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Abstract

Rowhammer is a hardware bug that can be exploited to
implement privilege escalation and remote code execu-
tion attacks. Previous proposals on rowhammer mitiga-
tions either require hardware changes or follow heuristic-
based approaches (based on CPU performance coun-
ters). To date, there exists no instant protection against
rowhammer attacks on legacy systems.

In this paper, we present the design and implemen-
tation of a practical and efficient software-only defense
against rowhammer attacks. Our defense, called CATT,
prevents the attacker from leveraging rowhammer to cor-
rupt kernel memory from user mode. To do so, we ex-
tend the physical memory allocator of the OS to phys-
ically isolate the memory of the kernel and user space.
We implemented CATT on x86 and ARM to mitigate
rowhammer-based kernel exploits. Our extensive evalua-
tion shows that our mitigation (i) can stop available real-
world rowhammer attacks, (ii) imposes virtually no run-
time overhead for common user and kernel benchmarks
as well as commonly used applications, and (iii) does not
affect the stability of the overall system.

1 Introduction

CPU-enforced memory protection is fundamental to
modern computer security: for each memory access re-
quest, the CPU verifies whether this request meets the
memory access policy. However, the infamous rowham-
mer attack [11] undermines this access control model
by exploiting a hardware fault (triggered through soft-
ware) to flip targeted bits in memory. The cause for
this hardware fault is due to the tremendous density in-
crease of memory cells in modern DRAM chips, allow-
ing electrical charge (or the change thereof) of one mem-
ory cell to affect that of an adjacent memory cell. Un-
fortunately, increased refresh rates of DRAM modules —
as suggested by some hardware manufacturers — cannot

eliminate this effect [3]. In fact, the fault appeared as
a surprise to hardware manufacturers, simply because it
does not appear during normal system operation, due to
caches. Rowhammer attacks repetitively read (hammer)
from the same physical memory address in very short
time intervals which eventually leads to a bit flip in a
physically co-located memory cell.

Rowhammer Attack Diversity. Although it might
seem that single bit flips are not per-se dangerous, re-
cent attacks demonstrate that rowhammer can be used to
undermine access control policies and manipulate data
in various ways. In particular, it allows for tampering
with the isolation between user and kernel mode [20]].
For this, a malicious user-mode application locates vul-
nerable memory cells and forces the operating system to
fill the physical memory with page-table entries (PTEs),
i.e., entries that define access policies to memory pages.
Manipulating one PTE by means of a bit flip allows the
malicious application to alter memory access policies,
building a custom page table hierarchy, and finally as-
signing kernel permissions to a user-mode memory page.
Rowhammer attacks have made use of specific CPU in-
structions to force DRAM access and avoid cache ef-
fects. However, prohibiting applications from executing
these instructions, as suggested in [20], is ineffective be-
cause recent rowhammer attacks do no longer depend on
special instructions [3]. As such, rowhammer has be-
come a versatile attack technique allowing compromise
of co-located virtual machines [[18l 26], and enabling
sophisticated control-flow hijacking attacks [6} [19] 22]
without requiring memory corruption bugs [4, [7, 20].
Lastly, a recent attack, called Drammer [24], demon-
strates that rowhammer is not limited to x86-based sys-
tems but also applies to mobile devices running ARM
processors.

Rowhammer Mitigation. The common belief is that
the rowhammer fault cannot be fixed by means of any

USENIX Association

26th USENIX Security Symposium 117



software update, but requires production and deployment
of redesigned DRAM modules. Hence, existing legacy
systems will remain vulnerable for many years, if not
forever. An initial defense approach performed through
a BIOS update to increase the DRAM refresh rate was
unsuccessful as it only slightly increased the difficulty
to conduct the attack [20]. The only other software-
based mitigation of rowhammer, we are aware of, is a
heuristic-based approach that relies on hardware perfor-
mance counters [3]. However, it induces a worst-case
overhead of 8% and suffers from false positives which
impedes its deployment in practice.

Goals and Contributions. The goal of this paper is to
develop the first practical software-based defense against
rowhammer attacks that can instantly protect existing
vulnerable legacy systems without suffering from any
performance overhead and false positives. From all the
presented rowhammer attacks [4} [7, [17, 18}, 20} 24, 26|,
those which compromise the kernel memory to achieve
privilege escalation are the most practical attacks and
most challenging to mitigate. Other attacks can be ei-
ther mitigated by disabling certain system features, or are
impractical for real-world attacks: rowhammer attacks
on virtual machines [18 26] heavily depend on memory
deduplication which is disabled in most production envi-
ronments by default. Further, the browser attacks shown
by Bosman et al. [4] require 15 to 225 minutes. As such,
they are too slow for browser attacks in practice. Hence,
we focus in this paper on practical kernel-based rowham-
mer attacks.

We present the design and implementation of a prac-
tical mitigation scheme, called CATT, that does not aim
to prevent bit flips but rather remove the dangerous ef-
fects (i.e., exploitation) of bit flips. This is achieved by
limiting bit flips to memory pages that are already in the
address space of the malicious application, i.e., memory
pages that are per-se untrusted. For this, we extend the
operating system kernel to enforce a strong physical iso-
lation of user and kernel space.

In detail, our main contributions are:

e We present a practical software-based defense
against rowhammer. In contrast to existing
solutions, our defense requires no hardware
changes [11]], does not deploy unreliable heuris-
tics [3l], and still allows legacy applications to
execute instructions that are believed to alleviate
rowhammer attacks [20].

e We propose a novel enforcement-based mechanism
for operating system kernels to mitigate rowham-
mer attacks. Our design isolates the user and ker-
nel space in physical memory to ensure that the at-

Figure 1: Organization of a DRAM module.

tacker cannot exploit rowhammer to flip bits in ker-
nel memory.

e We present our prototype implementation for the
Linux kernel version 4.6, and demonstrate its ef-
fectiveness in mitigating all previously presented
rowhammer attacks [7,, [20].

e We successfully applied our Linux kernel patch
for CATT to the Android version 4.4 for Google’s
Nexus devices. This allows us to also mitigate
Drammer [24], a recent rowhammer-based privilege
escalation exploit targeting ARM.

e We extensively evaluate the performance, robust-
ness and security of our defense against rowham-
mer attacks to demonstrate the effectiveness and
high practicality of CATT. In particular, our per-
formance measurements indicate no computational
overhead for common user and kernel benchmarks.

For a more comprehensive version of this paper with
other rowhammer defense solutions, options and more
technical details we refer to our full technical report
available online [5].

2 Background

In this section, we provide the basic background knowl-
edge necessary for understanding the remainder of this

paper.

