
Computer Architecture
Lecture 7: Processing using Memory II

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

21 October 2021



Sub-Agenda: In-Memory Computation

■ Major Trends Affecting Main Memory
■ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices
❑ Top Down: Pull from Systems and Applications 

■ Processing in Memory: Two Directions
❑ Processing using Memory
❑ Processing near Memory

■ How to Enable Adoption of Processing in Memory
■ Conclusion
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A Computing System
■ Three key components
■ Computation 
■ Communication
■ Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/
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Today’s Computing Systems
■ Are overwhelmingly processor centric
■ All data processed in the processor 🡪 at great system cost
■ Processor is heavily optimized and is considered the master
■ Data storage units are dumb and are largely unoptimized 

(except for some that are on the processor die)
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Yet …
■ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective (Today)
■ All of Google’s Data Center Workloads (2015): 

7Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.
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The Energy Perspective
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Dally, HiPEAC 2015



Data Movement vs. Computation Energy
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Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy
■ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]
❑ Costs ~115 times as much energy as an ADD operation [1, 2]
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[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
■ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" 
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/


We Do Not Want to Move Data!

13

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

■ Enable computation with minimal data movement

■ Compute where it makes sense (where data resides)

■ Make computing architectures more data-centric
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Goal: Processing Inside Memory

■ Many questions … How do we design the:
❑ compute-capable memory & controllers?
❑ processor chip and in-memory units?
❑ software and hardware interfaces?
❑ system software, compilers, languages?
❑ algorithms and theoretical foundations?
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PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking 
Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf
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Processing Data 
        Where It Makes Sense
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■ Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969.

https://doi.org/10.1109/T-C.1969.222754

Processing in/near Memory: An Old Idea

https://doi.org/10.1109/T-C.1969.222754


Processing in/near Memory: An Old Idea

■ Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

21https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf 

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf


UPMEM Processing-in-DRAM Engine (2019)
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■ Processing in DRAM Engine 
■ Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

■ Replaces standard DIMMs
❑ DDR4 R-DIMM modules

■ 8GB+128 DPUs (16 PIM chips)
■ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


2,560-DPU Processing-in-Memory System

23https://arxiv.org/pdf/2105.03814.pdf 

https://arxiv.org/pdf/2105.03814.pdf


Experimental Analysis of  the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf 

https://arxiv.org/pdf/2105.03814.pdf


Samsung Function-in-Memory DRAM (2021)

25https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power


Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Samsung AxDIMM (2021)
■ DDR5-PIM

❑ DLRM recommendation system

28

Baseline 
System

AxDIMM 
System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



FPGA-based Processing Near Memory
■ Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios 

Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications"
IEEE Micro (IEEE MICRO), to appear, 2021.
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https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/


Why In-Memory Computation Today?

■ Push from Technology
❑ DRAM Scaling at jeopardy 
   🡪 Controllers close to DRAM
   🡪 Industry open to new memory architectures

■ Pull from Systems and Applications
❑ Data access is a major system and application bottleneck
❑ Systems are energy limited
❑ Data movement much more energy-hungry than computation
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Sub-Agenda: In-Memory Computation

■ Major Trends Affecting Main Memory
■ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices
❑ Top Down: Pull from Systems and Applications 

■ Processing in Memory: Two Directions
❑ Processing using Memory
❑ Processing near Memory

■ How to Enable Adoption of Processing in Memory
■ Conclusion
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Two PIM Approaches

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, 
and Rachata Ausavarungnirun,
"A Modern Primer on Processing in 
Memory"
Invited Book Chapter in Emerging Computing: 
From Devices to Systems - Looking Beyond 
Moore and Von Neumann, Springer, to be 
published in 2021.
[Tutorial Video on "Memory-Centric Computing 
Systems" (1 hour 51 minutes)]

32https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf 

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf


Processing in Memory:
Two Approaches

1. Processing using Memory
2. Processing near Memory
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Approach 1: Processing Using Memory
■ Take advantage of operational principles of memory to perform 

bulk data movement and computation in memory
❑ Can exploit internal connectivity to move data
❑ Can exploit analog computation capability
❑ …

■ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013)
❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology” (Seshadri et al., MICRO 2017)

