
DECOUPLED ACCESS/EXECUTE COMPUTER ARCHITECTURES 

James E. Smith 

Department o f  E lec t r i ca l  and Computer Engineering 
Un ivers i t y  Of Wisconsin-Madison, Madison, Wisconsin 53706 

Abstract 

An arch i tec tu re  for  improving computer per- 
formance is presented and discussed. The main 
feature of the a rch i tec tu re  is a high degree of 
decoupling between operand access and execut ion.  
This results in an implementation which has two 
separate instruction streams that communicate via 
queues. A similar architecture has been 
previously proposed for array processors, but in 
that context the software is called on to do most 
of the coordination and synchronization between 
the instruction streams. This paper emphasizes 
implementation features that remove this burden 
from the programmer. Performance comparisons with 
a conventional scalar architecture are given, and 
these show that considerable performance gains are 
possible. 

Single i ns t r uc t i on  stream vers ions,  both 
physical and conceptual,  are discussed wi th  the 
primary goal of minimizing the d i f ferences wi th 
conventional a rch i tec tu res .  This would a l low 
known compilat ion and programming techniques to be 
used. F i n a l l y ,  the problem of deadlock in such a 
system is discussed, and one possible so lu t ion  is 
given. 

i .  Introduction 

I t  has long been known that  a pract ica l  
impediment to scalar computer performance is that  
any s t ra ight forward i ns t r uc t i on  decoding/ issuing 
scheme has some bott leneck through which 
i ns t ruc t i ons  pass at the maximum rate of one per 
clock period [ 1 ] .  Furthermore, modern 
organizat ions a d d i t i o n a l l y  constra in i ns t ruc t i ons  
to issue in program sequence. Some potent ia l  
i n s t r uc t i on  overlap is l os t  because l a t e r  
i ns t ruc t i ons  that  could issue may be be held up 
behind an e a r l i e r  i ns t r uc t i on  being blocked due to 
c o n f l i c t s .  For example, studies by Foster and 
Riseman [2 ]  and Tjaden and Flynn [3 ]  have shown 
that  average speedups of 1.7 to almost 1.9 times 
are possible by issuing i ns t ruc t i ons  out of order 
or by a l lowing mu l t i p le  i ns t ruc t i ons  to issue at 
once. Sophist icated issue methods used in the CDC 
6600 [4 ]  and IBM 360/91 [5 ]  were intended to 
achieve some of t h i s  performance gain, but these 
complex issue methods have been abandoned by t h e i r  
manufacturers, no doubt in large part because any 
performance improvement was more than o f fse t  by 
add i t iona l  hardware design, debugging, and 
maintenance problems. 

A second c r i t i c a l  cons t ra in t  on performance 
is time required for  processor-memory 
communication. Current t rends,  both in hardware 
and software, tend to aggravate the memory 
communication problem. In hardware, the trend 
toward higher leve ls  of i n teg ra t ion  has the e f fec t  
of increasing the performance impact of a l l  forms 
of i n t e r - c h i p  communication, i nc lud ing  processor- 
memory communication. At the a rch i tec tu ra l  l e v e l ,  
the trend is toward elaborate v i r t ua l  memory and 
protect ion methods. These tend to slow memory 
communication because of the required address 
t r ans la t i on  and protect ion checks. The use of 
mult iprocessors often means that  i nd i v idua l  
processors must contend for  memory resources. In 
add i t i on ,  in terconnect ion s t ruc tures add delay 
both due to t h e i r  size and addi t iona l  
content ion.  Cache memory becomes a less e f f ec t i ve  
so lu t ion  in mult iprocessor systems due to the 
problem of mainta in ing coherence. At the software 
l e v e l ,  f a c i l i t i e s  for  de f in ing  elaborate data 
types and s t ruc tures are being developed. This 
causes an increase in the number of operations 
needed to check types, compute ind ices ,  e tc .  a l l  
of which adds to increased delay when accessing 
data. Al l  of the above point to the need fo r  
processors tha t  can d iminish the e f fec ts  of 
increased memory communication t ime. 

This paper discussed a new type of processor 
a rch i tec tu re  which separates i t s  processing in to  
two par ts :  access to memory to fetch operands and 
store resu l t s ,  and operand execut ion to produce 
the resu l t s .  By a r c h i t e c t u r a l l y  decoupling data 
access from execut ion,  i t  is possible to construct  
implementations that  provide much of the 
performance improvement of fered by complex issuing 
methods, but wi thout  s i g n i f i c a n t  design 
complexi ty.  In add i t i on ,  i t  can a l low 
considerable memory communication delay to be 
hidden. 

