
Computer Architecture (227-2210-00L), Fall 2021 1/10

Lab 3: Memory Request Scheduling

Instructor: Prof. Onur Mutlu

TAs: Juan Gómez Luna, Mohammad Sadrosadati, Jisung Park, Mohammed Alser, Gagandeep Singh,
João Dinis Ferreira, Geraldo Francisco de Oliveira Junior,

Can Firtina, Hasan Hassan, Konstantinos Kanellopoulos, Behzad Salami,
Nika Mansouri Ghiasi, Lois Orosa Nogueira, Abdullah Giray Yaglikci,

Rahul Bera, Nour Almadhoun Alserr, Haiyu Mao, Rakesh Nadig,
Haocong Luo, Roknoddin Azizi

Assigned: Friday, October 22, 2021
Due: Friday, November 05, 2021 (Midnight)

1. Introduction
In this lab, you will implement and evaluate two memory scheduling policies: ATLAS [1] and BLISS [2].
To this end, you will extend Ramulator [3], which is a publicly-available architectural memory simulator,
to model the two memory scheduling policies. Ramulator implements many DRAM standards (e.g., DDR4,
LPDDR4, WideIO). It also implements a simple out-of-order processor frontend that enables Ramulator to
simulate workloads as a standalone tool. We provide more information on Ramulator and guide you through
how to use it in Section 2.

�e version of Ramulator that we provide you with already models memory scheduling policies such as
�rst-come-�rst-serve (FCFS) and �rst-ready-�rst-come-�rst-serve (FRFCFS). In this assignment, your job is
to implement the ATLAS and BLISS scheduling policies as speci�ed later in this handout.

2. A Short Ramulator Tutorial
Please follow this short tutorial to learn how to use Ramulator.

Here is the outline of the tutorial:

• Downloading and Building Ramulator
• Simulation Modes
• Simulator Output
• Con�guration Files
• Simulating multi-programmed workloads
• Code Organization

2.1. Downloading and Building Ramulator
Ramulator [3] is a fast and cycle-accurate DRAM simulator that supports a wide array of commercial, as well
as academic, DRAM standards. Please see the README a�er downloading Ramulator using the link below.

Exercise 0/6: In Lab 3 on Moodle, we provide you a version of Ramulator that includes memory traces
that you will use in this assignment. Please download and extract the tarball:

https://moodle-app2.let.ethz.ch/pluginfile.php/1214283/mod assign/introattachment/0/
ramulator lab.zip?forcedownload=1soimaetudoim

Ramulator requires a C++11 compiler (e.g., clang++, g++-5). By default, Ramulator will build using clang++.
However, you can modify the line starting with CXX:= in ‘Make�le’ in the Ramulator directory to pick a
di�erent compiler.

https://moodle-app2.let.ethz.ch/pluginfile.php/1214283/mod_assign/introattachment/0/ramulator_lab.zip?forcedownload=1soi mae tudoi m
https://moodle-app2.let.ethz.ch/pluginfile.php/1214283/mod_assign/introattachment/0/ramulator_lab.zip?forcedownload=1soi mae tudoi m


Computer Architecture (227-2210-00L), Fall 2021 2/10

Exercise 1/6 Compiling Ramulator

You can easily build Ramulator by running Make:
$ make -j

A�er successful compilation, you will �nd a binary executable �le called ramulator in the same directory
with the Make�le. You can run the binary to print the help message to the terminal:

Exercise 2/6 Printing Ramulator Help Message
$ ./ramulator

Usage: ./ramulator <configs-file> --mode=cpu,dram [--stats <filename>]
<trace-filename1> <trace-filename2>

Example: ./ramulator ramulator-configs.cfg --mode=cpu cpu.trace cpu.trace

2.2. Simulation Modes
Ramulator supports three di�erent usage modes:

• Memory Trace Driven: In this mode, Ramulator is provided with an input trace �le that contains
main memory requests of an application to simulate. Ramulator sequentially processes these requests
based on the selected DRAM standard (e.g., DDR4). �is mode does not model any system in su�cient
detail to perform timing simulations. Because of that, Memory Trace Driven mode is be�er suited for
testing the functionality of newly added features. In this assignment, we will not use this mode. Still,
you can �nd more information about this mode in the public Ramulator repository [4] in case you are
interested.

