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1. Critical Paper Reviews [1,000 points]

Please read the guidelines for reviewing papers and check the sample reviews. We also assign you three
required readings for this homework. You may access them by simply clicking on the QR codes below or
scanning them. We will give out extra credit that is worth 0.5% of your total grade for each good review. If
you review a paper other than the REQUIRED papers, you will receive 250 BONUS points on top of 1,000
points you may get from paper reviews (i.e., each additional submission is worth 250 BONUS points with a
possibility to get up to 5,500 points).

Guidelines Sample reviews

Required Reading 1 Required Reading 2 Required Reading 3

Write an approximately one-page critical review for the following required readings (i.e., papers #1 to #3)
and at least 1 more from the remaining 19 papers (i.e., papers #4 to #22). A review with bullet point style
is more appreciated. Try not to use very long sentences and paragraphs. Keep your writing and sentences
simple. Make your points bullet by bullet, as much as possible.
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1. (REQUIRED) Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology”, MICRO, 2017. https://people.inf.ethz.ch/omutlu/pub/ambit-
bulk-bitwise-dram_micro17.pdf

2. (REQUIRED) Senol Cali el al., “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis", MICRO, 2020. https://people
.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-anal
ysis_micro20.pdf

3. (REQUIRED) Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph Process-
ing”, ISCA 2015, https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-g
raph-processing_isca15.pdf

4. Mutlu et al., “A Modern Primer on Processing in Memory”, Invited Book Chapter in Emerging Comput-
ing: From Devices to Systems - Looking Beyond Moore and Von Neumann, Springer https://people.i
nf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

5. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Archi-
tecture”, ISCA 2015, https://people.inf.ethz.ch/omutlu/pub/pim-enabled-instructons-for-lo
w-overhead-pim_isca15.pdf

6. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks”,
ASPLOS 2018, https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-mov
ement-and-PIM_asplos18.pdf

7. Singh et al., “FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications”, IEEE
Micro 2021, https://arxiv.org/pdf/2106.06433.pdf

8. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization”,
MICRO 2013, https://people.inf.ethz.ch/omutlu/pub/rowclone_micro13.pdf

9. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality
of Non-unit Strided Accesses”, MICRO 2015, https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gat
her-scatter-dram_micro15.pdf

10. Wang et al., “FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation
and Caching”, MICRO 2020, https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in
-DRAM-data-relocation-and-caching_micro20.pdf

11. Hajinazar and Oliveira et al., “SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing
in DRAM”, ASPLOS 2021, https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf

12. Alser et al., “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro 2020
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

13. Lee et al., “Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology”,
ISCA 2021 https://ieeexplore.ieee.org/document/9499894

14. Harold Stone, “A Logic-in-Memory Computer”, TC 1970 https://safari.ethz.ch/architecture/fa
ll2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

15. Dunn and Sadasivan et al., “SquiggleFilter: An Accelerator for Portable Virus Detection”, MICRO 2021,
https://arxiv.org/pdf/2108.06610.pdf

16. Boroumand et al., “Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks”, PACT 2021 https://people.inf.ethz.ch/omutlu/pub/Google-neu
ral-networks-for-edge-devices-Mensa-Framework_pact21.pdf

17. Giannoula et al., “SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures”,
HPCA 2021 https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-dat
a-processing-systems_hpca21.pdf

18. Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA Short
Read Mapping”, Bioinformatics 2017, https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-
genome-prealignment-accelerator_bionformatics17.pdf

19. Alser et al., “Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment”, Bioinformatics
2019, https://people.inf.ethz.ch/omutlu/pub/shouji-genome-prealignment-filter_bionforma
tics19.pdf

20. Alser et al., “SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs,
GPUs, and FPGAs”, Bioinformatics 2020, https://people.inf.ethz.ch/omutlu/pub/SneakySnake_U
niversalGenomePrealignmentFilter_bioinformatics20.pdf
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21. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies”, APBC 2018, https://arxiv.org/pdf/1711.01177.pdf

