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Executive Summary
• Processing-in-Memory is a paradigm that can tackle the 

data movement bottleneck
• Though promising, there were not real-world devices that 

represent a baseline for our research
- Simulation models for our PIM architecture proposals, where the 

baseline is typically the host CPU (or GPU)
• UPMEM has designed and fabricated the first publicly-

available real-world PIM architecture
- DDR4 chips embedding in-order multithreaded DPUs

• Goals
- Introduction to UPMEM programming model and PIM 

architecture
- Understanding the UPMEM PIM architecture
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Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
- DPU Allocation
- CPU-DPU Data Transfers
- DPU Kernel Launch and Execution

• DRAM Processing Unit
- Arithmetic throughput

• DPU Kernel Execution
- Vector Addition
- Tasklet Synchronization

• Parallel Reduction
• Characterization of the UPMEM PIM Architecture
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UPMEM Processing-in-DRAM Engine (2019)
n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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Processing in/near Memory: An Old Idea

n Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.
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PIM Review and Open Problems

8

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf
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UPMEM Patent
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Accelerator Model (I)
• Integration of UPMEM DIMMs in a system follows an 

accelerator model
- UPMEM DIMMs coexist with conventional DIMMs

• UPMEM DIMMs can be seen as a loosely coupled 
accelerator
- Explicit data movement between the main processor (CPU) and 

the accelerator (UPMEM)
- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing



GPU Computing
n Computation is offloaded to the GPU
n Three steps

q CPU-GPU data transfer (1)
q GPU kernel execution (2)
q GPU-CPU data transfer (3)

CPU 
memory

CPU 
cores Matrix

GPU 
memory

GPU 
coresMatrix

1

3

2
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Accelerator Model (II)
• FIG. 6 is a flow diagram representing operations in a method of delegating a 

processing task to a DRAM processor according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor”. US 10,324,870 B2.
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System Organization (I)
• FIG. 1 schematically illustrates a computing system comprising DRAM circuits 

having integrated processors according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor”. US 10,324,870 B2.
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System Organization (II)
• UPMEM DIMMs coexist with regular DDR4 DIMMs
• Current setup with 10 UPMEM DIMMs (10 ranks) of 8 

chips each
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank
- 8 64MB banks per chip: MRAM (Main RAM) banks
- x86 socket with 2 memory controllers (3 channels each)

• 2 conventional DIMMs on the same channel of one controller

640 DPUs

40 GB
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System Organization (III)
• Full-blown configuration

- 20 DIMMs of 16 chips each
• With 8 DPUs per chip, 2560 DPUs
• 160 GB of MRAM

2560 DPUs

160 GB
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DPU Sharing? Security Implications?
• DPUs cannot be shared across multiple CPU processes

- There are so many DPUs in the system that there is no need for 
sharing

• According to UPMEM, this assumption makes things 
simpler
- No need for OS
- Simplified security implications: No side channels

Is it possible to perform RowHammer bit flips?
Can we attack the previous or the next application 

that runs on a DPU?
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Outline
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• Parallel Reduction
• Characterization of the UPMEM PIM Architecture
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Vector Addition
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1
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DPU Allocation
• dpu_alloc() allocates a number of DPUs

- Creates a dpu_set

Can we allocate different DPU sets 
over the course of a program?

Yes, we can. Btw, we deallocate a DPU set with dpu_free()
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DPU Allocation: Needleman-Wunsch
• In NW we change the number of DPUs in the DPU set as 

computation progresses



23

Load DPU Binary
• dpu_load() loads a program in all DPUs of a dpu_set

Is it possible to launch different kernels onto different DPUs?

It is possible:
More complex workloads with task-level parallelism
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CPU-DPU Data Transfers (I)
• Serial transfers

- dpu_copy_to(); 
- dpu_copy_from();
- We transfer (part of) a buffer to/from each DPU in the dpu_set
- DPU_MRAM_HEAP_POINTER_NAME: Start of the MRAM range 

that can be freely accessed by applications
• We do not allocate MRAM explicitly

Offset within MRAM Pointer to main memory Transfer size
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CPU-DPU Data Transfers (II)
• Parallel transfers

- We push different buffers to/from a DPU set in one transfer
- First, prepare (dpu_prepare_xfer); 

then, push (dpu_push_xfer)
- Direction:

• DPU_XFER_TO_DPU
• DPU_XFER_FROM_DPU

Pointer to main memory
Offset within MRAM Transfer size

Direction
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CPU-DPU Data Transfers (III)
• An example benchmark we use both parallel and serial 

transfers
• SELECT

DPU 0 DPU 1 DPU 2
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How Fast are these Data Transfers?
• Serial and parallel transfers

- Load (CPU-to-DPU) and Retrieve (DPU-to-CPU)

• The cost of the transfers can be amortized, if enough 
computation is run on the DPUs

DDR4 bandwidth bounds the maximum transfer bandwidth
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“Transposing” Library
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DPU Kernel Launch
• dpu_launch() launches a kernel on a dpu_set

- DPU_SYNCHRONOUS suspends the application until the kernel 
finishes

- DPU_ASYNCHRONOUS returns the control to the application
• dpu_sync or dpu_status to check kernel completion

What does the asynchronous execution enable?