The a rch i tec tu re  proposed here represents an 
evo lu t ionary  step, since a s i m i l a r ,  but more 
res t r i c t ed ,  separation of tasks appeared as ear ly  
as STRETCH [ 6 ] ,  and has been employed to some 
degree in several high performance processors, 
inc lud ing  those from IBM, Amdahl, CDC and CRAY. 
Recently, an array processor, the CSPI MAP 200 [7 ]  
has pushed the degree of access and execution 
decoupling beyond that  in any of the mainframe 
computers mentioned above. The a rch i tec tu re  of  
the MAP 200, i s ,  of course, d i rected l a rge l y  
toward vector or array type ca l cu la t i ons .  In 

0149-7111/82/0000/0112500.75 © 1982 IEEE 
112 



addition i t  has a re la t ive ly  "bare bones" 
architecture, as do other array processors, that 
places a great deal of responsibi l i ty for resource 
scheduling and interlocking on software. The 
benefits of a highly decoupled access/execute 
architecture go beyond  array processor 
applications, however. The author was 
independently studying a v i r t ua l l y  identical 
decoupling method in the context of high 
performance mainframe computers when he became 
aware of the MAP 200. As a result of the 
viewpoint taken in this study, the methods 
discussed here ref lect a philosophy of reducing 
programmer responsibi l i ty (and compiler 
complexity) while achieving improved performance. 

This paper begins with an overview of 
decoupled access/execute architectures. Then some 
specific implementation issues are discussed. 
These are handling of stores, conditional 
branches, and queues. All three of these are 
handled in new ways that remove the burden of 
synchronization and interlocking from software and 
place i t  in the hardware. Next, results of a 
performance analysis of the 14 Lawrence Livermore 
Loops [8] is given. This is followed by a 
discussion of ways that the two instruct ion 
streams of a decoupled access/execute architecture 
can be merged while retaining most, i f  not a l l ,  
the performance improvement. Final ly ,  a br ief  
discussion of deadlock, i ts  causes, detection and 
prevention is given. 

2. Architecture Overview 

In i ts  simplest form, a decoupled 
access/execute (DAE) architecture is separated 
into two major functional units, each with i ts own 
instruct ion stream (Fig. 1). These are the Access 
Processor or A-processor and the Execute Processor 
or E-processor. Each unit has i ts  own d is t inc t  
set of registers, in the A-processor these are 
denoted as registers AO, A1, . . . .  in the E- 
processor they are XO, Xl . . . . .  

The two processors execute separate programs 
with similar structure, but which perform two 
di f ferent functions. The A-processor performs al l  
operations necessary for transferring data to and 
from main memory. Tha t  is ,  i t  does al l  address 
computation and performs al l  memory read and write 
requests. I t  would also contain the operand 
cache, i f  the system has one. Data fetched from 
memory is either used in terna l ly  in the A- 
processor, or is placed in a FIFO queue and is 
sent to the E-processor. This is the Access to 
Execute Queue, or AEQ.The E-processor removes 
operands from the AEQ as i t  needs them and places 
any results into a second FIFO queue, the Execute 
to Access Queue or EAQ. 

The A-processor issues memory stores as soon 
as i t  computes the store address; i t  does not wait 
unt i l  the store data is received via the EAQ. 
Store addresses awaiting data are held in te rna l l y  
in the Write Address Queue or WAQ. As data 
arr ives at the A-processor via the EAQ, i t  is 
paired with the f i r s t  address in the WAQ and is 

I 

Fig. 1. Conce 

Memory_ 'I 

w' iI [ 'E-instructi°n i r i 

t A- instruct ions e 

'~. ', data 
' 

~Q~ L Execute 
L -d-a-t-a- Processor 

Access EAQ 
Processor AEBQ 

a ~ X 
regis ter  ~ register  

f i  I e EABQ f i  I e 

~tual DAE Architecture 

sent to memory. This pairing takes place 
automatically as the data becomes available. I t  
should be noted that in [7] there is a th i rd 
functional unit separate f rom the A- and E- 
processors that handles this write data/address 
pairing as one of i ts  tasks. 

The EAQ can also be used to pass data to the 
A-processor that is not stored into memory, but 
which is used for address calculation, for 
example. In this case, an instruct ion in the A- 
processor that reads from the EAQ must wait for 
the WAQ to be empty before i t  issues. Upon 
issuing i t  reads and removes the f i r s t  element 
from the EAQ. In some instances i t  might be 
desirable to perform duplicate calculations in the 
two processors to avoid having the A-processor 
wait for results from the E-processor. 

When producing software for a DAE 
architecture, the E- and A-processor programs have 
to be careful ly coordinated so that data is placed 
into and taken out of the two data transmission 
queues in correct sequence. Each group of 
instructions is constrained to issue in sequence, 
but the two sequences may "s l ip"  with respect to 
each other. In many cases, the accessing stream 
rushes ahead of the execute stream result ing in 
s ign i f icant ly  less memory fetch delay. 

Examples and preliminary performance 
comparisons given here are made with respect to a 
simplif ied CRAY-l-like scalar architecture. The 
CRAY-1 was chosen because: 

1) The emphasis here is on high performance 
processors; the CRAY-1 represents the state- 
of-art in high performance scalar 
architecture and implementation. 