22. Turakhia et al., “Darwin: A Genomics Co-processor Provides up to 15,000× acceleration on long read
assembly”, ASPLOS 2018, http://bejerano.stanford.edu/papers/p199-turakhia.pdf
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2. Processing-in-Memory [150 points]

You have been hired to accelerate ETH’s student database. After profiling the system for a while, you
found out that one of the most executed queries is to "select the hometown of the students that are from
Switzerland and speak German". The attributes hometown, country, and language are encoded using a four-
byte binary representation. The database has 32768 (215) entries, and each attribute is stored contiguously
in memory. The database management system executes the following query:

1 bool position_hometown[entries ];
2 for(int i = 0; i < entries; i++){
3 if(students.country[i] == "Switzerland" && students.language[i] == "German"){
4 position_hometown[i] = true;
5 }
6 else{
7 position_hometown[i] = false;
8 }
9 }

(a) You are running the above code on a single-core processor. Assume that:
• Your processor has an 8 MB direct-mapped cache, with a cache line of 64 bytes.
• A hit in this cache takes one cycle and a miss takes 100 cycles for both load and store operations.
• All load/store operations are serialized, i.e., the latency of multiple memory requests cannot be
overlapped.

• The starting addresses of students.country, students.language, and position_hometown are 0x05000000,
0x06000000, 0x07000000 respectively.

• The execution time of a non-memory instruction is zero (i.e., we ignore its execution time).

How many cycles are required to run the query? Show your work.

Cycles = cache_hits×1 + cache_misses×100 = 0×1 + (3×32×1024)×100

Explanation:
Since the cache size is 8 MB (223), direct-mapped, and the block size is 64 bytes (26), the
address is divided as:

• block = address[5:0]
• index = address[22:6]
• tag = address[31:23]

The loop repeats for the total number of entries in the database (32×1024 times). In each
iteration, the code loads addresses 0x05000000 and 0x06000000. It also stores the computa-
tion at address 0x07000000 (three memory accesses in total per cycle). All three addresses
have the same index bits, but different tags. The cache hit rate is 0% since every memory
access causes the eviction of the cache line that was just loaded into the cache.



(b) Recall that in class we discussed AMBIT, which is a DRAM design that can greatly accelerate Bulk
Bitwise Operations by providing the ability to perform bitwise AND/OR/XOR of two rows in a sub-
array. AMBIT works by issuing back-to-back ACTIVATE (A) and PRECHARGE (P) operations. For
example, to compute AND, OR, and XOR operations, AMBIT issues the sequence of commands de-
scribed in the table below (e.g., AAP (X,Y ) represents double row activation of rows X and Y followed
by a precharge operation, AAAP (X,Y, Z) represents triple row activation of rows X, Y, and Z followed
by a precharge operation).
In those instructions, AMBIT copies the source rows Di and Dj to auxiliary rows (Bi). Control rows Ci

dictate which operation (AND/OR) AMBIT executes. The DRAM rows with dual-contact cells (i.e.,
rows DCCi) are used to perform the bitwise NOT operation on the data stored in the row. Basically,
copying a source row to DCCi flips all bits in the source row and stores the result in both the source
row and DCCi. Assume that:

• The DRAM row size is 8 Kbytes.
• An ACTIVATE command takes 50 cycles to execute.
• A PRECHARGE command takes 20 cycles to execute.
• DRAM has a single memory bank.
• The syntax of an AMBIT operation is: bbop_[and/or/xor] destination, source_1, source_2.
• Addresses 0x08000000 and 0x09000000 are used to store partial results.
• The rows at addresses 0x0A000000 and 0x0B00000 store the codes for "Switzerland" and "Ger-
man", respectively, in each four bytes throughout the entire row.

Dk = Di AND Dj Dk = Di OR Dj Dk = Di XOR Dj

AAP (Di, B0)
AAP (Dj , B1)
AAP (C0, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (Di, DCC0)
AAP (Dj , DCC1)
AAP (C0, B2)
AAAP (B0, DCC1, B2)
AAP (C0, B2)
AAAP (B1, DCC0, B2)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP (B0, Dk)

i) The following code aims to execute the query "select the hometown of the students that are from
Switzerland and speak German" in terms of Boolean operations to make use of AMBIT. Fill in
the blank boxes such that the algorithm produces the correct result. Show your work.