• Gem5 Driven: Gem5 [5] is a full-system simulator that models CPU architecture in detail. Ramulator
can be a�ached to gem5 to simulate the main memory component of the system. In this assignment,
will not use this mode. If interested, you can take a look at gem5’s homepage for more information
about this simulator. You can also �nd out how to a�ach Ramulator to gem5 here.

• CPU Trace Driven: �is is the simulation mode that you will need to use in this lab assignment. In
this mode, Ramulator directly reads CPU instruction traces from a �le, and simulates a simpli�ed out-
of-order CPU core model that generates memory requests to the DRAM subsystem. Such trace �les
contain non-memory instructions and memory requests. Depending on how the trace �le is generated,
the memory requests in the trace �le may correspond to a certain cache level or directly to the main
memory. If the trace containsmainmemory requests, we call it a cache-�ltered trace. When simulating
a cache-�ltered trace, Ramulator should be con�gured to not instantiate any caches. Each line
in the CPU trace �le represents a memory request, and can have one of the following three formats:

– 〈num-cpuinst〉 〈addr-read〉: If a line contains two tokens, the �rst token 〈num-cpuinst〉 repre-
sents the number of CPU (i.e., non-memory) instructions that precede a read request. �e second
token 〈addr-read〉 speci�es the memory address of the read request.

– 〈num-cpuinst〉 〈addr-read〉 〈addr-writeback〉: �e �rst two tokens in a line with three tokens
are the same as in the �rst format. �e third token 〈addr-writeback〉 is the decimal address of
the writeback request, which is the dirty cache-line eviction caused by the read request before it.

– 〈unused〉 〈unused〉 〈num-cpuinst〉 〈type〉 〈addr〉: 〈unused〉 tokens are used to pass additional
information to the simulation, which are not relevant to this assignment and ignored by Ramu-
lator. 〈num-cpuinst〉 represents the number of CPU (i.e., non-memory) instructions that precede
a memory request. 〈type〉 indicates the type of the memory request, which can be a load (L)
request or a store (S) request. 〈addr-read〉 speci�es the memory address of the request.

http://gem5.org
https://github.com/CMU-SAFARI/ramulator


Computer Architecture (227-2210-00L), Fall 2021 3/10

Exercise 3/6 Running Ramulator in CPU Trace Driven mode:
$ ./ramulator configs/test-config.cfg --mode=cpu cpu.trace

tracenum: 1
trace_list[0]: cpu.trace
Warmup complete! Resetting stats...
Starting the simulation...
CPU heartbeat, cycles: 50000000
CPU heartbeat, cycles: 100000000
CPU heartbeat, cycles: 150000000
CPU heartbeat, cycles: 200000000
CPU heartbeat, cycles: 250000000
CPU heartbeat, cycles: 300000000
Simulation done. Statistics written to DDR4.stats

In the above command, ‘con�gs/DDR4-con�g.cfg’ speci�es a Ramulator con�guration �le that contains several
parameters related to the architecture to simulate. �e second argument, --mode=cpu, tells Ramulator to run
in CPU Trace Driven mode. �e last argument, ‘cpu.trace’, speci�es the path to the input trace �le to simulate.
‘cpu.trace’ is a very short trace that do not represent any real application but rather is used to demonstrate
how to run Ramulator.
2.3. Simulator Output
Ramulator reports a series of statistics for every run. �ese statistics are wri�en to a �le. By default, the
�lename will be ‘〈standard name〉.stats’ (e.g., ‘DDR4.stats’). You can output the statistics using a custom
�lename by adding --stats 〈filename〉 to the command line a�er the --mode argument.

