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ABSTRACT
For many-core architectures like the GPUs, efficient off-chip
memory access is crucial to high performance; the appli-
cations are often limited by off-chip memory bandwidth.
Transforming data layout is an effective way to reshape the
access patterns to improve off-chip memory access behavior,
but several challenges had limited the use of automated data
layout transformation systems on GPUs, namely how to effi-
ciently handle arrays of aggregates, and transparently mar-
shal data between layouts required by different performance
sensitive kernels and legacy host code. While GPUs have
higher memory bandwidth and are natural candidates for
marshaling data between layouts, the relatively constrained
GPU memory capacity, compared to that of the CPU, im-
plies that not only the temporal cost of marshaling but also
the spatial overhead must be considered for any practical
layout transformation systems.

This paper presents DL, a practical GPU data layout
transformation system that addresses these problems: first,
a novel approach to laying out array of aggregate types
across GPU and CPU architectures is proposed to further
improve memory parallelism and kernel performance beyond
what is achieved by human programmers using discrete ar-
rays today. Our proposed new layout can be derived in situ
from the traditional Array of Structure, Structure of Arrays,
and adjacent Discrete Arrays layouts used by programmers.
Second, DL has a run-time library implemented in OpenCL
that transparently and efficiently converts, or marshals, data
to accommodate application components that have differ-
ent data layout requirements. We present insights that lead
to the design of this highly efficient run-time marshaling li-
brary. In particular, the in situ transformation implemented
in the library is comparable or faster than optimized tradi-
tional out-of-place transformations while avoiding doubling
the GPU DRAM usage. Third, we show experimental re-
sults that the new layout approach leads to substantial per-
formance improvement at the applications level even when
all marshaling cost is taken into account.
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1. INTRODUCTION
The OpenCL standard [3] promises portability of high

performance heterogeneous parallel computing applications
across a wide variety of CPU and GPU hardware. While
vendors such as AMD, Intel, IBM, and NVIDIA have largely

achieved functional portability of OpenCL applications to
date, there has been little reuse of OpenCL application ker-
nels across hardware platforms in practice. A major problem
that hinders the reuse of kernels is their performance sen-
sitivity to the diverse memory layout requirements of the
underlying hardware. The root of the problem is the con-
stantly increasing disparity between DRAM and processor
speeds [14], which compels modern memory system design-
ers to employ wider DRAM bursts and a high degree of
memory interleaving to create sufficient bandwidth to sup-
ply operands to the numerous processing elements.

Latency-optimized CPUs with large amount of on-chip
cache memories use long cache lines and deep memory chan-
nel queues to reshape transactions to the memory system
and achieve high utilization of the memory bandwidth. As
long as the data sets fit into the cache, the achievable band-
width of data accesses is largely insensitive to the access
patterns. As a result, CPU data sets tend to assume lay-
outs that follow the natural organization used in external
data file. For example, if each element of an aggregate data
set consists of several values, such as the RGB values of a
color pixel, the values for each data element are laid out in
consecutive memory locations, which is consistent with most
natural file formats of video cameras. Such layout is com-
monly referred to as the Array-of-Structure (AoS) layout.

Throughput-oriented many-core GPU systems tend to have
much less on-chip cache memory, if any, per parallel execu-
tion thread when compared to their CPU counterparts. For
example, the NVIDIA GTX480 GPU has a relatively small
cache capacity per thread (only 34 bytes of L2 cache memory
per thread, given 1536 threads per SM, 15 SMs, and 768KB
shared L2 cache). The purpose of the last-level cache is to
consolidate accesses from parallel threads into fewer DRAM
requests rather than to support temporal reuse by captur-
ing the working sets. Therefore, the achievable data access
bandwidth is much more sensitive to the access patterns of
the massive number of simultaneously executing threads. As
a result, NVIDIA GPUs show strong benefit from data lay-
out adjustments that minimize the number of cache lines
used by simultaneously executing threads. In the pixel ex-
ample, NVIDIA GPUs tend to prefer a data layout where
all the R values of the pixels processed by simultaneously
executing threads are in consecutive locations, followed by
G values and then followed by B values. Such layout is com-
monly referred to as the Structure-of-Arrays (SoA) layout.

In statically typed languages like OpenCL and its base
language C, the size of each (aggregate) field of a structure
must be known at compile time. This makes it extremely

978-1-4673-2633-9/12/$31.00 ©2012 IEEE



difficult, if not impossible, to declare SoA types and pointers
for dynamically allocated buffers where the size of each field
(array in this case) in the structure is unknown until run
time. Unfortunately, the dynamically allocated buffers are
the main use mode of bulk data in OpenCL kernels. As
a result, programmers tend to break up the structure and
simply use discrete arrays after they transform the layout
by hand. We will refer to this approach as as the discrete
arrays (DA) layout. However, for other GPU architectures
such as the ATI Evergreen architecture [2], näıve conversion
to DA layout can even hurt the performance. In the ATI
Evergreen architecture, this is due to its VLIW-based design
which favors short vectors of DRAM accesses by each work
item, and relatively simpler design of memory interleaving
comparing to NVIDIA architectures.

There are three major challenges presented to program-
mers in managing data layout for heterogeneous parallel
computing. First, due to the diverse layout preferences of
CPUs and different types of GPUs, neither AoS nor DA can
satisfy the needs of all OpenCL hosts and devices. Any data
layout chosen by the programmer will likely perform poorly
for some parts of the application on some types of devices.
This paper presents an approach that intelligently maps and
re-maps the data structure used in application kernels into
the most suitable layouts for underlying GPU architectures
in order to achieve good off-chip memory access efficiency.
Similar to the scheme proposed by Sung et al. [16] the sys-
tem determines the layout based on the indexing pattern
used by kernels to access aggregate data structures. The
contribution of this work is a new layout arrangement that
can be auto-tuned to match the needs of diverse architec-
tures, practically eliminating the need for multiple kernel
versions as far as data layout is concered.

