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A Computing System

= Three key components
= Computation

« Communication

« Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.
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A Computing System

= Three key components
= Computation

« Communication

« Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor

at great system cost

Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)
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I expect that over the coming decade memory subsys-
-1 e t tem design will be the only important design issue for micro-
*ee processors.

. “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
=1 Back-end bound
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Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)
All of Google’s Data Center Workloads (2015):
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Figure 11: Half of cycles are spent stalled on caches.
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The Energy Perspective

Communication Dominates Arithmetic

Dally, HIPEAC 2015

256-bit access
8 kB SRAM
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Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015
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Data Movement vs. Computation Energy

« Data movement is a major system energy bottleneck

a  Comprises 41% of mobile system energy during web browsing [2]
a Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

>
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[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (11ISWC’14)

SAFARI
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Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand' Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

14



Goal: Processing Inside Memory

Processor
Core

Results Interconne
ct

Many questions ... How do we design the:

U U U U U

compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software, compilers, languages?
algorithms and theoretical foundations?
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking
Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https://arxiv.org/pdf/1903.03988.pdf 16
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A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®*, Juan Gémez-Luna?, Rachata Ausavarungnirun?
SAFARI Research Group

AETH Ziirich
bCarnegie Mellon University
“University of lllinois at Urbana-Champaign
4King Mongkut's University of Technology North Bangkok

Abstract

Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes
directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks:
(1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory
bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms,
especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms
of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the
data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many technology scaling challenges in terms of
reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different
ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic,
the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards
and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity
of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an
evidence of this trend.

This chapter discusses recent research that aims to practically enable computation close to data, an approach we call
processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the
memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between
the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss
motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling
it in modern computing systems. We examine at least two promising new approaches to designing PIM systems
to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational
properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing
near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory
latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and
adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of
in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing
work on solving key challenges to the practical adoption of PIM.

Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing,
computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile
memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging
technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system
security, latency, low-latency computing
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1. Introduction

Main memory, built using the Dynamic Random Ac-
cess Memory (DRAM) technology, is a major compo-
nent in nearly all computing systems, including servers,
cloud platforms, mobile/embedded devices, and sensor
systems. Across all of these systems,the data working
set sizes of modern applications are rapidly growing,
while the need for fast analysis of such data is increas-
ing. Thus, main memory is becoming an increasingly
significant bottleneck across a wide variety of computing
systems and applications [1, 2, 3, 4,5, 6,7, 8,9, 10, 11,
12,13, 14, 15, 16]. Alleviating the main memory bot-
tleneck requires the memory capacity, energy, cost, and
performance to all scale in an efficient manner across
technology generations. Unfortunately, it has become
increasingly difficult in recent years, especially the past
decade, to scale all of these dimensions [1, 2, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35,36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
and thus the main memory bottleneck has been worsen-
ing.

A major reason for the main memory bottleneck is the
high energy and latency cost associated with data move-
ment. In modern computers, to perform any operation
on data that resides in main memory, the processor must
retrieve the data from main memory. This requires the
memory controller to issue commands to a DRAM mod-
ule across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM mod-
ule sends the requested data across the memory channel,
after which the data is placed in the caches and regis-
ters. The CPU can perform computation on the data
once the data is in its registers. Data movement from the
DRAM to the CPU incurs long latency and consumes
a significant amount of energy [7, 50, 51, 52, 53, 54].
These costs are often exacerbated by the fact that much
of the data brought into the caches is not reused by the
CPU [52, 53, 55, 56], providing little benefit in return
for the high latency and energy cost.

The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems. The CPU is considered to be the master
in the system, and computation is performed only in the
processor (and accelerators). In contrast, data storage
and communication units, including the main memory,
are treated as unintelligent workers that are incapable of
computation. As a result of this processor-centric design
paradigm, data moves a lot in the system between the
computation units and communication/ storage units so
that computation can be done on it. With the increasingly
data-centric nature of contemporary and emerging appli-

18



Processing Data
Where It Makes Sense




Processing in/near Memory: An Old Idea
Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969

Cellular Logic-in-Memory Arrays

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract—As a direct consequence of large-scale integration,
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of identical elementary net- 10 .-
works, or cells. When a small amount of storage is included in each ARRAY: [ [ [ X
cell, the same array may be regarded either as a logically enhanced T L I :
memory array, or as a logic array whose elementary gates and con- B =" ] L MAJ

TYPICAL CELL:

[

nections can be “programmed” to realize a desired logical behavior. C - T
In this paper the specific engineering features of such cellular : Er

logic-in-memory (CLIM) arrays are discussed, and one such special- wl-

purpose array, a cellular sorting array, is described in detail to illus- g0 '

trate how these features may be achieved in a particular design. It is I |

shown how the cellular sorting array can be employed as a single- E: == i

address, multiword memory that keeps in order all words stored U ——uJ o & el

within it. It can also be used as a content-addressed memory, a (X leads return to X-register)

pushdown memory, a buffer memory, and (with a lower logical

efficiency) a programmable array for the realization of arbitrary CELL EQUATIONS:

switching functions. A second version of a sorting array, operating

on a different sorting principle, is also described.
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Fig. 1. Cellular sorting array I.
Index Terms—Cellular logic, large-scale integration, logic arrays

logic in memory, push-down memory, sorting, switching functions.

https://doi.org/10.1109/T-C.1969.222754
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Processing in/near Memory: An Old Idea

Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

A Logic-in-Memory Computer
HAROLD S. STONE

Abstract—1If, as presently projected, the cost of microelectronic
arrays in the future will tend to reflect the number of pins on the
array rather than the number of gates, the logic-in-memory array is
an extremely attractive computer component. Such an array is es-
sentially a microelectronic memory with some combinational logic
associated with each storage element.

s A FA R l https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone logic in_memory 1970.pdf 21
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMER UPE M UPMER UPMEM LIPMIENS UPMEM UPMEM
PIM PN PIM Pt i PN PN Ik
chip dhip chip chip chip chig chip chip

https:7//www.anandtech.com/show/14750/hot-chips-31-analySis-inmeémory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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2,560-DPU Processing-in-Memory System

Main Memory

PIM-enabled Memory

Main Memory

Host
CPU 1

PIM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
‘memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
‘movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM i motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i ‘The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experi ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
‘memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as y-bound. We evaluate the and scaling istics of PrIM

,/110

on the UPMEM PIM architecture, and compare their and energy fon to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

https

arxiv.or

df/2105.03814.pdf
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Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

https://arxiv.org/pdf/2105.03814.pdf
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Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEws | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the
h Bandwidth Memory (HBM) integ
HBM-PIMJ The new processing-in-memory (PIM) architecture brings powerful Al computing capabilities inside high-

industry’s first Hig rated with artificial intelligence (Al) processing power — the

performance memory, to accelerate large-scale processing In data centers, nigh perrormance computing

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 25
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Samsung Function-in-Memory DRAM (2021)

B FIMDRAM based on HBM2

Chip Specification

SID1 128DQ / 8CH / 16 banks / BL4
((Il?ereI\-Adzi()a ) 32 PCU blocks (1 FIM block/2 banks)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM] T ——

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',

Je Min Ryu, Jong-Pil Son', Seongil 0", Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo?, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

‘Samsung Electronics, Hwaseong, Korea
*Samsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea
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Samsung Function-in-Memory DRAM (2021)

hip Implementation
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Cell array Cell array Cell array

[Digrtal RTL deSign for PCU block] |- for bank9. ' | for bank13 for bank9 for bank13

PCU block PCU block PCU block PCU block
for bank8 & 9 |for bank12 & 13| for bank8 & 9 |for bank12 & 13|

1SSCC 2021 / SESSION 25 / DRAM / 25.4 i-:Cellarray: - |-: Cell-array |- Cell array Cell array
i for bankB for bank12 | - for bank8 for bank12 !
25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 e . T I T e -

with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaghoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee’,

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',
Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’,

Myeong Jun Song’, Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo®, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

*Samsung Electronics, Hwaseong, Korea

28amsung Electronics, San Jose, CA
“*Samsung Electronics, Suwon, Korea



Samsung AxDIMM (2021)

= DDR5-PIM Baseline

] RDIMM S :
o DLRM recommendation system

AxDIMM

QDM

CH2!
1

OS/FC/Others SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 28



FPGA-based Processing Near Memory

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutluy,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive

Applications"”
IEEE Micro (IEEE MICRO), to appear, 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos’ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology Y IBM Research Europe
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https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

Why In-Memory Computation Today?