34

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization
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Copy
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Starting Simple: Data Copy and Initialization
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memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

381046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

391046ns, 3.6uJ 🡪   90ns, 0.04uJ



RowClone: In-DRAM Row Copy
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11.6X latency reduction, 74X energy reduction 



RowClone: Intra-Subarray

VDD/
2

VDD/
2

0

VDD/2 + 
δ

0

VD

D

VD

D

VDD/2 + 
δ

Sense 
Amplifier

(Row Buffer)

Amplify 
the 

difference

0

Data gets 
copied

sr
c
ds
t



RowClone: Intra-Subarray (II)
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1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer, 
connect dst – copy data from row buffer to dst)



RowClone: Inter-Bank
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RowClone: Latency and Energy Savings

11.6x 74x

45
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

■ Initialization with arbitrary data
❑ Initialize one row
❑ Copy the data to other rows

■ Zero initialization (most common)
❑ Reserve a row in each subarray (always zero)
❑ Copy data from reserved row (FPM mode)
❑ 6.0X lower latency, 41.5X lower DRAM energy
❑ 0.2% loss in capacity

47



RowClone: Latency & Energy Benefits
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11.6x

1.9x

6.0x

1.0x

74.4x

3.2x 1.5x

41.5x

Very low cost: 0.01% increase in die area



Copy and Initialization in Workloads
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RowClone: Application Performance
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End-to-End System Design

51

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 
copy/initialization across 
layers?

How to maximize latency and 
energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



More on RowClone
■ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Lecture on RowClone & Processing using DRAM

53https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4 

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4


Mindset: Memory as an Accelerator
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RowClone Strengths
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Strengths of  the Paper
■ Simple, novel mechanism to solve an important problem
■ Effective and low hardware overhead
■ Intuitive idea!
■ Greatly improves performance and efficiency (assuming 

data is mapped nicely)
■ Seems like a clear win for data initialization (without 

mapping requirements)
■ Makes software designer’s life easier

❑ If copies are 10x-100x cheaper, how to design software?

■ Paper tackles many low-level and system-level issues
■ Well-written, insightful paper

56



RowClone Weaknesses

57



Weaknesses
■ Requires data to be mapped in the same subarray to deliver 

the largest benefits
❑ Helps less if data movement is not within a subarray
❑ Does not help if data movement is across DRAM channels

■ Inter-subarray copy is very inefficient
■ Causes many changes in the system stack 

❑ End-to-end design spans applications to circuits
❑ Software-hardware cooperative solution might not always be 

easy to adopt
■ Cache coherence and data reuse cause real overheads

■ Evaluation is done solely in simulation
■ Evaluation does not consider multi-chip systems
■ Are these the best workloads to evaluate?
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Recall: Try to Avoid Rat Holes

59Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf



Improvements on RowClone
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RowClone Extensions and Follow-Up Work
■ Can we do faster inter-subarray copy?

❑ Yes, see LISA [Chang et al., HPCA 2016]

■ Can we enable data movement at smaller granularities 
within a bank?
❑ Yes, see FIGARO [Wang et al., MICRO 2020]

■ Can we do better inter-bank copy?
❑ Yes, see Network-on-Memory [CAL 2020]

■ Can similar ideas and DRAM properties be used to perform 
computation on data?
❑ Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017]
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LISA: Increasing Connectivity in DRAM
■ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 

Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM" 
Proceedings of the 22nd International Symposium on 
High-Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


Moving Data Inside DRAM?

63
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…

Internal 
Data Bus (64b)

8Kb
512
rows

Bank
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Bank

Bank
DRAM

…

Low connectivity in DRAM is the fundamental 
bottleneck for bulk data movement

Goal: Provide a new substrate to enable 
wide connectivity between subarrays



Key Idea and Applications
• Low-cost Inter-linked subarrays (LISA)

– Fast bulk data movement between subarrays
– Wide datapath via isolation transistors: 0.8% DRAM chip area

• LISA is a versatile substrate → new applications

64

Subarray 1

Subarray 2
…

Fast bulk data copy: Copy latency 1.363ms→0.148ms (9.2x)
 → 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns (2.2x)
 → 5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns (2.6x)
 → 8% speedup



