of this 
variant in perturbing biological mechanisms (fig. 3).  
These studies show immense potential and provide 
frameworks to interpret the effects of SVs but rely 
largely on manual curation.

Conclusions
Tremendous improvements in variant calling have 
made the ubiquity, complexity and pertinence of SVs 
in human genomes clearer than ever. Many advance-
ments have contributed to an explosion in detection, 
including the application of ensemble algorithms, 
which have been essential in characterizing SVs 
across populations4,5,43–45,58, and single- molecule and 
connected- molecule strategies, which have enabled the 
detection of thousands of previously undiscoverable 
variants61,66,80,85,111,114. Indeed, we now estimate that each 
human genome contains >20,000 SVs, many of which 
are located in regions that are unmappable using short 
reads61,97,103,104,108. Each emerging platform possesses 

unique strengths, but they also exhibit inherent biases. 
A philosophical ideal would involve sequencers that 
read entire genomes, without bias, as a contiguous 
whole. Until this is possible, the integration of multiple 
platforms will be necessary to resolve all SVs within a 
given human genome. Although there are no human 
genomes for which all classes of SVs have been com-
pletely resolved, multiplatform discovery approaches are 
closing this gap39,60.

Detection is essential to characterize individual 
genomes, but detection alone is not enough. Indeed, the 
technologies and methods discussed have resulted in an 
influx of detectable variants, but there is little ability to 
assign impact. Lists of thousands of newly detected SVs 
will be more useful for the field if we are able to interpret 
their functional effects. Thus, we believe that the field 
should consider concurrent detection and integration. 
We anticipate that moving from manual curation to the 
development of multivariate models generalizable to 
projects with layered data has great potential to provide 
insight into the complex genomic architecture affected 
by SV. Ultimately, detecting SVs is a piece of the larger 
puzzle that is understanding the genome, its disparate 
parts and all of its connections. Improvements in, and 
applications of, new emerging genomic technologies, 
and the integration of variants with disparate layers of 
biological information, will pave the way for a future 
where we understand the possible function and effects 
of every nucleotide in the human genome.
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Topologically associating 
domain
A spatial partition of the 
genome where segments within 
these domains are enriched for 
interactions with each other 
when compared with 
interactions with segments 
outside the domain.

Allelic bias
gene expression that is biased 
towards one allele over the 
other.
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