« Push from Technology
2 DRAM Scaling at jeopardy
[1 Controllers close to DRAM
[1 Industry open to new memory architectures

« Pull from Systems and Applications
o Data access is a major system and application bottleneck
o  Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 3



Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Processing using Memory

a Processing near Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 3



Two PIM Approaches

5.2. Two Approaches: Processing Using Memory
(PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory
technology innovations that we discuss in Section 5.1
to enable and implement PIM. We find that these works
generally take one of two approaches, which are cat-
egorized in Table 1: (1) processing using memory or
(2) processing near memory. We briefly describe each
approach here. Sections 6 and 7 will provide example
approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to
PIM used by recent works. Adapted from [309].

Approach Enabling Technologies
SRAM
DRAM

Processing Using Memory Phase-change memory (PCM)
Magnetic RAM (MRAM)

Resistive RAM (RRAM)/memristors

Logic layers in 3D-stacked memory
Processing Near Memory  Silicon interposers

Logic in memory controllers

Processing using memory (PUM) exploits the ex-
isting memory architecture and the operational princi-
ples of the memory circuitry to enable operations within
main memory with minimal changes. PUM makes use

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna,
and Rachata Ausavarungnirun,

"A Modern Primer on Processing in
Memory"

Invited Book Chapter in Emerging Computing:
From Devices to Systems - Looking Beyond
Moore and Von Neumann, Springer, to be
published in 2021.

[Tutorial Video on "Memory-Centric Computing
Systems" (1 hour 51 minutes)]

S A FA Rl https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM _springer-emerging-computing-bookchapter21.pdf ~ 32



https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

Processing in Memory:

Two Approaches

1. Processing using Memory
2. Processing near Memory




Approach 1: Processing Using Memory

« Take advantage of operational principles of memory to perform
bulk data movement and computation in memory

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q

« Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

a Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

a Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI 4


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

Bulk Data o
Copy
Bulk Data
Initialization ;’a """

SAFARI



Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod,
Witchel, and Anoop Gupta

craatadl

Hardware S
up
port for Bulk Data Movement in Sery P
er Platforms

Li Zhao'
o i - e
e - Ravilyer® Srihari Makinenit
of Cor 1 .
nputer Science and Engineeri
ering, Universj

8 sity of C

an } @cs.ucr.edu

; Email: {zhao, bhuy

C . .
n 3 . e(.hllOlO ' L )

Architecture Support for Improving Bulk Memory Copying and Initialization
Performance

Xiaowei Jiang, Yan Solihin Li Zhao, Ravishankar Iyer
Dept. of Electrical and Computer Engineering Intel Labs

North Carolina State University Intel Corporation
Raleigh. USA Hillsboro. USA
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Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’l

00000

00000
00000

Forkin Zero inti
initialization ~ Checkpointi

g (e.g., security) ng

l l oo o

_______ > Many

VM Cloning Page moere

Deduplicati Migration
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization /

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)
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Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization /
4) No unwanted data movement

1046ns, 3.6u)] [ 90ns, 0.04ul
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RowClone: In-DRAM Row Copy

4 Idea: Two consecutive ACTivates
Negligible HW
cost

Step 1:
Activate row

etep 2:

Activate row

°DRAM
subarray

< €S >

Transfer
row

Transfe
.
row

Row Buffer (4
Kbytes)

HNESENENSEEEEEEEEEEEEEEEEEEEEEE
8
bit

[ 11.6X latency reduction, 74X energy reduction ]

DUS




RowClone: Intra-Subarray
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RowClone: Intra-Subarray (11)

>s§r§c§r§o§w
5 20O 0 I 4

>s*r§c*r§o*vxﬁ
o s o o o o

S r ¢ r O W

Row
D £

1. Activate src row (copy data from src to row buffer)

\.

" 2. Activate dst row (disconnect src from row buffer,

connect dst — copy data from row buffer to dst)

\




RowClone: Inter-Bank

(M N N )

o B | Bank

~ Ol L J Y

o =~ Shared

= = I * internal

v = | N R

— o bus
X J J |

- N

Overlap the latency of the read and the write
_1.9X latency reduction, 3.2X energy reduction )




Generalized RowClone 0.01% area cost

Inter Subarray Copy )
(Use Inter-Bank Copy Twice)

[ J[BankJ [ Banki/0 ]| :
| — ‘ S
| |

Inter Bank Copy  Intra Subarray

(Pipelined Copy (2 ACTs)
Internal RD/WR)

7

|
Chip 1/O

Memory
ann




RowClone: Latency and Energy Savings

“Baseline
FIntra-Su barray

—
N

b

&
oo

<
e

Normalized Savings
= =
N (@)

o

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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RowClone: Fast Row Initialization

\/
Fix a row at Zero
(0.5% loss in capacity)

46



RowClone: Bulk Initialization

Initialization with arbitrary data
o Initialize one row
o Copy the data to other rows

Zero initialization (most common)
a2 Reserve a row in each subarray (always zero)
o Copy data from reserved row (FPM mode)

o 6.0X lower latency, 41.5X lower DRAM energy
2 0.2% loss in capacity

SAFARI
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RowClone: Latency & Energy Benefits

Latency Reduction

Energy Reduction

14
12 5.0 60- 41.5X
-UX 50
10 40
1.9 — - :
8 % 1.0x 20 I 3 oy " 1.5x {
6 0 ———
1 2 3 4
4 ' )
Very low cost: 0.01% increase in die area
\. J

[ e ———
1 2 3 4

SAFARI
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Copy and Initialization in Workloads

*Read *Write *Copy =Zero

—

0.8

0.6

0.4

0.2

Fraction of Memory Traffic

o

bootup compile forkbench mcached mysql shell

SAFARI 49



RowClone: Application Performance

807 *IPC Improvement »Energy Reduction
70

60

50

LEH[LJE

bootup compile forkbench mcached mysq| shell

% Compared to Baseline
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End-to-End System Design

- How to communicate
Application occurrences of bulk
copy/initialization across
layers?

Operating System

How to ensure cache
coherence?

How to maximize latency and

Microarchitecture .
energy savings?

DRAM (RowClone) How to handle data reuse?

51



More on RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”

Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Lecture on RowClone & Processing using DRAM

Mindset: Memory as an Accelerator

mini-CPU ' GPU GPU :
CPU CPU core | : fehroughput| kthroughput)]
video
core
CPU CPU  Ltvasbputl Kbt
: - : [throughput)| Kthroughput)|
core core imaging i| core core |: Memory
LLC
. Specialized
Memory Controller compute-capability
In.memory.

Memory Bus

< P »l T Easlo0shE AR A ilar to e 3 entic

) DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Arch. - Meeting 3: RowClone: In-Memory Data Copy and Initialization (Fall 2021)

292 views * Streamed live on Oct 7, 2021 e 21 GP 0 > SHARE =+ SAVE
@ Onur Mutlu.Lectures SUBSCRIBED r‘\
&> 19.1K subscribers =

https://www.voutube.com/watch?v=n6Pwglgax E&list=PL5Q2s0XY2Zi 7UBNmMC9B8Yr5]JSwTG9yH4&index=4
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Mindset: Memory as an Accelerator
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Memory similar to a "conventional” accelerator



RowClone Strengths




Strengths ot the Paper

Simple, novel mechanism to solve an important problem
Effective and low hardware overhead
Intuitive idea!

Greatly improves performance and efficiency (assuming
data is mapped nicely)

Seems like a clear win for data initialization (without
mapping requirements)

Makes software designer’s life easier

o If copies are 10x-100x cheaper, how to design software?

Paper tackles many low-level and system-level issues
Well-written, insightful paper
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RowClone Weaknesses
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Weaknesses

Requires data to be mapped in the same subarray to deliver
the largest benefits

o Helps less if data movement is not within a subarray
a2 Does not help if data movement is across DRAM channels

Inter-subarray copy is very inefficient

Causes many changes in the system stack
o End-to-end design spans applications to circuits

o Software-hardware cooperative solution might not always be
easy to adopt

Cache coherence and data reuse cause real overheads

Evaluation is done solely in simulation
Evaluation does not consider multi-chip systems

Are these the best workloads to evaluate?
58



Recall: Try to Avoid Rat Holes

Performance Analysis Rat Holes

Workload Metrics  Configuration Details

Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf
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Improvements on RowClone
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RowClone Extensions and Follow-Up Work

« Can we do faster inter-subarray copy?
a Yes, see LISA [Chang et al., HPCA 2016]

= Can we enable data movement at smaller granularities
within a bank?
a Yes, see FIGARO [Wang et al., MICRO 2020]

= Can we do better inter-bank copy?
a Yes, see Network-on-Memory [CAL 2020]

« Can similar ideas and DRAM properties be used to perform
computation on data?
a Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017]
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LISA: Increasing Connectivity in DRAM

« Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

Slides (pptx) (pdf)]

[Source Code]

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. ChangT, Prashant J. Nair*, Donghyuk Leel, Saugata Ghose', Moinuddin K. Qureshi*, and Onur Mutlu'
T Carnegie Mellon University — *Georgia Institute of Technology
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Moving Data Inside DRAM?