1 for(int i = 0; i < ; i++){
2

3 bbop_ 0x08000000 , 0x05000000 + i*8192, 0x0A000000;
4

5 bbop_ 0x09000000 , 0x06000000 + i*8192, 0x0B000000;
6

7 bbop_ 0x07000000 , 0x08000000 , 0x09000000;
8 }



1st box = Number of iterations = database_size
row_buffer_size = 32∗1024∗4 bytes

8∗1024 bytes = 16
2nd box = bbop_xor
3rd box = bbop_xor
4th box = bbop_or

Explanation:
AMBIT can execute the query as follows:
T1 = country XOR "Switzerland"
T2 = language XOR "German"
hometown = T1 OR T2

T1 and T2 are auxiliary rows used to store partial results.

ii) How much speedup does AMBIT provide over the baseline processor when executing the same
query? Show your work.

Speedup = 3×100×32×1024
16×2×(25×50+11×20)+16×(11×50+5×20)

Explanation:
To compute an XOR operation, AMBIT emits 25 ACTIVATE and 11 PRECHARGE
commands. To compute an OR operation, it sends 11 ACTIVATE and 5 PRECHARGE
commands.



3. In-DRAM Bit Serial Computation [150 points]

Recall that in class, we discussed Ambit, which is a DRAM design that can greatly accelerate bulk bitwise
operations by providing the ability to perform bitwise AND/OR of two rows in a subarray and NOT of one
row. Since Ambit is logically complete, it is possible to implement any other logic gate (e.g., XOR). To be
able to implement arithmetic operations, bit shifting is also necessary. There is no way of shifting bits in
DRAM with a conventional layout, but it can be done with a bit-serial layout, as Figure ?? shows. With
such a layout, it is possible to perform bit-serial arithmetic computations in Ambit.
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A[0]_1

A[0]_0
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A[1]_2
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A[3]_3
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A[4]_1

A[4]_0

SA SA SA SA SA

Figure 1. In-DRAM bit-serial layout for array A, which contains five 4-bit elements. DRAM cells in the same bitline contain
the bits of an array element: A[i]_j represents bit j of element i.

We want to evaluate the potential performance benefits of using Ambit for arithmetic computations by
implementing a simple workload, the element-wise addition of two arrays. Listing ?? shows a sequential
code for the addition of two input arrays A and B into output array C.

Listing 1. Sequential CPU implementation of element-wise addition of arrays A and B.

1 for(int i = 0; i < num_elements; i++){
2 C[i] = A[i] + B[i];
3 }

We compare two possible implementations of the element-wise addition of two arrays: a CPU-based
and an Ambit-based implementation. We make two assumptions. First, we use the most favorable layout
for each implementation (i.e., conventional layout for CPU, and bit-serial layout for Ambit). Second, both
implementations can operate on array elements of any size (i.e., bits/element):

• CPU-based implementation: This implementation reads elements of A and B from memory, adds them,
and writes the resulting elements of C into memory.
Since the computation is simple and regular, we can use a simple analytical performance model for the
execution time of the CPU-based implementation: tcpu = K×num_operations+

num_bytes
M , where K

represents the cost per arithmetic operation and M is the DRAM bandwidth. Note: num_operations
should include only the operations for the array addition.

• Ambit-based implementation: This implementation assumes a bit serial layout for arrays A, B, and C.
It performs additions in a bit serial manner, which only requires XOR, AND, and OR operations, as
you can see in the 1-bit full adder in Figure ??.



XOR

XOR

AND

AND

OR

A
B
Cin S

Cout

Figure 2. 1-bit full adder.