2) The CRAY-1 has an instruct ion set that to 
some extent separates operand access and 
execution; this makes i t  easier to define and 
produce code for a comparable DAE 
architecture. 

113 



3) Access Execute The CRAY-1 is a very straightforward design 
and instruction timings are predictable and 
re lat ive ly  easy to calculate. 

Example 1: Fig. 2a is one of the 14 Lawrence 
Livermore Loops (HYDRO EXCERPT) orginal ly 
written to benchmark scalar performance 
[8].  Fig. 2b is a "compilation" onto a 
stylized CRAY-1-1ike architecture• The 
scalar registers are labelled XO, X1 . . . .  and 
there is only one set of scalar registers 
(instead of S and T registers in the CRAY- 
1). The address registers are labelled AO, 
A1, A2 . . . . .  and there are no B registers• 
In Fig. 2, registers XO, Xl, AO, and A1 are 
not used since they wi l l  la ter  be given 
special meaning. For this reason the 
conditional branch (JAM) is assumed to use 
register A7 rather than AO. The compiled 
code is very similar to CRAY Assembly 
Language with a r r o w s  inserted for 
readabi l i ty.  Actua l  CRAY FORTRAN compiler 
output (with the vectorizer turned off)  was 
used as a guide, so that the level of 
optimization and scheduling is what can be 
expected from a state-of-the-art optimizing 
compiler. For example, the addition of Q 
in the loop has been optimized away because Q 
= 0.0. Register al location and handling of 
loop and index variables have been changed 
s l ight ly  to accomodate later  examples• 

Fig. 2c contains the A and E-programs for the 
stra ight- l ine section of code making up the 
loop. An example with branch instructions is 
deferred until branch instructions have been 
discussed• Performance comparisons are deferred 
s t i l l  la ter  until queue implementations have been 
discussed. 

q = 0.0 
Do 1 k = 1, 400 
x(k) = q + y(k) * (r * z(k+lO) + t * z(k+11)) 

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO 
EXCERPT) 

A7 ÷ -400 
A2 ÷ 0 
A3 ÷ 1 
X2 ÷ r 
X5 ÷ t 

loop: X3 ÷ z + 10, A2 
X7 ÷ z + 11, A2 
X4 ÷ X2 * f  X3 
X3 ÷ X5 *f  X7 
X7 ÷ y, A2 
X6 ÷ X3 + f  X4 
X4 ÷ X7 * f  X6 
A7 ÷ A7 + i 
x ,  A2 ÷ X4 
A2 ÷ A2 + A3 
JAM l o o p  

negative loop count 
i n i t i a l i z e  index 
index increment 
load loop invariants 
into registers 
load z(k+lO) 
load z(k+11) 
r*z(k+lO)- f l t ,  mult. 
t * z(k+ll) 
load y(k) 
r*z(x+10)+t*z(k+11)) 

• y(k) * (above) 
• increment loop counter 
• store into x(k) 
• increment index 
• Branch i f  A7 < 0 

Fig. 2b. Compilation onto CRAY-l-like 
architecture 

AEQ ÷ z + 10, A2 
AEQ ÷ z + 11, A2 
AEQ + y, A2 
A7 ÷ A7 + 1 
x, A2÷ EAQ 
A2 ÷ A2+ A3 

X4 ÷ X2 *f  AEQ 
X3 ÷ X5 *f AEQ 
X6 ÷ X3 +f X4 

EAQ ÷ AEQ *f  X6 

Fig. 2c. Access and execute programs for 
s t ra ight- l ine section of loop 

3. Handling Memory Stores 

As mentioned ear l ie r ,  memory addresses for 
stores may be computed well in advance of when the 
data is available• These addresses are held in 
the WAQ, and as store data is passed over the EAQ, 
i t  is removed by the A-processor and l ined up with 
i ts address in the WAQ before being sent to 
memory. The issuing of stores before data is 
available is an important factor in improving 
performance, because i t  allows load instructions 
to be issued without waiting for previous store 
instructions. 

A problem that arises, however, is that a 
load instruction might use the same memory 
location (address) as a previously issued, but not 
yet completed, store. The solution in [7] is to 
provide the programmer with interlocks to hold 
stores from issuing unti l data is available when 
there is any danger of a load bypassing a store to 
the same location• 

An al ternat ive,  but s l ight ly  more expensive, 
solution that relieves the programmer (or 
compiler) of inserting interlocks is to do an 
associative compare of each newly issued load 
address with al l  the addresses in the WAQ. I f  
there is a match, then the load should be held 
(and al l  subsequent loads should be held, possibly 
by blocking thei r  issue) unti l the match condition 
goes away. This associative compare would be a 
l imi t ing factor on the size of the WAQ, but a size 
of 8 - 16 addresses seems feasible• Study of the 
performance impact of the WAQ length is being 
undertaken• 

4• Conditional Branch Instructions 

In order for the A- and E-processors to track 
each other, they must be able to coordinate 
conditional jumps or branches• I t  is proposed 
that FIFO queues also be used for this purpose• 
These are the E to A Branch Queue (EABQ) and A to 
E Branch Queue (AEBQ) in Fig. 1. 