IIIII

Goal: Provide a new substrate to enable

Bank 5L2’

-

-7 rows
Bank DRAM

ceII
Bank

Bank
DRA

wide connectivity between subarrays
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Key Idea and Applications

* Low-cost Inter-linked subarrays (LISA)
— Fast bulk data movement between subarrays
— Wide datapath via isolation transistors: 0.8% DRAM chip area

[_. Subarray | _.]
AL AL - AL A

—— —— Ly

[ Subarray 2 ]
* LISA is a versatile substrate — new applications

Fast bulk data copy: Copy latency 1.363ms—0.148ms (9.2x)
— 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns—21.5ns (2.2x)
— 5% speedup

Fast precharge: Precharge latency 13.1ns—5.0ns (2.6x)
— 8% speedup
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More on LLISA

« Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

Slides (pptx) (pdf)]

[Source Code]

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. ChangT, Prashant J. Nair*, Donghyuk Leel, Saugata Ghose', Moinuddin K. Qureshi*, and Onur Mutlu'
T Carnegie Mellon University — *Georgia Institute of Technology
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

FIGARO: Fine-Grained In-DRAM Copy

= Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose,
Minesh Patel, Jeremie S. Kim, Juan Gomez Luna, Mohammad
Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu,
"FIGARO: Improving System Performance via Fine-Grained
In-DRAM Data Relocation and Caching”
Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020.

FIGARO: Improving System Performance

via Fine-Grained In-DRAM Data Relocation and Caching
Yaohua Wang* Lois Orosal  Xiangjun Peng®* Yang Guo* Saugata Ghose®* Minesh Patel
Jeremie S. Kim Juan Gomez Lunal Mohammad Sadrosadati® Nika Mansouri Ghiasi! Onur Mutlu'?

*National University of Defense Technology TETH Ziirich  © Chinese University of Hong Kong
® University of Illinois at Urbana—Champaign iCarnegie Mellon University 8 Institute of Research in Fundamental Sciences
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https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
http://www.microarch.org/micro53/
http://www.microarch.org/micro53/

Network-On-Memory: Fast Inter-Bank Copy

« Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata
Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud
Daneshtalab,

"NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories”
IEEE Computer Architecture Letters (CAL), to appear in 2020.

NoM: NETWORK-ON-MEMORY FOR INTER-BANK DATA TRANSFER IN HIGHLY-BANKED MEMORIES

Seyyed Hossein SeyyedAghaei Rezaei’ Mehdi Modarressi'-3 Rachata Ausavarungnirun?
Mohammad Sadrosadati® Onur Mutlu# Masoud Daneshtalab®
"University of Tehran 2King Mongkut's University of Technology North Bangkok *|Institute for Research in Fundamental Sciences
4ETH Zurich SMalardalens University
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https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
http://www.computer.org/web/cal

Mindset: Memory as an Accelerator
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In-DRAM Bulk Bitwise AND/OR

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. GibbonsT, Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Ambit: Bulk-Bitwise in-DRAM Computation

= Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*® Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”

!Microsoft Research India 2NVIDIA Research 3Intel ZETH Ziirich °Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
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In-DRAM Bulk Bitwise Execution Paradigm

Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich
visesha@microsoft.com onur .mutlu@inf.ethz.ch
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SIMDRAM Framework for in-DRAM Computing

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!-? *Geraldo F. Oliveira' Sven Gregorio' Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®
Juan Gémez-Luna’ Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign
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Extensions and Follow-Up Work (II)

= Can this idea be evaluated on a real system? How?
a Yes, see the ComputeDRAM paper [MICRO 2019]

« Can similar ideas be used in other types of memories?
Phase Change Memory? RRAM? STT-MRAM?

a Yes, see the Pinatubo paper [DAC 2016]

« Can charge sharing properties be used for other functions?

a Yes, see the D-RaNGe [HPCA 2019], DL-PUF [HPCA 2018],
QUAC-TRNG [ISCA 2021] works on random numbers & PUFs

« Can we have more efficient solutions to
a2 Cache coherence (minimize overhead)
o Data reuse after copy and initialization
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RowClone Demonstration in Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/micro19-gao.pdf 74


https://parallel.princeton.edu/papers/micro19-gao.pdf

Pinatubo: PCM RowClone and Bitwise Ops

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou'*, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?, Qualcomm Inc.4, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’
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Key Takeaways

A novel method to accelerate data copy and initialization

Simple and effective
Hardware/software cooperative

Good potential for work building on it to extend it
o To different granularities

o To make things more efficient and effective

a2 Many works have already built on the paper (see LISA, FIGARO,
NoM, Ambit, ComputeDRAM, and other works in Google Scholar)

Easy to read and understand paper
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RowClone: Memory as an
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Mindset: Processing using DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q

« Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

a Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

a Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)
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In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using inherent analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

a Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
a2 Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
1)’ YAN/
A v l ogo”

o

Final State
AB + BC + AC

| 50,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. g0



In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B 1 C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C

D W N =
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. GibbonsT, Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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In-DRAM NOT: Dual Contact Cell

d-wordline 3
dual-contact >1l L/ §
cell (DCC) o | E 3 .
n-wordline :__f_—Ll_ | Idea .
[ ' Feed the
il AN negated value

in the sense amplifier
into a special row

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.
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In-DRAM NOT Operation

0 T VoD 1 T 5Vpp + 0 1 T~ Vop 0 T VoD

source |!I 1 source Ij 1 source |!I | source III 1

3VoD o 3VDD 2] L ) 0 [ 4 )

Initial State After Charge Sharing Activated d-wordline Activated n-wordline

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.
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Pertormance: In-DRAM Bitwise Operations
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@ DR s conmisrssommns QI s o om0 S S B S S B s
7)) 1024 sl i o256y ) e i NI 1033307 oot cinsing ot NI o ooy i o oo Achchicpa o3} {858 {3870 1ad il o} m o {818 T (aEH o n{nGh 3o B} minfa S n NN
8-‘ 512 R T e e I L
O 2 256 | FRCUR RO - SR | [ ——
:/ 8 128 o PRSI 0902 TDRESDUTTTOTIRATIAR 0| 0 USR] 0 | 0 ESGURREUONSSIEE I
a N 64  eeemweaesl BN B0 e NN 02 FESEEEEeeeeseens B0 [SEaaemeaaeewes B0 EESEREER
o0 cpfS Mueeen gy TEESES R 0 ememmte gy 0 e gy 0T
2 1wded | R R | R | R
) sS4 | BB B R |
o N H e I R i e
= NN BN BN BN SR BN BN BE B
1 | | | |
not and/or nand/nor XOI/XNnor mean

Figure 9: Throughput of bitwise operations on various systems.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 157.9
Channel Energy ~ Ambit 1.6 32 4.0 5.5
(nJ/KB) (}) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.
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Ambit vs. DDR3: Performance and
Energy

70-Performance Improvement *Energy Reduction

60 -
50—
40-

not and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” Msfg)
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Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SA FARI [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range qgueries and joins
Many bitwise operations to perform a query

age < 18 < age < 25 <age< age >

SAFARI



Performance: Bitmap Index on Ambit

Execution Time
of the Query (ms)

Baseline I Ambit

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks

8 million users

16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

>5.4-6.6X Performance Improvement

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO

2017.
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Pertormance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017

SAFARI )3




More on In-DRAM Bulk AND/OR

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. GibbonsT, Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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More on In-DRAM Bitwise Operations

Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® Amirali Boroumand”®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India >NVIDIA Research Z3Intel “ETH Ziirich °Carnegie Mellon University
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More on In-DRAM Bulk Bitwise Execution

Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich
visesha@microsoft.com onur .mutlu@inf.ethz.ch
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SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!2 *Geraldo F. Oliveira' Sven Gregorio’ Joao Dinis Ferreira
Nika Mansouri Ghiasi' =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®
Juan Gémez-Luna’ Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign
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SIMDRAM Key Idea