Second, with programmer managed data layout, the pro-
grammer also must reconcile the discrepancy between the
host code data layout and the transformed kernel data lay-
out. In practice, it is often infeasible to convert the entire
host code due to its size and the I/O library components
that may be only available in binary form. If the program-
mer chose to have different layouts for a data structure in
different parts of the application, he/she needs to manually
create marshaling routines to convert between these layouts
at run time when the application transition from one part
to another. As we will show in the paper, efficient, high-
throughput data marshaling is a challenging endeavor and a
perfect candidate for highly optimized libraries. The system
should provide default, transparent and efficient support for
data marshaling.

Third, GPU DRAM capacity is usually only a fraction of
their CPU counterparts. Näıve, out-of-place data conver-
sion can easily double the memory footprint. In some cases
such as large numeric applications, this can be a prohibitive
factor. It is highly desirable to perform marshaling in situ
without requiring additional memory.

2. CONTRIBUTIONS
In order to address these three challenges that have hin-

dered the practical use of previous layout transformation
approaches, we developed three innovative mechanisms into
DL. First, we propose ASTA (Array-of-Structure-of-Tiled-
Arrays) to enable both high-performance accesses in diverse
architectures as well as low cost marshaling from/to array-
of-structures and struct-of-arrays. We then generalize ASTA

to a tiled transposition layout that is applicable on tall ar-
rays and some sparse matrix formats. Second, novel GPU
in-place marshaling algorithms are also developed as part
of the DL framework. Third, we implemented an auto-
matic data marshaling framework, as a run-time library that
transparently and efficiently marshal data to accommodate
application host code and kernel components that require
different data layout arrangements.

3. BACKGROUND AND MOTIVATION
In following section we will discuss issues blocking the

exploitation of memory parallelism on the GPUs.

3.1 Array-of-structure v.s. Structure-of-Array
Having coalesced memory access has long been advocated

as one of the most important off-chip memory access opti-
mizations for modern GPUs. However, numerical solvers for
many physical problems such as CFD (computational fluid
dynamics) involves solving multiple related physical proper-
ties in discretized space. Naturally, these properties can be
mapped into structures and then grouped into an array, in
which each GPU thread accesses its corresponding structure
instance. The OpenCL kernel AoS in Listing 1(line 6–9) is
a simplified case showing this usage. Note in OpenCL each
work-item (thread) is assigned uniquely an index, which can
be obtained through the get_global_id intrinsic call.

1 struct foo{

2 float bar;

3 int baz;

4 };

5

6 __kernel void AoS( __global foo* f) {

7 f[get_global_id(0)].bar*=2.0;

8 }

9

10 __kernel void DA(__global float *bar,

11 __global int *baz) {

12 bar[get_global_id(0)]*=2.0;

13 }

14

15 struct foo_2 {

16 float bar[4];

17 int baz[4];

18 };

19

20 __kernel void ASTA(__global foo_2* f) {

21 int gid0 = get_global_id(0);

22 f[gid0/4].bar[gid0%4] *=2.0;

23 }

Listing 1: AoS, Discrete Arrays, and ASTA

It is commonly assumed that the AoS layout of such data
structure degrades the performance by creating non-unit-
stride access across GPU work-items (or threads in CUDA
terms) in the same wavefront (or warp in CUDA terms).
A commonly applied transformation is to manually convert
it to discrete arrays (DA). In this example, one declares
a float array to hold all “float bar”s across structure in-
stances in the array; another int array for all “int baz”s.
This is to work around a limitation of mainstream GPGPU
programming models that are derived from C: structure



types do not support variable-sized member arrays in gen-
eral. So programmers usually have to implement aggregates
of dynamically-allocated array into discrete arrays, one for
each former structure member. This is shown in the kernel
DA in Listing 1 (line 10–13).

Another practical option, also mentioned by Che et al. [5],
is applicable when all members are of the same (scalar) type:
replacing the structure by an additional dimension and use
hard-coded indices (possibly using preprocessor macros or
enumerations) for each “member”. This effectively degen-
erates SoA to a multidimensional array of the same scalar
type. Through a transposition, one can move the named
indices to the highest dimension. Note that while DA and
this approach are different ways of getting around the lim-
itations of a statically typed language, Che’s approach and
DA are similar in their final layout. For the rest of this pa-
per, we will use DA to broadly refer to both Che’s approach
and DA.

Figure 1 shows the average time for accessing a float

data element of a micro-benchmark. In the microbench-
mark, each work-item works on one of a million of structure
instances in an AoS array. Work-item with global ID i ac-
cesses the i-th structure instance. Each work-item computes
sum reduction over all members in that structure instance.
The sum is then duplicated into all members of the corre-
sponding instances of another array-of-structure. The dupli-
cation gives the benchmark balanced number of loads and
stores. Giving the loads and stores the same level of in-
fluence on the measured cost. This benchmark does very
little computation so it is obviously memory bound. For
each architecture, a transformed version (from AoS to DA)
is presented to show the relative memory bandwidth gain.

The results from the NVIDIA architecture match the con-
ventional wisdom of GPU data layouts: the cost of accessing
the AoS grows almost linearly as the structure size increases.
A reasonable explanation is that as the size of the structure
increases, the stride of the accesses within each wavefront
also increases. This increases the portion of each DRAM
burst that is discarded by the memory access unit. The
Discrete Array curve shows that the DA layout preserves
the efficiency of DRAM accesses as the size of the structure
grows. Surprisingly, on the ATI architecture the AoS layout
performs better than the DA layout for structures smaller
than 14 floats. There seems to be a buffer and/or a VLIW
instruction schedule that allow more parts of each DRAM
burst to be utilized. This means that for ATI architectures,
moderately sized AoS is the better choice over DA. We be-
lieve that after 16 elements, the working set sizes of AoS
buffer of this particular benchmark exceed the cache sizes
on that particular architecture.

Figure 1 shows that choosing a single layout for portable
performance is not trivial. Näıve conversion of all GPU ker-
nels to discrete arrays might work well for NVIDIA GPUs,
but it is not the best choice for ATI GPUs. Without a
good programmer-level strategy for all architectures, the
programmers will always be compelled to write multiple ver-
sions of kernels in order to get good performance on each
architecture. We show such a strategy in this paper.