Exercise 4/6: Understanding the stats �le:

�e simulation in the previous task should have created the stats �le ‘DDR4.stats’. Open the stats �le with
your favorite text editor (e.g., emacs, gedit, vim, kate) and �nd out which statistics Ramulator reports by
default. Fill in the values for the metrics below:

Note: you do not have to submit the stats that you �lled in above. �is is just an exercise to help you get
familiar with Ramulator’s stats �les.

1. Executed Instructions:
2. CPU Cycles:

3. IPC:
4. Row Misses:

5. Row Hits:

6. Row Con�icts:

7. Average access latency:
8. Read Bandwidth:
9. Write Bandwidth:

2.4. Con�guration Files
Ramulator enables cycle-accurate simulation of a diverse set of memory technologies. It uses various con-
�guration �les to simulate di�erent memory technologies. Now, let’s analyze important parameters in the
con�guration �les.

�e pre-de�ned con�guration �les are available in the ‘con�gs/’ directory. Ramulator is capable of simu-
lating standard DDRx memories (e.g., DDR3-con�g.cfg, DDR4-con�g.cfg, GDDR5-con�g.cfg), new 3D-stacked
memories (e.g.,HBM-con�g.cfg,WideIO2-con�g.cfg), Non-Volatile EmergingMemory Technologies (e.g., PCM-



Computer Architecture (227-2210-00L), Fall 2021 4/10

con�g.cfg, STTMRAM-con�g.cfg), and academic proposals (e.g., SALP-con�g.cfg, DSARP-con�g.cfg). For a
recent study that shows Ramulator’s capabilities in evaluating workload-DRAM con�gurations, please see
the SIGMETRICS 2019 paper entitled ”Demystifying Complex Workload-DRAM Interactions: An Experimental
Study” by Ghose et al. [6].

In this assignment, you will simulate a DDR4-based main memory. If you open the DDR4 con�guration
�le, you will see several parameters that describe the system to simulate. Here is a description of the most
important parameters:

1. Memory-speci�c parameters: �ese are parameters that specify how the memory device will be
con�gured. Important parameters are:

• standard: Speci�es the DRAM standard (e.g., DDR4).
• channels, ranks: �ese specify the number of DRAM channels and ranks per channel of the sim-
ulated DRAM subsystem.

• speed: �is parameter speci�es the timing properties of the simulated DRAM device (e.g.,
DDR4 2400R). It sets the frequency of the DRAM device and internal DRAM timings.

• org: Speci�es internal organization of the DRAM device (e.g., number of banks, rows, columns).
2. Core-speci�c parameters: �ese specify the con�guration of the CPU cores. Ramulator implements a

simple out-of-order coremodel, and a non-coherent cache hierarchy. �e number of cores is determined
by the number of trace �les passed as arguments during execution (e.g., the �rst trace is assigned to
the �rst core). �e cache hierarchy can be con�gured using the cache knob with no for no cache, L1L2
for private L1 and L2 caches, L3 for only L3 cache shared among the cores, and all for private L1
and L2 and shared L3. In this assignment, you should not instantiate any caches since we provide you
cache-�ltered traces.

3. Simulation-speci�c parameters: �ese parameters control the simulation. Since simulation of a
program can take orders of magnitude more time to complete than executing the same program
on a real system, one common practice is to limit the total number of instructions simulated (ex
pected limit insts). Se�ing this parameter will cause the simulation to �nish as soon as all cores
retire at least expected limit insts instructions. Please make sure to keep early exit = off as
otherwise the simulation will �nish when any core retires expected limit insts number of instruc-
tions.

2.5. Simulating Multi-programmed Workloads
Ramulator allows simulating multi-programmed workloads. A multi-programmed workload is composed of
multiple individual applications, each of which is assigned to a CPU core. �ese applications do not com-
municate with each other. �erefore, a cache coherence mechanism is not required. However, the individual
applications still interfere with each other at di�erent levels of the memory hierarchy since they share the
memory sub-system.