2.1 Dynamic Random Access Memory

(DRAM)

A DRAM module, as shown in Figure [I] is structured
hierarchically. The hardware module is called Dual In-
line Memory Module (DIMM), which is physically con-
nected through a channel to the memory controller. Mod-
ern desktop systems usually feature two channels facil-
itating parallel accesses to memory. The DIMM can be
divided into one or two ranks corresponding to its front-
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Column

Figure 2: Organization of a Bank.

and backside. Each rank contains multiple chips which
are comprised of one or multiple banks that contain the
memory cells. Each bank is organized in columns and
rows, as shown in Figure @

An individual memory cell consists of a capacitor and
a transistor. To store a bit in a memory cell, the capacitor
is electrically charged. By reading a bit from a memory
cell, the cell is discharged, i.e., read operations are de-
structive. To prevent information loss, read operations
also trigger a process that writes the bit back to the cell.
A read operation always reads out the bits from a whole
row, and the result is first saved in the row buffer before
it is then transferred to the memory controller. The row
buffer is also used to write back the content into the row
of memory cells to restore their content.

It is noteworthy to mention that there exists the map-
ping between physical memory address and the rank-,
bank- and row-index on the hardware module is non-
linear. Consequently, two consecutive physical memory
addresses can be mapped to memory cells that are lo-
cated on different ranks, banks, or rows. For example, on
Intel Ivy Bridge CPUs the 20th bit of the physical address
determines the rank. As such, the consecutive physical
addresses Ox2FFFFF and 0x300000 can be located on
front and back side of the DIMM for this architecture.
The knowledge of the physical memory location on the
DIMM is important for both rowhammer attacks and de-
fenses, since bit flips can only occur on the same bank.
For Intel processors, the exact mapping is not officially
documented, but has been reverse engineered [[15 [26].

2.2 Rowhammer Overview and Challenges

As mentioned before, memory access control is an es-
sential building block of modern computer security, e.g.,
to achieve process isolation, isolation of kernel code
and data, and manage read-write-execute permission on
memory pages. Modern systems feature a variety of
mechanisms to isolate memory, e.g., paging [10], virtual-

ization [1} 9], IOMMU [2f], and special execution modes
like SGX [10] and SMM [10]]. However, these mecha-
nisms enforce their isolation through hardware that me-
diates the physical memory accesses (in most cases the
CPU). Hence, memory assigned to isolated entities can
potentially be co-located in physical memory on the
same bank. Since a rowhammer attack induces bit flips
in co-located memory cells, it provides a subtle way to
launch a remote attack to undermine memory isolation.

Recently, various rowhammer-based attacks have been
presented [4.[7, 117,18} 120} 24} 26]]. Specifically, rowham-
mer was utilized to undermine isolation of operating sys-
tem and hypervisor code, and escape from application
sandboxes leveraged in web browsers. As discussed be-
fore, only the attacks that perform privilege escalation
from user to kernel mode are considered as practical. In
the following, we describe the challenges and workflow
of rowhammer attacks. A more elaborated discussion on
real-world, rowhammer-based exploits will be provided
in Section

The rowhammer fault allows an attacker to influence
the electrical charge of individual memory cells by acti-
vating neighboring memory cells. Kim et al. [11] demon-
strate that repeatedly activating two rows separated by
only one row, called aggressor rows (1) and (3) in Fig-
ure , lead to a bit flip in the enclosed row (2), called vic-
tim rowE] To do so, the attacker has to overcome the fol-
lowing challenges: (i) undermine memory caches to di-
rectly perform repetitive reads on physical DRAM mem-
ory, and (ii) gain access to memory co-located to data
critical to memory isolation.

Overcoming challenge (i) is complicated because
modern CPUs feature different levels of memory caches
which mediate read and write access to physical mem-
ory. Caches are important as processors are orders of
magnitude faster than current DRAM hardware, turning
memory accesses into a bottleneck for applications [25]].
Usually, caches are transparent to software, but many
systems feature special instructions, e.g., c1flush or
movnt i for x86 [17,120], to undermine the cache. Fur-
ther, caches can be undermined by using certain read-
access patterns that force the cache to reload data from
physical memory [3]. Such patterns exist, because CPU
caches are much smaller than physical memory, and sys-
tem engineers have to adopt an eviction strategy to ef-
fectively utilize caches. Through alternating accesses to
addresses which reside in the same cache line, the at-
tacker can force the memory contents to be fetched from
physical memory.

The attacker’s second challenge (ii) is to achieve the
physical memory constellation shown in Figure [2] For
this, the attacker needs access to the aggressor rows in

IThis rowhammer approach is called double-sided hammering.
Other rowhammer techniques are discussed in SectionE]
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order to activate (hammer) them (rows (1) and 3) in Fig-
ure 2). In addition, the victim row must contain data
which is vulnerable to a bit flip (2) in Figure . Both
conditions cannot be enforced by the attacker. How-
ever, this memory constellation can be achieved with
high probability using the following approaches. First,
the attacker allocates memory hoping that the aggressor
rows are contained in the allocated memory. If the oper-
ating system maps the attacker’s allocated memory to the
physical memory containing the aggressor rows, the at-
tacker has satisfied the first condition. Since the attacker
has no influence on the mapping between virtual mem-
ory and physical memory, she cannot directly influence
this step, but she can increase her probability by repeat-
edly allocating large amounts of memory. Once control
over the aggressor rows is achieved, the attacker releases
all allocated memory except the parts which contain the
aggressor rows. Next, victim data that should be manip-
ulated has to be placed on the victim row. Again, the at-
tacker cannot influence which data is stored in the phys-
ical memory and needs to resort to a probabilistic ap-
proach. The attacker induces the creation of many copies
of the victim data with the goal that one copy of the vic-
tim data will be placed in the victim row. The attacker
cannot directly verify whether the second step was suc-
cessful, but can simply execute the rowhammer attack
and validate whether the attack was successful. If not,
the second step is repeated until the rowhammer success-
fully executes.

Seaborn et al. [20] successfully implemented this ap-
proach to compromise the kernel from an unprivileged
user process. They gain control over the aggressor rows
and then let the OS create huge amounts of page table en-
tries with the goal of placing one page table entry in the
victim row. By flipping a bit in a page table entry, they
gained control over a subtree of the page tables allowing
them to manipulate memory access control policies.

