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e Handin - Critical Paper Reviews (1). You need to submit your reviews to https:
//safari.ethz.ch/review/architecture21/. Please, check your inbox, you should have
received an email with the password you should use to login. If you did not receive any
email, contact comparch@lists.inf.ethz.ch. In the first page after login, you should click in
“Computer Architecture Home", and then go to “any submitted paper" to see the list of
papers.

¢ Handin - Questions (2-6). You should upload your answers to the Moodle Platform
(https://moodle-app2.let.ethz.ch/course/view.php?id=15536) as a single PDF file.

e If you have any questions regarding this homework, please ask them the Moodle forum
(https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=662952).

e Please note that the handin questions have a hard deadline. However, you can submit your
paper reviews till the end of the semester.

1. Critical Paper Reviews [1,000 points]

You will do at least 4 readings for this homework, out of which 3 are tagged as REQUIRED papers. You
may access them by simply clicking on the QR codes below or scanning them.

Required Reading 1 Required Reading 2 Required Reading 3

Write an approximately one-page critical review for the readings (i.e., papers from #1 to #3 and at least 1
of the remaining 23 papers, from #4 to #26). If you review a paper other than the 4 mandatory papers, you
will receive 250 BONUS points on top of 1,000 points you may get from paper reviews (i.e., each additional
submission is worth 250 BONUS points with a possibility to get up to 6500 points).

Please read the guideline slides for reviewing papers and watch Prof. Mutlu’s guideline video on how to do
a critical paper review. We also provide you with sample reviews which you can access using the QR code.
A review with bullet point style is more appreciated. Try not to use very long sentences and paragraphs.
Keep your writing and sentences simple. Make your points bullet by bullet, as much as possible. We will
give out extra credit that is worth 0.5% of your total course grade for each good review.
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Guideline Slides Guideline Video Sample Reviews
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2. Tiered-difficulty [150 points]

Recall from your required reading on Tiered-Latency DRAM that there is a near and far segment, each
containing some number of rows. Assume a very simplified memory model where there is just one bank
and there are two rows in the near segment and four rows in the far segment. The time to activate and
precharge a row is 25ns in the near segment and 50ns in the far segment. The time from start of activation
to reading data is 10ns in the near segment and 15ns in the far segment. All other timings are negligible
for this problem. Given the following memory request stream, determine the optimal assignment (minimize
average latency of requests) of rows in the near and far segment (assume a fixed mapping where rows cannot
migrate, a closed-row policy, and the far segment is inclusive).

time Ons : row O read
time 10ns : row 1 read
time 100ns: row 2 read
time 105ns: row 1 read
time 200ns: row 3 read

1

time 300ns: row read

(a) What rows would you place in near segment? Hint: draw a timeline.




(b)

What rows would you place in far segment?

In 15 words or less, describe the insight in your mapping?

Assume now that the mapping is dynamic. What are the tradeoffs of an exclusive design vs. an
inclusive design? Name one advantage and one disadvantage for each.

Assume now that there are eight (8) rows in the near segment. Below is a plot showing the number
of misses to the near segment for three applications (A, B, and C) when run alone with the specified
number of rows allocated to the application in the near segment. This is similar to the plots you saw in
your Utility-Based Cache Partitioning reading except for TL-DRAM instead of a cache. Determine the
optimal static partitioning of the near segment when all three of these applications are run together on
the system. In other words, how many rows would you allocate for each application? Hint: this should
sum to eight. Optimal for this problem is defined as minimizing total misses across all applications.

Number of near segment misses

O R N W bHh U1 O N 0 VO

0 1 2 3 4 5 6 7 8
Number of rows in near segment allocated to application when run alone

(1) How many near segment rows would you allocate to A?

(2) How many near segment rows would you allocate to B?

(3) How many near segment rows would you allocate to C?




3. Memory Interference and QoS [150 points]

Row-Buffer Conflicts. The following timing diagram shows the operation of a single DRAM channel
and a single DRAM bank for two back-to-back reads that conflict in the row-buffer. Immediately after the
bank has been busy for 10ns with a READ, data starts to be transferred over the data bus for 5ns.