3.2 In-place Layout Conversion
Consider the layout of array f which is passed to kernel

AoS in Listing 1, Line 6. Assume that the programmer has
changed to kernel DA in Listing 1, line 11. Since array f is

still in AoS form on the host side, it needs to be marshaled
into the new DA form for use by the new kernel. To convert
array f to a DA layout in GPU, one approach is to launch a
kernel with 2n work-items. Each work item uses its index to
load a distinct f element, one of the two scalar members bar
and baz, into its register. This is illustrated in Figure 2. All
work items then perform a barrier synchronization to ensure
that everyone has finished loading its assigned element. Af-
ter the barrier, all work items store the loaded value to new
locations in the new discrete arrays, as shown in Figure 2.

f[0].bar	   f[0].baz	   f[1].bar	   f[1].baz	   f[2].bar	   f[2].baz	   …	  

bar[0]	   bar[1]	   bar[2]	   …	   …	   baz[0]	   baz[1]	   …	   …	  

n structure instances 

n elements of “bar” 

Work-‐
item	  0	  

Work-‐
item	  1	  

Work-‐item	  
2	  

Work-‐
item	  3	  

Work-‐
item	  4	  

Work-‐item	  5	  

… 

Figure 2: Converting Layout of Array F

There are however two problems. First, the array size (n)
is usually large for GPU workloads, but the scope of barrier
synchronization in current GPU architecture is fairly small;
in general GPU architectures do not support global barri-
ers across work-groups, each of which usually consists of at
most 1024 work-items (fine-grained threads) out of tens of
thousands of total work-items. This means a straightfor-
ward GPU-based in-place marshaling kernel would not scale
much beyond 1024 work-items. If we see the problem of
converting array f to SoA as transposing an 2-by-n column-
major matrix in-place, then in this approach the scope of
barrier synchronization must be large enough to cover any
cycles in the transposition process.

Mathematically, in-place transposition is a permutation
that can be factored into a product of disjoint cycles [11].
Assume that A is a m-rows-by-n-columns array (m × n for
brevity), where A(i, j) is the element in row i and column
j. (In the following text, when we refer to a element in a
row-major array, we use C-like syntax like A[i][j]; when
we refer to an element in a column-major array, we use
FORTRAN-like syntax like A(i, j).) In a linearized column-
major layout, A(i, j) is in offset location k = i + jm. The
transposed array A′ is an n-rows-by-m-columns array, and
A(i, j) at offset k is moved to A′(j, i) at k′ = j + in after
transposition. The formula for mapping from k to k′ is:

• k′ = kn mod M if 0 ≤ k < M

• k′ = M if k = M

where M = mn − 1. For transposing m × n row-major
array, the formula is:

• k′ = km mod M if 0 ≤ k < M

• k′ = M if k = M

We can generate a “chain” of mapping by starting with
an arbitrary offset k1, mapping it to k′1 and using k′1 as k2
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Figure 1: Speedup of Discrete-Array over AoS layout on a simple reduction kernel

for the next mapping. For example, we can use a column-
majored 3 × 5 matrix transposition example shown in Fig-
ure 3. We start with k1 = 1 (the location of A(1, 0)) and
map it to k′1 = 5 (the location of A′(0, 1)). We can then use
k2 = 5 (the location of A(2, 1)) and map it to k′2 = 11 (the
location of A′(1, 2)); the chain element at location 5 will be
shifted to location 11, and the element at location 11 will be
shifted to location 13, and so on. Eventually, we will return
to the original offset 1. This gives a cycle of (1 5 11 13 9

3 1). For brevity, we will omit the second occurrence of 1
and show the cycle as (1 5 11 13 9 3). The reader should
verify that there are five such cycles in transposing a 5 × 3
column-majored matrix: (0) (1 5 11 13 9 3)(7)(2 10 8

12 4 6)(14).

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   14	  13	  

A 

A’ (0,0) (1,0) (2,0) (3,0) (2,1) (0,1) (1,1) (4,0) (3,1) (0,2) (4,1) (2,2) (1,2) (3,2) (4,2) 

(0,0) (1,0) (2,0) (0,1) (1,2) (2,1) (0,2) (1,1) (2,2) (1,3) (0,3) (0,4) (2,3) (1,4) (2,4) 

Figure 3: Converting Layout of Array F

An important observation is that an in-place transpose
algorithm can perform the data movement for these five sets
of offset locations independently. This means that we only
need to synchronize the data movement within each cycle.

Unfortunately, the number of cycles and the length of each
cycle vary with problem size and there is in general no lo-
cality between elements in a cycle [13] in in-place transposi-
tion. Note for square matrices, the size of a cycle is either 1
(diagonal) or 2 (other elements), but in the case of Array-of-
Structure, the aspect ratio is usually not 1:1, as the number
of elements in a structure is usually much smaller than the
total number of structure instances. We will address this
point further in Section 4.4.

4. APPROACH
The proposed approach consists of three parts: the ASTA

layout, in-place marshaling from AoS and DA to ASTA,
and the design of a dynamic runtime marshaling library for
OpenCL.

4.1 The ASTA Layout
Given an AoS layout, we can convert T adjacent structure

instances into a mini SoA. We call this scheme Array-of-
Structure-of-Tiled-Array (ASTA). In Listing 1, the structure
type in Lines 15–18 and kernel ASTA shown in line 20 is an
example of ASTA. Note the struct foo_2 is derived from
struct foo by merging 4 instances of struct foo and gen-
erate a “mini SoA” out of each merged section. Effectively,
each scalar member in struct foo is expanded to a short
vector in struct foo_2. We call the length of this short
vector (T ) the coarsening factor of the ASTA type. The
short vector is called a tile. Usually the coarsening factor is
at least the number of work-items participating in memory
coalescing. ASTA improves memory coalescing while keep-
ing the field members of the same original instance more
closely stored, and is thus potentially useful to reduce mem-
ory channel partition camping due to large strides [16, 15].