Either processor could conceivably have the 
data necessary to decide a conditional branch. 

114 



Consequently, each processor has a set of 
conditional branch instructions that use data 
residing within i t .  There is also a "Branch From 
Queue" (BFQ) instruction that is conditional on 
the branch outcome at the head of the branch queue 
coming f rom the opposite processor. When a 
processor determines a conditional branch outcome, 
i t  places i t  on the ta i l  of the branch queue to 
the opposite processor. Thus conditional branches 
appear in the two processors as complementary 
pairs. I f  a conditional branch in the A-processor 
uses i ts own internal data, the conditional branch 
in the E-processor is a BFQ, and vice versa. 

For performance reasons, i t  is desirable for 
the A-processor to determine as many of the 
conditional branches as possible. This reduces 
dependency on the E-processor and allows the A- 
processor to run ahead. Furthermore, i f  the A- 
processor is running ahead of the E-processor, 
branch outcomes in the AEBQ can be used by the 
instruction fetch hardware in the E-processor to 
reduce or eliminate instruction fetch delays 
related to conditional branches, i .e .  i t  is as i f  
the E-processor observes unconditonal branches 
rather than conditional ones. Often, as when a 
loop counter is also used as an array index, i t  
happens naturally that the A-processor determines 
conditional branches. 

5. Queue Architecture and Implementation 

Thus far,  the E- and A-processors have 
communicated via EAQ and AEQ which are exp l i c i t  
architectural elements. An architectural ly 
cleaner alternative is to make some of the general 
purpose registers the queue heads and t a i l s .  For 
example, in the A-processor, A0 could be 
designated the head of the EAQ, and A1 the ta i l  of 
the AEQ. Similarly, in the E-processor, X0 could 
be the head of the AEQ, and X1 the ta i l  of the 
EAQ. In this way, no special instructions or 
addressing modes are needed to access the queues, 
they can be referred to just as registers are. 

I t  might be convenient to give a processor 
access to the top two (or more) elements of a 
queue, as when the top two elements of a queue are 
both operands for an add or mult iply. In this 
case, one could designate separate registers for 
each position in the queue to be accessed. For 
example, X0 and X1 could be the f i r s t  two elements 
in the AEQ, with X2 being the ta i l  of the EAQ. 
The instruction X2 ÷ XO + X1 adds the f i r s t  two 
members of the AEQ and returns the result on the 
EAQ. ~ In the remainder of this paper, however, we 
give access only to the element at the head of a 
queue and use the register assignments as given in 
the previous paragraph. 

The use of registers as queue heads and ta i l s  
also suggests a convenient and ef f ic ient  
implementation. In Fig. 3 the AEQ is shown 
implemented as a standard circular buffer held in 
a register f i l e .  A "head counter" points to the 
element of the register f i l e  that is at the head 
of the queue. This counter controls the selection 
of head element. 

There is a multiplexer that selects elements 
of the regular X register f i l e ,  with the output of 
the AEQ f i l e  feeding the X0 input to the 
multiplexer. The space for X0 in the regular 
register f i l e  is not used; any read from XO gets 
the element f rom the top of the queue and 
increments the head counter (modulo the AEQ size). 

The " ta i l  counter" points to the f i r s t  open 
slot at the ta i l  of the AEQ. A write by the A- 
processor into A1 also causes the data to be 
written into the ta i l  position of the AEQ and 
increments the ta i l  counter (modulo the AEQ 
size). When the head counter = ta i l  counter + 1 
(modulo the AEQ size) then the AEQ is considered 
to be fu l l  and no more data can be written until 
data is removed and the head counter is incre- 
mented. When the head counter = ta i l  counter, 
then the queue is empty. 

jn tai11 
counter 

wr i te ~ 
wri te 

from address 
write 

A- data 
pro( 

AEQ 
regis ter  f i l e  

X 

registers 

Xl-X n 

head=tai I+1 
I " Compare head=tai 1 

~terl on read 

read I 
address l,,x " 

read ~ 
data i / 

IUX ~ 
I selected 

Xl-Xn ~ I data 

Regis t~ No. 
Xo-X n 

Fig. 3. An AEQ implementation 

The design for the EAQ can be v i r t u a l l y  
identical to that for the AEQ. With th is  
implementation, the EAQ f i t s  quite natural ly  into 
the A-processor and the AEQ f i t s  equally well into 
the E-processor. I t  appears that the time needed 
to access a queue, ei ther for reading or wr i t ing ,  

115 



need not be any longer than to access a register 
f i l e  as demonstrated by the above implementation. 