More on LISA
■ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 

Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM" 
Proceedings of the 22nd International Symposium on 
High-Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


FIGARO: Fine-Grained In-DRAM Copy
■ Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose, 

Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad 
Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu,
"FIGARO: Improving System Performance via Fine-Grained 
In-DRAM Data Relocation and Caching"
Proceedings of the 53rd International Symposium on 
Microarchitecture (MICRO), Virtual, October 2020.
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https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
http://www.microarch.org/micro53/
http://www.microarch.org/micro53/


Network-On-Memory: Fast Inter-Bank Copy
■ Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata 

Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud 
Daneshtalab,
"NoM: Network-on-Memory for Inter-Bank Data Transfer in 
Highly-Banked Memories"
IEEE Computer Architecture Letters (CAL), to appear in 2020.

67

https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
http://www.computer.org/web/cal


Mindset: Memory as an Accelerator
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In-DRAM Bulk Bitwise AND/OR

■ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 

69

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


Ambit: Bulk-Bitwise in-DRAM Computation
■ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali 

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, 
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using 
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf


In-DRAM Bulk Bitwise Execution Paradigm
■ Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine" 
Invited Book Chapter in Advances in Computers, to appear 
in 2020. 
[Preliminary arXiv version]
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SIMDRAM Framework for in-DRAM Computing
■ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]
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Extensions and Follow-Up Work (II)
■ Can this idea be evaluated on a real system? How?

❑ Yes, see the ComputeDRAM paper [MICRO 2019]

■ Can similar ideas be used in other types of memories? 
Phase Change Memory? RRAM? STT-MRAM?
❑ Yes, see the Pinatubo paper [DAC 2016]

■ Can charge sharing properties be used for other functions?
❑ Yes, see the D-RaNGe [HPCA 2019], DL-PUF [HPCA 2018], 

QUAC-TRNG [ISCA 2021] works on random numbers & PUFs

■ Can we have more efficient solutions to
❑ Cache coherence (minimize overhead)
❑ Data reuse after copy and initialization
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RowClone Demonstration in Real DRAM Chips

74https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Pinatubo: PCM RowClone and Bitwise Ops

75https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Takeaways
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Key Takeaways
■ A novel method to accelerate data copy and initialization

■ Simple and effective

■ Hardware/software cooperative

■ Good potential for work building on it to extend it
❑ To different granularities
❑ To make things more efficient and effective
❑ Many works have already built on the paper (see LISA, FIGARO, 

NoM, Ambit, ComputeDRAM, and other works in Google Scholar)

■ Easy to read and understand paper
77



RowClone: Memory as an 
Accelerator
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Mindset: Processing using DRAM
■ DRAM has great capability to perform bulk data movement and 

computation internally with small changes
❑ Can exploit internal connectivity to move data
❑ Can exploit analog computation capability
❑ …

■ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013)
❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology” (Seshadri et al., MICRO 2017)
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In-Memory 
Bulk Bitwise Operations
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In-Memory Bulk Bitwise Operations
■ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
■ At low cost
■ Using inherent analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation
■ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

■ New memory technologies enable even more opportunities
❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …
❑ Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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In-DRAM Bulk Bitwise AND/OR Operation

■ BULKAND A, B 🡪 C 
■ Semantics: Perform a bitwise AND of two rows A and B and 

store the result in row C

■ R0 – reserved zero row, R1 – reserved one row
■ D1, D2, D3 – Designated rows for triple activation

1. RowClone  A  into  D1
2. RowClone  B  into  D2
3. RowClone  R0  into  D3
4. ACTIVATE  D1,D2,D3
5. RowClone  Result  into  C
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More on In-DRAM Bulk AND/OR

■ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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In-DRAM NOT: Dual Contact Cell

85

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 
2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



In-DRAM NOT Operation
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 
2017.



Performance: In-DRAM Bitwise Operations
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Energy of  In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 
2017.



Ambit vs. DDR3: Performance and 
Energy
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Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index
■ Alternative to B-tree and its variants
■ Efficient for performing range queries and joins
■ Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 
2017.

>5.4-6.6X Performance Improvement



Performance: BitWeaving on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 
2017.