Ambit implements these operations by issuing back-to-back ACTIVATE (A) and PRECHARGE (P)
operations. For example, to compute AND, OR, and XOR operations, Ambit issues the sequence of
commands described in Table ??, where AAP (X,Y ) represents double row activation of rows X and
Y followed by a precharge operation, and AAAP (X,Y, Z) represents triple row activation of rows X,
Y, and Z followed by a precharge operation.
In those instructions, Ambit copies the source rows Di and Dj to auxiliary rows (Bi). Control rows
Ci dictate which operation (AND/OR) Ambit executes. The DRAM rows with dual-contact cells (i.e.,
rows DCCi) are used to perform the bitwise NOT operation on the data stored in the row. Basically,
the NOT operation copies a source row to DCCi, flips all bits of the row, and stores the result in both
the source row and DCCi. Assume that:
– The DRAM row size is 8 Kbytes.
– An ACTIVATE command takes 20ns to execute.
– A PRECHARGE command takes 10ns to execute.
– DRAM has a single memory bank.
– The syntax of an Ambit operation is: bbop_[and/or/xor] destination, source_1, source_2.
– The rows at addresses 0x00700000, 0x00800000, and 0x00900000 are used to store partial results.

Initially, they contain all zeroes.
– The rows at addresses 0x00A00000, 0x00B00000, and 0x00C00000 store arrays A, B, and C, re-

spectively.
– These are all byte addresses. All these rows belong to the same DRAM subarray.

Table 1. Sequences of ACTIVATE and PRECHARGE operations for the execution of Ambit’s AND, OR, and XOR.

Dk = Di AND Dj Dk = Di OR Dj Dk = Di XOR Dj

AAP (Di, B0)
AAP (Dj , B1)
AAP (C0, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (Di, DCC0)
AAP (Dj , DCC1)
AAP (C0, B2)
AAAP (B0, DCC1, B2)
AAP (C0, B2)
AAAP (B1, DCC0, B2)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP (B0, Dk)

(a) For the CPU-based implementation, you want to obtain K and M . To this end, you run two experi-
ments. In the first experiment, you run your CPU code for the element-wise array addition for 65,536
4-bit elements and measure tcpu = 100 us. In the second experiment, you run the STREAM-Copy
benchmark for 102,400 4-bit elements and measure tcpu = 10 us. The STREAM-Copy benchmark
simply copies the contents of one input array A to an output array B. What are the values of K and
M?



M = 10.24 GB/s and K = 1.38 ns/operation.

Explanation:
We first calculate M by using the measurement for the STREAM-Copy benchmark, which
does not involve any computation. For num_bytes, we count two arrays of 102,400 4-bit
elements:
tcpu =

num_bytes
M ;

10× 10−6 = 102,400×4×2
8×M ;

M = 10.24 GB/s.

Then, we obtain K with the measurement for the array addition. For num_operations, we
count the same number as num_elements. For num_bytes, we count three arrays of 65,536
4-bit elements:
tcpu = K × num_operations+

num_bytes
M ;

100× 10−6 = K × 65, 536 + 65,536×4×3
8×10.24×109 ;

K = 1.38 ns/operation.

(b) Write the code for the Ambit-based implementation of the element-wise addition of arrays A and B.
The resulting array is C.

1

2

3 // As we are doing bit serial computation , we need a for loop
4

5 // with as many iterations as the number of bits per element.
6

7 // We call n the number of bits per element.
8

9

10 for(int i = 0; i < n; i++){
11

12 bbop_xor 0x00C00000+i*0x2000 , 0x00A00000+i*0x2000 , 0x00B00000+i*0x2000;
13

14 bbop_and 0x00700000 , 0x00A00000+i*0x2000 , 0x00B00000+i*0x2000;
15

16 bbop_and 0x00800000 , 0x00900000 , 0x00C00000+i*0 x2000;
17

18 bbop_xor 0x00C00000+i*0x2000 , 0x00900000 , 0x00C00000+i*0x2000; // S
19

20 bbop_or 0x00900000 , 0x00700000 , 0x00800000; // Cout
21

22 }



(c) Compute the maximum throughput (in arithmetic operations per second, OPS) of the Ambit-based
implementation as a function of the element size (i.e., bits/element).

Thrambit =
32

n×10−9 OPS = 32
n GOPS.

Explanation:
Since DRAM has one single bank (and we can operate on a single subarray), the maximum
throughput is achieved when we use complete rows. As the row size is 8KB, the maximum
array size that we can work with is 65,536 elements.