The AoS layout can be considered as an M × S array
where S is a small integer in row-major layout. In this way,
DA is S ×M . Similarly, ASTA is similar to M ′ × S × T
where M = M ′T .

At a high level, marshaling from AoS to ASTA is similar
to transpose M ′ instances of small T ×S matrices. Whereas
marshaling from DA to ASTA is similar to transpose a ma-
trix of S ×M ′ of T -sized tiles.

We propose three algorithms here to facilitate efficient
in-place marshaling. For AoS to ASTA, when T × S is
small enough, a barrier-synchronization-based approach is
proposed. When T × S is larger (but still not as large as
a full matrix transposition), a fast cycle-following approach
that exploits locality within an ASTA instance is proposed.
For DA to ASTA, we exploit the fact that the T can cover
one or more cache lines, so there is good locality when mov-
ing tiles.

4.2 In-place Conversion from AoS



One of the benefits of ASTA that cannot be easily ac-
complished otherwise by discrete arrays is allowing in-place
marshaling. Let us consider an Array-of-structures, with
all structure members being of the same size. With this,
Array-of-Structure to Discrete Arrays transposition is like
transposing this tall array and treating the starting address
of each row after transposition as different arrays.

M/T 
tiles 

Local in-place transpose within a TxN subarray by a OpenCL 
workgroup 

Equivalent to: row-majored 3D array [M/T][T][N] before and [M/T][N]
[T] after conversion 

N (N«M) 

Fastest-Changing 
Direction 

X   
X   X   X   

X   

X   

Transpose a tile 

Figure 4: In-Place Marshaling of a Tall Matrix

For ASTA, instead of performing a full “transposition”
(difficult for non-square matrices if performed in-place) on
the entire array (thus converts to SoA), we use a tiled trans-
position that only transposes within subarray of the original
array (i.e. an ASTA instance). This allows fast in-place mar-
shaling as transforming each tile can be performed entirely
by an OpenCL work-group, and enables high-performance
coalesced access to the transformed layout. An example of
converting a tall matrix (which is also the case of a sparse
matrix represented in ELL [1, 4] format) is shown in Fig-
ure 4. This allows coalesced accesses along the column di-
rection in the example being vectorized in T-sized tiles. The
size of T is usually between 16 and 64 across GPU architec-
tures for memory coalescing. Note T is equivalent to the
coarsening factor in ASTA.

If each work-item is assigned to a structure element in
AoS, the forward marshaling kernel from AoS to ASTA can
be implemented in three steps (which is the same as the
scheme in Figure 2, except that n is always equal to the
coarsening factor):

1. Each AoS element is loaded into a private register in
the work-item

2. A barrier synchronization with memory fence
(barrier(CLK_GLOBAL_MEM_FENCE)in OpenCL) to make
sure all loads by all work-items in the same group is
finished at this point

3. The data held in the registers are stored to the target
ASTA fields in-place

This approach assumes that the coarsening factor times the
structure size is no larger than the maximum number of
work-items per work-group supported by the system. For

small AoS or tall arrays, this generally holds. One straight-
forward work-around to the work-group size limitation is to
use the local memory as the temporary storage instead of
registers. But in general, the tile size cannot exceed the size
of on-chip memory accessible to a work-group, be it the lo-
cal memory or the register file. A more general approach to
addressing other cases is addressed in section 4.4.

4.3 In-place Conversion from DA
Consider an array in DA layout, say G[2][n] in row-major

order and we define G[0][0..n-1] for storing element “foo”
and G[1][0...n-1] for storing element “bar”, both of the
same type. Then if the array is accessed with expression
G[0][get_global_id(0)] in OpenCL kernels, work-items in
the same wavefront would have coalesced memory accesses.
However, as we will show later, the large stride (n-elements)
between G[0][i] and G[1][i] can lead to suboptimal mem-
ory performance on some GPU architectures, especially the
current ATI GPUs. As observed by Sung et al [16], this is
related to partition camping problem especially when n is
power-of-two. Converting to ASTA can reduce the strides
and hence partition camping in this case.

However, as we mentioned earlier, this is essentially trans-
posing at a scale large enough that cannot be done easily
using the same approach for converting AoS to ASTA. For-
tunately, for the n values that are multiples of ASTA tile
size T, there are efficient solutions.

First, if n is multiple of tile size T, say n = n′T , then
converting the example array G to ASTA is essentially tak-
ing a row majored array G[2][n′][T] and transpose on the
top two dimensions, leading to G′[n′][2][T]. Another way
to view this conversion is to consider the problem as trans-
posing a 2D row-majored array G[2][n′] of elements, each
consisting of T consecutive elements in the original array. In
the following discussion, we will refer to each such “element”
as a tile. As we discussed before, we can identify the cycles
in the transposition and perform the data movement in each
cycle independently.

Consider an example, say n′ = 5. Then the cycles in 2x5
row-major transposition is (0)(1 2 4 8 7 5)(3 6)(9). We
can perform the data movement for the 4 cycles indepen-
dently. Note that since we are shifting T-sized tiles, not iso-
lated elements in this case, we have reasonably good locality
for T larger than the wavefront size, by having a number of
work-items shifting data values in each tile in a coalesced
manner.

A simple solution is to have each cycle assigned to a work-
group and having the work-group shift the tiles in its as-
signed cycle sequentially. This is a straightforward GPU
parallelization of the cycle-following algorithm IPT [10] but
works at the tile level; we call this P-IPT. However, since
both the number of cycles and their lengths varies widely
across different problem sizes, there is a nontrivial load im-
balance problem. For example, the largest cycle in our 2X5
example has 6 tiles whereas the smallest cycle has only one
tile. Our GPU implementation of this simple approach sees
drastic performance variance from 0.44GB/s to 13.65GB/s
on NVIDIA Fermi, on the same array with different tile sizes
(16 and 64 respectively), which changes the aspect ratio of
array in terms of tiles and thus the cycles for moving tiles.