To create a multi-programmed simulation, you just need to specify multiple trace �les in the command line,
separated by space. Ramulator assigns each trace to a di�erent core. For example, if you provide two trace
�les (e.g., trace1 trace2), Ramulator will automatically instantiate two CPU cores and assign each trace to a
di�erent core.

In the ‘./traces/’ directory, we provide two CPU trace �les. One of them represents an application that accesses
main memory a lot (i.e., it has high memory intensity) and the other makes fewer requests to main memory.



Computer Architecture (227-2210-00L), Fall 2021 5/10

Exercise 5/6: Running the multi-programmed workload:

�e following command starts simulation with one instance of each trace �le we provide in the ‘./traces/’
directory.
$ ./ramulator configs/DDR4-config.cfg --mode=cpu --stats \

multi-programmed-simulation.stats ./traces/high-mem-intensity.trace \
./traces/low-mem-intensity.trace

Note that, in the stats �le, some of the statistics are collected and displayed in the output separately for each
core.
2.6. Code Organization
Ramulator abstracts basics DRAM operations to provide an easy-to-extend design. You can read Section 2 in
the Ramulator paper [3] to understand how the code is organized in detail.

In this section, we give a high-level view of how di�erent Ramulator modules communicate with each other.
Figure 1 provides a simpli�ed view of Ramulator’s functionalities. We describe CPU Trace Driven simulation
in two simulation phases: processor and memory.

Processor-side simulation. �e processor-side phase of the simulation consists of 1) reading the trace �le;
2) issuing bubble instructions (i.e., non-memory instructions); 3) issuing memory instructions. �e processor
implements a simple out-of-order core model in ‘src/Core.h’ and a cache subsystem in ‘src/Cache.h’. It works
as follows.

1. ‘src/Main.cpp’ reads the con�guration �le and instantiates the processor cores and memory controllers.
�e number of core objects created depends on the number of trace �les passed to the simulation and
the number of controller objects created depends on the DRAM channels in the con�guration.

2. run cputrace() starts running, and then controlling the execution of the simulation.
3. �e processor module is ticked (proc.tick()), which advances the simulation to the next clock cycle.

Figure 1. Sequence diagram describing how Ramulator operates.



Computer Architecture (227-2210-00L), Fall 2021 6/10

4. �e processor ticks the cores and the cache subsystem. On each clock cycle, each core reads instructions
from its trace �le. When a core receives a memory instruction from the simulated trace, the core
calls send() to forward a memory request to the corresponding cache (if the con�guration �le de�nes
caches) or memory controller. send() implements the functionality to determine which controller
should service the request. �en, once a controller completes servicing a request, it informs the core
that issued the request by calling callback(), which is a function passed along with the request object
as a member variable.

Memory-side simulation. �e memory-side phase of the simulation has three main tasks: 1) to serve
completed reads; 2) to refresh the memory device; 3) to schedule DRAM commands. �e memory module
implements a memory controller (one for each DRAM channel) that is responsible for performing these three
tasks. �e memory-side simulation works as follows.

1. ‘src/Main.cpp’ ticks the memory module (memory.tick()), which advances the simulation to the next
clock cycle. �e memory module then ticks each memory controller.

2. Serving completed reads. �e controller checks if any request is completed, and if so, it informs the
core that issued the requests by calling the corresponding req.callback(req) function.

3. Refreshing the memory device. �e controller calls the refresh module, which is responsible for
issuing refresh commands at the de�ned refresh interval.

4. Scheduling DRAM commands. �e memory scheduler determines which request in the memory
request queue should be serviced next. �e selected request depends on the scheduling policy that is in
use. Every cycle, the scheduler uses the scheduling policy to scan the requests in the queue to �nd the
most appropriate request to service next, as dictated by the scheduling policy in use. If there is any such
request ready to be serviced, the scheduler forwards this request to the controller, and the controller
issues the appropriate DRAM command (e.g., READ, ACTIVATE) for servicing the request. �en, the the
controller calls channel->update() to update the state of the DRAM device to re�ect the e�ect of the
issued DRAM command. It is important to point out that the timing of each DRAM command is de�ned
in the standard DRAM speci�cation (i.e., datasheets). Each memory technology �le (e.g., ‘src/DDR4.h’)
de�nes timing speci�cations for di�erent device types that implement the standard. For the timing
parameters, you can see the SpeedEntry structure in ‘src/DDR4.h’.