By using the above implementation with 
registers as queue heads and t a i l s ,  certain 
register writes need to be flagged as i l l e g a l .  
Any write by the E processor into XO would be 
i l l e g a l ,  and any write by the A-processor into AO 
would be i l l e g a l .  A more complicated structure 
could conceivably be used to allow these writes, 
but there appears to be l i t t l e  advantage to doing 
so. 

The A-processor is allowed to read from A1, 
and the E-processor is allowed to read from XI. 
These registers hold the most recent elements 
entered into the AEQ and EAQ, respectively (these 
are actual ly duplicates since separate copies 
reside in the AEQ or EAQ register f i l e ) .  This 
read access is useful i f  a computed result is to 
be sent to the opposite processor, and is also 
needed for subsequent computation in the 
originat ing processor. 

This method of using registers as queue heads 
and ta i l s  also simpli f ies testing queues for fu l l  
and empty conditions. In a typical pipelined 
processor, e.g., the CRAY-1, a set of f l i p - f l ops ,  
one for each register, is used to coordinate the 
reading and wri t ing of registers so that register 
contents are read and updated in correct 
sequence. When an instruct ion issues that changes 
a register 's contents, the corresponding f l i p - f l o p  
is set to designate the register as being busy. 
Any subsequent instruction using the register as 
an input or output operand encounters the busy b i t  
and is blocked from issuing. After an instruct ion 
that modifies a register completes, the busy b i t  
is cleared, and any instruct ion blocked by the bi t  
is allowed to issue. 

The queues can be checked for empty/full 
status by exactly the same busy b i ts .  I f  the AEQ 
is empty, for example, the XO busy bi t  is set so 
that any instruct ion needing an operand from the 
AEQ is blocked. Simi lar ly,  i f  the AEQ is f u l l ,  
then the A1 busy bi t  is set so that any 
instruct ion needing to place data into the queue 
is blocked. A similar implementation for the EAQ 
should also be used. 

6. Performance Improvement 

In this section, estimates of possible 
performance improvement with DAE architectures are 
made. These are based on a simpli f ied CRAY-1 
model f i r s t  discussed in Example 1. To get single 
instruct ion stream estimates, the 14 Lawrence 
Livermore Loops were f i r s t  hand compiled onto the 
styl ized CRAY-1 scalar architecture. The actual 
object code generated by the CRAY FORTRAN compiler 
was used as a guide so that the level of code 
optimization and scheduling is rea l i s t i c .  The 
simpl i f ied architecture has only one level of 
scalar registers (A and X) and i t  was assumed that 
the number of scalar registers is not a 
l im i ta t ion ,  although very seldom are more than 8 
of each type needed. 

Execution times were estimated in clock 
periods, using the number of clock periods 
required by the CRAY-1 for each operation, e.g., a 
load from memory is 11 clock periods, a f loat ing 
add is 6 and a f loat ing mult iply is 7 [9] .  I t  
was assumed that there are no memory bank 
conf l ic ts ,  and that loads can issue on consecutive 
clock periods. Branch instruct ions are assumed to 
require 5 clock periods for a taken branch, and 2 
clock periods for a not taken one-- i .e,  optimum 
conditions are assumed. 

The DAE hand compilation was extracted 
d i rect ly  from the simpl i f ied CRAY-1 compilation. 
No further optimization or scheduling was done. 
Here, the same CRAY-1 execution times were used to 
estimate program execution time. Each of the two 
instruct ion streams was assumed to issue in 
program sequence, just as the simpl i f ied CRAY-1 
was. The registers AO, XO, A1, X1 are used as 
queue heads and ta i l s  as discussed ear l ie r .  

As shown in secton 5 the time needed to 
communicate through a queue should be no longer 
than to communicate through a register.  This was 
assumed in making the time estimates given below. 

Fig. 4a shows the timings for the HYDRO 
EXCERPT loop. The simplifed CRAY-1 takes 39 clock 
periods for each pass through the loop (34 clock 
periods to get through the loop, plus 5 more for 
the taken branch at the bottom). 

Fig. 4b show the timings in clock periods for 
the Access and Execute programs in the DAE 
version. In th is program, the A-processor decides 
al l  the conditional branches and computes a l l  
addressing information i t s e l f .  This means the A- 
processor is never delayed by the E-processor. 
The timings given assume complete independence 
between the two loops, although i n i t i a l l y  the E- 
program wi l l  be held up waiting for i ts  f i r s t  set 
of operands. 