To solve this load imbalance problem, we would like to fur-
ther parallelize the data movement in a single cycle by hav-
ing multiple work-groups to collaboratively move the tiles



within a long cycle. However, we need to coordinate the
activities across multiple work-groups so that no tile would
be overwritten prematurely.

To coordinate the shifting between tiles working on the
same tile, we employ atomic operations and a MN ′-bit aux-
iliary storage to mark the finished tiles. The outline of
this approach (Parallel-Tile-Transpose-Within-and-Across-
Cycles (PTTWAC)) for each work-group is shown in the
Algorithm 1.

Algorithm 1: Parallel-Tile-Transpose-Within-and-
Across-Cycles (PTTWAC)

Input: A: an M ×N ′ array of T-sized tiles
Output: A: an N ′ ×M array of T-sized tiles
Data: done : M ×N ′-bit array initialized 0 private to

each work-group. A bit i is set if the values of
tile i have been computed (not necessarily
stored).

Data: R1,R2: private registers to each work-item;
local_id: ID of each work-item within the
work-group

Launch: MN ′ − 1 work-groups that execute
asynchronously
foreach workgroup i of size T in MN ′ − 1 workgroups
do

if done[i] 6= 0 then
return

next in cycle←− (i ∗M)%(M ∗N ′ − 1)
if next in cycle == i then

return; //no need to shift

/* Cooperatively load a tile i of A */

R1 ←− A[i][local id]
while true do

/* Cooperatively load a tile at

next_in_cycle */

R2 ←− A[next in cycle][local id]
if local id = 0 then

if atomic set(done[next in cycles]) 6= 0
then

Terminates all work-item of the
workgroup

A[next in cycle][local id]←− R1

R1 ←− R2

next in cycle←− (next in cycle ∗M)
mod (M ∗N ′ − 1)

Note the atomic_set() operation attempts to set the bit
specified by the first argument in global memory and return
the original value of that bit.

Let us take the earlier example on transposing an 2x5
row-major array, and 9 work-groups are launched. Assum-
ing only 4 work-groups can be scheduled due to hardware
resource limitations in the following scenario; also recall the
cycles are (0)(1 2 4 8 7 5)(3 6)(9):

1. Work-group 0, 1, 2, 3 are scheduled. Then work-group
0 terminates without copying. Work-group 1, 2, 3 load
tiles 1, 2, 3 into their R1, load tiles 2, 4, 6 into their
R2, atomically set done[2], done[4], done[6], and then
store their R1 to tiles 2, 4, 6.

2. Work-group 4 is scheduled as work-group 0 quits, and

found tile 4 is shifted already (done[4] is set). Work-
group 4 also quits. Work-group 1, 2, 3 load tile 4, 8,
3, and work-group 1 finds its next tile (4) is already
shifted, so it quits. Work-group 2 and 3 atomically
set done[8] and done[3] and store to their next-tile-in-
cycles 8 and 3.

3. Work-group 5 and 6 are scheduled for execution since
2 work-groups quit in previous step, and work-group
6 terminates immediately as tile 6 is shifted at step 2.
Work-group 7 is then scheduled. Work-group 7 and 5
shift tile 7 and 5 to tile 5 and 1.

4. All tiles are now shifted; the remaining work-group 2,
3, 5, 7 quit.

In this scheme, the parallelism in shifting elements of the
same cycle is exploited: at step 3 above, work-groups 2, 5, 7
are working on the largest cycle in parallel, greatly improv-
ing the speed. The spatial overhead is small as we only need
one bit for each tile: even for architectures that only sup-
ports integer atomic operations, the done array only takes
MN ′-words overhead of compared to the original array. For
T=64, that means roughly 1.5% extra space. On architec-
tures allowing atomic bit operations the cost is less than
0.05%.

Qualitatively speaking, because of the randomness of posi-
tions of tiles in the same cycle, sequentially-scheduled work-
groups may work on far-apart portions in the same cycle
(like how work-groups 2, 5 and 7 in step 3 above worked on
tiles 8, 5 and 7. Intuitively, the longer the cycles, the larger
the number of work-groups will likely be working on them;
thus balancing the loads of work-groups dynamically.

4.4 Extending PTTWAC to support large AoS
to ASTA transformation

As briefly mentioned in Section 4.2, when the size of an
ASTA instance is too large in AoS to ASTA conversion,
exceeding the maximal number of work-items allowed (or
number of registers in general) within the scope of one bar-
rier synchronization, some form of cycle-following algorithm
should be used to avoid barrier synchronization across work-
groups. The PTTWAC algorithm can be slightly modified
to handle this case. That is, have one work-group to work
on an M ×T -sized ASTA instance, and launch a fix number
of threads, say B, and each work-item to work on shifting
M × T/B scalar value inside an ASTA instance. M is the
number of elements of the original structure type.

Qualitatively, this scheme effectively constrains any paral-
lelized cycle during transposition within an ASTA instance,
so the working set for each work-group is also within an
ASTA instance. This avoids poor locality observed in gen-
eral in-place transformation. Also, since the frequency of
atomic operations will be much higher, we use OpenCL
local-memory (on-chip scratch pad) to store the bit array
done.

4.5 Integrate the layout transformation and
marshaling

In the DL system, the need of specializing the marshaling
kernels based on structure type and coarsening factor is ac-
commodated on-the-fly as an integrated part of the kernel
transformation process, and then invoked by the marshaling
runtime. This is described in following sections.



While the data marshaling kernels described in this paper
could be and will be exposed the the OpenCL developers as
a library of efficient layout adjustment functions, they can
provide even more value as part of a transparent data lay-
out transformation system. In the DL system, the need of
specializing the marshaling kernels based on structure type
and coarsening factor is accommodated on-the-fly as an in-
tegrated part of the kernel transformation process, and then
invoked by the DL runtime. As a result, the data marshaling
activities can be totally transparent to the host code. This
is described in following sections.