* SIMDRAM: An end-to-end processing-using-DRAM

framework that provides the , the
, and the for:

- Efficiently computing complex operations in DRAM

- Providing the ability to implement arbitrary operations as
required

- Using an in-DRAM massively-parallel SIMD substrate that
requires minimal changes to DRAM architecture

SAFARI 8



SIMDRAM: PuM Substrate

e SIMDRAM framework is built around a DRAM substrate

that enables two techniques:

(1) Vertical data layout (2) Majority-based computation

most significant bit (MSB) C,,.~AB+AC +BC_

4 )

]

Row Decoder

ut

[

|

[

|

| A
| B
[

| C
I & /
|

[

|

[

|

[

|

<& 4-bit element size =P

[

least significant bit (LSB)

Pros compared to the
conventional horizontal layout:

Pros compared to
AND/OR/NOT-based computation:

* Implicit shift operation * Higher performance
* Massive parallelism * Higher throughput

SAFARI * Lower energy consumption 99



SIMDRAM Framework: Overview

’————~ P = = = =

User Input [ Step 1: Generate { Step 2: Generate SIMDRAM Output
Desired operation 1 MAjlogic sequence of I
.......... p. I ' * - I DRAMcommandS I NeWSIMDqu.M.HI.)’:O.‘g.’:C{m.
1: 1 1 [acT/PrE “
IZ> @ E L__:> ACT/PRE [ . L
I f - | acT/pRE l Main memory
...................... 4 | e 11| acr/act/ere >
AND/OR/NOT logic \ MAJ/NOTlogic j 1 | 5ne || - bbopnew -
—_———— | )| New SIMDRAM
uProgram
N ' 2 — | instruction
User Input 7  Step 3: Execution according to pProgram  \ SIMDRAM Output
SIMDRAM-enabled application | EETIR P ‘ 1 Instruction result
o0 () { 1. ] ACT/PRE I in memory
; 1] f ACT/ PRE : FEEE .
; 1l: * 3 | ACT/PRE 1| w
[ ] . ~
loel men I::>| ; ] ACT/PRE/PRE 1 |-
} - . done | [ S
............................. 1 oo U uProgram 1 <
\ Memory Controller / Crrrrerert '

\____________/
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SIMDRAM Framework: Step 1

’____~

User Input [ Step 1: Generate \
Desired operation | L MA] .I.O:g.l.c: e I
...................... . I : ‘: I
: A NE 1
ST F | T meene— =
AND/OR/NOT logic \ MAJ/NOT logic

L —
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Step 1: Naive MAJ/NOT Implementation

C outputis “1” only when A =B =“1"
[ )
(2772222 A
C cmm B C output is “0” only when A = B = “0”
(722722 1 )

11
T
1l

0
A o{Ma]
B e

[
|
!
|
!
|
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Step 1: Efficient MAJ/NOT Implementation

roT T T - S Greedy roT T - N
( \I optimization Il :
0 . 4 A
: %:_ MA] ( algorithm™ ,
|
| : Part 2> : B Cout |
| C
R TS (S) 1 @ out | I C |
\ C o | I I
\in— ——————————— / \ —————————— - /

Step 1 generates an optimized
MA]/NOT-implementation of the desired operation

* L. Amaru et al, “Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization”, DAC, 2014,
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SIMDRAM Framework: Step 2

’____~

User Input Step 1: Generate [ Step 2: Generate ) SIMDRAM Output
Desired operaton T Mulogic | sequenceo |
...................... K . I DRAM Commands I

: .| [acT/PrE :
|:>f : ACT/PRE | I . | '

ACT/PRE I Main memory
....................................... ACT/ACT/PRE PpH -* " """ """ >
AND/OR/NOT logic MA/NOT logic done | T

,_;L&

)} New SIMDRAM
~—eem mm == = instruction
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Step 2: uProgram Generation

e WProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

* Goal of Step 2: To generate the 1Program that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate pProgram

SAFARI 105



Step 2: uProgram Generation

e uProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

* Goal of Step 2: To generate the 1Program that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate pProgram

SAFARI 106



Task 1: Allocating DRAM Rows to Operands

* Allocation algorithm considers two constraints specific to
processing-using-DRAM

P”””””.”
0000000”00’0 Constraint 1:
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Task 1: Allocating DRAM Rows to Operands

* Allocation algorithm considers two constraints specific to
processing-using-DRAM

P”””’f””’
000000’0’00’0 Constraint 2:

S
’..“““.’.””.”’ Destructive behavior

of triple-row activation
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Task 1: Allocating DRAM Rows to Operands

* Allocation algorithm:

* Assigns as many inputs as the number of free compute rows

 All three input rows contain the MA]J output and can be reused

000000000000
000000000000
———————— v Allocation ........’...

» | algorithm = SR el lededDd
A @ N > Q00000000000¢
e . OO EEOS0S00.9:

Seasaaasssss
Triple-row CO"t 0.0.0.......0’.....’.’.’.
activation C"“t .....”””’
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Step 2: uProgram Generation

e uWProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

* Goal of Step 2: To generate the | |Program that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate pProgram

SAFARI 110



Task 2: Generate an initial pProgram

4 , N

Bo—

BJ* Cawc >
@IX

S / 1. Generate

uProgram
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Task 2: Optimize the pProgram

Initial pProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

) 2. Copy B to reserved row

/
A (ACT/ACT/PRE)
B Cout > 3. Copy C, to reserved row
C. (ACT/ACT/PRE)

-

1. Generate 4. Execute MA]J
uProgram (ACT/PRE)

5. Copy C_ , to destination row

K (ACT/PRE) j

2. Optimize
SAFARI 112




Task 2: Optimize the pProgram

Initial pProgram

1. A to reserved row
(ACT/ACT/PRE)
/ \ 2. B to reserved row
A (ACT/ACT/PRE)
B Cout > 3. Cin to reserved row
Cin (ACT/ACT/PRE)
\ J

\ /

L]

2. Optimize
SAFARI 113




Task 2: Optimize the pProgram

Initial pProgram

~

2

4 )

A

B Cout >
Cn by

4. Execute MA] \
(ACT/PRE)
> Merge
5. Copy C_ , to destination row

MA] + row copy
(ACT/PRE) j y

2. Optimize
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Task 2: Optimize the pProgram

e
A
B Coue >
Ci

g

SAFARI

Optimized pProgram

/

\

2. Execute MAJ and

(ACT/ACT/PRE)

~

copy C_ . to destination row

/

L]

2. Optimize

>- Merge

MA] + row copy
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Task 2: Generate N-bit Computation

e Final pProgram is optimized and computes the desired
operation for operands of N-bit size in a bit-serial fashion

Optimized pProgram

/ Repeat N times: \

1. CopyA,B,C

4 \ to reserved rows
A (ACT/ACT/PRE)
B Cout >
Cin

N\ J

2. Execute MAJ and
copy C_ . to destination row
(ACT/ACT/PRE)

. /

T+ 4

2. Optimize 3. Generate N-bit
SAFARI computation 116




Task 2: Generate pProgram

e Final pProgram is optimized and computes the desired
operation for operands of N-bit size in a bit-serial fashion

Final pProgram

/Stored in a reserved DRAM
region
for future use

A new SIMDRAM
| instruction (called bbop_new)
added to CPU ISA

SAFARI 117



SIMDRAM Framework: Step 3

User Input Step 1: Generate Step 2: Generate SIMDRAM Output

Desired operation . MA]logic sequence of

.‘ ---------------------- .‘ :0 o‘- DRAM COmmandS ............ .
: ACT/PRE > “
IZ> @ ; I:> ACT/PRE ] . | '
f ; ACT/PRE Main memory
...................... oot ACT/ACT/PRE Pl Tttt
CAND/OR/NOT logic MAJ/NOT logic done ., Bpopnew
New SIMDRAM
instruction
— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— N
User Input / \ SIMDRAM Output
SIMDRAM-enabled application | 1 Instruction result
I ACT/PRE l in memory

foo () { il : Yy — | R 3

: i * 3 | ACT/PRE 1|

: - —». ~

lloop mer Eyl - 2 ACT/PRE/PRE 1 |- &

.~ >

} | done | [ S

............................. I “Control Unit” 1 | <
\ Memory Controller / fececececacecnsncncncel '

”’

\____________
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Step 3: uProgram Execution

e SIMDRAM control unit: handles the execution of the
uProgram at runtime

* Upon receiving a bbop instruction, the control unit:

1. Loads the pProgram corresponding to SIMDRAM operation

2. Issues the sequence of DRAM commands (ACT/PRE) stored
in the pProgram to SIMDRAM subarrays to perform the
in-DRAM operation

User Input SIMDRAM Output

SIMDRAM-enabled application ﬂnstruction resu77.\|
: ACT/ERE in memory
N foo () { 1S I O ! B | IR | O B B |
: ACT/PRE .
: i ACT/PRE Iy
[ gl
| bbop_new E> - ACT/ACT/PRE ] E
1 1 ] E b- . )
! L done L O
............................. Control Unit CE j
K Memory Controller j g
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More in the Paper

* Detailed reference implementation and
microarchitecture of the SIMDRAM control unit

decreme*t

!

