
Computer Architecture
Lecture 7: Processing using Memory II

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

21 October 2021

Sub-Agenda: In-Memory Computation

■ Major Trends Affecting Main Memory
■ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices
❑ Top Down: Pull from Systems and Applications

■ Processing in Memory: Two Directions
❑ Processing using Memory
❑ Processing near Memory

■ How to Enable Adoption of Processing in Memory
■ Conclusion

2

A Computing System
■ Three key components
■ Computation
■ Communication
■ Storage/memory

3

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System
■ Three key components
■ Computation
■ Communication
■ Storage/memory

4

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems
■ Are overwhelmingly processor centric
■ All data processed in the processor 🡪 at great system cost
■ Processor is heavily optimized and is considered the master
■ Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

5

Yet …
■ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective (Today)
■ All of Google’s Data Center Workloads (2015):

7Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)
■ All of Google’s Data Center Workloads (2015):

8Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Energy Perspective

9

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

10

Dally, HiPEAC 2015

A memory access consumes ~100-1000X
the energy of a complex addition

Data Movement vs. Computation Energy
■ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]
❑ Costs ~115 times as much energy as an ADD operation [1, 2]

11

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

Energy Waste in Mobile Devices
■ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

12

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

We Do Not Want to Move Data!

13

Dally, HiPEAC 2015

A memory access consumes ~100-1000X
the energy of a complex addition

We Need A Paradigm Shift To …

■ Enable computation with minimal data movement

■ Compute where it makes sense (where data resides)

■ Make computing architectures more data-centric

14

Goal: Processing Inside Memory

■ Many questions … How do we design the:
❑ compute-capable memory & controllers?
❑ processor chip and in-memory units?
❑ software and hardware interfaces?
❑ system software, compilers, languages?
❑ algorithms and theoretical foundations?

Cache

Processor
Core

Interconne
ct

 Memory
Database

Graphs

Media
Query

Results

Micro-architecture

SW/HW Interface

Program/Languag
e

Algorithm

Problem

Logic

Devices

System Software

Electrons

PIM Review and Open Problems

16

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking
Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

17

18

Processing Data
 Where It Makes Sense

19

■ Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969.

https://doi.org/10.1109/T-C.1969.222754

Processing in/near Memory: An Old Idea

https://doi.org/10.1109/T-C.1969.222754

Processing in/near Memory: An Old Idea

■ Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

21https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

UPMEM Processing-in-DRAM Engine (2019)

22

■ Processing in DRAM Engine
■ Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

■ Replaces standard DIMMs
❑ DDR4 R-DIMM modules

■ 8GB+128 DPUs (16 PIM chips)
■ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

2,560-DPU Processing-in-Memory System

23https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Samsung Function-in-Memory DRAM (2021)

25https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Samsung Function-in-Memory DRAM (2021)

26

Samsung Function-in-Memory DRAM (2021)

27

Samsung AxDIMM (2021)
■ DDR5-PIM

❑ DLRM recommendation system

28

Baseline
System

AxDIMM
System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)

FPGA-based Processing Near Memory
■ Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios

Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications"
IEEE Micro (IEEE MICRO), to appear, 2021.

29

https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

Why In-Memory Computation Today?

■ Push from Technology
❑ DRAM Scaling at jeopardy
 🡪 Controllers close to DRAM
 🡪 Industry open to new memory architectures

■ Pull from Systems and Applications
❑ Data access is a major system and application bottleneck
❑ Systems are energy limited
❑ Data movement much more energy-hungry than computation

30

Sub-Agenda: In-Memory Computation

■ Major Trends Affecting Main Memory
■ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices
❑ Top Down: Pull from Systems and Applications

■ Processing in Memory: Two Directions
❑ Processing using Memory
❑ Processing near Memory

■ How to Enable Adoption of Processing in Memory
■ Conclusion

31

Two PIM Approaches

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna,
and Rachata Ausavarungnirun,
"A Modern Primer on Processing in
Memory"
Invited Book Chapter in Emerging Computing:
From Devices to Systems - Looking Beyond
Moore and Von Neumann, Springer, to be
published in 2021.
[Tutorial Video on "Memory-Centric Computing
Systems" (1 hour 51 minutes)]