10ns 10ns 10ns 10ns 10ns 10ns
Bank —( PRECHARGE J( ACTIVATE Y READ Y PRECHARGE Y| ACTIVATE Y READ )}————> time
1ns 1ns 1ns : 1ns 1ns 1ns :
Command N n \ N o n \ time
Bus U U 1 U U \
1ns 1ns 1ns ‘\ 1ns 1ns 1ns ‘\
Address N n \ N o) n \ time
Bus O U U \ U U U \
\ 5ns \ 5ns
Data \ N
64B 64B time
Bus

(a) Given a long sequence of back-to-back reads that always conflict in the row-buffer, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

(b) To increase the data throughput, the main memory designer is considering adding more DRAM banks
to the single DRAM channel. Given a long sequence of back-to-back reads to all banks that always
conflict in the row-buffers, what is the minimum number of banks that is required to achieve the
maximum data throughput of the main memory system?




Row-Buffer Hits. The following timing diagram shows the operation of the single DRAM channel and
the single DRAM bank for four back-to-back reads that hit in the row-buffer. It is important to note that
row-buffer hits to the same DRAM bank are pipelined: while each READ keeps the DRAM bank busy for
10ns, up to at most half of this latency (5ns) can be overlapped with another read that hits in the row-buffer.

S ( reap Y READ

) .
{ RrReaD Y READ ) time
Commaér::_' '—m—'& '—m 1 time

1ns lr\s 1?@5 1r\\s ‘\

Address O O O O \ time
Bus \ \ \ \
\
ot N 5s  Shs  5qs  5ns
Bus 64B 64B 64B 64B time

(¢) Given a long sequence of back-to-back reads that always hits in the row-buffer, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

(d) When the maximum data throughput is achieved for a main memory system that has a single DRAM
channel and a single DRAM bank, what is the bottleneck that prevents the data throughput from
becoming even larger? Circle all that apply.

BANK COMMAND BUS ADDRESS BUS DATA BUS

Memory Scheduling Policies. The diagram below shows the memory controller’s request queue at time
0. The shaded rectangles are read requests generated by thread T0, whereas the unshaded rectangles are
read requests generated by thread T7. Within each rectangle, there is a pair of numbers that denotes the
request’s (BankAddress, RowAddress). Assume that the memory system has a single DRAM channel and
four DRAM banks. Further assume the following.

All the row-buffers are closed at time 0.

e Both threads start to stall at time 0 because of memory.

e A thread continues to stall until it receives the data for all of its requests.

e Neither thread generates more requests.

|(0,0)| |(3,0)| |(2,4)| |(1,9)| |(0,7)| |(0,0)| |(0,0)| |(0,0)|

Youngest Oldest



(f) For the FCF'S scheduling policy, calculate the memory stall time of 70 and T'1.
TO:

T1:

(g) For the FR — FCF'S scheduling policy, calculate the memory stall time of T0 and T1.
TO:

T1:




(h) For the PAR — BS scheduling policy, calculate the memory stall time of 70 and T1. Assume that all
eight requests are included in the same batch.

TO:

T1:




4. Memory Scheduling [150 points]|

In lectures, we introduced a variety of ways to tackle memory interference. In this problem, we will look
at the Blacklisting Memory Scheduler (BLISS) to reduce unfairness. There are two key aspects of BLISS
that you need to know.

e When the memory controller services 1 consecutive requests from a particular application, this appli-

cation is blacklisted. We name this non-negative integer n the Blacklisting Threshold.

e The blacklist is cleared periodically every 10000 cycles starting at ¢ = 0.

To reduce unfairness, memory requests in BLISS are prioritized in the following order:
e Non-blacklisted applications’ requests
e Row buffer hit requests
e Older requests

The memory system for this problem consists of 2 channels with 2 banks each. Tables 1 and 2 show the
memory request stream in the same bank for both applications at different times (¢t = 0 and ¢ = 10). For
both tables, a request on the left-hand side is older than a request on the right-hand side in the same table.
The applications do not generate more requests than those shown in Tables 1 and 2. The memory requests
are labeled with numbers that represent the row position of the data within the accessed bank. Assume the
following for all questions:

A row buffer hit takes 100 cycles.