Now, let’s see how di�erent memory scheduling policies impact performance. Open ‘src/Scheduler.h’ with
your favorite text editor. By default, Ramulator employs the FRFCFS Cap scheduler [7]. You can change this
scheduler by modifying the line that is shown below:

type = Type::FRFCFS_Cap; //Change this line to change scheduling policy

Exercise 6/6: Modifying Ramulator source code:

Change the appropriate source �les to make Ramulator to use the FCFS (First-Come First-Serve) memory
scheduler. A�er the changes, run make again to compile Ramulator with the latest changes. �en, simu-
late the high memory intensity trace and compare the execution time of FCFS to the default FRFCFS Cap
policy.

3. Your Task 1/3: Implementing ATLAS
Your goal is to extend Ramulator by implementing the Adaptive per-�read Least-A�ained-Service (ATLAS)
scheduler [1]. �e key idea of ATLAS is to periodically order threads based on the service they have a�ained
from thememory controllers, and prioritize threads that have a�ained the least service compared to the others
in each period. �is technique signi�cantly reduces the time the CPU cores stall and, as a result, improves
system throughput, as shown by Kim et al. [1].

Your task is to extend Ramulator with the ATLAS scheduling policy, as described in Sections 3-5 in the paper
that proposed ATLAS [1]. Although you should stick to the exact mechanisms described in the paper, it is
your task to �gure out how to implement ATLAS in Ramulator. �ere are multiple ways to extend Ramulator



Computer Architecture (227-2210-00L), Fall 2021 7/10

with a new memory scheduling policy. For example, you can add ATLAS as a new scheduler type in ‘Sched-
uler.h’ (similar to other policies such as FCFS) and modify/add functions in that header �le. You will not
be provided with a speci�c so�ware design and you are free to implement ATLAS in Ramulator as
you �nd appropriate.

Although we do not restrict you to a speci�c so�ware implementation, you should make sure your ATLAS
implementation is functionally equivalent to the mechanism described in the paper. Also, please use the
default con�guration of the ATLAS mechanism that is provided in the paper at the end of Section 6 (i.e.,
quantum length = 10 million cycles, α = 0.875, and T = 100K cycles).

4. Your Task 2/3: Implementing BLISS
In this second task, your goal is to extend Ramulator by implementing the BLISS scheduler [2]. �e key idea of
BLISS is to separate applications in two groups, one containing application with high memory intensity and
another that includes applications that access the memory less. �e BLISS scheduler achieves its grouping by
identifying applications that access a row many times in repetition and deprioritizing them for a determined
amount of time. As shown by Subramanian et al. [2], BLISS reduces the interference between the two groups
and improves system throughput and fairness.

Your task is to extend Ramulator with the BLISS scheduling policy, as described in Sections 4-5 in the paper
that proposed BLISS [2]. Similar to Task 1, you will not be provided a speci�c way of implementation in
Ramulator and you are free to implement BLISS in Ramulator as you �nd appropriate.

Although we do not restrict you to a speci�c so�ware implementation, you should make sure your BLISS
implementation is functionally equivalent to the mechanism described in the paper. Also, please use the
default con�guration of the BLISS mechanism provided in the paper at the end of Section 6.5 (i.e., Blacklisting
�reshold = 4, Clearing Interval = 10K cycles).

