
Juan Gómez Luna, Izzat El Hajj, 
Iván Fernández, Christina Giannoula, 

Geraldo F. de Oliveira, Onur Mutlu

Understanding a Modern 
Processing-in-Memory 

Architecture



2

Executive Summary
• Processing-in-Memory is a paradigm that can tackle the 

data movement bottleneck
• Though promising, there were not real-world devices that 

represent a baseline for our research
- Simulation models for our PIM architecture proposals, where the 

baseline is typically the host CPU (or GPU)
• UPMEM has designed and fabricated the first publicly-

available real-world PIM architecture
- DDR4 chips embedding in-order multithreaded DPUs

• Goals
- Introduction to UPMEM programming model and PIM 

architecture
- Understanding the UPMEM PIM architecture



3

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture



4

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture



UPMEM Processing-in-DRAM Engine (2019)
n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

5

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


6



7

Processing in/near Memory: An Old Idea

n Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

23



PIM Review and Open Problems

8

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

9

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


10



11

UPMEM Patent



12

Accelerator Model (I)
• Integration of UPMEM DIMMs in a system follows an 

accelerator model
- UPMEM DIMMs coexist with conventional DIMMs

• UPMEM DIMMs can be seen as a loosely coupled 
accelerator
- Explicit data movement between the main processor (CPU) and 

the accelerator (UPMEM)
- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing



GPU Computing
n Computation is offloaded to the GPU
n Three steps

q CPU-GPU data transfer (1)
q GPU kernel execution (2)
q GPU-CPU data transfer (3)

CPU 
memory

CPU 
cores Matrix

GPU 
memory

GPU 
coresMatrix

1

3

2

13



14

Accelerator Model (II)
• FIG. 6 is a flow diagram representing operations in a method of delegating a 

processing task to a DRAM processor according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor”. US 10,324,870 B2.



15

System Organization (I)
• FIG. 1 schematically illustrates a computing system comprising DRAM circuits 

having integrated processors according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor”. US 10,324,870 B2.



16

Host 
CPU

x10

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

System Organization (II)
• UPMEM DIMMs coexist with regular DDR4 DIMMs
• Current setup with 10 UPMEM DIMMs (10 ranks) of 8 

chips each
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank
- 8 64MB banks per chip: MRAM (Main RAM) banks
- x86 socket with 2 memory controllers (3 channels each)

• 2 conventional DIMMs on the same channel of one controller

640 DPUs

40 GB



17

Host 
CPU

x20

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

System Organization (III)
• Full-blown configuration

- 20 DIMMs of 16 chips each
• With 8 DPUs per chip, 2560 DPUs
• 160 GB of MRAM

2560 DPUs

160 GB



18

DPU Sharing? Security Implications?
• DPUs cannot be shared across multiple CPU processes

- There are so many DPUs in the system that there is no need for 
sharing

• According to UPMEM, this assumption makes things 
simpler
- No need for OS
- Simplified security implications: No side channels

Is it possible to perform RowHammer bit flips?
Can we attack the previous or the next application 

that runs on a DPU?



19

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture



20

Vector Addition
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1



21

DPU Allocation
• dpu_alloc() allocates a number of DPUs

- Creates a dpu_set

Can we allocate different DPU sets 
over the course of a program?

Yes, we can. Btw, we deallocate a DPU set with dpu_free()



22

DPU Allocation: Needleman-Wunsch
• In NW we change the number of DPUs in the DPU set as 

computation progresses



23

Load DPU Binary
• dpu_load() loads a program in all DPUs of a dpu_set

Is it possible to launch different kernels onto different DPUs?

It is possible:
More complex workloads with task-level parallelism



24

CPU-DPU Data Transfers (I)
• Serial transfers

- dpu_copy_to(); 
- dpu_copy_from();
- We transfer (part of) a buffer to/from each DPU in the dpu_set
- DPU_MRAM_HEAP_POINTER_NAME: Start of the MRAM range 

that can be freely accessed by applications
• We do not allocate MRAM explicitly

Offset within MRAM Pointer to main memory Transfer size



25

CPU-DPU Data Transfers (II)
• Parallel transfers

- We push different buffers to/from a DPU set in one transfer
- First, prepare (dpu_prepare_xfer); 

then, push (dpu_push_xfer)
- Direction:

• DPU_XFER_TO_DPU
• DPU_XFER_FROM_DPU

Pointer to main memory
Offset within MRAM Transfer size

Direction



26

CPU-DPU Data Transfers (III)
• An example benchmark we use both parallel and serial 

transfers
• SELECT

DPU 0 DPU 1 DPU 2



27

How Fast are these Data Transfers?
• Serial and parallel transfers

- Load (CPU-to-DPU) and Retrieve (DPU-to-CPU)

• The cost of the transfers can be amortized, if enough 
computation is run on the DPUs

DDR4 bandwidth bounds the maximum transfer bandwidth



28

“Transposing” Library



29

DPU Kernel Launch
• dpu_launch() launches a kernel on a dpu_set

- DPU_SYNCHRONOUS suspends the application until the kernel 
finishes

- DPU_ASYNCHRONOUS returns the control to the application
• dpu_sync or dpu_status to check kernel completion

What does the asynchronous execution enable?

Some ideas:
• Overlapping data transfers and DPU computation
• Concurrent heterogeneous computation on CPU and DPUs
• Task-level parallelism: concurrent execution of different kernels 

on different DPU sets



30

How do Pass Parameters to the Kernel?
• We can use serial and parallel transfers
• We pass them directly to the scratchpad memory of the 

DPU 
- WRAM: We introduce it in the next slides

• This is useful for input parameters and some results



31

More Questions and Ideas?
How do we handle memory coherence, 

memory oversubscription, etc.?