A row buffer miss (i.e., opening a row in a bank with a closed row buffer) takes 200 cycles.

A row buffer conflict (i.e., closing the currently open row and opening another one) takes 250 cycles.
All row buffers are closed at time t =0

Application A (Channel 0, Bank 0)

Application B (Channel 0, Bank 0) | Row 2 | Row 2 | Row 2 | Row 2 | Row 2 | Row 3 | Row 3 | Row 4

Table 1. Memory requests of the two applications at t = 0

Application A (Channel 0, Bank 0) | Row 3 | Row 7 | Row 2 | Row 0 | Row 5 | Row 3 | Row 8 | Row 9

Application B (Channel 0, Bank 0) | Row 2 | Row 2 | Row 2 | Row 2 | Row 2 | Row 3 | Row 3 | Row 4

Table 2. Memory requests of the two applications at ¢ = 10. Note that none of the Application B’s existing requests are
serviced yet.



(a) Compute the slowdown of each application using the FR-FCFS scheduling policy after both threads
ran to completion. We define:

memory latency of the application when run together with other applications

slowdown = memory latency of the application when run alone

Show your work.




(b) If we use the BLISS scheduler, for what value(s) of n (the Blacklisting Threshold) will the slowdowns
of both applications be equal to those obtained with FR-FCFS?

(c¢) For what value(s) of n (the Blacklisting Threshold) will the slowdown of A be < 1.57




(d)

For what value(s) of i (the Blacklisting Threshold) will B experience the maximum slowdown it can
possibly experience with the Blacklisting Scheduler?

What is a simple mechanism (that we discussed in lectures) that we can use instead of BLISS to make
the slowdowns of both A and B equal to 1.007




5. DRAM Scheduling and Latency [150 points]|

You would like to understand the configuration of the DRAM subsystem of a computer using reverse
engineering techniques. Your current knowledge of the particular DRAM subsystem is limited to the following
information:

The physical memory address is 16 bits.
The DRAM subsystem consists of a single channel, 2 banks, and 64 rows per bank.
The DRAM is byte-addressable.

The most-significant bit of the physical memory address determines the bank. The following 6 bits of
the physical address determine the row.

The DRAM command bus operates at 1 GHz frequency.

The memory controller issues commands to the DRAM in such a way that no command for servicing
a later request is issued before issuing a READ command for the current request, which is the oldest
request in the request buffer. For example, if there are requests A and B in the request buffer, where A
is the older request and the two requests are to different banks, the memory controller does not issue
an ACTIVATE command to the bank that B is going to access before issuing a READ command to
the bank that A is accessing.

The memory controller services requests in order with respect to each bank. In other words, for a given
bank, the memory controller first services the oldest request in the request buffer that targets the same
bank. If all banks are ready to service a request, the memory controller first services the oldest request
in the request buffer.

You realize that you can observe the memory requests that are waiting to be serviced in the request
buffer. At a particular point in time, you take the snapshot of the request buffer and you observe the
following requests in the request buffer (in descending order of request age, where the oldest request is on
the top):

<
E
=

Read 0xD780
Read 0x280C
Read 0xE4DO
Read 0x2838

At the same time you take the snapshot of the request buffer, you start probing the DRAM command

bus.

You observe the DRAM command type and the cycle (relative to the first command) at which the

command is seen on the DRAM command bus. The following are the DRAM commands you observe on the
DRAM bus while the requests above are serviced.