3 Threat Model and Assumptions

Our threat model is in line with related work [4. (7] [17,
1811201 26]]:

e We assume that the operating system kernel is not
vulnerable to software attacks. While this is hard to
implement in practice it is a common assumption in
the context of rowhammer attacks.

e The attacker controls a low-privileged user mode
process, and hence, can execute arbitrary code but
has only limited access to other system resources
which are protected by the kernel through manda-
tory and discretionary access control.

e We assume that the system’s RAM is vulnerable to

Physical Memory Kernel
l:l:l:l:l‘ CATT Memory
' Alocator
l:l:l:lj"‘\ . Security Domain A
R N\ List of Memory Handler
ﬁmﬁﬁ Available (user-mode)
L
Security Domain B
- ﬁ Memory Handler
H Security Domain (kernel-mode)
- ). Memory Tracking
73 T

|

Figure 3: CATT constrains bit flips to the process’ secu-
rity domain.

rowhammer attacks. Many commonly used systems
(see Table|l) include vulnerable RAM.

4 Design of CATT

In this section, we present the high-level idea and design
of our practical software-based defense against rowham-
mer attacks. Our defense, called CATTE] tackles the ma-
licious effect of rowhammer-induced bit flips by instru-
menting the operating system’s memory allocator to con-
strain bit flips to the boundary where the attacker’s mali-
cious code executes. CATT is completely transparent to
applications, and does not require any hardware changes.

Overview. The general idea of CATT is to tolerate bit
flips by confining the attacker to memory that is already
under her control. This is fundamentally different from
all previously proposed defense approaches that aimed
to prevent bit flips (cf. Section[9). In particular, CATT
prevents bit flips from affecting memory belonging to
higher-privileged security domains, e.g., the operating
system kernel or co-located virtual machines. As dis-
cussed in Section [2.2] a rowhammer attack requires the
adversary to bypass the CPU cache. Further, the attacker
must arrange the physical memory layout such that the
targeted data is stored in a row that is physically adjacent
to rows that are under the control of the attacker. Hence,
CATT ensures that memory between these two entities is
physically separated by at least one rowE]

To do so, CATT extends the physical memory allo-
cator to partition the physical memory into security do-
mains.

Figure [3| illustrates the concept. Without CATT, the
attacker is able to craft a memory layout, where two ag-

2CAn’t Touch This

3Kim et al. [I1] mention that the rowhammer fault does not only
affect memory cells of directly adjacent rows, but also memory cells of
rows that are next to the adjacent row. Although we did not encounter
such cases in our experiments, CATT supports multiple row separation
between adversary and victim data memory. Further detailed discus-
sion can be found in Section@
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gressor rows enclose a victim row of a higher-privileged
domain such as row (2) in Figure[2] With CATT in place,
the rows which are controlled by the attacker are grouped
into the security domain A, whereas memory belonging
to higher-privileged entities resides with their own secu-
rity domain (e.g., the security domain B). Both domains
are physically separated by at least one row which will
not be assigned to any security domain.

Security Domains. Privilege escalation attacks are
popular and pose a severe threat to modern systems. In
particular, the isolation of kernel and user-mode is crit-
ical and the most appealing attack target. If a user-
space application gains kernel privileges, the adversary
can typically compromise the entire system. We define
and maintain two security domains: a security domain
for kernel memory allocations, and one security domain
for user-mode memory allocations (see also Figure[3).

Challenges. The physical isolation of data raises the
challenge of how to effectively isolate the memory of
different system entities. To tackle this challenge, we
first require knowledge of the mapping between physi-
cal addresses and memory banks. Since an attacker can
only corrupt data within one bank, but not across banks,
CATT only has to ensure that security domains of differ-
ent system entities are isolated within each bank. How-
ever, as mentioned in Section [2.1] hardware vendors do
not specify the exact mapping between physical address
and banks. Fortunately, Pessl et al. [[15] and Xiao et
al. [26] provide a methodology to reverse engineer the
mapping. For CATT, we use this methodology to dis-
cover the physical addresses of rows.

We need to ensure that the physical memory manage-
ment component is aware of the isolation policy. This
is vital as the memory management components have
to ensure that newly allocated memory is adjacent only
to memory belonging to the same security domain. To
tackle this challenge, we instrumented the memory allo-
cator to keep track of the domain association of physi-
cal memory and serve memory requests by selecting free
memory from different pools depending on the security
domain of the requested memory.

S Implementation

Our software-based defense is based on modifications to
low-level system software components, i.e., the physical
memory allocator of the operating system kernel. In our
proof-of-concept implementation of CATT, we focus on
hardening Linux against rowhammer-based attacks. We
successfully applied the mentioned changes to the x86-
kernel version 4.6 and the Android kernel for Nexus de-

vices in version 4.4. We chose Linux as our target OS for
our proof-of-concept implementations for two reasons:
(1) its source code is freely available, and (2) it is widely
used on workstations and mobile devices. In the follow-
ing we will explain the implementation of CATT’s pol-
icy enforcement mechanism in the Linux kernel which
allows for the partitioning of physical memory into iso-
lated security domains. We note that CATT targets both
x86 and ARM-based systems. Until today, rowham-
mer attacks have only been demonstrated for these two
prominent architectures. However, our concept can be
applied to other architectures, as well.

The basic idea underlying our software-based
rowhammer defense is to physically separate rows that
belong to different security domains. Operating systems
are not per-se aware of the notions of cells and rows,
but rather build memory management based on paging.
Commodity operating systems use paging to map virtual
addresses to physical addresses. The size of a page
varies among architectures. On x86 and ARM, the page
size is typically 4096 bytes (4K). As we described in
Section DRAM hardware consists of much smaller
units of memory, i.e., individual memory cells storing
single bits. Eight consecutive memory cells represent a
byte, 4096 consecutive bytes a page frame, two to four
page frames a row. Hence, our implementation of CATT
changes low-level components of the kernel to make the
operating system aware of the concept of memory rows.

In the following, we describe how we map individual
memory pages to domains, keep track of different do-
mains, modify the physical memory allocator, and define
partitioning policies for the system’s DRAM hardware.