5. KERNEL TRANSFORMATION AND RUN-
TIME MARSHALING

To automatically reconcile layout differences between trans-
formed kernel at runtime, the system must be able to:

• Recognize the access pattern of the kernel

• Transform accesses to buffers used by the kernel if nec-
essary

• Inform the runtime that the buffers need to be mar-
shaled into desirable layout before invoking the kernel

At runtime, the runtime marshaling library must be able to:

• Marshal the kernel right before the kernel launch

• Invoke the inverse marshaling kernel right before the
transformed buffer is copied back to host

The system assumes that the dimensionality of the buffer
is rectangular. With this, it is possible to decouple the trans-
formation and marshaling. Here is a step-by-step description
of the process using the AoS kernel in Listing 1. Let us for
now assume the kernel is transformed statically.

5.1 Step 1. Kernel transformation
In this step the kernel is analyzed and transformed. We

assume the user exposes the dimensionality of buffers to the
tool in the annotation in kernel source as shown in listing
below. The static transformation tool parses the code and
decides to transform it to ASTA, insert a new coarsened
type and change the kernel code accordingly. The layout
heuristic is simple:

• Convert AoS to ASTA if detected on both architec-
tures

• Convert DA to ASTA for ATI architecture if the struc-
ture is larger than a threshold of 10 floats (found by
microbenchmarking)

To ease reading, the threshold is set to 1 float in the follow-
ing example. The transformed code is shown in the second
half of the Listing 5.1. The annotations are on line 5 and
18; the code modified is one line 7, 18 20 and 21.

1 struct foo{

2 float bar;

3 int baz;

4 };

5 //DL: AoS: f[global_size(0)]

6 __kernel void AoS( __global foo* f) {

7 f[get_global_id(0)].bar*=2.0;

8 }

9 struct foo{

10 float bar;

11 int baz;

12 };

13 struct foo_2{

14 float bar[4];

15 int baz[4];

16 };

17

18 //DL: AoS: f[global_size(0)] AOS2ASTA_foo

19 __kernel void AoS( __global foo* f) {

20 offset_t t1 = get_global_id(0);

21 f[t1/4].bar[t1%4]*=2.0;

22 }

After transformation, the tool inserts necessary informa-
tion for the runtime. In this case, the runtime needs the
exact values that is available at the moment the kernel is
launched; i.e. the values of the dimensionality of the trans-
formed buffer, and the marshaling kernel to invoke. For
the example, the tool generated a marshaling kernel called
AOS2ASTA_foo into a separate file that is accessible to the
DL runtime and append its name to the annotation so that
at runtime, the marshaling kernel can be located.

5.2 Step 2. Run-time marshaling for OpenCL
An important feature of DL is to allow the host code to

remain unchanged when using a kernel with a transformed
data layout. It also supports an interface for incrementally
transforming the host code components to use transformed
data layouts. This allows a development team to modify
only the performance-critical parts of an application to use
the new data layout and avoid the pitfall of requiring mas-
sive, wholesale changes to the entire application. In fact, we
envision that most of the host code will continue to use the
original data layout for many applications. DL achieves this
by supporting a dynamic marshaling mechanism that takes
advantage of the OpenCL memory model.

OpenCL requires explicit data transferring/remapping rou-
tines to transfer data between host and device sides when in-
voking a kernel. Plus, OpenCL memory buffers at the device
side are explicitly created and managed through a run-time
library interface. The DL memory marshaling system has
to keep the semantics of the OpenCL memory model and
transparently insert marshaling calls only when necessary.

The observation here is that we can infer the dimensional-
ity and layout of the OpenCL memory buffer if it is passed to
a kernel that has special marshaling requirement annotated
in the source by static transformation.

We use library interposition to hijack OpenCL library calls
from the user. For each transformed kernel K, each argu-
ment i is augmented with Ki ∈ T × EN ×M derived from
user annotation, where:

• T = Element Type ∪ {NIL}

• E: a symbolic expression that defines the size of each
dimension.

• M = Γ ∪ {ξ}. ξ means the layout is not transformed;
Γ is the set of all layout transformations in this appli-
cation. We represent a layout transformation as a pair



of handles to kernels generated by the runtime, one for
converting from the original to the transformed layout
and one for converting back. An example of such pair
could be: (AOS2ASTA foo, AOS2ASTA foo inverse). This
specifies the requirement of that argument as well as
the marshaling kernels to invoke.

At runtime, each OpenCL memory buffer is augmented with
a tuple S ×RN ×K, where:

• S = {Uninitialized} ∪ M: S specifies the current data
layout of the buffer.

• RN: the actual dimensionality of this buffer, where n
is the number of dimensions of this buffer from K

• K: Last kernel argument this buffer has bound to.

At kernel launch time, the DL runtime evaluates each Ki

to deduce actual dimensionality and set the corresponding
R. For the example this would be [global size(0)]; the cor-
responding Ri is passed to the marshaling kernel so that the
buffer is correctly marshaled.

So, let us take the example above, and assuming the kernel
is launched on 1024 work items. When the kernel K’s an-
notation is parsed by DL runtime, the argument descriptor
K0 of its only argument is:
〈T : foo, n : 1, E : global size(0), M : AOS2ASTA foo〉

When a freshly initialized OpenCL buffer is passed as f

to the kernel, it is augmented dynamically by DL runtime
as:
〈S: ξ, R: the allocated buffer size, K: K0〉
When the kernel actually launches, R is evaluated to be

1024 based on E=global_size(0). Then the DL runtime
identifies a mismatch between S=ξ and T=AOS2ASTA_foo ac-
cording to K0. So then the marshaling kernel corresponding
to the transformed layout (AOS2ASTA_foo) is dynamically
compiled and launched with 1024 work-items. After mar-
shaling kernel completes, the buffer is augmented as:
〈S : AOS2ASTA_foo, R: 1024, K: K0〉
The kernel K is then launched with the buffer in expected

layout.
Should the buffer is later copied back to host code, then

the inverse marshaling kernel for layout AOS2ASTA_foo is
launched based on the descriptor status right before the ac-
tual copying occurs, and the S would be reset to ξ . If the
buffer is used again by either the same kernel or another
kernel with the same T and evaluates to the same R, the
marshaling is avoided. If there is a mismatch between S
and T and S 6= ξ, then we conservatively marshal the buffer
back to S = ξ then to T .