>4-12X Performance Improvement



More on In-DRAM Bulk AND/OR

■ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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More on In-DRAM Bitwise Operations
■ Vivek Seshadri et al., “Ambit: In-Memory Accelerator 

for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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More on In-DRAM Bulk Bitwise Execution
■ Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine" 
Invited Book Chapter in Advances in Computers, to appear 
in 2020. 
[Preliminary arXiv version]
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SIMDRAM Framework
■ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]
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SIMDRAM Key Idea 

•SIMDRAM: An end-to-end processing-using-DRAM 
framework that provides the programming interface, the 
ISA, and the hardware support for:

- Efficiently computing complex operations in DRAM

- Providing the ability to implement arbitrary operations as 
required

- Using an in-DRAM massively-parallel SIMD substrate that 
requires minimal changes to DRAM architecture
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SIMDRAM: PuM Substrate
• SIMDRAM framework is built around a DRAM substrate 

that enables two techniques:

(1) Vertical data layout
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• Implicit shift operation
• Massive parallelism
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Pros compared to 
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• Higher performance
• Higher throughput
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SIMDRAM Output

Instruction result 
in memory
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SIMDRAM Framework: Step 1 
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Step 1: Naïve MAJ/NOT Implementation
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Step 1: Efficient MAJ/NOT Implementation

Part 2

Step 1 generates an optimized 
MAJ/NOT-implementation of the desired operation
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algorithm4

 4 L. Amarù et al, “Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization”, DAC, 2014.
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SIMDRAM Output

Instruction result 
in memory
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SIMDRAM Framework: Step 2 
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Step 2: µProgram Generation

•µProgram: A series of microarchitectural operations 
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM 
operation in DRAM

•Goal of Step 2: To generate the µProgram that executes 
the desired SIMDRAM operation in DRAM 

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram
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Step 2: µProgram Generation

•µProgram: A series of microarchitectural operations 
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM 
operation in DRAM

•Goal of Step 2: To generate the µProgram that executes 
the desired SIMDRAM operation in DRAM 

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram
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Task 1: Allocating DRAM Rows to Operands
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Task 1: Allocating DRAM Rows to Operands
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• Assigns as many inputs as the number of free compute rows

• All three input rows contain the MAJ output and can be reused
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Step 2: µProgram Generation

•µProgram: A series of microarchitectural operations 
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM 
operation in DRAM

•Goal of Step 2: To generate the µProgram that executes 
the desired SIMDRAM operation in DRAM 

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram
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Task 2: Generate an initial µProgram
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Task 2: Optimize the µProgram
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Task 2: Optimize the µProgram
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Task 2: Optimize the µProgram
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1. Copy A to reserved row 
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Task 2: Generate N-bit Computation
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Task 2: Generate µProgram

Repeat N times:
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• Final µProgram is optimized and computes the desired 
operation for operands of N-bit size in a bit-serial fashion
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Step 3: µProgram Execution
 •SIMDRAM control unit: handles the execution of the 

µProgram at runtime 

• Upon receiving a bbop instruction, the control unit:

1. Loads the µProgram corresponding to SIMDRAM operation

2. Issues the sequence of DRAM commands (ACT/PRE) stored 
in the µProgram to SIMDRAM subarrays to perform the 
in-DRAM operation 

 

Memory Controller
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More in the Paper

• Detailed reference implementation and 
microarchitecture of the SIMDRAM control unit
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System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation, 
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework
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Transposing Data

•SIMDRAM operates on vertically-laid-out data

•Other system components expect data to be laid 
out horizontally 

Challenging to share data between SIMDRAM and CPU
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Efficiently Transposing Data
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Low impact on the throughput of 

SIMDRAM operations

Low area cost (0.06 mm2 in 22nm tech. node)  
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More in the Paper
Efficiently transposing data

Programming interface

Handling page faults, address translation, 
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework
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Methodology: Experimental Setup 
•Simulator: gem5

•Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

•Evaluated SIMDRAM configurations (all using a 
DDR4_2400_x64 device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row 
buffer) 

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1’048’576 SIMD lanes

126



Methodology: Workloads
Evaluated:

• 16 complex in-DRAM operations:
- Absolute          - Predication
- Addition/Subtraction          - ReLU
- BitCount          - AND-/OR-/XOR-Reduction
- Equality/ Greater/Greater Equal    - Division/Multiplication