O is_zero Loop @
<t
\ _ — Counter
From bbop Ledd shift 1]
CPU FIFO dst, src_1, src_2,In amount |
@ b reg dst.
op_op
v v reg src. |y
+1
=L
4 branch / @
*024 &/ 1024 16

SAFARI

vV

1
e *To Memory

Controller

AAP/AP
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System Integration

Efficiently transposing data
Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework
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Transposing Data

*SIMDRAM operates on vertically-laid-out data

*Other system components expect data to be laid

out horizontally

Challenging to share data between SIMDRAM and CPU
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Transposition Unit

Transforms the data layout from horizontal to vertical, and vice versa

Last-Level Cache

| |

- | Object Tracker ~  ...... >

= (0T)

- Horizontal — Vertical T
S Transpose Vertical — Horizontal
=) Transpose

- — - L
- Transpose Buffer : _
8 ' Transpose Buffer :
) i |
o Store Unit : !

E \ : — Fetch Unit

ot

e =

Memory Controller
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Efficiently Transposing Data

Low impact on the throughput of
SIMDRAM operations
Low area cost (0.06 mm?in 22nm tech. node)
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More in the Paper

SIMDRAM: An End-to-End Framework for
Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar?  *Geraldo F. Oliveira! ~ Sven Gregorio! =~ Jo#o Dinis Ferreira'
Nika Mansouri Ghiasi! =~ Minesh Pate]! =~ Mohammed Alser! ~ Saugata Ghose®
Juan Gémez-Luna! Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—~Champaign

-y A A4

coherence, and interrupts

Handling limited subarray size
Security implications

Limitations of our framework
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Methodology: Experimental Setup

e Simulator: gem5

* Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

e Evaluated (all using a
DDR4_2400_x64 device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row
buffer)

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1'048°576 SIMD lanes
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Methodology: Workloads

Evaluated:
- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-Reduction

- Equality/ Greater/Greater Equal - Division/Multiplication

* 7 real-world applications

- BitWeaving (databases) - LeNET (neural networks)
- TPH-H (databases) -VGG-13/VGG-16 (neural networks)
- KNN (machine learning) - Brightness (graphics)
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Throughput Analysis
Average normalized throughput across all 16 SIMDRAM
operations

eSIMDRAM - 1 Bank sSIMDRAM - 4 Banks OSIMDRAM - 16 Banks

100.0- 88.0
31.6

22.0

—
S
o

5.8

log scale

=
(=

Average Normalized Throughput

(GOPS/s) --

=
i

e ]

SIMDRAM significantly outperforms
all state-of-the-art baselines for a wide range of operations
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Energy Analysis

Average normalized energy efficiency across all 16
SIMDRAM operations

8SIMDRAM - 1 Bank eSIMDRAM - 4 Banks oSIMDRAM - 16 Banks
o O 1000~
o
g O 257
‘T bo
= O
S = 100 -
B
: S
% a0
& o
- 8 2.6
8 -
1
Ambit
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Real-World Applications

Average speedup across 7 real-world applications

eSIMDRAM - 1 Bank BeSIMDRAM - 4 Banks OSIMDRAM - 16 Banks

100.01

log scale

21.0
10.0

1.0

Average Speedup --

17:5

0.1

SAFARI

SIMDRAM effectively and efficiently accelerates
many commonly-used real-world applications
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SIMDRAM Key Results

Evaluated on:

- 16 complex in-DRAM operations
- 7 commonly-used real-world applications

SIMDRAM provides:

*88x and 5.8x the throughput of a CPU and a high-end
GPU, respectively, over 16 operations

*257x and 31x the energy efficiency of a CPU and a
high-end GPU, respectively, over 16 operations

*21x and 2.1x the performance of a CPU an a high-end
GPU, over seven real-world applications
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SIMDRAM Conclusion
e SIMDRAM:

- Enables efficient computation of a flexible set and wide range
of operations in a PuM massively parallel SIMD substrate

- Provides the hardware, programming, and ISA support, to:
* Address key system integration challenges

* Allow programmers to define and employ new operations without
hardware changes

SIMDRAM is a promising PuM framework

* C(Can ease the adoption of processing-using-DRAM

architectures
 Improves the performance and efficiency of
processing-using-memory architectures
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SIMDRAM: A Framework for

Bit-Serial SIMD Processing using DRAM

Nastaran Hajinazar* Geraldo F. Oliveira®

Sven Gregorio Joao Ferreira Nika Mansouri Ghiasi
Minesh Patel Mohammed Alser Saugata Ghose
Juan Gémez-Luna Onur Mutlu
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In-DRAM Physical Unclonable Functions

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable

Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"

Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim'$ Minesh Patel® Hasan Hassan® Onur Mutlu$t
TCarnegie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE

In-DRAM True Random Number GGeneration

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim*$ Minesh PatelS Hasan Hassan® Lois Orosa® Onur Mutlu$?
fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

In-DRAM True Random Number GGeneration

Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,

"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"

Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Talk Video (25 minutes)]

[SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation
Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun®’  Minesh Patel’  A. Giray Yaglikci®®  Haocong Luo®
Jeremie S. Kim® F. Nisa Bostanci®f Nandita Vijaykumar®® Oguz Ergin' Onur Mutlu®

SETH Ziirich "TOBB University of Economics and Technology ©University of Toronto
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https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

RowClone & Bitwise Ops in Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University
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Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou'*, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?, Qualcomm Inc.4, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’
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Pinatubo: RowClone and Bitwise Ops in PCM

All data via the
Narrow DDR bus

D &,

Row-ADR

Operand Row 1
\\ Operand Row 2 Operand Row 1
1 . Operand Row 2
\] Operand Row n ["Operand Row n
Result Row ResultRow < J

VM-based Main Memory
(a) Conventional Approach (b) Pinatubo

Figure 2: Overview: (a) Computing-centric ap-

proach, moving tons of data to CPU and write back.

(b) The proposed Pinatubo architecture, performs

n-row bitwise operations inside NVM in one step.
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In-Memory Crossbar Array Operations

« Some emerging NVM technologies have crossbar array
structure
a2 Memristors, resistive RAM, phase change mem, STT-MRAM, ...

=« Crossbar arrays can be used to perform dot product
operations using “analog computation capability”
o Can operate on multiple pieces of data using Kirchoff’s laws
= Bitline current is a sum of products of wordline V x (1 / cell R)
o Computation is in analog domain inside the crossbar array

=« Need peripheral circuitry for DLJA and ALID conversion of
inputs and outputs
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Aside: In-Memory Crossbar Computation

R A AR

R
N

S&H [S&H [S&H [s&H
| | 1 I

V1

\

11 =V1.G1

V2
G2

12 =V2}

I=11+12= APC
(a) Multiply-Accumulate operation (b) Vector-Matrix Multiplier

Fig. 1. (a) Using a bitline to perform an analog sum of products operation.
(b) A memristor crossbar used as a vector-matrix multiplier.

SA FAR' Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator 141
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.



Aside: In-Memory Crossbar Computation
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Readings on Processing using NVM

« Shafiee+, “"ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

« Chi+, "PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory”,
ISCA 2016.

= Prezioso+, “"Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors”,
Nature 2015

« Ambrogio+, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature 2018.
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Challenge: Intelligent Memory Device

Does memory

have to be
dumb?

SAFARI



Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Historical Perspective &
A Detour

on the Review Process
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Ambit and RowClone
Sound Great!
No?




Some History: RowClone




RowClone: Historical Perspective

This work is likely the first example of “minimally changing
DRAM chips” to perform data movement and computation

o Surprising that it was done as late as 2013!