5. Your Task 3/3: Evaluating ATLAS and BLISS and Comparing �em
to Conventional Memory Scheduling Policies

Your task is now to evaluate the instruction throughput (IT) and maximum slowdown (MS) that your ATLAS
and BLISS implementations provide compared to three baseline scheduling policies: FCFS, FRFCFS, and FR-
FCFS Cap. Use the following de�nitions of instruction throughput (IT) and maximum slowdown (MS):

Instruction Throughput (IT ) =

∑NumCores
c=0 InstructionsRetired(c)

CPUCycles

which is basically the sum of all instructions retired in each core divided by the total number of CPU cycles
the simulation took to complete.

Maximum Slowdown (MS) = max
a∈Applications

CPUCyclesshared(a)

CPUCyclesalone(a)

To calculate the slowdown of a single application, simply divide the execution time of the application when
running together with other applications in the same system by the execution time of the application when
running the application alone on the same system. Maximum slowdown (MS) is the maximum of the single
application slowdowns within a multi-programmed workload.

As a �rst part of the evaluation, youwill have to add instruction throughput as a statistic to Ramulator
such that the output ‘.stats’ contains a new instruction throughput line. To do so, you will �rst need to use the
ScalarStat class and create an instance of it in a way similar to other statistics that already exist in Ramulator.
You must calculate instruction throughput, as de�ned in the equation above.

It is not possible to directly addMS as a statistic to Ramulator as it is required to run Ramulator multiple times
(once with all applications together, and once the target application alone) to collect the required information



Computer Architecture (227-2210-00L), Fall 2021 8/10

to calculate MS.�us, you will need to calculate MSmanually or write a script that will readmultiple
Ramulator stats �les and return the MS of each application.

Do the following when running the simulations:

1. Make sure you do not change parts of the processor and memory con�guration other than
those speci�cally mentioned that you can change in this assignment.

2. Run simulations until every core retires 20 million instructions.
3. For each scheduling policy, run the following multi-programmed workloads:

• Workload 1: HLLL (four-core)
• Workload 2: HHLL (four-core)
• Workload 3: HHHH (four-core)
• Workload 4: HHHHHHHH (eight-core)

where H stands for an instance of the trace with high memory intensity and L stands for the trace with
low memory intensity. We provide both traces, as explained in Section 2.1.

Run Ramulator using the following memory schedulers, collect the instruction throughput and MS of these
runs, and analyze the results.

• FCFS (First-Come First-Serve): �e �rst memory request to be inserted into the memory request
queue is serviced �rst.

• FRFCFS (First-Ready First-Come First-Serve): Similar to FCFS but requests in the request queue
that target already open rows are prioritized.

• FRFCFS Cap: Similar to FRFCFS but the number of read/write requests that can be serviced from an
already open row is limited to prevent starvation of other requests that target di�erent rows in the same
bank. In other words, with this policy, once a row is activated, it could only serve a certain number of
read/write requests and then it must be closed (do not change the default parameter of FRFCFS Cap).
See [7] for a more detailed description and evaluation of this policy.

• ATLAS: �is is your implementation of the ATLAS scheduler described in [1].
• BLISS: �is is your implementation of the BLISS scheduler described in [2].

Evaluate each workload using each scheduling policy listed above. Collect the instruction throughput (IT)
and maximum slowdown (MS) results and plot them as shown in the template in Figure 2. Note that you
should show IT and MS results in separate graphs for all �ve scheduling policies and four multi-programmed
workloads.

Based on your analysis, submit answers to the following questions with your lab report.

1. Provide two graphs, one for IT and another for MS, depicting the metrics for 4 di�erent workloads and
5 di�erent scheduling policies.

2. Explain the two graphs.
3. How does each of the throughput and MS metrics change when using each scheduling policy? Explain

why.
4. Do the results match your expectations? Clearly explain what kind of di�erence each scheduling policy

you expect to make. If the results do not match your expectations, try to reason why you may not be
seeing the expected results.



Computer Architecture (227-2210-00L), Fall 2021 9/10

HLLL HHLL HHHH HHHHHHHH
0

5

10

15

20

25

30

<
M

et
ri

c>

FCFS
FRFCFS
FRFCFS_Cap
ATLAS
BLISS

Figure 2. A template showing how IT and MS results should be plotted.