Some ideas:
• Overlapping data transfers and DPU computation
• Concurrent heterogeneous computation on CPU and DPUs
• Task-level parallelism: concurrent execution of different kernels 

on different DPU sets
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How do Pass Parameters to the Kernel?
• We can use serial and parallel transfers
• We pass them directly to the scratchpad memory of the 

DPU 
- WRAM: We introduce it in the next slides

• This is useful for input parameters and some results
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More Questions and Ideas?
How do we handle memory coherence, 

memory oversubscription, etc.?

They are programmer’s responsibility

A software library to handle 
memory management transparently to programmers

ASPLOS 2010



32

Outline
• Introduction

- Accelerator Model
- System Integration

• UPMEM PIM Programming
- Vector Addition
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DRAM Processing Unit (I)
• FIG. 4 schematically illustrates part of the computing system of FIG. 1 in more 

detail according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor”. US 10,324,870 B2.
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DPU Pipeline
• In-order pipeline

- 400 MHz in next generation
- 267 MHz in current setup

• Multithreading
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection
- FETCH
- READOP
- FORMAT: Operand formatting
- ALU: Operation and WRAM
- MERGE: Result formatting

• 11 tasklets for peak throughput

To the DMA engine
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Arithmetic Throughput (I)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

DOUBLE (1 DPU)

ADD
DIV
MUL
SUB

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

FLOAT (1 DPU)

ADD
DIV
MUL
SUB

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

INT64 (1 DPU)

ADD
DIV
MUL
SUB

0
5

10
15
20
25
30
35
40
45
50

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (M

OP
S/

s)

#Tasklets

INT32 (1 DPU)

ADD
DIV
MUL
SUB

Huge throughput difference between add/sub and mul/div

DPUs do not have a 32-bit multiplier.
mul/div implementation is based on bit shifting and addition: 

maximum of 32 cycles (instructions) to complete

There is an 8-bit multiplier in the pipeline
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Arithmetic Throughput (II)
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Huge throughput difference between 
int32/int64 and float/double

DPUs do not have floating point units.
Software emulation for floating point computations

More efficient algorithms based on other formats? 
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• Vector addition

Programming a DPU Kernel (I)

Tasklet ID
Size of vector tile processed by a DPU

MRAM addresses of arrays A and B

WRAM allocation

MRAM-WRAM DMA transfers

Vector addition (see next slide)

WRAM-MRAM DMA transfer
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Programming a DPU Kernel (II)
• Vector addition
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Programming a DPU Kernel (III)
• A tasklet is the software abstraction of a hardware thread
• Each tasklet can have its own memory space in WRAM

- Tasklets can also share data in WRAM by sharing pointers
• Tasklets within the same DPU can synchronize

- Mutual exclusion
• mutex_lock(); mutex_unlock()

- Handshakes
• handshake_wait_for(); handshake_notify()

- Barriers
• barrier_wait()

- Semaphores
• sem_give(); sem_take()



42

Parallel Reduction (I)
• Tasklets in a DPU can work together on a parallel 

reduction

A[0] A[1] A[N-1]

Sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3
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A[0] A[1] A[N-1]

Local 
Sum

Local 
Sum

Local 
Sum

Local 
Sum

Sum

Parallel Reduction (II)
• Each tasklet computes a local sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3



44

Parallel Reduction (III)
• Each tasklet computes a local sum

Accumulate in a local sum

Copy local sum into WRAM
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Final Reduction
• A single tasklet can perform the final reduction

Accumulate in a local sum

Copy local sum into WRAM

Sequential accumulation

Barrier synchronization



Vector Reduction: Naïve Mapping (I)
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Slide credit: Hwu & Kirk
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Using Barriers: Tree-Based Reduction
• Multiple tasklets can perform a tree-based reduction

- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

“offset” tasklets working

Barrier synchronization
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Characterization of UPMEM PIM
• Microbenchmarks

- Pipeline throughput
- STREAM benchmark: WRAM, MRAM
- Strided accesses and GUPS
- Throughput vs. Operational intensity
- CPU-DPU data transfers

• Real-world benchmarks
- Dense linear algebra
- Sparse linear algebra
- Databases
- Graph processing
- Bioinformatics
- Etc.
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Resources
• UPMEM SDK documentation

- https://sdk.upmem.com/master/00_ToolchainAtAGlance.html

• Fabrice Devaux’s presentation at HotChips 2019
- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=88

75680

https://sdk.upmem.com/master/00_ToolchainAtAGlance.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8875680
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