32https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

Processing in Memory:
Two Approaches

1. Processing using Memory
2. Processing near Memory

33

Approach 1: Processing Using Memory
■ Take advantage of operational principles of memory to perform

bulk data movement and computation in memory
❑ Can exploit internal connectivity to move data
❑ Can exploit analog computation capability
❑ …

■ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)

34

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

src dst

dstva
l

Bulk Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

src dst

dstva
l

Starting Simple: Data Copy and Initialization

37

Forkin
g

00000
00000
00000

Zero
initialization
(e.g., security)

VM Cloning
Deduplicati

on

Checkpointi
ng

Page
Migration

Many
more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

381046ns, 3.6uJ (for 4KB page copy via DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

391046ns, 3.6uJ 🡪 90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4
Kbytes)

Data
Bus

8
bit
s

DRAM
subarray

4
Kbytes

Step 1:
Activate row
A

Transfer
row

Step 2:
Activate row
B

Transfe
r
row

Negligible HW
cost

 Idea: Two consecutive ACTivates

11.6X latency reduction, 74X energy reduction

RowClone: Intra-Subarray

VDD/
2

VDD/
2

0

VDD/2 +
δ

0

VD

D

VD

D

VDD/2 +
δ

Sense
Amplifier

(Row Buffer)

Amplify
the

difference

0

Data gets
copied

sr
c
ds
t

RowClone: Intra-Subarray (II)

r c r o ws

s t o wd r

Row
Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer,
connect dst – copy data from row buffer to dst)

RowClone: Inter-Bank
M

em
or

y
Ch

an
ne

l

Ch
ip

 I/
O

Bank

Shared
internal
bus

Overlap the latency of the read and the write
1.9X latency reduction, 3.2X energy reduction

M
em

or
y

Ch
an

ne
l

Ch
ip

 I/
O Bank Bank I/O

Subarray

Intra Subarray
Copy (2 ACTs)

Inter Bank Copy
(Pipelined

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost

RowClone: Latency and Energy Savings

11.6x 74x

45
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)

46

RowClone: Bulk Initialization

■ Initialization with arbitrary data
❑ Initialize one row
❑ Copy the data to other rows

■ Zero initialization (most common)
❑ Reserve a row in each subarray (always zero)
❑ Copy data from reserved row (FPM mode)
❑ 6.0X lower latency, 41.5X lower DRAM energy
❑ 0.2% loss in capacity

47

RowClone: Latency & Energy Benefits

48

11.6x

1.9x

6.0x

1.0x

74.4x

3.2x 1.5x

41.5x

Very low cost: 0.01% increase in die area

Copy and Initialization in Workloads

49

RowClone: Application Performance

50

End-to-End System Design

51

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate
occurrences of bulk
copy/initialization across
layers?

How to maximize latency and
energy savings?

How to ensure cache
coherence?

How to handle data reuse?

More on RowClone
■ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

52

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Lecture on RowClone & Processing using DRAM

53https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

Mindset: Memory as an Accelerator

CP
U
co
re

CP
U
co
re

CP
U
co
re

CP
U
co
re

mini-CP
U

core

vid
eo
cor
e

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

L
L
C

Memory
Controller

Specialized
compute-capabil

ity
in memory

Mem
ory

imag
ing

core

Memor
y Bus

Memory similar to a “conventional” accelerator

RowClone Strengths

55

Strengths of the Paper
■ Simple, novel mechanism to solve an important problem
■ Effective and low hardware overhead
■ Intuitive idea!
■ Greatly improves performance and efficiency (assuming

data is mapped nicely)
■ Seems like a clear win for data initialization (without

mapping requirements)
■ Makes software designer’s life easier

❑ If copies are 10x-100x cheaper, how to design software?