It led to a body of work on in-DRAM (and in-NVM)
computation with “hopefully small” changes

Work building on RowClone still continues

Initially, it was dismissed by some reviewers
o Rejected from ISCA 2013 conference
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One Review (ISCA 2013 Submission)

PAPER STRENGTHS

The paper includes a well written background on DRAM
organization/operation. The proposed technique is simple
and elegant; it

nicely exploits key circuit-level characteristics of DRAM
designs and

minimizes the changes necessary to commodity DRAM
chips.

PAPER WEAKNESSES

I am concerned on the applicability of the technique and
found the

evaluation to be uncompelling in terms of motivating the
work as well as

quantifying the potential benefit. Details on how to
efficiently manage

the coherence between the cache hierarchy and DRAM to
enable the proposed

technique are glossed over, but in my opinion are critical
to the

narrative.
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Another Review and Rebuttal

DETAILED COMMENTS

The paper proposes a simple and not new idea, block
copy in a DRAM, and the creates a complete

Reviewer B mentions that our idea is "not new". An
explicit

reference by the reviewer would be helpful here. While
the

reviewer may be referring to one of the patents that we

cite in

our paper (citations 2, 6, 25, 26, 27 in the paper), these
patents

are at a superficial level and do *not* provide a concrete
mechanism. In contrast, we propose three concrete
Qechanisms and

provide details on the most important architectural and
microarchitectural modifications required at the DRAM
chip, the

memory controller, and the CPU to enable a system that
supports

the mechanisms. We also analyze their latency, hardware
overhead,

power, and performance in detail. We are not aware of
any prior

work that achieves this. )1




ISCA 2013 Submission

ISCA40 Paper #295 onur@cmu.edu Profile | Help | Sign out
g : #268 Papers #353 (All) . Search |
Main dit

#295 RowClone: Fast and Efficient In-DRAM Copy
and Initialization of Bulk Data

# COMMENT Rejected M\ 1014kB Thursday 22 Nov 2012 12:11:45am EST
NOTIFICATION | 0fd459a9adc6194cda028a394d2e4d929f662f32
If selected, you will receive
email when updated comments You are an author of this paper.
are available for this paper.
— ABSTRACT + AUTHORS
& OTHER CONFIICTS Many programs initialize or copy V. Seshadri, Y. Kim, D. Lee,
large amounts of memory data. C. Fallin, R. Ausavarungnirun,
Initialization and copying are G. Pekhimenko, Y. Luo, O. Mutlu,

OveMer Nov WriQua RevConAnd

Review #295A 3 4 5 3
Review #295B 4 3 4 3
Review #295C 3 4 4 3
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Yet Later... in ISCA 2015...

Profiling a warehouse-scale computer

Svilen Kanev' Juan Pablo Darago’ Kim Hazelwood'
Harvard University Universidad de Buenos Aires Yahoo Labs
Parthasarathy Ranganathan Tipp Moseley Gu-Yeon Wei David Brooks
Google Google Harvard University Harvard University

L memmove
rpc
protobuf
—! hash

L allocation

| compression

Data movement In fact, RPCs are by far not the only cod
portions that do data movement. We also tracked all calls to the
Figure 4: 22-27% of WSC cycles are spent in differenfjcc memcpy () and memmove () library functions to estimate the

nents of “datacenter tax”. amount of time spent on explicit data movement (i.e., exposed
L through a simple API). This is a conservative estimate because

we see common building blocks once we aggregate sampled . il Sig ) .

profile data across many applications running in a datacenter. it does not track inlined or explicit copies. Just the variants of

In this section, we quantify the performance impact of the these two library functions represent 4-5% of datacenter cycles.

datacenter tax, and argue that its components are prime can-

didates for hardware acceleration in future datacenter SoCs.

Recent work in performing data movement in DRAM [45]
could optimize away this piece of tax.




MICRO 2013 Submission

#206 RowClone: Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization

ATION Accepted A 1947kB Friday 31 May 2013 1:48:46pm PDT |
ceive fd8423acdd9a222280302355899340083e5a40b1
B You are an author of this paper.

+ ABSTRACT + AUTHORS

Bulk data copy and initialization V. Seshadri, Y. Kim, C. Fallin,

operations are frequently triggered D. Lee, R. Ausavarungnirun,

by several system level operations G. Pekhimenko, Y. Luo, O. Mutlu,

in modern systems. Despite the P. Gibbons, M. Kozuch, T. Mowry

fact that these operations do not [details]

require [more]

+ Torics

OveMer Nov WriQua RevExp

Review #206A 5
Review #206B 4
Review #206C 3
3

4

Review #206D
Review #206E

WWANDHL
nhbhbhbp
WWwWwhhbp
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More History: Ambit




Ambit

First work on performing bulk bitwise operations in DRAM
a By exploiting analog computation capability of bitlines
o Extends and completes our IEEE CAL 2015 paper

Disruptive -- spans algorithms to circuits/devices
a2 Requires hardware/software cooperation for adoption

Led to a large amount of work in similar approaches in
DRAM and NVM

o The work continues to build

Initially, it was dismissed by many reviewers
a2 Rejected from 4 conferences!
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ISCA 2016: Rejected

Buddy RAM: Fast and Efficient Bulk Bitwise
Operations Using DRAM

Rejected - 2006kB 23 Nov 2015 11:30:23pm EST -
7f7234da178e644380275ce12a4f539ef45c4418

You are an author of this paper.

» Abstract » Authors

Many data structures (e.g., V. Seshadri, D. Lee, T. Mullins,
database bitmap indices) A. Boroumand, J. Kim,

rely on fast bitwise M. Kozuch, O. Mutlu,
operations on large bit P. Gibbons, T. Mowry [details]

vectors to achieve high
performance. Unfortunately, = » Topics and Options
the throughput of such bulk
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» Abstract
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[more]
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HPCA 2017: Rejected

1)~significantly improves the
performance of queries in
applications that use bitmap
indices for fast analytics, and
2)~makes bit vectors more
attractive than red-black trees
to represent sets. We believe
Buddy can trigger
programmers to redesign
applications to use bitwise
operations with the goal of
achieving high performance
and efficiency.

Rejected - You are an author of this paper.
OveMer RevExp WriQua ExpMet Nov

Review #119A 1
Review #119B 4
Review #119C =
Review #119D 3
Review #119E 3
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A Submission © 19 Nov 2016 12:03:02am EST -

¥ 3eea263e35e53552851cabc5225162776f809eaa

» Abstract » Authors
Bitwise operations are an V. Seshadri, D. Lee, T. Mullins,
important component of H. Hassan, A. Boroumand,

J. Kim, M. Kozuch, O. Mutlu,
P. Gibbons, T. Mowry [detalils]

[more]
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160

SAF/




Ambit Sounds Good, No?

— Review from ISCA 2016

The paper proposes to extend DRAM to include bulk, bit-wise
logical
operations directly between rows within the DRAM.

Strengths
- Very clever/novel idea.

- Great potential speedup and efficiency gains.

- Probably won't ever be built. Not practical to assume DRAM
manufacturers with change DRAM in this way.
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Very Interesting and Novel, ..... BUT ...

Comments for the authors

| found this idea very interesting and novel. In particular, while
there have been many works proposing moving computation
closer to

memory, I'm not aware of any work which proposes to leverage
the DRAM

rows themselves to implement the computation. The benefits
to this

approach are large in that no actual logic is used to implement
the

logical functions. Further the operation occurs in parallel
across

the whole row, a huge degree of data parallelism.
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... This Will Never Get Implemented

- The biggest problem with the work is that it underestimates

the

difficulty in modifying DRAM process for benefit in only a
subset of

applications which do bulk bitwise operations. In particular, |
find

it hard to believe that the commodity DRAM industry will
incorporate

this into their standard DRAM process. DRAM process is, at
this

point, a highly optimized, extremely tuned endeavor. Adding
this

kind of functionally will have a big impact on DRAM cost. The

performance benefit on the subset of applications isn't
enough to

justify the higher costs this will incur and this will never get

implemented.
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Another Review

Another Review from ISCA 2016

Strengths

The proposed mechanisms effectively exploit the operation of
the DRAM to perform efficient bitwise operations across entire
rows of the DRAM.

Weaknesses
This requires a modification to the DRAM that will only help this

type of bitwise operation. It seems unlikely that something like
that will be adopted.
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... This Will Never Get Implemented

Comments for the authors

This paper shows that DRAM could be modified to support
bitwise operations directly within the DRAM itself. The
performance advantages are compelling for situations in which
bulk bitwise operations matter.