First, we obtain the execution time as a function of the number of bits per element. Each
XOR operation employs 25 ACTIVATION and 11 PRECHARGE operations. For AND and
OR, 11 ACTIVATION and 5 PRECHARGE operations. Thus, the execution time of the
bit serial computation on the entire array can be computed as (n is the number of bits per
element):
tambit = (2× tXOR + 2× tAND + tOR)× n;
tambit = 2030× n ns.

Second, we obtain the throughput in arithmetic operations per second (OPS) as:
Thrambit =

65,536
2030×n×10−9 ; Thrambit =

32
n×10−9 OPS = 32

n GOPS.

(d) Determine the element size (in bits) for which the CPU-based implementation is faster than the Ambit-
based implementation (Note: Use the same array size as in the previous part).

There is no number of bits per element that makes the CPU faster than Ambit.

Explanation:
We want to find n such that Thrambit < Thrcpu, or tambit > tcpu. If we use arrays of size
65,536 elements, we can write the following expression:
tambit > tcpu;
2030× n× 10−9 > 1.38× 65, 536× 10−9 + 65,536×3×n

8×10.24×109 ;
This expression only returns a negative value of n. Thus, there is no n that makes the CPU
faster than Ambit.



4. Caching vs. Processing-in-Memory [150 points]

We are given the following piece of code that makes accesses to integer arrays A and B. The size of each
element in both A and B is 4 bytes. The base address of array A is 0x00001000, and the base address of B
is 0x00008000.

movi R1, #0x1000 // Store the base address of A in R1
movi R2, #0x8000 // Store the base address of B in R2
movi R3, #0

Outer_Loop:
movi R4, #0
movi R7, #0
Inner_Loop:

add R5, R3, R4 // R5 = R3 + R4
// load 4 bytes from memory address R1+R5
ld R5, [R1, R5] // R5 = Memory[R1 + R5],
ld R6, [R2, R4] // R6 = Memory[R2 + R4]
mul R5, R5, R6 // R5 = R5 * R6
add R7, R7, R5 // R7 += R5
inc R4 // R4++
bne R4, #2, Inner_Loop // If R4 != 2, jump to Inner_Loop

//store the data of R7 in memory address R1+R3
st [R1, R3], R7 // Memory[R1 + R3] = R7,
inc R3 // R3++
bne R3, #16, Outer_Loop // If R3 != 16, jump to Outer_Loop

You are running the above code on a single-core processor. For now, assume that the processor does
not have caches. Therefore, all load/store instructions access the main memory, which has a fixed 50-
cycle latency, for both read and write operations. Assume that all load/store operations are serialized, i.e.,
the latency of multiple memory requests cannot be overlapped. Also assume that the execution time of a
non-memory-access instruction is zero (i.e., we ignore its execution time).

(a) What is the execution time of the above piece of code in cycles?

5 memory accesses per outer loop iteration.
16 ∗ 5 ∗ 50 = 4000 cycles



(b) Assume that a 128-byte private cache is added to the processor core in the next-generation processor.
The cache block size is 8-byte. The cache is direct-mapped. On a hit, the cache services both read
and write requests in 5 cycles. On a miss, the main memory is accessed and the access fills an 8-byte
cache line in 50 cycles. Assuming that the cache is initially empty, what is the new execution time on
this processor with the described cache? Show your work.

At the beginning A and B conflict in the first two cache lines. Then the elements of A and
B go to different cache lines. The total execution time is 1910 cycles.
Here is the access pattern for the first outer loop iteration:
0−A[0], B[0], A[1], B[1], A[0]
The first 4 references are loads, the last (A[0]) is a store. The cache is initially empty. We
have a cache miss for A[0]. A[0] and A[1] is fetched to 0th index in the cache. Then, B[0]
is a miss, and it is conflicting with A[0]. So, A[0] and A[1] are evicted. Similarly, all cache
blocks in the first iteration are conflicting with each other. Since we have only cache misses,
the latency for those 5 references is 5 ∗ 50 = 250 cycles
The status of the cache after making those seven references is:
Cache Index Cache Block