■ Paper tackles many low-level and system-level issues
■ Well-written, insightful paper

56

RowClone Weaknesses

57

Weaknesses
■ Requires data to be mapped in the same subarray to deliver

the largest benefits
❑ Helps less if data movement is not within a subarray
❑ Does not help if data movement is across DRAM channels

■ Inter-subarray copy is very inefficient
■ Causes many changes in the system stack

❑ End-to-end design spans applications to circuits
❑ Software-hardware cooperative solution might not always be

easy to adopt
■ Cache coherence and data reuse cause real overheads

■ Evaluation is done solely in simulation
■ Evaluation does not consider multi-chip systems
■ Are these the best workloads to evaluate?

58

Recall: Try to Avoid Rat Holes

59Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf

Improvements on RowClone

60

RowClone Extensions and Follow-Up Work
■ Can we do faster inter-subarray copy?

❑ Yes, see LISA [Chang et al., HPCA 2016]

■ Can we enable data movement at smaller granularities
within a bank?
❑ Yes, see FIGARO [Wang et al., MICRO 2020]

■ Can we do better inter-bank copy?
❑ Yes, see Network-on-Memory [CAL 2020]

■ Can similar ideas and DRAM properties be used to perform
computation on data?
❑ Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017]

61

LISA: Increasing Connectivity in DRAM
■ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,

Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.
[Slides (pptx) (pdf)]
[Source Code]

62

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Moving Data Inside DRAM?

63

DRAM
cell

Subarray 1
Subarray 2
Subarray 3

Subarray N

…

Internal
Data Bus (64b)

8Kb
512
rows

Bank

Bank

Bank

Bank
DRAM

…

Low connectivity in DRAM is the fundamental
bottleneck for bulk data movement

Goal: Provide a new substrate to enable
wide connectivity between subarrays

Key Idea and Applications
• Low-cost Inter-linked subarrays (LISA)

– Fast bulk data movement between subarrays
– Wide datapath via isolation transistors: 0.8% DRAM chip area

• LISA is a versatile substrate → new applications

64

Subarray 1

Subarray 2
…

Fast bulk data copy: Copy latency 1.363ms→0.148ms (9.2x)
 → 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns (2.2x)
 → 5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns (2.6x)
 → 8% speedup

More on LISA
■ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,

Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.
[Slides (pptx) (pdf)]
[Source Code]

65

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

FIGARO: Fine-Grained In-DRAM Copy
■ Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose,

Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad
Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu,
"FIGARO: Improving System Performance via Fine-Grained
In-DRAM Data Relocation and Caching"
Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020.

66

https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
http://www.microarch.org/micro53/
http://www.microarch.org/micro53/

Network-On-Memory: Fast Inter-Bank Copy
■ Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata

Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud
Daneshtalab,
"NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories"
IEEE Computer Architecture Letters (CAL), to appear in 2020.

67

https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
http://www.computer.org/web/cal

Mindset: Memory as an Accelerator

CP
U
co
re

CP
U
co
re

CP
U
co
re

CP
U
co
re

mini-CP
U

core

vid
eo
cor
e

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

L
L
C

Memory
Controller

Specialized
compute-capabil

ity
in memory

Mem
ory

imag
ing

core

Memor
y Bus

Memory similar to a “conventional” accelerator

In-DRAM Bulk Bitwise AND/OR

■ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

69

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Ambit: Bulk-Bitwise in-DRAM Computation
■ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

70

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

In-DRAM Bulk Bitwise Execution Paradigm
■ Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

71

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

SIMDRAM Framework for in-DRAM Computing
■ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

72

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Extensions and Follow-Up Work (II)
■ Can this idea be evaluated on a real system? How?

❑ Yes, see the ComputeDRAM paper [MICRO 2019]

■ Can similar ideas be used in other types of memories?
Phase Change Memory? RRAM? STT-MRAM?
❑ Yes, see the Pinatubo paper [DAC 2016]

■ Can charge sharing properties be used for other functions?
❑ Yes, see the D-RaNGe [HPCA 2019], DL-PUF [HPCA 2018],

QUAC-TRNG [ISCA 2021] works on random numbers & PUFs

■ Can we have more efficient solutions to
❑ Cache coherence (minimize overhead)
❑ Data reuse after copy and initialization