6. RESULTS
The following OpenCL benchmarks are used:

• LBM: a computational fluid dynamics solver using lattice-
Boltzmann method

• SpMV: a sparse matrix-vector-multiplication kernel in
ELL layout; each row is stored consecutively.

• Black-Scholes: an option-pricing algorithm

LBM and Black-Scholes are dense AoS layout codes whereas
SpMV represents tall arrays constructed from sparse datasets.
The first two benchmarks are from the Parboil Benchmark

Suite; the last benchmark is adapted from NVIDIA OpenCL
SDK.

For the SpMV benchmark, since the performance of lay-
out conversion for DA to ASTA could depend on the exact
dimensionality of the dataset, we use the following datasets
listed Table 1.

Table 1: Test problem for SpMV benchmark and
DA-ASTA in-place marshaling

Problem Description Size Max. #
nonzero
columns

bcsstk18 R.E. Ginna 11948× 40
Nuclear Power Station 11948

e40r000 Driven cavity,40x40 17281× 62
elements, Re=0 17281

bcsstk31 Stiffness matrix for 35588× 197
automobile component 35588

bcsstk32 Stiffness matrix for 44609× 215
automobile chassis 44609

s3dkq4m2 Finite element analysias 90449× 59
of cylindrical shells 90449

conf6.0- Quantum 49152× 39
00l8x8-8000 Chromodynamics 49152

Note that in ELL, the storage requirement for a matrix is
the number of rows times the maximum number of nonzero
columns.

6.1 Application Results

6.1.1 Performance of Layouts
Figure 5 shows the performance of ASTA layout as well

as the generalization of tiled transposition on sparse matrix-
vector multiplication (SpMV) on NVIDIA GTX480 GPU.
For LBM benchmark, both the Discrete Array transforma-
tion and ASTA are able to boost the performance by more
than 4X (on NVIDIA) and roughly 3X (on ATI) if the mar-
shaling cost is fully amortized. However, the ASTA layouts
on both ATI and NVIDIA architectures also outperform the
DA layout. We believe that the ASTA layout provides better
locality and reduces potential bank conflicts that are more
severe on ATI architectures, as current ATI GPUs have sim-
pler DRAM interleaving scheme [2]. Also, when dynamic
marshaling is employed, there is an additional marshaing
cost for conversion of AoS to DA. This will be addressed in
next sections.

For the SpMV benchmark, again both the tiled layout
and fully-transposed layout can effectively improve the per-
formance. On ATI architectures, the tiled layouts in general
are even faster than the full transpose kernel. We also at-
tribute this effect to shorter strides in the tiled transposition
layout.

For blackscholes, moderate speedup is obtained on NVIDIA.
On ATI DA is slightly faster than AOS and ASTA. That is
because the structure size is smaller compared to other ap-
plications: only 5 floats. And according to our microbench-
mark results earlier, for small structure sizes, AOS is even
faster. The reason why DA has speedup on ATI is that out of
5 elements, two are used to store outputs. So DA may create
smaller cache footprint as for outputs, other input elements
need not to be brought into cache on ATI architecture.

6.1.2 Performance of Layouts with Marshaling Costs



(a) NVIDIA (b) ATI

Figure 5: Application Speedup
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Figure 6: Net Speedup Including Marshaling Cost

To further understand the cost of layout conversion, or
marshaling, Figure 6 shows how the overall speedup includ-
ing marshaling. Note the cost of marshaling is amortized as
the number of iterations increases. The blue curves of all
subfigures (DA) are constantly below the red one (ASTA),
showing that much more iterations are required to amor-
tize the cost of AoS to DA conversion, and in some cases
the net speedup of AoS to DA layout conversion is even be-
low 1.0 given 30 iterations. Whereas AoS to ASTA gives
much better overall speedup and break-even point: at most
4 iterations are required to break-even the marshaling cost.
Although DA and ASTA have generally comparable perfor-
mance, clearly the AoS to ASTA layout conversion is much
faster than AoS to ASTA then to DA conversion, especially
if frequent dynamic layout conversion is required.

6.2 In-place and Out-of-place Marshaling
The ASTA layout, as well as the generalized tiled trans-

position for tall arrays enable in-place marshaling on GPUs.
To evaluate its performance, we compare an implementa-

tion of a highly optimized out-of-place GPU matrix trans-
position method proposed by Ruetsch and Micikevicius [15]
with our in-place tiled transposition kernel.

Since the operation of marshaling does not involve any
computation but only memory loads followed by stores, it
is sufficient to compare the memory throughput of these
two kernels. Table 2 shows the measurements using the
CUDA Compute Profiler on an NVIDIA GTX480 GPU on
the e40r0000a dataset: a 17281 by 17281 sparse matrix

stored in ELL format with at most 64 non-zero columns
per row.

Table 2: Performance of Full and Tiled Transposi-
tion Kernels

Marshaling Kernel Sustained Global Memory
(ASTA tile size=16) Bandwidth (in GB/s)
AoS to SoA [15] 80.06
(out-of-place)
AoS to ASTA 82.23
Barrier-sync (in-place)
AoS to ASTA 19.64
PTTWAC (in-place)

Both the out-of-place kernel and in-place barrier-sync-
based kernel utilize local memory to gain coalesced global
memory accesses, which still seem to be important for these
memory-intensive kernels. On the other hand, cycle-following
transposition algorithms naturally suffer from load-imbalance
and poor locality. Our PTTWAC algorithm partly addresses
the load-imbalance by using atomic operations on paral-
lelized shifts inside cycles, and the use of ASTA layout con-
fines the randomness of memory reference pattern inside a
tile, which usually means a handful of cache lines. How-
ever, the implementation still suffers from uncoalesced ac-
cesses as well as unnecessary contentions caused by simu-
lating bit-wise atomic operations on current GPU architec-
tures. Our PTTWAC-based AoS to ASTA implementation
uses atomic operations on local memory to reduce the cost,



and use atomic bitwise operations (AND and OR) to re-
duce the amount of memory requirement for storing flags in
local memory. These contributes to its lower performance.
In general, the AoS-to-ASTA PTTWAC algorithm should
be consider as an enabler on transposing larger ASTA tiles
that beyond the capability of barrier-synchronization-based
implementation, rather than a general solution that can re-
place all other marshaling implementations.