5.1 Mapping Page Frames to Domains

To be able to decide whether two pages belong to the
same security domain we need to keep track of the secu-
rity domain for each page frame. Fortunately, the kernel
already maintains meta data about each individual page
frame. More specifically, each individual page frame is
associated with exactly one meta data object (struct
page). The kernel keeps a large array of these objects
in memory. Although these objects describe physical
pages, this array is referred to as virtual memory map, or
vmemmap. The Page Frame Number (PFN) of a physical
page is used as an offset into this array to determine the
corresponding struct page object. To be able to as-
sociate a page frame with a security domain, we extend
the definition of struct page to include a field that
encodes the security domain. Since our prototype imple-
mentation targets rowhammer attacks that aim at violat-
ing the separation of kernel and user-space, we encode
security domain O for kernel-space, and 1 for user-space.
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5.2 Tracking Security Domains

The extension of the page frame meta data objects en-
ables us to assign pages to security domains. However,
this assignment is dynamic and changes over time. In
particular, a page frame may be requested, allocated, and
used by one domain, after it has been freed by another
domain. Note that this does not violate our security guar-
antees, but is necessary for the system to manage phys-
ical memory dynamically. Yet, we need to ensure that
page frames being reallocated continue to obey our secu-
rity policy. Therefore, we reset the security domain upon
freeing a page.

Upon memory allocation, CATT needs to correctly set
the security domain of the new page. To do so, we re-
quire information about the requesting domain. For our
case, where we aim at separating kernel and user-space
domains, CATT utilizes the call site information, which
is propagated to the memory allocator by default. Specif-
ically, each allocation request passes a set of flags to the
page allocator. These flags encode whether an allocation
is intended for the kernel or the user-space. We leverage
this information and separate the two domains by setting
the domain field of the respective page frame.

When processes request memory, the kernel initially
only creates a virtual mapping without providing actual
physical page frames for the process. Instead, it only
assigns physical memory on demand, i.e., when the re-
questing process accesses the virtual mapping a page
fault is triggered. Thereafter, the kernel invokes the phys-
ical page allocator to search for usable pages and installs
them under the virtual address the process attempted to
access. We modified the page fault handler, which ini-
tiates the allocation of a new page, to pass information
about the security domain to the page allocator. Next,
the page is allocated according to our policy and sets the
domain field of the page frame’s meta data object to the
security domain of the interrupted process.

5.3 Modifying the Physical Page Allocator

The Linux kernel uses different levels of abstraction
for different memory allocation tasks. The physical
page allocator, called zoned buddy allocator, is the
main low-level facility handling physical page alloca-
tions. It exports its interfaces through functions such as
alloc_pages which can be used by other kernel com-
ponents to request physical pages. In contrast to higher-
level allocators, the buddy allocator only allows for al-
locating sets of memory pages with a cardinality which
can be expressed as a power of two (this is referred to
as the order of the allocation). Hence, the buddy allo-
cator’s smallest level of granularity is a single memory
page. The buddy allocator already partitions the system

RAM into different zones. We modify the implementa-
tion of the physical page allocator in the kernel to in-
clude a dedicated memory zone for the kernel. This en-
ables CATT to separate kernel from user pages accord-
ing to the security domain of the origin of the allocation
request. Hence, any requests for kernel pages will be
served from the dedicated memory zone. We addition-
ally instrument a range of maintenance checks to make
them aware of our partitioning policy before the alloca-
tor returns a physical page. If any of these checks fail,
the page allocator is not allowed to return the page in
question.

5.4 Defining DRAM Partitioning Policies

Separating and isolating different security domains is es-
sential to our proposed mitigation. For this reason, we
incorporate detailed knowledge about the platform and
its DRAM hardware configuration into our policy imple-
mentation. While our policy implementation for a tar-
get system largely depends on its architecture and mem-
ory configuration, this does not represent a fundamen-
tal limitation. Indeed, independent research [15} 26] has
provided the architectural details for the most prevalent
architectures, i.e., it shows that the physical address to
DRAM mapping can be reverse engineered automati-
cally for undocumented architectures. Hence, it is pos-
sible to develop similar policy implementations for ar-
chitectures and memory configurations beyond x86 and
ARM. We build on this prior research and leverage the
physical address to DRAM mapping information to en-
force strict physical isolation. In the following, we de-
scribe our implementation of the partitioning strategy for
isolating kernel and user-space.

Kernel-User Isolation. To achieve physical separation
of user and kernel space we adopt the following strat-
egy: we divide each bank into a top and a bottom part,
with a separating row in-between. Page frames for one
domain are exclusively allocated from the part that was
assigned to that domain. The part belonging to the kernel
domain is determined by the physical location of the ker-
nel imageE] As aresult, user and kernel space allocations
may be co-located within one bank, but never within ad-
jacent rowsE] Due to this design memory allocated to
the kernel during early boot is allocated from a mem-
ory region which is part of the kernel’s security domain,
hence, the isolation covers all kernel memory. Different
partitioning policies would be possible in theory: for in-
stance, we could confine the kernel to a certain DRAM

4This is usually at 1MB, although Kernel Address Space Layout
Randomization (KASLR) may slightly modify this address according
to a limited offset.

5The exact location for the split can be chosen at compile time.
Hence, the partitioning is not fixed but can be chosen arbitrarily (e.g.,
20-80, 50-50, 75-25, etc.).
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System  Operating System System Model

S1 Ubuntu 14.04.4 LTS  Dell OptiPlex 7010
S2 Debian 8.2 Dell OptiPlex 990
S3 Kali Linux 2.0 Lenovo ThinkPad x220

Table 1: Model numbers of the vulnerable systems used
for our evaluation.

bank to avoid co-location of user domains within a sin-
gle bank. However, this would likely result in a severe in-
crease of memory latency, since reads and writes to a spe-
cific memory bank are served by the bank’s row buffer.
The benefit of our partitioning policy stems from the fact
that we distribute memory belonging to the kernel secu-
rity domain over multiple banks thereby not negatively
impacting performance. Additionally, the bank split be-
tween top and bottom could be handled at run time, e.g.,
by dynamically keeping track of the individual bank-split
locations similar to the watermark handling already im-
plemented for different zones in the buddy allocator. In
our current prototype, we only need to calculate the row
index of a page frame for each allocation request. More
specifically, we calculate this index from the physical ad-
dress (PA) in the following way:

PA
Row(PA) :=
oW(PA) 1= e Size PagesPerDIMM - DIMMs

Here, we calculate the number of pages per DIMM
as PagesPerDIMM := PagesPerRow - BanksPerRank -
RanksPerDIMM. Because all possible row indices are
present once per bank, this equation determines the row
index of the given physical addressE] We note that this
computation is in line with the available rowhammer ex-
ploits [20] and the reported physical to DRAM mapping
recently reverse engineered [15} 26]. Since the row size
is the same for all Intel architectures prior to Skylake [[7]],
our implementation for this policy is applicable to a wide
range of system setups, and can be adjusted without in-
troducing major changes to fit other configurations as
well.