73

RowClone Demonstration in Real DRAM Chips

74https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

Pinatubo: PCM RowClone and Bitwise Ops

75https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Takeaways

76

Key Takeaways
■ A novel method to accelerate data copy and initialization

■ Simple and effective

■ Hardware/software cooperative

■ Good potential for work building on it to extend it
❑ To different granularities
❑ To make things more efficient and effective
❑ Many works have already built on the paper (see LISA, FIGARO,

NoM, Ambit, ComputeDRAM, and other works in Google Scholar)

■ Easy to read and understand paper
77

RowClone: Memory as an
Accelerator

CP
U
co
re

CP
U
co
re

CP
U
co
re

CP
U
co
re

mini-CP
U

core

vid
eo
cor
e

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

GPU
(throughp

ut)
core

L
L
C

Memory
Controller

Specialized
compute-capabil

ity
in memory

Mem
ory

imag
ing

core

Memor
y Bus

Memory similar to a “conventional” accelerator

Mindset: Processing using DRAM
■ DRAM has great capability to perform bulk data movement and

computation internally with small changes
❑ Can exploit internal connectivity to move data
❑ Can exploit analog computation capability
❑ …

■ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)

79

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

In-Memory
Bulk Bitwise Operations

80

In-Memory Bulk Bitwise Operations
■ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
■ At low cost
■ Using inherent analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation
■ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

■ New memory technologies enable even more opportunities
❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …
❑ Can operate on data with minimal movement

81

In-DRAM AND/OR: Triple Row Activation

82

½V
DD

½V
DD

dis

A

B

C

Final State
AB + BC + AC

½V
DD

+
δ

C(A + B) +
~C(AB)en

0

V
DD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM Bulk Bitwise AND/OR Operation

■ BULKAND A, B 🡪 C
■ Semantics: Perform a bitwise AND of two rows A and B and

store the result in row C

■ R0 – reserved zero row, R1 – reserved one row
■ D1, D2, D3 – Designated rows for triple activation

1. RowClone A into D1
2. RowClone B into D2
3. RowClone R0 into D3
4. ACTIVATE D1,D2,D3
5. RowClone Result into C

83

More on In-DRAM Bulk AND/OR

■ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

84

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

85

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

In-DRAM NOT Operation

86

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.

Performance: In-DRAM Bitwise Operations

87

Energy of In-DRAM Bitwise Operations

88

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.

Ambit vs. DDR3: Performance and
Energy

89

32
X

35
X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index
■ Alternative to B-tree and its variants
■ Efficient for performing range queries and joins
■ Many bitwise operations to perform a query

B
it

m
ap

 1

B
it

m
ap

 2

B
it

m
ap

 4

B
it

m
ap

 3

age <
18

18 < age <
25

25 < age <
60

age >
60

Performance: Bitmap Index on Ambit

92

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.

>5.4-6.6X Performance Improvement

Performance: BitWeaving on Ambit

93

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO
2017.

>4-12X Performance Improvement

More on In-DRAM Bulk AND/OR

■ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

94

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations
■ Vivek Seshadri et al., “Ambit: In-Memory Accelerator

for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

95

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

More on In-DRAM Bulk Bitwise Execution
■ Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

96

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

SIMDRAM Framework
■ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

97

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

SIMDRAM Key Idea

•SIMDRAM: An end-to-end processing-using-DRAM
framework that provides the programming interface, the
ISA, and the hardware support for:

- Efficiently computing complex operations in DRAM

- Providing the ability to implement arbitrary operations as
required

- Using an in-DRAM massively-parallel SIMD substrate that
requires minimal changes to DRAM architecture

98

SIMDRAM: PuM Substrate
• SIMDRAM framework is built around a DRAM substrate

that enables two techniques:

(1) Vertical data layout

4-
bi

t
el

em
en

t
si

ze

R
ow

 D
ec

od
er

most significant bit (MSB)

least significant bit (LSB)

A

B C
o

utC

in

MAJ

(2) Majority-based computation

Pros compared to the
conventional horizontal layout:

• Implicit shift operation
• Massive parallelism

C
out

= AB + AC
in

 + BC
in

Pros compared to
AND/OR/NOT-based computation:

• Higher performance
• Higher throughput
• Lower energy consumption 99

SIMDRAM Output

Instruction result
in memory

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Overview

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/ACT/PRE

 done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

 bbop_new

}
Control Unit A

C
T

/P
R

E

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/PRE/PRE

 done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

100

SIMDRAM Output

Instruction result
in memory

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 1

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/ACT/PRE

 done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

 bbop_new

}
Control Unit A

C
T

/P
R

E

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/PRE/PRE

 done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

101

Step 1: Naïve MAJ/NOT Implementation

A

B

C
in

C
out

Part 1

MAJ
0

B

C
in

C
outMAJ MAJ

MAJ

A

0
1

1

A

B
C

A

B
C

output is “1” only when A = B = “1”

output is “0” only when A = B = “0”

Naïvely converting AND/OR/NOT-implementation to
MAJ/NOT-implementation leads to an unoptimized circuit

MAJ
A
B C
0

MAJ
A
B C
1

102

Step 1: Efficient MAJ/NOT Implementation

Part 2

Step 1 generates an optimized
MAJ/NOT-implementation of the desired operation

A

B C
out

C
in

MAJ

Greedy
optimization

algorithm4

 4 L. Amarù et al, “Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization”, DAC, 2014.

MAJ
0

B

C
in

C
outMAJ MAJ

MAJ

A

0
1

1

103

SIMDRAM Output

Instruction result
in memory

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 2

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/ACT/PRE

 done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

 bbop_new

}
Control Unit A

C
T

/P
R

E

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/PRE/PRE

 done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

104

Step 2: µProgram Generation

•µProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

•Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

105

Step 2: µProgram Generation

•µProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

•Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

106

Task 1: Allocating DRAM Rows to Operands

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

re
gu

la
r

ro
w

 d
ec

od
er

C
om

p
ut

e
R

ow
 d

ec
od

er

subarray organization

Constraint 1:
Limited number of rows

reserved for computation

• Allocation algorithm considers two constraints specific to
processing-using-DRAM

Compute
rows

107

Task 1: Allocating DRAM Rows to Operands

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

re
gu

la
r

ro
w

 d
ec

od
er

C
om

p
ut

e
R

ow
 d

ec
od

er

subarray organization

Constraint 2:
Destructive behavior

of triple-row activation

Overwritten
with MAJ output

• Allocation algorithm considers two constraints specific to
processing-using-DRAM

108

A

B C
out

C
in

MAJ

Allocation
algorithm

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

Task 1: Allocating DRAM Rows to Operands

• Allocation algorithm:

Triple-row
activation

C
out

C
out

C
out

• Assigns as many inputs as the number of free compute rows

• All three input rows contain the MAJ output and can be reused

109

Step 2: µProgram Generation

•µProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

•Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

110

Task 2: Generate an initial µProgram

A

B C
out

C
in

MAJ
A

B C
out

C
in

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy C
in

 to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy C
out

 to destination row
(ACT/PRE)

Initial µProgram

111

Task 2: Optimize the µProgram

A

B C
out

C
in

MAJ
A

B C
out

C
in

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy C
in

 to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy C
out

 to destination row
(ACT/PRE)

Initial µProgram

2. Optimize
112

Task 2: Optimize the µProgram

A

B C
out

C
in

MAJ
A

B C
out

C
in

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy C
in

 to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy C
out

 to destination row
(ACT/PRE)

Coalesce

 row copies

Initial µProgram

2. Optimize
113

Task 2: Optimize the µProgram

A

B C
out

C
in

MAJ
A

B C
out

C
in

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy C
in

 to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy C
out

 to destination row
(ACT/PRE)

Merge

MAJ + row copy

Initial µProgram

2. Optimize
114

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy C
in

 to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy C
out

 to destination row
(ACT/PRE)

Task 2: Optimize the µProgram

A

B C
out

C
in

MAJ
A

B C
out

C
in

MAJ

1. Generate
µProgram

1. Copy A, B, C
in

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
 copy C

out
 to destination row

(ACT/ACT/PRE)