• 7 real-world applications
- BitWeaving (databases)   - LeNET (neural networks)
- TPH-H (databases)      - VGG-13/VGG-16 (neural networks)
- kNN (machine learning)   - Brightness (graphics)
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Throughput Analysis

SIMDRAM significantly outperforms 
all state-of-the-art baselines for a wide range of operations

Average normalized throughput across all 16 SIMDRAM 
operations
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Energy Analysis
Average normalized energy efficiency across all 16 
SIMDRAM operations

SIMDRAM is more energy-efficient than 
all state-of-the-art baselines for a wide range of operations
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Real-World Applications

SIMDRAM effectively and efficiently accelerates 
many commonly-used real-world applications

Average speedup across 7 real-world applications
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SIMDRAM Key Results
Evaluated on:

- 16 complex in-DRAM operations
- 7 commonly-used real-world applications

SIMDRAM provides:

•88× and 5.8× the throughput of a CPU and a high-end 
GPU, respectively, over 16 operations

•257× and 31× the energy efficiency of a CPU and a 
high-end GPU, respectively, over 16 operations

•21× and 2.1× the performance of a CPU an a high-end 
GPU, over seven real-world applications
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SIMDRAM Conclusion
•SIMDRAM:

- Enables efficient computation of a flexible set and wide range 
of operations in a PuM massively parallel SIMD substrate

- Provides the hardware, programming, and ISA support, to:
• Address key system integration challenges
• Allow programmers to define and employ new operations without 

hardware changes

• More in the paper:
- Efficiently transposing data
- Programming interface
- Handling page faults, address translation, coherence, and interrupts
- Security implications
- Reliability evaluation
- Comparison to in-cache computing
- And more …

SIMDRAM is a promising PuM framework
• Can ease the adoption of processing-using-DRAM 

architectures 
• Improves the performance and efficiency of 

processing-using-memory architectures
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In-DRAM Physical Unclonable Functions
■ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM 
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer 
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE


In-DRAM True Random Number Generation
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■ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random 
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer 
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


In-DRAM True Random Number Generation

136

■ Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa 
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using 
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA), 
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


RowClone & Bitwise Ops in Real DRAM Chips

137https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

138https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

139https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


In-Memory Crossbar Array Operations
■ Some emerging NVM technologies have crossbar array 

structure
❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

■ Crossbar arrays can be used to perform dot product 
operations using “analog computation capability”
❑ Can operate on multiple pieces of data using Kirchoff’s laws

■ Bitline current is a sum of products of wordline V x (1 / cell R)
❑ Computation is in analog domain inside the crossbar array

■ Need peripheral circuitry for D🡪A and A🡪D conversion of 
inputs and outputs
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Aside: In-Memory Crossbar Computation

141Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.



Aside: In-Memory Crossbar Computation



Readings on Processing using NVM

■ Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator 
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

■ Chi+, “PRIME: A Novel Processing-in-memory Architecture for 
Neural Network Computation in ReRAM-based Main Memory”, 
ISCA 2016.

■ Prezioso+, “Training and Operation of an Integrated 
Neuromorphic Network based on Metal-Oxide Memristors”, 
Nature 2015

■ Ambrogio+, “Equivalent-accuracy accelerated neural-network 
training using analogue memory”, Nature 2018.

143



Challenge: Intelligent Memory Device

Does memory
have to be

dumb?
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Historical Perspective & 
A Detour 

on the Review Process
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Ambit and RowClone
Sound Great!

No?
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Some History: RowClone
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RowClone: Historical Perspective
■ This work is likely the first example of “minimally changing 

DRAM chips” to perform data movement and computation
❑ Surprising that it was done as late as 2013!