Issue Time 

0 l o o p :  X3 ÷ z + 10, A2 
i X7 ÷ z + 11, A2 

11 X4 ÷ X2 * f  X3 
12 X3 ÷ X5 * f  X7 
13 X7 ÷ y ,  A2 
19 X6 ÷ X3 + f  X4 
25 X4 ÷ X7 * f  X6 
26 A7 ÷ A7 + i 
32 x ,  A2 ÷ X4 
33 A2 ÷ A2 + A3 
34 JAM 1 oop 

Fig. 4a. Timing estimate for HYDRO 
EXCERPT loop on simpli f ied CRAY-i 

116 



Issue Time Access 

0 loop: AI÷ z + 10, A2 
1 A1 ÷ z + 11, A2 
2 A1 ÷ y, A2 
3 A7 ÷ A7 + 1 
4 x, A2÷AO 
5 A2 ÷ A2 + A3 
6 JAM loop 

Issue Time Execute 

0 loop: X4 ÷ X2 *f  XO 
1 X3 ÷ X5 *f XO 
8 X6 ÷ X3 +f X4 

14 Xl ÷ XO *f X6 
15 BFQ loop 

Fig. 4b. Timing estimate for HYDRO EXCERPT 
loop on DAE as architecture 

The A-processor can make each pass through 
i ts loop in 11 clock periods (including the 5 for 
the taken branch). The E-processor takes 20 clock 
periods and would lag behind the A-processor. 
Nevertheless, after the f i r s t  two passes through 
i ts loop (where there is a wait by the E-processor 
for AEQ) the computation proceeds at the rate of 
20 clock periods per i terat ion--nearly twice the 
speed of the single stream version. This 
improvement is due ent i rely to the decoupling of 
access from execution. 

Loop Simplified DAE Arch. Time Speedup 
CRAY-1 Time 

1 39 20 1.95 
2 53 27 1.96 
3 27 13 2.08 
4 31 13 2.38 
5 65 38 1.71 
6 59 39 1.51 
7 71 55 1.29 
8 178 112 1.59 
9 94 60 1.57 

10 87 55 1.58 
11 25 19 1.32 
12 25 10 2.50 
13 132 120 1.10 
14 147 105 1.40 

Average 1.71 

Fig. 5. Performance estimates for the 
14 Lawrence Livermore Loops. 
All times are in clock periods 
per loop i terat ion.  

All fourteen of the original Lawrence 
Livermore Loops were analyzed as just described. 
The results are given in Fig. 5. The speedup is 
computed by dividing the simplif ied CRAY-1 clock 

periods by the DAE architecture clock periods. 
The average speedup is just over 1.7 with some 
speedups as high as 2.5. By using two processors 
a speedup of greater than two is achieved because 
the issue logic in a pipelined processor typ ica l ly  
spends more time waiting to issue instructions 
than actually issuing them. By using a DAE 
architecture the amount of waiting can be reduced 
considerably. I f  s t r i c t l y  serial processors were 
used then the maximum speedup would be two. 

7. Single Instruction Stream DAE Architectures 

While the d u a l  instruction stream DAE 
architecture is conceptually simple and leads to 
straightforward implementations i t  does suffer 
some disadvantages. For the most part these are 
due to the human element--the programmer and/or 
compiler writer must deal  with two interacting 
instruction streams. The programmer problem can 
be overcome i f  a high level language is used. 
This forces the work onto the compiler, however, 
and new techniques would probably need to be 
developed. 

A disadvantage of secondary importance is 
that two separate instruction fetch and decode 
units are needed, one for each instruction 
stream. This might also require two ports into 
main memory for instructions rather than one. 
This hardware cost problem can probably be 
par t ia l ly  al leviated by using the same design for 
both instruction fetch/decode units. 

In this section we br ie f ly  outline solutions 
to the above problems that 

l )  Physically merge the two instruction 
streams into one, or 

2) Conceptually merge the two instruction 
streams for the purpose of programming and 
compilation, but leave them physically 
separate for execution. 

The simplest way to physically achieve a 
single instruction stream is to "interleave" the 
instructions from the two streams. Let a l ,  a2, 

. . . .  a n be the sequence of instructions in the A- 

program and le t  e l ,  e2, . . . .  e m be the sequence of 

instructions in the E-program. An interleaving 
consists of combining the two sequences into one 
so that: 

I )  i f  a i precedes aj in the original A- 

prog ram then a i precedes aj i n the 

i nterl eaved sequence, 

2) i f  e i precedes ej in the original E- 

program then e i precedes ej i n the 

interleaved sequence, 

3) i f  a k and e~ are corresponding branch 

instructions in the two sequences, i . e . ,  a 
conditional branch and the corresponding 

117 



branch from queue or two corresponding 
unconditional branches, then a single 
branch instruction is placed in the 
interleaved sequence which satisf ies the 
precedence constraints 1) and 2) for both 
a k and e~. 

As the two sequences are interleaved, a bi t  
can be added to each nonbranch instruction, say as 
part of the opcode, to indicate the stream to 
which i t  or ig ina l ly  belonged. After instructions 
are fetched from memory and decoded, the bi t  can 
be used to guide instructions to the correct 
processor for execution. Queues in front of the 
processors can be used to hold the decoded 
instructions so that the processors retain the 
freedom to "s l ip"  with respect to each other. 
With this scheme, only one program counter is 
required, and the BFQ instructions are no longer 
needed. 