Initial µProgram

Coalesce

 row copies

Merge

MAJ + row copy

Optimized µProgram

2. Optimize
115

Task 2: Generate N-bit Computation

A

B C
out

C
in

MAJ
A

B C
out

C
in

MAJ

1. Generate
µProgram

3. Generate N-bit
computation

Repeat N times:

1. Copy A, B, C
in

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
 copy C

out
 to destination row

(ACT/ACT/PRE)

Final µProgram

Repeat N times:

1. Copy A, B, C
in

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
 copy C

out
 to destination row

(ACT/ACT/PRE)

• Final µProgram is optimized and computes the desired
operation for operands of N-bit size in a bit-serial fashion

2. Optimize

Optimized µProgram

116

Task 2: Generate µProgram

Repeat N times:

1. Copy A, B, C
in

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
 copy C

out
 to destination row

(ACT/ACT/PRE)

Stored in a reserved DRAM
region

 for future use

A new SIMDRAM
instruction (called bbop_new)

added to CPU ISA

Final µProgram

• Final µProgram is optimized and computes the desired
operation for operands of N-bit size in a bit-serial fashion

117

SIMDRAM Output

Instruction result
in memory

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 3

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/ACT/PRE

 done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

 bbop_new

}
Control Unit A

C
T

/P
R

E

 ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/PRE/PRE

 done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

118

Step 3: µProgram Execution
 •SIMDRAM control unit: handles the execution of the

µProgram at runtime

• Upon receiving a bbop instruction, the control unit:

1. Loads the µProgram corresponding to SIMDRAM operation

2. Issues the sequence of DRAM commands (ACT/PRE) stored
in the µProgram to SIMDRAM subarrays to perform the
in-DRAM operation

Memory Controller

User Input

SIMDRAM-enabled application

foo () {

 bbop_new

}
 Control Unit

18

A
CT

/P
R

E

SIMDRAM Output

Instruction result
in memory ACT/PRE

 ACT/PRE

 ACT/PRE

 ACT/ACT/PRE

 done

119

More in the Paper

• Detailed reference implementation and
microarchitecture of the SIMDRAM control unit

 …

 …

1024

+1

bbop_op

/
…

16

branch
target

AAP/AP

shift
amount

1 size

dst, src_1, src_2, n

decrement is_zero

reg dst.
reg src.

1024

Loop
Counter

bbop
FIFO

 …

 …

From
CPU

To Memory
Controller

2

3

4

5

67

120

System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

121

Transposing Data

•SIMDRAM operates on vertically-laid-out data

•Other system components expect data to be laid
out horizontally

Challenging to share data between SIMDRAM and CPU

122

Transposition Unit

Last–Level Cache

T
ra

n
sp

o
si

ti
o

n
 U

n
it

Memory Controller

Object Tracker
(OT)

Fetch Unit

Vertical → Horizontal
Transpose

Transpose Buffer

Store Unit

Horizontal → Vertical
Transpose

Transpose Buffer

Transforms the data layout from horizontal to vertical, and vice versa

123

Efficiently Transposing Data

Last–Level Cache

Tr
an

sp
os

it
io

n
U

ni
t

Memory Controller

Object Tracker
(OT)

Fetch Unit

Vertical → Horizontal
Transpose

Transpose Buffer

Store Unit

Horizontal → Vertical
Transpose

Transpose Buffer
Low impact on the throughput of

SIMDRAM operations

Low area cost (0.06 mm2 in 22nm tech. node)

124

More in the Paper
Efficiently transposing data

Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

125

Methodology: Experimental Setup
•Simulator: gem5

•Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

•Evaluated SIMDRAM configurations (all using a
DDR4_2400_x64 device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row
buffer)

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1’048’576 SIMD lanes

126

Methodology: Workloads
Evaluated:

• 16 complex in-DRAM operations:
- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-Reduction
- Equality/ Greater/Greater Equal - Division/Multiplication

• 7 real-world applications
- BitWeaving (databases) - LeNET (neural networks)
- TPH-H (databases) - VGG-13/VGG-16 (neural networks)
- kNN (machine learning) - Brightness (graphics)