However, | am not really convinced that any DRAM
manufacturer would really consider modifying the DRAM in this
way. It beneifts one specific type of operation, and while that
is important for some applications, it is not really a general-
purpose operation. Itis not like the STL library would be
changed to use this for its implementation of sets.
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Yet Another Review
Yet Another Review from ISCA 2016

Weaknesses

The core novelty of Buddy RAM is almost all circuits-related
(by exploiting sense amps). | do not find architectural

innovation even though the circuits technique benefits
architecturally by mitigating memory bandwidth and relieving
cache resources within a subarray. The only related part is the
new ISA support for bitwise operations at DRAM side and its
iInduced issue on cache coherence.

This paper suits better to be peer-reviewed and published in a
circuit conference or with a fabricated chip in ISSCC.



A Review from HPCA 2017: REJECT

#119 - HPCA23
* Impractical. Too many implications on ISA, DRAM design, and

N — _._coherence protocols.
Review #119A A Ple. Unlikely to benefit real-world computations.

* Evaluation did not consider full-program performance.

Paper summary
Paper proposes DRAM technology changes (inverts, etc) to
implement bit-wise operations directly on DRAM rows.

Comments for author
| am skeptical this would benefit real-world computations. I've
never seen real-world program profiles with hot functions or

Overall merit Post-response overall merit . : : : :
instructions that are bit-wise operations.

1. Reject Unknown

_ _ N _ On the other hand, | *have* seen system profiles that show non-

Reviewer expertise Writing quality trivial time zeroing pages. Suggest re-tooling your work to support

2. | have passing familiarity 3. Adequate page zeroing and evaluating that with a full-system simulation.

with this area Take a look at when/why the Linux kernel zeroes pages. You might
be surprised at the possible impact.

Experimental methodology Novelty

2. Poor 2. Incremental improvement

Strengths

Seems like a new idea. Processor-in-Memory (PIM) ideas have

resurged.

Weaknesses
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A Review from ISCA 2017

Review #162A updated 28 Jan 2017 5:16:50am EST

Post rebuttal overall merit Overall merit

1. Reject 2. Weak reject
Novelty Writing quality
2. Incremental improvement 4I Well-written

Reviewer expertise
5. This is my area

Paper summary

This paper proposes in-DRAM bit-wise operations by activating
more than one word lines (and cells connected to the wordiness).
Basically, it's a charge-based computation where the difference in
charge stored cells connected to the same bit line is used for the
logic operation.

Strengths
- conceptually a very interesting proposal (but practically not sure).
- consider various aspects including the interaction between

A Plain text

#162 - ISCA 2017

processors and RAM (although there isn't any new contribution
and rather use the same proposal as prior work).

Weaknesses

- negative impact on the regularity of DRAM array design (and
associated overhead evaluation seems to be very weak.

- significantly increase the testing cost

Comments to authors

This is an interesting proposal and well presented paper. However,
| have some concerns regarding the evaluation (especially related
to circuit level issues).

Especially, | feel that the variation related modeling and evaluation
are weak as there are multiple sources of variations such as
access transistors and sense-amp mismatches, minor defects in
either access transistors and/or capacitor that can manifest in this
particular proposed operation scenarios. That is, the authors
oversimplify the variation modeling, which | believe failed to
convince me this will work in practice. Also, the area overhead
analysis sounds hand-waivy. | totally understand the difficulty of
DRAM overhead analysis but also we must pursue more precise
ways of evaluating the area impact as DRAM is very cost-sensitive.

SAFARI
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Another Review from ISCA 2017

Review #162B updated 1 Feb 2017 6:50:31pm EST

Overall merit
2. Weak reject

Post rebuttal overall merit
2. Weak reject

Novelty
3. New contribution

Writing quality
3. Adequate

Reviewer expertise

3. | know the material, but am not an expert

Paper summary
This paper proposes performing bulk bit-wise operations at DRAM.
They leverage analog operation of DRAM, and add some extra

#162 - ISCA 2017
circuits to do bit-wise operations at row granularity.

Strengths
The idea of handling bit-wise operations in memory is interesting.

A Plain text

Weaknesses

Not motivated well.

Not convinced the possible gains worth all the complexity.
Not convinced if the proposal is applicable in real world
applications that do bit-wise operations on different data
granularity.

Comments to authors

* The paper lacks motivation. The authors talk about how common
bit-wise operations are. However, they do not provide any stat on
how often these operations are being used, and more importantly,
on what data granularity.

* Although bit-wise operations are common in some applications,
they are not necessarily done at large granularity. For example,
many applications do bit-wise operations at small 64-byte (or even
smaller) entities. For such cases, this paper requires copying two
whole rows to some temporary rows, and doing the operation on
those rows. Please explain how you handle such cases, and what
the benefits would be.

* What happens if the user does bit-wise operation on two 8-byte
data, and want to store it in a third block?

* What happens if both operands are located in one row?

* The main issue with this work is that it requires flushing blocks
out of caches to do the bit-wise operations. Imagine you have

blocks A and B in the cache, as discussed in section 6.2.3., the
proposal would flush them out of caches (not sure how?), writes

SAFARI
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ISCA 2017 Summary

SAFARI

@A1 6 Mar 2017

This paper was discussed both online and at the PC meeting.
Reviewers were uniformly positive about the novelty of the
proposed Buddy-RAM design. However, reviewers were also
concerned about the feasibility of the design. During the post-
rebuttal and PC discussion, the main concerns raised were (1) the
impact of process variation on the design's functional correctness;

#162 - ISCA 2017

(2) the potential reliability issues that arise due to the lack of
ECC/CRC mechanisms; and (3) the impact on DRAM testing cost.

Specifically on point (1), some reviewers raised concerns about the
limitations of the simulations performed to address variability:
"Monte-Carlo cannot capture tail distribution of cell failures. Also
Monte-Carlo cannot capture random correlated WID process
variation issues (only some random uncorrelated variations)."

Given these concerns, the PC ultimately decided to reject the
paper. We hope that this feedback is useful in preparing a future
version of the paper.
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The Reviewer Accountability Problem

AcknowleXgments

We thank the reviewers of ISCA 2016/2017, MICRO
2016/2017, and HPCA 2017 for their valuable comments. We
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MICRO 2017: Accepted

Accepted

A Submission (1837kE -
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v Abstract

4 Apr 2017 11:33:57pm EDT -

14 Jun 2017 4:16am EDT -
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Many important applications
trigger bitwise operations on
large bit vectors (bulk bitwise

operations). In fact, recent
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Aside: A Recommended Book

WILEY PROFESSIONAL COMPUTING

COMPUTER
SYSTEMS

ANALYSIS

Techniques for
Experimental Design,
Measurement, Simulation,
and Modeling

Raj Jain

SAFARI

THE ART OF

PERFORMANCE

Raj Jain, “The Art of
Computer Systems

Performance Analysis,”
Wiley, 1991.
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xas’on MAKER'S GAMES 161

DECISION MAKER'S GAMES

Even if the performance analy.s1s 1s correctly done and presented, it may not be
enough t0 _persuade your audlex}ce—-the decision makers—to follow your rec-
ommendations- The list shown in Box 10.2 is a compilation of reasons for re-
ection heard at various pe‘rformance analysis presentations. You can use the
Jist by presenting it immediately and pointing out that the reason for rejection
js not new and that the analysis deserves more consideration. Also, the list is
helpful in getting the competing proposals rejected!

There is no clear end of an analysis. Any analysis can be rejected simply

N (NC BIOGIIGS wraes PoasoTC o . g e
;sted in Box 10.2. The second most common reason for rejection of an anal-
ysis and for endless debate is the workload. Since workloads are always based
on the past measurements, their applicability to the current or future environ-
ment can always be questioned. Actually workload is one of the four areas of
discussion that lead a performance presentation into an endless debate. These
«rat holes” and their relative sizes in terms of time consumed are shown in
Figure 10.26. Presenting this cartoon at the beginning of a presentation helps
to avoid these areas.

Performance Analysis Rat Holes

Workload Metrics Configuration

| oo | @
\\\\:\§ N

FIGURE 1026 Four issues in performance presentatio
less discussion.

ns that commonly lead to end-

Raj Jain, “The Art of
Computer Systems
Performance Analysis,’
Wiley, 1991.