I t  should be noted, however, that this 
approach reintroduces the one instruction per 
clock period bottleneck in the instruction 
fetch/decode pipeline. These would in some 
instances result in reduced performance. 

Example 2: An interleaving of the HYDRO 
EXCERPT program is shown in Fig. 6. The 
processor to which each instruction belongs is 
noted in parentheses. This particular 
interleaving places an instruction sending 
data via a queue before the instruction in the 
other processor that receives the data. 

loop: AI ÷ z + 10, A2 (A) 
A1 ÷ z + 11, A2 (A) 
X4 ÷ X2 *f  XO (E) 
X3 ÷ X5 *f  XO (E) 
X6 + X3 *f  X4 (E) 
A1 ÷ y, A2 (A) 
Xl ÷ XO*f X6 (E) 
A7 ÷ A7 + 1 (A) 
x, A2 + AO (A) 
A2 ÷ A2 +A3 (A) 
JAM loop 

Fig. 6. An interleaved instruction stream. 

The simple interleaving of the two 
instruction streams does l i t t l e  to a l lev ia te  
programming and readabil i ty problems. The program 
in the example above is rather confusing when one 
is used to thinking of conventional 
architecture. These problems can be par t ia l l y  
overcome by inserting "noise" instructions into 
the l i s t i ng .  These noise instructions do not 
result executable code, but make exp l i c i t  the 
impl ic i t  data transfers done via the queues. That 
is,  the "instruction" AO ÷ X1 can be used to 
denote the transfer of information via the EAQ. 
This "instruction" would be inserted af ter  the 
instruction in the E-processor that places data 
into X1 and before the instruction in the A- 
processor that uses the data. This added 
"instruction" would be used only for programming 
or, in the case of a compiler, for bookkeeping 

purposes. I t  would not actually lead to any 
machine code. 

Example 3. Fig. 7 shows an interleaving of 
the HYDRO EXCERPT with the AO ÷ Xl and 

XO ÷ A1 "noise instructions" inserted. 

From the above example, i t  can be seen that we are 
very close to a conventional architecture which 
uses dif ferent registers for addressing and 
functional unit execution, i . e . ,  the CDC and CRAY 
architectures. The only difference is that 
"copies" from X to A and A to X registers are 
restricted to take place among AO, A1, XO, and X1, 
and al l  memory loads and stores must take place 
via A registers. 

l oo p : A1 ÷ z + 10, A2 (A) 
XO ÷ A1 (noise) 
X4 ÷ X2 * f  XO (E) 
AI ÷ z + 11, A2 (A) 
XO ÷ A1 (noise) 
X3 ÷ X5 * f  XO (E) 
X6 ÷ X3 +f X4 (E) 
AI ÷ y, A2 (A) 
XO + A1 (noise) 
Xl ÷ XO *f  X6 (E) 
AO ÷ X1 (noise) 
x, A2 ÷ AO (A) 
A2 ÷ A2 + A3 (A) 
JAM loop 

Fig. 7. An interleaved instruction stream 
with noise instructions inserted 
to enhance readabi l i ty.  

The architecture is now so similar to 
conventional architectures that many standard 
compiler techniques can probably be used. Then 
after compilation, "noise" instructions can be 
removed. I f  one physical instruction stream is to 
be used, the instructions can easily be "marked" 
with the processor they belong to. 

I f  two instruction streams are to be used, 
then the compiler can pull apart the two 
instruction streams, with BFQ instructions being 
inserted. 

The above discussion is by no means the last 
word on compilation for DAE architectures. As 
mentioned ear l ie r ,  for performance reasons, 
dependency of the A-processor or E-processor 
results should be reduced so that the A-processor 
can run ahead of the E-processor. This can often 
be achieved by duplicating calculations in both 
processors. For high performance, a compiler 
would have to have this capabi l i ty.  Furthermore, 
the compiler would have other optimization and 
scheduling problems that d i f fe r  f r o m  those 
encountered in a conventional architecture. It  is 
clear that these and other research problems 
remain in the area of compilation for DAE 
architecture. 

118 



8. Deadlock 

In a DAE arch i tec ture ,  deadlock can occur i f  
both the AEQ and EAQ are f u l l  and both processors 
are blocked by the f u l l  queues, or i f  both queues 
are empty and both processors are blocked by the 
empty queues. An example of th is  is shown in Fig. 
8. Here, the queues have once again been made 
e x p l i c i t  to make the problem c learer .  Deadlock 
detect ion and prevention are both important 
problems. Deadlock can be detected by simply 
determining when ins t ruc t ion  issue is being 
blocked in both processors due to fu l l  or empty 
queues. This should be flagged as a program 
er ro r ,  and the program should be purged. 