0 A(0,1), B(0,1), A(0,1), B(0,1), A(0,1)
Second iteration on the outer loop:
1−A[1], B[0], A[2], B[1], A[1]

Cache hits/misses in the order of the references:
H,M,M,H,M
Latency = 2 ∗ 5 + 3 ∗ 50 = 165 cycles
Cache Status:
- A(0,1) is in set 0
- A(2,3) is in set 1
- the rest of the cache is empty

2−A[2], B[0], A[3], B[1], A[2]

Cache hits/misses:
H,M,H,H,H
Latency : 4 ∗ 5 + 1 ∗ 50 = 70 cycles

Cache Status:
- B(0,1) is in set 0
- A(2,3) is in set 1
- the rest of the cache is empty

3−A[3], B[0], A[4], B[1], A[3]

Cache hits/misses:
H,H,M,H,H
Latency : 4 ∗ 5 + 1 ∗ 50 = 70 cycles

Cache Status:
- B(0,1) is in set 0
- A(2,3) is in set 1
- A(4,5) is in set 2
- the rest of the cache is empty



4−A[4], B[0], A[5], B[1], A[4]
Cache hits/misses:
H,H,H,H,H
Latency : 5 ∗ 5 = 25 cycles

Cache Status:
- B(0,1) is in set 0
- B(2,3) is in set 1
- A(4,5) is in set 2
- the rest of the cache is empty

After this point, single-miss and zero-miss (all hots) iterations are interleaved until the 16th
iteration.
Overall Latency:
165 + 70 + (70 + 25) ∗ 7 = 900 cycles

(c) You are not satisfied with the performance after implementing the described cache. To do better, you
consider utilizing a processing unit that is available close to the main memory. This processing unit
can directly interface to the main memory with a 10-cycle latency, for both read and write operations.
How many cycles does it take to execute the same program using the in-memory processing units?
(Assume that the in-memory processing unit does not have a cache, and the memory accesses are
serialized like in the processor core. The latency of the non-memory-access operations is ignored.)

16 ∗ 5 ∗ 10 = 800

(d) You friend now suggests that, by changing the cache capacity of the single-core processor (in part (b)),
she could provide as good performance as the system that utilizes the memory processing unit (in part
(c)). Is she correct? What is the minimum capacity required for the cache of the single-core processor
to match the performance of the program running on the memory processing unit?

Increasing the cache capacity does not help.



(e) [10 points] What other changes could be made to the cache design to improve the performance of the
single-core processor on this program?

Since we don’t have capacity and getting conflict due to the direct-mapped cache, we can
change the cache design to be set-associative or fully-associative.



5. Genome Analysis [150 points]

During a process called read mapping in genome analysis, each genomic read (i.e., DNA sequence frag-
ment) is mapped onto one or more possible locations in the reference genome based on the similarity between
the read and the reference genome segment at that location. A read mapper applies the following 3-step
hash table-based mapping method:
(1) The hash table-based read mapper first constructs a hash table that stores the list of locations in the

reference genome that each possible short segment (i.e., k-mer, where k is the length of the segment)
appears. Querying the hash table with a k-mer returns a list of locations for that k-mer.

(2) For each read, the mapper extracts 3 consecutive non-overlapping 5-mers and uses them to query the
hash table.

(3) For each location of a k-mer, the mapper examines the differences between the entire read that includes
the k-mer and the corresponding reference segment using the function: (edit_distance()). Allowable
edit operations include: (1) substitution, (2) insertion, and (3) deletion of a character. For example,
edit operations between the read sequence ATATTTATA and the reference sequence ATAAGAT are
as follows:
ATATTTATA - Read sequence
| | | | | (3 matches, 3 insertions, 1 match, 1 substitution, 1 match, 1 deletion)
ATA - - - AGAT Reference sequence

The hash table (constructed in Step 1) is provided below. It includes a list of 5-mers extracted from
the human reference genome and their corresponding location lists (each number represents the starting
location of that k-mer in the reference genome sequence). If a k-mer does not exist in the hash table, you
can assume it does not appear in the reference genome. Answer the following questions based on this hash
table whenever needed.