6. Bonus Task: Designing Your Own Memory Scheduler
In this task, your goal is to come up with a new memory scheduling idea (or multiple ones) that hopefully
performs be�er than the existing �ve scheduling policies. To generate a new idea, you may want to �nd
and study prior work in more detail and cover the research in the area. Alternatively, you can exercise your
creativity and insight. You are free to come up with any kind of memory scheduling idea as long as it is your
own.

Evaluate your idea in a way similar to how you evaluated ATLAS and BLISS in Task 3. Compare your new
idea against all �ve scheduling policies we mentioned.

Submit 1) a detailed description of your idea, 2) Ramulator implementation of the idea, and 3) the results of
your new policy. You may create graphs similar to those you created for Task 3.

You can receive 1.5% of the entire course grade if you come up with a goodmemory scheduling idea
that outperforms the �ve scheduling policies mentioned in this assignment. You may also receive
credit for particularly creative and insightful ideas.

7. Tips
• Please do not distribute the provided program �les. �ese are for exclusive individual use
of each student of the Computer Architecture course. Distribution and sharing violates the
copyright of the so�ware provided to you.

• Read this handout in detail.
• If needed, please ask questions to the TAs using the online Q&A forum in Moodle.
• When you encounter a technical problem, please �rst read the error messages. A search on the web
can usually solve many debugging issues, and error messages.

8. Submission
Use the corresponding assignment in Moodle (https://moodle-app2.let.ethz.ch/mod/assign/view.
php?id=656680/). You should submit:

• All the �les needed to compile your code (including Ramulator source �les that you did not change).
• A report as a single PDF �le that contains two main sections: 1) section that brie�y explains what
changes you made in Ramulator to implement the new scheduling policies and 2) section about your
analysis from Task 3, including the plo�ed results.

https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=656680/
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=656680/


Computer Architecture (227-2210-00L), Fall 2021 10/10

• All .stat �les that are related to your analysis in Task 3.
• Please do NOT submit the Ramulator trace �les provided to you on Moodle.
• Also, please do not submit compiled �les (e.g., Ramulator executable, .obj �les).

Please submit the above �les in a single tarball (with the name ‘lab3 〈YourSurname〉 〈YourName〉.tar.gz’).

If needed, you can ask questions to the TAs using the online Q&A forum in Moodle (https://moodle-app2.
let.ethz.ch/mod/moodleoverflow/view.php?id=655916).

References
[1] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. ATLAS: A Scalable and High-

Performance Scheduling Algorithm for Multiple Memory Controllers. In HPCA, 2010.

[2] Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu. BLISS: Balanc-
ing Performance, Fairness and Complexity in Memory Access Scheduling. TPDS, 2016.

[3] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A Fast and Extensible DRAM Simulator. In
CAL, 2015.

[4] SAFARI Research Group. Ramulator: A DRAM Simulator — GitHub Repository. https://github.com/
CMU-SAFARI/ramulator.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. �e gem5 Simulator. ACM SIGARCH
Computer Architecture News, 2011.

[6] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu. Demystifying Com-
plex Workload-DRAM Interactions: An Experimental Study. In SIGMETRICS, 2019.

[7] Onur Mutlu and �omas Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip Multiproces-
sors. In MICRO, 2007.

 https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=655916
 https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=655916
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

	Introduction
	A Short Ramulator Tutorial
	Downloading and Building Ramulator
	Simulation Modes
	Simulator Output
	Configuration Files
	Simulating Multi-programmed Workloads
	Code Organization

	Your Task 1/3: Implementing ATLAS
	Your Task 2/3: Implementing BLISS
	Your Task 3/3: Evaluating ATLAS and BLISS and Comparing Them to Conventional Memory Scheduling Policies
	Bonus Task: Designing Your Own Memory Scheduler
	Tips
	Submission