127

Throughput Analysis

SIMDRAM significantly outperforms
all state-of-the-art baselines for a wide range of operations

Average normalized throughput across all 16 SIMDRAM
operations

128

Energy Analysis
Average normalized energy efficiency across all 16
SIMDRAM operations

SIMDRAM is more energy-efficient than
all state-of-the-art baselines for a wide range of operations

129

Real-World Applications

SIMDRAM effectively and efficiently accelerates
many commonly-used real-world applications

Average speedup across 7 real-world applications

130

SIMDRAM Key Results
Evaluated on:

- 16 complex in-DRAM operations
- 7 commonly-used real-world applications

SIMDRAM provides:

•88× and 5.8× the throughput of a CPU and a high-end
GPU, respectively, over 16 operations

•257× and 31× the energy efficiency of a CPU and a
high-end GPU, respectively, over 16 operations

•21× and 2.1× the performance of a CPU an a high-end
GPU, over seven real-world applications

131

SIMDRAM Conclusion
•SIMDRAM:

- Enables efficient computation of a flexible set and wide range
of operations in a PuM massively parallel SIMD substrate

- Provides the hardware, programming, and ISA support, to:
• Address key system integration challenges
• Allow programmers to define and employ new operations without

hardware changes

• More in the paper:
- Efficiently transposing data
- Programming interface
- Handling page faults, address translation, coherence, and interrupts
- Security implications
- Reliability evaluation
- Comparison to in-cache computing
- And more …

SIMDRAM is a promising PuM framework
• Can ease the adoption of processing-using-DRAM

architectures
• Improves the performance and efficiency of

processing-using-memory architectures

132

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

Nastaran Hajinazar* Geraldo F. Oliveira*

Sven Gregorio Joao Ferreira Nika Mansouri Ghiasi

Minesh Patel Mohammed Alser Saugata Ghose

Juan Gómez–Luna Onur Mutlu

In-DRAM Physical Unclonable Functions
■ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

134

https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE

In-DRAM True Random Number Generation

135

■ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

In-DRAM True Random Number Generation

136

■ Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

RowClone & Bitwise Ops in Real DRAM Chips

137https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

138https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

139https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

In-Memory Crossbar Array Operations
■ Some emerging NVM technologies have crossbar array

structure
❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

■ Crossbar arrays can be used to perform dot product
operations using “analog computation capability”
❑ Can operate on multiple pieces of data using Kirchoff’s laws

■ Bitline current is a sum of products of wordline V x (1 / cell R)
❑ Computation is in analog domain inside the crossbar array

■ Need peripheral circuitry for D🡪A and A🡪D conversion of
inputs and outputs

140

Aside: In-Memory Crossbar Computation

141Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

Aside: In-Memory Crossbar Computation

Readings on Processing using NVM

■ Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

■ Chi+, “PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory”,
ISCA 2016.

■ Prezioso+, “Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors”,
Nature 2015

■ Ambrogio+, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature 2018.

143

Challenge: Intelligent Memory Device

Does memory
have to be

dumb?

144

Challenge and Opportunity for Future

Computing Architectures
with

Minimal Data Movement

145

Historical Perspective &
A Detour

on the Review Process

146

Ambit and RowClone
Sound Great!

No?

147

Some History: RowClone

148

RowClone: Historical Perspective
■ This work is likely the first example of “minimally changing

DRAM chips” to perform data movement and computation
❑ Surprising that it was done as late as 2013!

■ It led to a body of work on in-DRAM (and in-NVM)
computation with “hopefully small” changes

■ Work building on RowClone still continues

■ Initially, it was dismissed by some reviewers
❑ Rejected from ISCA 2013 conference

149

One Review (ISCA 2013 Submission)

150

Another Review and Rebuttal

151

ISCA 2013 Submission

152

Yet Later… in ISCA 2015…

153

MICRO 2013 Submission

154

More History: Ambit

155

Ambit
■ First work on performing bulk bitwise operations in DRAM

❑ By exploiting analog computation capability of bitlines
❑ Extends and completes our IEEE CAL 2015 paper

■ Disruptive -- spans algorithms to circuits/devices
❑ Requires hardware/software cooperation for adoption

■ Led to a large amount of work in similar approaches in
DRAM and NVM
❑ The work continues to build

■ Initially, it was dismissed by many reviewers
❑ Rejected from 4 conferences!