A   A   A   A   A 20

A   A   A   A   C 25    125   230

A   A   A   C   T 30 225

T   A   C   T   A

K-length sequences 
(k-mers)  

G   G   T   A C 40 205   325    430    560

35 235 320

Location list where k-mer occurs in 
the reference genome



5.1. Edit Distance Computation
(a) Compute the edit distance for the following read and reference sequence pair and provide the complete

list of the edit operations used for calculation. Show your work.
Read sequence: ATCCTTAAATCTAAAATT
Reference sequence: CCTTAGAAACTTAA

8 Edits.

We use the following encoding to show the edits and matches: I: insertion, M: matches, D:
deletions, S: substitutions
ATCCTTA - AATCTAAAATT Read sequence
| | | | | | | | | | | (2I, 5M, 1D, 2M, 1S, 2M, 1S, 2M, 3I: 8 edits)

- - CCTTAGAAACTTAA - - - Reference sequence

(b) We would like to figure out (i.e., reverse engineer) the read sequence based on the following information
available to us:

• The length of the read is 10.
• The first 5-mer of a read is found at the location 430 from the hash table.
• edit_distance() function returns edit distance value of 3 between the read sequence and the human
reference sequence starting from location 430. At least one of these three edits is a deletion.

• The reference sequence segment used for the edit_distance() calculation is GGTACATAG.
Write down a read sequence that fits the criteria and show the complete list of edit operations. Note
that more than one solution is possible.

There are several read sequences that may fit this criteria. Important thing is to notice that
first 5 characters are an exact match between the reference genome and the read sequence.
However, one of the remaining four characters must be deleted in the read sequence (i.e.,
ATAG). The rest of the edits must be insertions so that the read length becomes 10 and we
have the edit value of 3. One can insert such insertions anywhere. For example:
Read Sequence: GGTACAAGTT
GGTACA - AGTT Read sequence
| | | | | | | | (6M, 1D, 2M, 2I: 3 edits)
GGTACATAG - - Reference sequence



5.2. Read Mapping
Suppose that you would like to map the following reads to the human reference genome sequence. Each
read is separated into smaller subsequences (k-mers) by underscores for readability.

read 1 = AAAAA_AAAAC_AAACT
read 2 = TACTA_GGTAC_AAACT
read 3 = GGTAC_AAACT_AAAAT
read 4 = AAAAC_TACTA_GGTAC

(a) How many times will the edit distance function, edit_distance(), be invoked when following the mapping
steps described at the beginning of the question?

34 times.

Explanation: the number of times that the edit_distance() function will be invoked is
equal to the total number of occurrences of all k-mers that exist in both the hash table and
the queried read. The frequency of each k-mer is given below:

read 1 = AAAAA_AAAAC_AAACT 1 + 3 + 2
read 2 = TACTA_GGTAC_AAACT 3 + 5 + 2
read 3 = GGTAC_AAACT_AAAAT 5 + 2 + 0
read 4 = AAAAC_TACTA_GGTAC 3 + 3 + 5

(b) Suppose you want to change Step 3 to additionally include “Adjacency Filtering” (as discussed in
lecture) in order to find exact matches before calling the edit_distance() function. This means that, if
we find an exact match via Adjacency Filtering, the edit_distance() function is not invoked. Adjacency
Filtering checks if first, second, and third k-mers extracted from the read exist in the reference genome
at locations x, x+ k, and x+ 2× k, respectively.
At what locations in the reference genome does Adjacency Filtering find exact matches?

2 times: At locations (20, 25, 30) for read 1 and (225, 230, 235) for read 4.

Explanation: If all 3 5-mers are adjacent in the reference genome then the edit_distance()
function will not be invoked once for these three locations. The locations of the adjacent
k-mers for each read are listed below:

read 1 = AAAAA_AAAAC_AAACT 20, 25, 30
read 2 = TACTA_GGTAC_AAACT k-mers are not adjacent
read 3 = GGTAC_AAACT_AAAAT Last k-mer does not exist
read 4 = AAAAC_TACTA_GGTAC k-mers are not adjacent