They are programmer’s responsibility

A software library to handle 
memory management transparently to programmers

ASPLOS 2010



32

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture



33

DRAM Processing Unit (I)
• FIG. 4 schematically illustrates part of the computing system of FIG. 1 in more 

detail according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor”. US 10,324,870 B2.



34

Host 
CPU

x5

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

DRAM Processing Unit (II)
PIM Chip

24-KB 
Instruction 

Memory

D
M

A
 E

n
g

in
e

64-MB DRAM 
Bank

64 bits

64-KB 
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH

FETCH1

FETCH2

FETCH3

READOP1

READOP2

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

MERGE1

MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e



35

DPU Pipeline
• In-order pipeline

- 400 MHz in next generation
- 267 MHz in current setup

• Multithreading
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection
- FETCH
- READOP
- FORMAT: Operand formatting
- ALU: Operation and WRAM
- MERGE: Result formatting

• 11 tasklets for peak throughput

To the DMA engine



36

Arithmetic Throughput (I)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

DOUBLE (1 DPU)

ADD
DIV
MUL
SUB

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

FLOAT (1 DPU)

ADD
DIV
MUL
SUB

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

INT64 (1 DPU)

ADD
DIV
MUL
SUB

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

INT32 (1 DPU)

ADD
DIV
MUL
SUB

Huge throughput difference between add/sub and mul/div

DPUs do not have a 32-bit multiplier.
mul/div implementation is based on bit shifting and addition: 

maximum of 32 cycles (instructions) to complete

There is an 8-bit multiplier in the pipeline



37

Arithmetic Throughput (II)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

DOUBLE (1 DPU)

ADD
DIV
MUL
SUB

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

FLOAT (1 DPU)

ADD
DIV
MUL
SUB

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

INT64 (1 DPU)

ADD
DIV
MUL
SUB

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

INT32 (1 DPU)

ADD
DIV
MUL
SUB

Huge throughput difference between 
int32/int64 and float/double

DPUs do not have floating point units.
Software emulation for floating point computations

More efficient algorithms based on other formats? 



38

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture



39

• Vector addition

Programming a DPU Kernel (I)

Tasklet ID
Size of vector tile processed by a DPU

MRAM addresses of arrays A and B

WRAM allocation

MRAM-WRAM DMA transfers

Vector addition (see next slide)

WRAM-MRAM DMA transfer



40

Programming a DPU Kernel (II)
• Vector addition



41

Programming a DPU Kernel (III)
• A tasklet is the software abstraction of a hardware thread
• Each tasklet can have its own memory space in WRAM

- Tasklets can also share data in WRAM by sharing pointers
• Tasklets within the same DPU can synchronize

- Mutual exclusion
• mutex_lock(); mutex_unlock()

- Handshakes
• handshake_wait_for(); handshake_notify()

- Barriers
• barrier_wait()

- Semaphores
• sem_give(); sem_take()



42

Parallel Reduction (I)
• Tasklets in a DPU can work together on a parallel 

reduction

A[0] A[1] A[N-1]

Sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3



43

A[0] A[1] A[N-1]

Local 
Sum

Local 
Sum

Local 
Sum

Local 
Sum

Sum

Parallel Reduction (II)
• Each tasklet computes a local sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3



44

Parallel Reduction (III)
• Each tasklet computes a local sum

Accumulate in a local sum

Copy local sum into WRAM



45

Final Reduction
• A single tasklet can perform the final reduction

Accumulate in a local sum

Copy local sum into WRAM

Sequential accumulation

Barrier synchronization



Vector Reduction: Naïve Mapping (I)

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3ite
ra

tio
ns

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

46
Slide credit: Hwu & Kirk



47

Using Barriers: Tree-Based Reduction
• Multiple tasklets can perform a tree-based reduction

- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

“offset” tasklets working

Barrier synchronization



48

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture



49

Characterization of UPMEM PIM
• Microbenchmarks

- Pipeline throughput
- STREAM benchmark: WRAM, MRAM
- Strided accesses and GUPS
- Throughput vs. Operational intensity
- CPU-DPU data transfers

• Real-world benchmarks
- Dense linear algebra
- Sparse linear algebra
- Databases
- Graph processing
- Bioinformatics
- Etc.



50

Resources
• UPMEM SDK documentation

- https://sdk.upmem.com/master/00_ToolchainAtAGlance.html

• Fabrice Devaux’s presentation at HotChips 2019
- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=88

75680

https://sdk.upmem.com/master/00_ToolchainAtAGlance.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8875680


51

Executive Summary
• Processing-in-Memory is a paradigm that can tackle the 

data movement bottleneck
• Though promising, there were not real-world devices that 

represent a baseline for our research
- Simulation models for our PIM architecture proposals, where the 

baseline is typically the host CPU (or GPU)
• UPMEM has designed and fabricated the first publicly-

available real-world PIM architecture
- DDR4 chips embedding in-order multithreaded DPUs

• Goals
- Introduction to UPMEM programming model and PIM 

architecture
- Understanding the UPMEM PIM architecture



Juan Gómez Luna, Izzat El Hajj, 
Iván Fernández, Christina Giannoula, 

Geraldo F. de Oliveira, Onur Mutlu

Understanding a Modern 
Processing-in-Memory 

Architecture