Cycle 0 --- READ
Cycle 1 --- PRECHARGE
Cycle 8 --- PRECHARGE
Cycle 13 --- ACTIVATE
Cycle 18 --- READ
Cycle 20 --- ACTIVATE
Cycle 22 --- READ

Cycle 25 --- READ



Answer the following questions using the information provided above.
(a) What are the following DRAM timing parameters used by the memory controller, in terms of nanosec-
onds? If there is not enough information to infer the value of a timing parameter, write unknown.
i) ACTIVATE-to-READ latency:

ii) ACTIVATE-to-PRECHARGE latency:

iii) PRECHARGE-to-ACTIVATE latency:

iv) READ-to-PRECHARGE latency:

v) READ-to-READ latency:




(b)

What is the status of the banks prior to the execution of any of the above requests? In other words,
which rows from which banks were open immediately prior to issuing the DRAM commands listed
above? Fill in the table below indicating whether a bank has an open row, and if there is an open row,
specify its address. If there is not enough information to infer the open row address, write unknown.

’ \ Open or Closed? \ Open Row Address ‘

Bank 0
Bank 1

To improve performance, you decide to implement the idea of Tiered-Latency DRAM (TL-DRAM)
in the DRAM chip. Assume that a bank consists of a single subarray. With TL-DRAM, an entire
bank is divided into a near segment and far segment. When accessing a row in the near segment,
the ACTIVATE-to-READ latency reduces by 1 cycle and the ACTIVATE-to-PRECHARGE latency
reduces by 3 cycles. When precharging a row in the near segment, the PRECHARGE-to-ACTIVATE
latency reduces by 3 cycles. When accessing a row in the far segment, the ACTIVATE-to-READ
latency increases by 1 cycle and the ACTIVATE-to-PRECHARGE latency increases by 2 cycles. When
precharging a row in the far segment, the PRECHARGE-to-ACTIVATE latency increases by 2 cycles.
The following table summarizes the changes in the affected latency parameters.

] Timing Parameter | Near Segment Latency | Far Segment Latency |
ACTIVATE-to-READ —1 +1
ACTIVATE-to-PRECHARGE -3 +2
PRECHARGE-to-ACTIVATE -3 +2

Assume that the rows in the near segment have smaller row ids compared to the rows in the far
segment. In other words, physical memory row addresses 0 through IV — 1 are the near-segment rows,
and physical memory row addresses IV through 63 are the far-segment rows.

If the above DRAM commands are issued 2 cycles faster with TL-DRAM compared to the baseline
(the last command is issued in cycle 23), how many rows are in the near segment, i.e., what is N?
Show your work.




6. Emerging Memory Technologies [150 points]

Researchers at Lindtel developed a new memory technology, L-RAM, which is non-volatile. The access
latency of L-RAM is close to that of DRAM while it provides higher density compared to the latest DRAM
technologies. L-RAM has one shortcoming, however: it has limited endurance, i.e., a memory cell stops
functioning after 10° writes are performed to the cell (known as cell wear-out).

(a) Lindtel markets a new computer system with L-RAM to have a lifetime of 2 years and the following
specifications:

e 4GBytes of L-RAM as main memory with a perfect wear-leveling mechanism, i.e., writes are
equally distributed over all the cells of L-RAM.

e The processor is in-order and there is no memory-level parallelism.

e It takes 4ns to send a memory request from the processor to the memory controller and it takes
20ns to send the request from the memory controller to L-RAM. The write latency of L-RAM is
40ns.

e [-RAM is word-addressable. Thus, each write request writes 8 bytes to memory.

A student at ETH tests the lifetime of the system and finds that this new computer system cannot
guarantee a lifetime of 2 years. She writes a program to wear out the entire L-RAM device as quickly
as possible. How fast is she able to wear out the device? Show all work.




(b) L-RAM works in the multi-level cell (MLC) mode in which each memory cell stores 2 bits. The student
decides to improve the lifetime of L-RAM cells by using the single-level cell (SLC) mode. When L-RAM
is used in SLC mode, the lifetime of each cell improves by a factor of 10 and the write latency decreases
by 75%. What is the lifetime of the system using the SLC mode, if we repeat the experiment in part
(a), with all else remaining the same in the system? Show your work.

(¢) Provide a mechanism that would increase the guaranteed lifetime of the computer system without
changing the physical circuitry of L-RAM. From the baseline computer system in part (a), describe
the changes required to guarantee a computer system lifetime of 2 years, with your mechanism. Be
concrete and precise.
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