The performance of SoA to ASTA marshaling naturally
depends on the number of cycles and cycle length, which are
decided by the array size and tile size. We thus compared the
performance of two SoA to ASTA marshaling approaches:
parallelized IPT (P-IPT) and our algorithm PTTWAC on
converting various sparse matrices stored in transposed ELL
format into tiled transposed ELL format. These two can be
considered as generalized SoA and ASTA layouts.

The performance of P-IPT varies drastically over different
input dimensionality as well as ASTA tile sizes, as shown in
Figure 7. Across all inputs, PTTWAC performs smoothly
and the only significant factor that affects its performance
is the tile size. For tile size 64, the performance varies from
15.0 GB/s to 17.40 GB/s, and then performance drops as
tile size reduces. This means the imbalance between cycle
lengths does not manifest on PTTWAC. However, the P-
IPT algorithm, which only parallelizes across cycles, shows
unstable performance across inputs of the same tile sizes
by almost 5X from 13.65GB/s (bcsstk18, tile size 64) to
3.33GB/s (e40r000a, tile size 64). This matches our predic-
tion that PTTWAC should able to dynamically balance the
load by allowing multiple work-groups works concurrently
on long cycles.

Table 3 shows the performance of in-place AoS to ASTA
transposition, comparing both the approach that use barrier
synchronization (BS) and the PTTWAC version. Note for
larger tile sizes the BS approach does not work, but when it
works, the performance is very good.

Table 3: Performance of In-place AoS to ASTA
Transposition (GB/s)

PTTWAC BS
Problem T=64 T=32 T=16 T=64 T=32 T=16
bcsstk18 8.6 17.0 20.3 55.6 59.4 73.4
e40r000a 6.9 14.0 19.6 51.2 61.0 82.2
bcsstk31 5.3 5.8 8.2 NA 23.2 79.7
bcsstk32 5.0 5.6 7.4 NA 23.8 80.6
s3dkq4m2 7.1 16.6 21.3 61.3 67.0 93.1
conf6.0- 11.7 19.2 20.6 67.9 67.9 86.8

7. RELATED WORKS
In-place transposition on CPU has been well studied by

many authors. Readers are encouraged to read Karlsson [13]’s
description. He also observed that full in-place transposition
can be decomposed efficiently into tiled transposition and
local transposition, thus achieving good memory locality on
CPUs. For parallelization of in-place matrix transposition,
Gustavson & Swirszcz [9] proposed an OpenMP-based ap-
proach for multicores that balances the load of each thread
by greedily assign cycles to threads, using statically com-
puted cycle leader set from factorization of the matrix di-
mensions. They mentioned approaches to further break long
cycles statically based on a priori knowledge of the cycle

lengh. In our approach, no pre-computation and knowledge
of the leads and lengths of cycles are required.

On the GPU, the out-of-place transposition problem has
been discussed by Ruetsch et al. [15]. And FFT works [7, 8]
on GPU also include transposition, but they also seem to be
out-of-place algorithms. To our knowledge this work is the
first to address transposition of rectangular arrays on GPU.

Jang et al. [12] proposed a methodology for changing the
data layout to improve memory coalescing. Zhang et al. [17]
proposed a dynamic approach to eliminate irregularities in
GPU kernels. The Dymaxion framework proposed Che et
al. [5] is a library-based approach that perform marshaling
on the CPU side and overlaps PCI-e transfer with the CPU-
side marshaling. Both our approach and theirs changes the
layout through redefining the mapping function that flatten
multidimensional indices into an offset the layout. How-
ever, naturally their marshaling performance is limited by
the small CPU memory bandwidth and they only allow mar-
shaling between CPU and GPUs, not among different GPU
kernels. Also, their approach is equivalent of transforming
AoS to SoA, which only improves the memory coalescing
but may introduce partition camping as we observed.

In terms of tiling the data structure for memory par-
allelism, the methodology proposed by Sung et al. [16] is
closely related to our approach. They however only trans-
form the kernel and expect manual changes on the host side
to reflect the changes in data layout.

On optimizing sparse matrix-vector multiplication, Choi [6]
presented manually-optimized sparse matrix layouts to ac-
celerate SpMV for GPUs. However, only the construction,
not the conversion between these formats are addressed.

8. CONCLUSION
In this paper, we proposed the Array-of-Structure-of-Tiled-

Array (ASTA) layout as a promising alternative to common
discrete array transformation for improving the global mem-
ory throughput for GPU applications that access data in
Array-of-Structure layout. ASTA not only provides better
performance to discrete arrays but also enables in-place mar-
shaling on GPUs, which is crucial for accelerators relying
on high-throughput access to capacity-constrained private
DRAMs. We also show that ASTA allows much faster dy-
namic in-place marshaling from AoS compared to discrete
arrays, which implies much lower break-even point in amor-
tizing the marshaling cost compare to discrete arrays.

We then generalize the ASTA to tiled transposed layouts
for arrays that has imbalanced aspect ratios, which is com-
mon for sparse matrices. We show that for sparse-matrix
transposition such layout also provides comparable or even
better performance for a fully transposed layout on sparse
matrix-vector kernels.

To allow developers to leverage the benefits of ASTA with
minimal effort, this work addresses the problem of decou-
pling host and device layout needs through a user-friendly
automatic transformation framework that is designed and
implemented in a transparent way to host code, even al-
lowing user to keep host code unchanged while enjoying the
benefit provided by the system.
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