6 Security Evaluation

The main goal of our software-based defense is to pro-
tect legacy systems from rowhammer attacks. We tested

The default values for DDR3 on x86 are 4K for the page size,
2 pages per row, 8 banks per rank, 2 ranks per DIMM and between
1 and 4 DIMMs per machine. For DDR4 the number of banks per rank
was doubled. DDR4 is supported on x86 starting with Intel’s Skylake
and AMD’s Zen architecture.

the effectiveness of CATT on diverse hardware configu-
rations. Among these, we identified three hardware con-
figurations, where we observed many reproducible bit
flips. Table[T|and Table[2]lists the exact configurations of
the three platforms we use for our evaluation. Our effec-
tiveness evaluation of CATT is based on two attack sce-
narios. For the first scenario, we systematically search
for reproducible bit flips based on a tool published by
Gruss et alm Our second attack scenario leverages a real-
world rowhammer exploit published by Google’s Project
Zeroﬂ We compared the outcome of both attacks on
our vulnerable systems before and after applying CATT.
Next, we elaborate on the two attack scenarios and their
mitigation in more detail.

6.1 Rowhammer Testing Tool

We use a slightly modified version of the double-sided
rowhammering tool, which is based on the original test
by Google’s Project Zero [20]]. Specifically, we extended
the tool to also report the aggressor physical addresses,
and adjusted the default size of the fraction of physical
memory that is allocated for the test. The tool scans the
allocated memory for memory cells that are vulnerable
to the rowhammer attack. To provide comprehensive re-
sults, the tool needs to scan the entire memory of the sys-
tem. However, investigating the entire memory is hard to
achieve in practice since some parts of memory are al-
ways allocated by other system components. These parts
are therefore not available to the testing tool, i.e., mem-
ory reserved by operating system. To achieve maximum
coverage, the tool allocates a huge fraction of the avail-
able memory areas. However, due to the lazy allocation
of Linux the allocated memory is initially not mapped to
physical memory. Hence, each mapped virtual page is
accessed at least once, to ensure that the kernel assigns
physical pages. Because user space only has access to the
virtual addresses of these mappings, the tool exploits the
/proc/pagemap kernel interface to retrieve the phys-
ical addresses. As a result, most of the systems physical
memory is allocated to the rowhammering tool.
Afterwards, the tool analyzes the memory in order to
identify potential victim and aggressor pages in the phys-
ical memory. As the test uses the double-sided rowham-
mering approach two aggressor pages must be identified
for every potential victim page. Next, all potential victim
pages are challenged for vulnerable bit flips. For this, the
potential victim page is initialized with a fixed bit pat-
tern and “hammered” by accessing and flushing the two
associated aggressor pages. This ensures that all of the

7 https://github.com/IAIK/rowhammeris/tree/
master/native

8 https://bugs.chromium.orqg/p/project-zero/
issues/detail?i1d=283
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CPU RAM
System  Version Cores  Speed Size Speed Manufacturer Part number
S1 i5-3570 4 3.40GHz 2x2GB 1333 MHz Hynix Hyundai HMT325U6BFR8C-H9
1x4GB 1333 MHz  Corsair CMV4GX3M1A1600C11
S2 i7-2600 4 3.4GHz 2x4GB 1333 MHz Samsung M378B5273DH0-CH9
S3 i5-2520M 4 2.5GHz 2x4GB 1333 MHz Samsung M471B5273DH0-CH9

Table 2: Technical specifications of the vulnerable systems used for our evaluation.

Rowhammer Exploit: Success (avg. # of tries)

Vanilla System CATT
S1 v/(11) X(3821)
S2 v/ (42) X(3096)
S3 v (53) X(3768)

Table 3: Results of our security evaluation. We found
that CATT mitigates rowhammer attacks. We executed
the rowhammer test on each system three times and av-
eraged the amount of bit flips.

accesses activate a row in the respective DRAM module.
This process is repeated 10° timesﬂ Lastly, the potential
victim address can be checked for bit flips by comparing
its memory content with the fixed pattern bit. The test
outputs a list of addresses for which bit flips have been
observed, i.e., a list of victim addresses.

Preliminary Tests for Vulnerable Systems. Using the
rowhammering testing tool we evaluated our target sys-
tems. In particular, we were interested in systems that
yield reproducible bit flips, as only those are relevant for
practical rowhammer attacks. This is because the attack
requires two steps. First, the attacker needs to allocate
chunks of memory, and test each chunk to identify vul-
nerable memory. Second, the attacker needs to exploit
the vulnerable memory. Since the attacker cannot force
the system to allocate page tables at a certain physical
position in RAM, the attacker has to repeatedly spray the
memory with page tables to increase the chances of hit-
ting the desired memory location. Both steps relay on
reproducible bit flips.

Hence, we configured the rowhammering tool to only
report memory addresses where bit flips can be triggered
repeatedly. We successively confirmed that this list in-
deed yields reliable bit flips by individually triggering
the reported addresses and checking for bit flips within
an interval of 10 seconds. Additionally, we tested the bit

9This value is the hardcoded default value. Prior research [11}[12]
reported similar numbers.

flips across reboots through random sampling.

The three systems mentioned in Table [T] and Table 2]
are highly susceptible to reproducible bit flips. Executing
the rowhammer test on these three times and rebooting
the system after each test run, we found 133 pages with
exploitable bit flips for S1, 31 pages for S2, and 23 pages
for S3.

To install CATT, we patched the Linux kernel of each
system to use our modified memory allocator. Recall that
CATT does not aim to prevent bit flips but rather con-
strain them to a security domain. Hence, executing the
rowhammer test on CATT-hardened systems still locates
vulnerable pages. However, in the following, we demon-
strate based on a real-world exploit that the vulnerable
pages are not exploitable.

6.2 Real-world Rowhammer Exploit

To further demonstrate the effectiveness of our mitiga-
tion, we tested CATT against a real-world rowhammer
exploit. The goal of the exploit is to escalate the privi-
leges of the attacker to kernel privileges (i.e., gain root
access). To do so, the exploit leverages rowhammer to
manipulate the page tables. Specifically, it aims to ma-
nipulate the access permission bits for kernel memory,
i.e., reconfigure its access permission policy. A second
option is to manipulate page table entries in such a way
that they point to attacker controlled memory thereby al-
lowing the attacker to install new arbitrary memory map-
pingsm

To launch the exploit, two conditions need to be satis-
fied: (1) a page table entry must be present in a vulner-
able row, and (2) the enclosing aggressor pages must be
allocated in attacker-controlled memory.