Access Execute 

A4 + EAQ X3 ÷ AEQ 
AEQ ÷ A5 EAQ ÷ X2 

Fig. 8. A so lut ion which leads to dead- 
lock: An attempted transfer from 
A5 to X3 and from X2 to A4. 

Deadlock prevention is more complicated, and 
i t  is beyond the scope of this paper to go into 
deta i l .  Rather, a suf f ic ient  condition for 
deadlock-free operation is informally given, and a 
way of achieving this suf f ic ient  condition is 
given. 

Consider the dynamic instruct ion streams as 
they flow through the processors. For each data 
transfer through the EAQ or AEQ, there is an 
instruct ion in one processor that sends the data 
item, and an instruction in the other processor 
that receives the data item. The instruct ion that 
sends data item i is called "SEND i , "  and the 
instruct ion that receives data item i is called 
"RECEIVE i . "  

An interleaving of instructions (Section 7) 
is defined to be proper i f  the instruction causing 
SEND i precedes t T T ~ t r u c t i o n  causing RECEIVE i 
for al l  data transfers i .  The interleaving shown 
in Fig. 6 is a proper interleaving. Furthermore, 
a proper interleaving is needed when using the 
method of inserting noise instructions to improve 
readabil i ty as shown in Fig. 7. 

I t  can be shown that i f  the A- and E-program 
can be properly in ter leaved then deadlock cannot 
occur. Again, i t  is beyond the scope of th is  
pamper to develop the formalism needed for  a 
r igorous proof. 

The program in Fig. 7 represents a proper 
in te r leav ing  for our HYDRO EXCERPT compi lat ion,  so 
the program must be deadlock-free. Turning to 
Fig. 8, i t  can be seen that i t  is impossible to 
properly in ter leave the A- and E-programs. To be 
proper, EAQ ÷ X2 must precede A4 ÷ EAQ and AEQ ÷ 
A5 must precede X3 ÷ AEQ. This can not be done 
since the de f i n i t i on  of an in te r leav ing  requires 
that  A4 ÷ EAQ must preceed AEQ ÷ A5 and X3 ÷ AEQ 
must preceed EAQ ÷ X2. Therefore the su f f i c i en t  
condi t ion given above is not sa t i s f i ed .  

9. Conclusions 

I t  has been shown that  DAE Architectures can 
be implemented in ways that  minimize programmer 
involvement. I t  has also been shown that  
considerable performance improvement is possible,  
whi le using st ra ight forward ins t ruc t ion  issue 
methods that are cur rent ly  in use today. 
Furthermore, the improvement is achieved using 
code that is optimized roughly at the level of 
current compilers. 

DAE archi tectures are r e l a t i v e l y  new, and 
many var ia t ions  are possible.  Mul t ip le  queues, 
add i t iona l  processors, vector versions, and VLSI 
implementations are a few examples that deserve 
fur ther  study. 

Acknowledgement 

The author would l i ke  to thank David Anderson 
for  his assistance in obtaining CRAY-1 object 
l i s t i n g s  for  the Livermore Loops. 

References 

[1] Flynn, M. J. ,  "Very High-Speed Computing 
Systems," Proceedings of the IEEE, Vol 54, No. 
12, pp. 1901-1909, December 1966. 

[2]  Riseman, E. M. and C. C. Foster, "Percolat ion 
of Code to Enhance Para l le l  Dispatching and 
Execution," IEEE Trans. on Computers, Vol. C- 
21, No. 12, pp. 1411-1415, December 1972. 

[3] Tjaden, G. S. and M. J. Flynn, "Detection and 
Paral I el Exec ut i on of Independent 
Instructions," IEEE Trans. on Computers, Vol. 
C-19, No. 10, pp. 889-895, October 1970. 

[4]  Thornton, J. E., Design of a Computer - The 
Control Data 6600, Scott,  Foresman and Co., 
Glenview, IL, 1970. 

[5] Anderson, D. W., F. J. Sparacio, and R. M. 
Tomasulo, "The IBM, System/360 Model 91: 
Machine Philosophy and Instruction Handling," 
IBM Journal of Research and Development, pp. 
8-24, January 1967 

[6]  Bucholz, W., ed.,  Planning a Computer System, 
McGraw-Hill, New York, 1962. 

[7]  Cohler, E. U. and J. E. Storer, "Funct ional ly  
Para l le l  Archi tecture for  Array Processors," 
Computer, Vol. 14, No. 9, pp. 28-36, September 
1981. 

[8]  McMahon, F. H., "FORTRAN CPU Performance 
Analysis,"  Lawrence Livermore Laborator ies, 
1972. 

[9] CRAY-1 Computer Systems, Hardware Reference 
Manual, Cray Research, Inc. ,  Chippewa Fa l ls ,  
E l ,  1979. 

119 