156

ISCA 2016: Rejected

157

MICRO 2016: Rejected

158

HPCA 2017: Rejected

159

ISCA 2017: Rejected

160

Ambit Sounds Good, No?

161

Review from ISCA 2016

Very Interesting and Novel, ….. BUT …

162

… This Will Never Get Implemented

163

Another Review

164

Another Review from ISCA 2016

… This Will Never Get Implemented

165

Yet Another Review

166

Yet Another Review from ISCA 2016

A Review from HPCA 2017: REJECT

167

A Review from ISCA 2017

168

Another Review from ISCA 2017

169

ISCA 2017 Summary

170

The Reviewer Accountability Problem

171

MICRO 2017: Accepted

172

Aside: A Recommended Book

173

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.

174

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.

175

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.

Suggestions to Reviewers
■ Be fair; you do not know it all

■ Be open-minded; you do not know it all

■ Be accepting of diverse research methods: there is no
single way of doing research or writing papers

■ Be constructive, not destructive

■ Enable heterogeneity, but do not have double standards…

Do not block or delay scientific progress for non-reasons

Suggestion to Community

We Need to Fix the
Reviewer Accountability

Problem

Takeaway

Main Memory Needs
Intelligent Controllers

Takeaway

Research Community
Needs

Accountable Reviewers

An Interview on Research and Education

■ Computing Research and Education (@ ISCA 2019)
❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

■ Maurice Wilkes Award Speech (10 minutes)
❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

180https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/onurmutlulectures

More Thoughts and Suggestions
■ Onur Mutlu,

"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku;
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

■ Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19
July 2020.
[Slides (pptx) (pdf)]

https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf
https://www.youtube.com/onurmutlulectures

RowClone & Bitwise Ops in Real DRAM Chips

182https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

RowClone & Bitwise Ops in Real DRAM Chips

183https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

Row Copy in ComputeDRAM

184

Bitline is above
V

DD
/2 when R2 is
activated.

Bitwise AND in ComputeDRAM

185

T1 very short
Sense amps are not

activated

T2 very short
PRE cannot close R1

R3 will appear on the address bus
ACT(R2) will activate R3 and R2

Experimental Methodology

186

Experimental Methodology

187

32 DDR3 Modules
~256 DRAM Chips

Proof of Concept

■ How they test these memory modules:
❑ Vary T

1
 and T

2
, observe what happens.

SoftMC Experiment

1. Select a random subarray

2. Fill subarray with random data

3. Issue ACT-PRE-ACTs with given T
1
 & T

2

4. Read out subarray

5. Find out how many columns in a row support either operation
❑ Row-wise success ratio

188

Proof of Concept

189

■ Each grid represents the success ratio of operations for a specific
DDR3 module.

Pinatubo: RowClone and Bitwise Ops in PCM

190https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

191https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed

by naysayers)

Suggestion to Researchers: Principle: Resilience

Be Resilient

Principle: Learning and Scholarship

Focus on
learning and scholarship

Principle: Learning and Scholarship

The quality of your work
defines your impact

Principle: Work Hard

Work Hard to
Enable Your Passion

Principle: Good Mindset, Goals & Focus

You can make a
good impact
on the world

Recommended Interview on Research & Education

■ Computing Research and Education (@ ISCA 2019)
❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

■ Maurice Wilkes Award Speech (10 minutes)
❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

■ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony,
Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour
6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

198

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html

Recommended Interview

199https://www.youtube.com/watch?v=8ffSEKZhmvo

https://www.youtube.com/watch?v=8ffSEKZhmvo

A Talk on Impactful Research & Education

200https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

Suggested Reading

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

201

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

Suggested Reading on Mindset & More

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

202

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

Computer Architecture
Lecture 7: Processing using Memory II

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

21 October 2021