Since both conditions are not directly controllable by
the attacker, the attack proceeds as follows: the attacker
allocates large memory areas. As a result, the operat-
ing system needs to create large page tables to maintain
the newly allocated memory. This in turn increases the
probability to satisfy the aforementioned conditions, i.e.,
a page table entry will eventually be allocated to a victim

10The details of this attack option are described by Seaborn et
al. [20].
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page. Due to vast allocation of memory, the attacker also
increases her chances that aggressor pages are co-located
to the victim page.

Once the preconditions are satisfied, the attacker
launches the rowhammer attack to induce a bit flip in
victim page. Specifically, the bit flip modifies the page
table entry such that a subtree of the paging hierarchy is
under the attacker’s control. Lastly, the attacker modi-
fies the kernel structure that holds the attacker-controlled
user process privileges to elevate her privileges to the su-
peruser root. Since the exploit is probabilistic, it only
succeeds in five out of hundred runs (5%). Nevertheless,
a single successful run allows the attacker to compromise
the entire system.

Effectiveness of CATT. Our defense mechanism does
not prevent the occurrence of bit flips on a system.
Hence, we have to verify that bit flips cannot affect data
of another security domain. Rowhammer exploits rely
on the fact that such a cross domain bit flip is possible,
i.e., in the case of our exploit it aims to induce a bit flip
in the kernel’s page table entries.

However, since the exploit by itself is probabilistic,
an unsuccessful attempt does not imply the effectiveness
of CATT. As described above, the success rate of the
attack is about 5%. After deploying CATT on our test
systems, we repeatedly executed the exploit to minimize
the probability of the exploit failing due to the random
memory layout rather than due to our protection mech-
anism. We automated the process of continuously exe-
cuting the exploit and ran this test for 48h, on all three
test systems. In this time frame the exploit made on aver-
age 3500 attempts of which on average 175 should have
succeeded. However, with CATT, none of the attempts
was successful. Hence, as expected, CATT effectively
prevents rowhammer-based exploits.

As we have demonstrated, CATT successfully pre-
vents the original attack developed on x86 by physically
isolating pages belonging to the kernel from the user-
space domain. In addition to that, the authors of the
Drammer exploit [24] confirm that CATT prevents their
exploit on ARM. The reason is, that they follow the same
strategy as in the original kernel exploit developed by
Project Zero, i.e., corrupting page table entries in the ker-
nel from neighboring pages in user space. Hence, CATT
effectively prevents rowhammer exploits on ARM-based
mobile platforms as well.

7 Performance Evaluation

One of our main goals is practicability, i.e., inducing neg-
ligible performance overhead. To demonstrate practica-
bility of our defense, we thoroughly evaluated the perfor-

mance and stability impact of CATT on different bench-
mark and testing suites. In particular, we used the SPEC
CPU2006 benchmark suite [8] to measure the impact on
CPU-intensive applications, LMBench3 [14]] for measur-
ing the overhead of system operations, and the Phoronix
test suite [16] to measure the overhead for common ap-
plications. We use the Linux Test Project, which aims at
stress testing the Linux kernel, to evaluate the stability
of our test system after deploying CATT. We performed
all of our performance evaluation on system S2 (cf. Ta-

ble2).

7.1 Run-time Overhead

Table [] summarizes the results of our performance
benchmarks. In general, the SPEC CPU2006 bench-
marks measure the impact of system modifications on
CPU intensive applications. Since our mitigation mainly
affects the physical memory management, we did not
expect a major impact on these benchmarks. However,
since these benchmarks are widely used and well estab-
lished we included them in our evaluation. In fact, we
observe a minimal performance improvement for CATT
by 0.49% which we attribute to measuring inaccuracy.
Such results have been reported before when executing
a set of benchmarks for the same system with the ex-
act same configuration and settings. Hence, we conclude
that CATT does not incur any performance penalty.

LMBench3 is comprised of a number of micro bench-
marks which target very specific performance parame-
ters, e.g., memory latency. For our evaluation, we fo-
cused on micro benchmarks that are related to mem-
ory performance and excluded networking benchmarks.
Similar to the previous benchmarks, the results fluctuate
on average between —0.4% and 0.11%. Hence, we con-
clude that our mitigation has no measurable impact on
specific memory operations.

Finally, we tested the impact of our modifications on
the Phoronix benchmarks. In particular, we selected a
subset of benchmarksE] that, on one hand, aim to mea-
sure memory performance (I0Zone and Stream), and, on
the other hand, test the performance of common server
applications which usually rely on good memory perfor-
mance.

To summarize, our rigorous performance evaluation
with the help of different benchmarking suites did not
yield any measurable overhead. This makes CATT a
highly practical mitigation against rowhammer attacks.

"I"The Phoronix benchmarking suite features a large number of tests
which cover different aspects of a system. By selecting a subset of the
available tests we do not intend to improve our performance evaluation.
On the contrary, we choose a subset of tests that is likely to yield mea-
surable performance overhead, and excluded tests which are unrelated
to our modification, e.g., GPU or machine learning benchmarks.
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SPEC2006 CATT Phoronix CATT LMBench3 CATT LMBench3 CATT
perlbench 0.29% 10Zone 0.05% Context Local Bandwidth:

bzip2 0.00%  Unpack -0.50% Switching: Pipe 0.18%
gee -0.71%  Kernel 2p/0K -2.44% AF UNIX -0.30%
mcf -1.12%  PostMark  0.92% 2p/16K 0.00% File Reread -0.38%
gobmk 0.00% 1-Zip 1.18% 2p/64K 2.00% Mmap reread 0.00%
hmmer 023%  OpenSSL  -0.22% 8p/16K -1.73% Bcopy (libc) 0.08%
sjeng 0.19% PyBench -0.59% 8p/64K 0.00% Bcopy (hand) 0.34%
libquantum -1.63%  Apache -0.21% 16p/16K -1.33% Mem read 0.00%
h264ref 0.00%  PHPBench  0.35% 16p/64K 0.99% Mem write 0.43%
omnetpp -0.28% stream 1.96% Mean -0,36% Mean 0.04%
astar 045%  ramspeed 0.00% File & Memory Latency:

xalan -0.14% cachebench  0.05% VM Latency: LS 0.00%
milc -1.79% Mean 0.27% OK File Create 0.27% 123 0.00%
namd -1.82% OK File Delete 0.89% Main mem 2.09%
dealll 0.00% 10K File Create  -0.35% Rand mem 1.66%
soplex 0.00% 10K File Delete  0.47% Mean 0.11%
povray -0.46% Mmap Latency -1.81%

Ibm -1.12% Mean -0,12%

sphinx3 -0.58%

Mean -0.49%

Table 4: The benchmarking results for SPEC CPU2006, Phoronix, and LMBench3 indicate that CATT induce no
measurable performance overhead. In some cases we observed negative overhead, hence, performance improvements.