174



g,
Accepting the Results of
pox 103 Reasons for ot ASCRECE AR Analyg;,
re analysis.

i s mo!
;: 1:::: a better understanding of the workload,
: rformance oniy for long I/O’s, packets, j
% ;;amgg‘;:?f ﬁe 1/O’s, packets, jobs, and files are shon_Oba’ and ﬁleg

. rformance only for short 1/O’s, packets, jo
4, It improves P"mr the performance of short 1/O, pack:‘: ja::" mq’

cares >
g;gs?:'l:;) the long ones that impact the system. anq
It ne’eds too much memory/CPU/bandwidth and memory,cpy,

width isn’t free. 2
6. It only saves us memory/CPU/bandwidth and memory/cpy i

width is cheap. , bae
There is no point in making the networks (similarly, CPUS/dish/u_

A plemie i CPUs/disks (any component other than the one being dis,
cussed) aren’t fast enough to use them.
8. It improves the performance by a factqr of*x; put it doesn’t really

matter at the user level because everything else is so slow.
9. It is going to increase the complexity and cost.

10. Let us keep it simple stupid (and your idea is not stupid),

11. It is not simple. (Simplicity is in the eyes of the beholder.)

12. It requires too much state.

13. Nobody has ever done that before. (You have a new idea.)

14. It is not going to raise the price of our stock by even an eighth.

(Nothing ever does, except rumors.)

15. This will violate the IEEE, ANSI, CCITT, or ISO standard.

16. It may violate some future standard.

17. The standard says nothing about this and so it must not be impor-

tant,

18. Our competitors don’t do it. If it was a good idea, they would have

done it.

19. Qur competition does it this way and you don’t make money by copy-

ing others.

20. It. will introduce randomness into the system and make debugging

difficult.

21. It is too deterministic; it may lead the system into a cycle.

22. It’s not interoperable,

23. This impacts hardware.

24, W’s beyond today’s technology.

26. Why change—it's worng OK.

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.
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Suggestions to Reviewers

« Be fair; you do not know it all
« Be open-minded; you do not know it all

= Be accepting of diverse research methods: there is no
single way of doing research or writing papers

« Be constructive, not destructive

= Enable heterogeneity, but do not have double standards...

Do not block or delay scientific progress for non-reasons

SAFARI



Suggestion to Community

We Need to Fix the
Reviewer Accountability
Problem

SAFARI



Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI



Takeaway

Research Community
Needs

Accountable Reviewers

SAFARI



An Interview on Research and Education

Computing Research and Education (@ ISCA 2019)

o https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL502
soXY2Zi 40P9LdL3cc8GH6NIiD2Ydz

Maurice Wilkes Award Speech (10 minutes)

o https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL502
soXY2Zi8D S5MGV6EnXEIJHNV2YFBII&index=15

SAFARI https://www.youtube.com/onurmutlulectures 180
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https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/onurmutlulectures

More Thoughts and Suggestions

« Onur Mutluy,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards
Ceremony, Phoenix, AZ, USA, 25 June 20109.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku;
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

« Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19
July 2020.

[Slides (pptx) (pdf)]

SAFARI https://www.youtube.com/onurmutlulectures


https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf
https://www.youtube.com/onurmutlulectures

RowClone & Bitwise Ops in Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University
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RowClone & Bitwise Ops in Real DRAM Chips

MICRO-52, October 12-16, 2019, Columbus, OH, USA
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ACT(R,) PRE ACT(R,) time
2 2

Figure 4: Timeline for a single bit of a column in a row copy
operation. The data in R; is loaded to the bit-line, and over-
writes Rj.
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Gao et al.
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Figure 5: Logical AND in ComputeDRAM. R; is loaded with
constant zero, and R; and R3 store operands (0 and 1). The
result (0 = 1 A 0) is finally set in all three rows.
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Row Copy in ComputeDRAM
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Bitwise AND in ComputeDRAM

Vaa ...

2

.....

R3=002
Operand:1

R1=012
Constant:0

t

[1y—.J

T2 very short
PRE cannot close R1

R3 will appear on the address bus
ACT(R2) will activate R3 and R2

activated

changing
row
address

01 R,
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00 R, ﬁ_‘

0]
10 R,
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Experimental Methodology

Host
PC

SoftMC software

ComputeDRAM Library

Application

Figure 9: (a) Schematic diagram of our testing framework. (b)
Picture of our testbed. (c) Thermal picture when the DRAM

= ! v g
ot { yppthr A |

.

n dHe'ate rs

is heated to 80 °C.

PCle | FPGA SoftMC hardware
3
I DDR3 PHY ]
DRAM I 1
Peltier plate heater IJ
(a) L
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Experimental Methodology

Table 1: Evaluated DRAM modules

Group ID:
Vendor_Sizel_)Freq(MHz) vasy Nl #iiodees
SKhynix_2G_1333 HMT325S6BFR8C-H9 6
SKhynix_4 2
SKhynix_4 2
SKhynix_4 4
SKhynix_4 32 DDR3 MOdUleS 2
Samsung 4 . 2
Micron_2G 2
Micron_2G 2
Elpida_2G 1333 EBJ21UE8BDS0-D]J-F 2
Nanya_4G_1333 NT4GC64B8HGONS-CG 2
TimeTec_4G 1333 78 AP10NUS2R2-4G 2
Corsair 4G 1333 CMSA8GX3M2A1333C9 2
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Proof of Concept

How they test these memory modules:
2 Vary T, and Tz' observe what happens.

ACT >< ACT >
(R1) IDLE K IDLE >< PRE >< IDLE XK IDLE (R2)

T; T,

e
o e

l
e
1

SoftMC Experiment
Select a random subarray
Fill subarray with random data
[ssue ACT-PRE-ACTs with given T, & T,
Read out subarray

Find out how many columns in a row support either operation
2 Row-wise success ratio
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Proof of Concept

T2 T2 T2 T2 T2 T2
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9 [ | | (/]
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T1 4 - 4 7 ///
B # /
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O : - 7777777777777 7 7 FR R T T T R 7 T T s
AND/OR on AND/OR on Open R3, Nothing Row copy on Row copy on Row copy on
all cols (0,100%) cols but no ops changed (0,80%) cols [80%,100%) cols all cols

= Each grid represents the success ratio of operations for a specific
DDR3 module.
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Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou'*, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?, Qualcomm Inc.4, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’
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Pinatubo: RowClone and Bitwise Ops in PCM

All data via the
Narrow DDR bus

D &,

Row-ADR

Operand Row 1
\\ Operand Row 2 Operand Row 1
1 . Operand Row 2
\] Operand Row n ["Operand Row n
Result Row ResultRow < J

VM-based Main Memory
(a) Conventional Approach (b) Pinatubo

Figure 2: Overview: (a) Computing-centric ap-

proach, moving tons of data to CPU and write back.

(b) The proposed Pinatubo architecture, performs

n-row bitwise operations inside NVM in one step.
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Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed
by naysayers)




Suggestion to Researchers: Principle: Resilience

Be Resilient




Principle: Learning and Scholarship

FOCUS on
learning and scholarship

SAFARI



Principle: Learning and Scholarship

The quality of your work
defines your impact

SAFARI



Principle: Work Hard

Work Hard to
Enable Your Passion

SAFARI



Principle: Good Mindset, Goals & Focus

You can make a
good impact
on the world

SAFARI



Recommended Interview on Research & Education

« Computing Research and Education (@ ISCA 2019)

a https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL50Q2
soXY?2Zi 40P9LdL3cc8GO6NIiD2Ydz

« Maurice Wilkes Award Speech (10 minutes)

a https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL502
soXY2Zi8D S5MGV6EnXEIJHNV2YFBII&index=15

= Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony,
Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour
6_minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]
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https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
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A Talk on Impactful Research & Education

Applying to Grad School

& Doing Impactful Research

Onur Mutlu
omutlu@gmail.com
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Suggested Reading

Richard Hamming

“"You and Your Research''

Transcription of the

Bell Communications Research Colloquium Seminar
7 March 1986
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Suggested Reading on Mindset & More

If you really want to be a first-class scientist you need to know yourself, your weaknesses, your strengths,
and your bad faults, like my egotism. How can you convert a fault to an asset? How can you convert a
situation where you haven't got enough manpower to move into a direction when that's exactly what you
need to do? I say again that I have seen, as I studied the history, the successful scientist changed the

viewpoint and what was a defect became an asset.

In summary, I claim that some of the reasons why so many people who have greatness within their grasp
don't succeed are: they don't work on important problems, they don't become emotionally involved, they
don't try and change what is difficult to some other situation which is easily done but is still important, and
they keep giving themselves alibis why they don't. They keep saying that it is a matter of luck. I've told you
how easy it is; furthermore I've told you how to reform. Therefore, go forth and become great scientists!
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