■ It led to a body of work on in-DRAM (and in-NVM) 
computation with “hopefully small” changes

■ Work building on RowClone still continues

■ Initially, it was dismissed by some reviewers
❑ Rejected from ISCA 2013 conference
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One Review (ISCA 2013 Submission)
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Another Review and Rebuttal

151



ISCA 2013 Submission
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Yet Later… in ISCA 2015…
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MICRO 2013 Submission
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More History: Ambit
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Ambit
■ First work on performing bulk bitwise operations in DRAM

❑ By exploiting analog computation capability of bitlines
❑ Extends and completes our IEEE CAL 2015 paper

■ Disruptive -- spans algorithms to circuits/devices 
❑ Requires hardware/software cooperation for adoption

■ Led to a large amount of work in similar approaches in 
DRAM and NVM
❑ The work continues to build

■ Initially, it was dismissed by many reviewers
❑ Rejected from 4 conferences!
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ISCA 2016: Rejected
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MICRO 2016: Rejected
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HPCA 2017: Rejected
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ISCA 2017: Rejected
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Ambit Sounds Good, No?

161

Review from ISCA 2016



Very Interesting and Novel, ….. BUT …
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… This Will Never Get Implemented
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Another Review 

164

Another Review from ISCA 2016



… This Will Never Get Implemented
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Yet Another Review
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Yet Another Review from ISCA 2016



A Review from HPCA 2017: REJECT
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A Review from ISCA 2017
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Another Review from ISCA 2017
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ISCA 2017 Summary
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The Reviewer Accountability Problem
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MICRO 2017: Accepted
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Aside: A Recommended Book
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.



Suggestions to Reviewers
■ Be fair; you do not know it all

■ Be open-minded; you do not know it all

■ Be accepting of diverse research methods: there is no 
single way of doing research or writing papers

■ Be constructive, not destructive

■ Enable heterogeneity, but do not have double standards…

Do not block or delay scientific progress for non-reasons



Suggestion to Community

We Need to Fix the 
Reviewer Accountability 

Problem



Takeaway

Main Memory Needs 
Intelligent Controllers



Takeaway

Research Community 
Needs

Accountable Reviewers



An Interview on Research and Education

■ Computing Research and Education (@ ISCA 2019)
❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

■ Maurice Wilkes Award Speech (10 minutes)
❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

180https://www.youtube.com/onurmutlulectures 

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/onurmutlulectures


More Thoughts and Suggestions
■ Onur Mutlu,

"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards 
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

■ Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 
July 2020.
[Slides (pptx) (pdf)]

https://www.youtube.com/onurmutlulectures 

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf
https://www.youtube.com/onurmutlulectures


RowClone & Bitwise Ops in Real DRAM Chips

182https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


RowClone & Bitwise Ops in Real DRAM Chips

183https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Row Copy in ComputeDRAM
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Bitline is above 
V

DD
/2 when R2 is 
activated.



Bitwise AND in ComputeDRAM
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T1 very short
Sense amps are not 

activated

T2 very short
PRE cannot close R1

R3 will appear on the address bus
ACT(R2) will activate R3 and R2



Experimental Methodology
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Experimental Methodology
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32 DDR3 Modules
~256 DRAM Chips



Proof of Concept

■ How they test these memory modules:
❑ Vary T

1
 and T

2
, observe what happens.

SoftMC Experiment

1. Select a random subarray

2. Fill subarray with random data

3. Issue ACT-PRE-ACTs with given T
1
 & T

2

4. Read out subarray

5. Find out how many columns in a row support either operation
❑ Row-wise success ratio
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Proof of Concept
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■ Each grid represents the success ratio of operations for a specific 
DDR3 module.



Pinatubo: RowClone and Bitwise Ops in PCM

190https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

191https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed

by naysayers)



Suggestion to Researchers: Principle: Resilience

Be Resilient



Principle: Learning and Scholarship

Focus on
learning and scholarship



Principle: Learning and Scholarship

The quality of your work 
defines your impact



Principle: Work Hard

Work Hard to       
Enable Your Passion



Principle: Good Mindset, Goals & Focus

You can make a      
good impact               
on the world



Recommended Interview on Research & Education

■ Computing Research and Education (@ ISCA 2019)
❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

■ Maurice Wilkes Award Speech (10 minutes)
❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

■ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony, 
Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 
6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]
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https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html


Recommended Interview

199https://www.youtube.com/watch?v=8ffSEKZhmvo 

https://www.youtube.com/watch?v=8ffSEKZhmvo


A Talk on Impactful Research & Education

200https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54 

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54


Suggested Reading

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf 
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https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf


Suggested Reading on Mindset & More

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf 
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https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf
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