However, we attribute such results to measuring inaccuracy.

7.2 Memory Overhead

CATT prevents the operating system from allocating cer-
tain physical memory.

The memory overhead of CATT is constant and de-
pends solely on number of memory rows per bank. Per
bank, CATT omits one row to provide isolation between
the security domains. Hence, the memory overhead is
1 /#rows (#rows being rows per bank). While the number
of rows per bank is dependent on the system architecture,
it is commonly in the order of 215 rows per bank, i.e., the
overhead is 275 = 0,003% [

7.3 Robustness

Our mitigation restricts the operating system’s access to
the physical memory. To ensure that this has no effect on
the overall stability, we performed numerous stress tests
with the help of the Linux Test Project (LTP) [[13]]. These

12 https://lackingrhoticity.blogspot .de/2015/
05/ how-physical — addresses-—map—to - rows — and -
banks.html

tests are designed to stress the operating system to iden-
tify problems. We first run these tests on a vanilla Debian
8.2 installation to receive a baseline for the evaluation of
CATT. We summarize our results in Table 5] and report
no deviations for our mitigation compared to the base-
line. Further, we also did not encounter any problems
during the execution of the other benchmarks. Thus, we
conclude that CATT does not affect the stability of the
protected system.

8 Discussion

Our prototype implementation targets Linux-based sys-
tems. Linux is open-source allowing us to implement
our defense. Further, all publicly available rowhammer
attacks target this operating system. CATT can be easily
ported to memory allocators deployed in other operating
systems. In this section, we discuss in detail the gener-
ality of our software-based defense against rowhammer.
For a detailed discussion of possible extensions and ad-
ditional policies we refer to our technical report [S]].
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Linux Test Project Vanilla CATT
clone v v
ftruncate v v
pretl v 4
ptrace v v
rename v v
sched_prio_max v v
sched_prio_min v v
mmstress v v
shmt X X
vhangup X X
ioctl X X

Table 5: Result for individual stress tests from the Linux
Test Project.

8.1 Applying CATT to Mobile Systems

The rowhammer attack is not limited to x86-based sys-
tems, but has been recently shown to also affect the ARM
platform [24]. The ARM architecture is predominant
in mobile systems, and used in many smartphones and
tablets. As CATT is not dependent on any x86 specific
properties, it can be easily adapted for ARM based sys-
tems. We demonstrate this by applying our extended
physical memory allocator to the Android kernel for
Nexus devices in version 4.4. Since there are no major
deviations in the implementation of the physical page al-
locator of the kernel between Android and stock Linux
kernel, we did not encounter any obstacles during the
port.

8.2 Single-sided Rowhammer Attacks

From our detailed description in Section@one can easily
follow that our proposed solution can defeat all known
rowhammer-based privilege escalation attacks in gen-
eral, and single-sided rowhammer attacks [24] in partic-
ular. In contrast to double-sided rowhammer attacks (see
Figure [2)), single-sided rowhammer attacks relax the ad-
versary’s capabilities by requiring that the attacker has
control over only one row adjacent to the victim memory
row. As described in more detail in Section[d}, CATT iso-
lates different security domains in the physical memory.
In particular, it ensures that different security domains
are separated by at least one buffer row that is never used
by the system. This means that the single-sided rowham-
mer adversary can only flip bits in own memory (that it
already controls), or flip bits in buffer rows.

8.3 Benchmarks Selection

We selected our benchmarks to be comparable to the re-
lated literature. Moreover, we have done evaluations that
go beyond those in the existing work to provide addi-
tional insight. Hereby, we considered different evalua-
tion aspects: We executed SPEC CPU2006 to verify that
our changes to the operating system impose no overhead
of user-mode applications. Further, SPEC CPU2006 is
the most common benchmark in the field of memory-
corruption defenses, hence, our solutions can be com-
pared to the related work. LMBench3 is specifically
designed to evaluate the performance of common sys-
tem operations, and used by the Linux kernel developers
to test whether changes to the kernel affect the perfor-
mance. As such LMBench3 includes many tests. For
our evaluation, we included those benchmarks that per-
form memory operations and are relevant for our de-
fense. Finally, we selected a number of common applica-
tions from the Phoronix test suite as macro benchmarks,
as well as the pts/memory tests which are designed to
measure the RAM and cache performance. For all our
benchmarks, we did not observe any measurable over-
head (see Table [4)).

8.4 Vicinity-less Rowhammering

All previous Rowhammer attacks exploit rows which are
physically co-located [4,[7}, 120, 24]. However, while Kim
et al. [L1] suggested that physical adjacency accounts for
the majority of possible bit flips, they also noted that
this was not always the case. More specifically, they at-
tributed potential aggressor rows with a greater row dis-
tance to the re-mapping of faulty rows: DRAM manu-
facturers typically equip their modules with around 2%
of spare rows, which can be used to physically replace
failing rows by re-mapping them to a spare row [23]].
This means, that physically adjacent spare rows can be
assigned to arbitrary row indices, potentially undermin-
ing our isolation policy. For this, an adversary requires a
way of determining pairs of defunct rows, which are re-
mapped to physically adjacent spare rows. We note that
such a methodology can also be used to adjust our policy
implementation, e.g., by disallowing any spare rows to
be assigned to kernel allocations. Hence, re-mapping of
rows does not affect the security guarantees provided by
CATT.

9 Related Work

In this section, we provide an overview of existing
rowhammer attack techniques, their evolution, and pro-
posed defenses. Thereafter, we discuss the shortcomings
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of existing work on mitigating rowhammer attacks and
compare them to our software-based defense.

9.1 Rowhammer Attacks

Kim et al. [11] were the first to conduct experiments and
analyze the effect of bit flipping due to repeated mem-
ory reads. They found that this vulnerability can be
exploited on Intel and AMD-based systems. Their re-
sults show that over 85% of the analyzed DRAM mod-
ules are vulnerable. The authors highlight the impact on
memory isolation, but they do not provide any practi-
cal attack. Seaborn and Dullien [20] published the first
practical rowhammer-based privilege-escalation attacks
using the x86 clflush instruction. In their first at-
tack, they use rowhammer to escape the Native Client
(NaCl) [27]] sandbox. NaCl aims to safely execute na-
tive applications by 3rd-party developers in the browser.
Using rowhammer malicious developers can escape the
sandbox, and achieve remote code execution on the tar-
get system. With their second attack, Seaborn and Dul-
lien utilize rowhammer to compromise the kernel from
an unprivileged user-mode application. Combined with
the first attack, the attacker can remotely compromise
the kernel without exploiting any software vulnerabili-
ties. To compromise the kernel, the attacker first fills
the physical memory with page-table entries by allocat-
ing a large amount of memory. Next, the attacker uses
rowhammer to flip a bit in memory. Since the physical
memory is filled with page-table entries, there is a high
probability that an individual page-table entry is mod-
ified by the bit flip in a way that enables the attacker
to access other page-table entries, modify arbitrary (ker-
nel) memory, and eventually completely compromise the
system. Qiao and Seaborn [17] implemented a rowham-
mer attack with the x86 movnti instruction. Since the
memcpy function of 1ibc — which is linked to nearly
all C programs — utilizes the movnt i instruction, the at-
tacker can exploit the rowhammer bug with code-reuse
attack techniques [21]]. Hence, the attacker is not re-
quired to inject her own code but can reuse existing code
to conduct the attack. Aweke et al. [3] showed how to
execute the rowhammer attack without using any spe-
cial instruction (e.g., c1f1lush and movnti). The au-
thors use a specific memory-access pattern that forces
the CPU to evict certain cache sets in a fast and reliable
way. They also concluded that a higher refresh rate for
the memory would not stop rowhammer attacks. Gruss
et al. [7]] demonstrated that rowhammer can be launched
from JavaScript. Specifically, they were able to launch
an attack against the page tables in a recent Firefox ver-
sion. Similar to Seaborn and Dullien’s exploit this attack
is mitigated by CATT. Later, Bosman et al. [4] extended
this work by exploiting the memory deduplication fea-

ture of Windows 10 to create counterfeit JavaScript ob-
jects, and corrupting these objects through rowhammer
to gain arbitrary read/write access within the browser. In
their follow-up work, Razavi et al. [18] applied the same
attack technique to compromise cryptographic (private)
keys of co-located virtual machines. Concurrently, Xiao
et al. [20] presented another cross virtual machine attack
where they use rowhammer to manipulate page-table en-
tries of Xen. Further, they presented a methodology to
automatically reverse engineer the relationship between
physical addresses and rows and banks. Independently,
Pessl et al. [15] also presented a methodology to reverse
engineer this relationship. Based on their findings, they
demonstrated cross-CPU rowhammer attacks, and prac-
tical attacks on DDR4. Van der Veen et al. [24] recently
demonstrated how to adapt the rowhammer exploit to es-
calate privileges in Android on smartphones. Since the
authors use the same exploitation strategy of Seaborn
and Dullien, CATT can successfully prevent this privi-
lege escalation attack. While the authors conclude that
it is challenging to mitigate rowhammer in software, we
present a viable implementation that can mitigate practi-
cal user-land privilege escalation rowhammer attacks.

Note that all these attacks require memory belonging
to a higher-privileged domain (e.g., kernel) to be phys-
ically co-located to memory that is under the attacker’s
control. Since our defense prevents direct co-location,
we mitigate these rowhammer attacks.

9.2 Defenses against Rowhammer

Kim et al. [11] present a number of possible mitigation
strategies. Most of their solutions involve changes to
the hardware, i.e., improved chips, refreshing rows more
frequently, or error-correcting code memory. However,
these solutions are not very practical: the production
of improved chips requires an improved design, and a
new manufacturing process which would be costly, and
hence, is unlikely to be implemented. The idea behind
refreshing the rows more frequently (every 32ms instead
of 64ms) is that the attacker needs to hammer rows many
times to destabilize an adjacent memory cell which even-
tually causes the bit flip. Hence, refreshing (stabilizing)
rows more frequently could prevent attacks because the
attacker would not have enough time to destabilize indi-
vidual memory cells. Nevertheless, Aweke et al. [3]] were
able to conduct a rowhammer attack within 32ms. There-
fore, a higher refresh rate alone cannot be considered as
an effective countermeasure against rowhammer. Error-
correcting code (ECC) memory is able to detect and cor-
rect single-bit errors. As observed by Kim et al. [11]
rowhammer can induce multiple bit flips which cannot
be detected by ECC memory. Further, ECC memory has
an additional space overhead of around 12% and is more
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expensive than usual DRAM, therefore it is rarely used.

Kim et al. [11] suggest to use probabilistic adjacent
row activation (PARA) to mitigate rowhammer attacks.
As the name suggests, reading from a row will trigger
an activation of adjacent rows with a low probability.
During the attack, the malicious rows are activated many
times. Hence, with high probability the victim row gets
refreshed (stabilized) during the attack. The main advan-
tage of this approach is its low performance overhead.
However, it requires changes to the memory controller.
Thus, PARA is not suited to protect legacy systems.

To the best of our knowledge Aweke et al. [3] pro-
posed the only other software-based mitigation against
rowhammer. Their mitigation, coined ANVIL, uses per-
formance counters to detect high cache-eviction rates
which serves as an indicator of rowhammer attacks [3l].
However, this defense strategy has three disadvantages:
(1) it requires the CPU to feature performance coun-
ters. In contrast, our defense does not rely on any spe-
cial hardware features. (2) ANVIL’s worst-case run-
time overhead for SPEC CPU2006 is 8%, whereas our
worst-case overhead is 0.29% (see Table [d). (3) ANVIL
is a heuristic-based approach. Hence, it naturally suf-
fers from false positives (although the FP rate is below
1% on average). In contrast, we provide a determinis-
tic approach that is guaranteed to stop rowhammer-based
kernel-privilege escalation attacks.

10 Conclusion

Rowhammer is a hardware fault, triggered by software,
allowing the attacker to flip bits in physical memory
and undermine CPU-enforced memory access control.
Recently, researchers have demonstrated the power and
consequences of rowhammer attacks by breaking the iso-
lation between virtual machines, user and kernel mode,
and even enabling traditional memory-corruption attacks
in the browser. In particular, rowhammer attacks that
undermine the separation of user and kernel mode are
highly practical and critical for end-user systems and de-
vices.

Contrary to the common belief that rowhammer re-
quires hardware changes, we show the first defense strat-
egy that is purely based on software. CATT is a practical
mitigation that tolerates rowhammer attacks by dividing
the physical memory into security domains, and limiting
rowhammer-induced bit flips to the attacker-controlled
security domain. To this end, we implemented a mod-
ified memory allocator that strictly separates memory
rows of user and kernel mode. Our detailed evaluation
of CATT demonstrates that our defense mechanism pre-
vents all known rowhammer-based kernel privilege esca-
lation attacks while neither affecting the run-time perfor-
mance nor the stability of the system.
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