
ETH 263-2210-00L Computer Architecture, Fall 2021

HW 5: Interconnects, Multiprocessors & Exam Practice

Instructor: Prof. Onur Mutlu
TAs: Juan Gómez Luna, Mohammed Alser, Jisung Park, Lois Orosa Nogueira, Gagandeep Singh,

Haiyu Mao, Behzad Salami, Nour Almadhoun Alserr, Mohammad Sadr, Hasan Hassan, Can Firtina
Geraldo Francisco De Oliveira Junior, Abdullah Giray Yaglikci, Rahul Bera, Konstantinos Kanellopoulos,

Nika Mansouri Ghiasi, Rakesh Nadig, João Dinis Ferreira, Haocong Luo, Roknoddin Azizibarzoki

Given: Sunday, Dec 5, 2021
Due: Thursday, Dec 22, 2021

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:
//safari.ethz.ch/review/architecture21/. Please, check your inbox, you should have
received an email with the password you should use to login. If you did not receive any
email, contact comparch@lists.inf.ethz.ch. In the first page after login, you should click in
“Computer Architecture Home", and then go to “any submitted paper" to see the list of
papers.

• Handin - Questions (2-10). You should upload your answers to the Moodle Platform
(https://moodle-app2.let.ethz.ch/course/view.php?id=15536) as a single PDF file.

• If you have any questions regarding this homework, please ask them the Moodle forum
(https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=675695).

• Please note that the handin questions have a hard deadline. However, you can submit your
paper reviews till the end of the semester.

1. Critical Paper Reviews [1,000 points]

You will do at least 4 readings for this homework, of which 3 are tagged as REQUIRED. You may access
them by scanning or clicking on the QR codes below.

Required 1 Required 2 Required 3

Write an approximately one-page critical review for the readings (i.e., papers from #1 to #3 and at least 1
of the remaining 18 papers, from #4 to #21). If you review a paper other than the 4 mandatory papers, you
will receive 250 BONUS points on top of 1,000 points you may get from paper reviews (i.e., each additional
submission is worth 250 BONUS points with a possibility to get up to 4250 bonus points).

Please read the guideline slides for reviewing papers and watch Prof. Mutlu’s guideline video on how to do
a critical paper review. We also provide you with sample reviews which you can access using the QR code.
A review with bullet point style is more appreciated. Try not to use very long sentences and paragraphs.
Keep your writing and sentences simple. Make your points bullet by bullet, as much as possible. We will
give out extra credit that is worth 0.5% of your total course grade for each good review.

Guideline Slides Guideline Video Sample Reviews

https://safari.ethz.ch/review/architecture21/
https://safari.ethz.ch/review/architecture21/
https://moodle-app2.let.ethz.ch/course/view.php?id=15536
https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=675695
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/bless_isca09.pdf
https://people.inf.ethz.ch/omutlu/pub/aergia_ieee_micro_top_picks11.pdf
https://safari.ethz.ch/architecture_seminar/fall2021/lib/exe/fetch.php?media=onur-comparch-f21-how-to-do-the-paper-reviews.pdf
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://safari.ethz.ch/architecture/fall2021/doku.php?id=readings#guides_on_how_to_review_papers_critically

1. (REQUIRED) S. Koppula, L. Orosa, A. G. Yaglikci, R. Azizi, T. Shahroodi, K. Kanellopoulos, and
O. Mutlu, “EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using
Approximate DRAM,” in MICRO, 2019. https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient
-DNN-inference-with-approximate-memory_micro19.pdf

2. (REQUIRED) T. Moscibroda and O. Mutlu. “A Case for Bufferless Routing in On-Chip Networks” in
ISCA 2009 https://people.inf.ethz.ch/omutlu/pub/bless_isca09.pdf

3. (REQUIRED) R. Das, O. Mutlu, T. Moscibroda, and C.R. Das. “Aergia: Exploiting Packet Latency
Slack in On-Chip Networks” in ISCA 2010 https://people.inf.ethz.ch/omutlu/pub/aergia_ieee_m
icro_top_picks11.pdf

4. M.J. Flynn, “Very high-speed computing systems,” in Proceedings of the IEEE 1966 https://safari.e
thz.ch/architecture/fall2021/lib/exe/fetch.php?media=flynn_1966.pdf

5. M.D. Hill, N.P. Jouppi, G.S. Sohi, “Multiprocessors and Multicomputers,” in pp. 551-560, Readings in
Computer Architecture https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?med
ia=multiprocessors-multicomputers.pdf

6. M.D. Hill, N.P. Jouppi, G.S. Sohi, “Dataflow and Multithreading,” in pp. 309-314, Readings in Computer
Architecture https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=hill_d
ataflow_multithreading.pdf

7. B. Smith, “A pipelined, shared resource MIMD computer,” in ICPP 1978 https://safari.ethz.ch/a
rchitecture/fall2021/lib/exe/fetch.php?media=pipelined1978smith.pdf

8. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy “Memory Consistency
and Event Ordering in Scalable Shared-Memory Multiprocessors” in ISCA 1990 https://safari.ethz.
ch/architecture/fall2021/lib/exe/fetch.php?media=memory_consistency_and_event_orderin
g_in_scalable_shared-memory_multiprocessors.pdf

9. M.M.K. Martin, M.D. Hill, and D.A. Wood. “Token Coherence: Decoupling Performance and Correct-
ness” in ISCA 2003 https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media
=token_coherence_decoupling_performance_and_correctness.pdf

10. R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. “Application-Aware Prioritization Mechanisms for
On-Chip Networks” in MICRO 2009 https://people.inf.ethz.ch/omutlu/pub/app-aware-noc_mic
ro09.pdf

11. J.H. Patel. “Processor-Memory Interconnections for Multiprocessors” in ISCA 1979 https://safari.e
thz.ch/architecture/fall2021/lib/exe/fetch.php?media=p168-patel.pdf

12. C.L. Seitz. “The Cosmic Cube” in CACM 1985 https://safari.ethz.ch/architecture/fall2021/l
ib/exe/fetch.php?media=p22-seitz.pdf

13. C.J. Glass and L.M. Ni. “The Turn Model for Adaptive Routing” in ISCA 1992 https://safari.ethz.
ch/architecture/fall2021/lib/exe/fetch.php?media=p278-glass.pdf

14. M. Fattah, A. Airola, R. Ausavarungnirun, N. Mirzaei, P. Liljeberg, J. Plosila, S. Mohammadi, T.
Pahikkala, O. Mutlu, and H. Tenhunen. “A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Rout-
ing Algorithm for Faulty Network-on-Chips” in NOCS 2015 https://people.inf.ethz.ch/omutlu/pu
b/maze-routing_nocs15.pdf

15. P. Baran. “On Distributed Communications Networks” in IEEE Trans. Comm., 1964 https://safari
.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p2626.pdf

16. C. Fallin, C. Craik, and O. Mutlu. “CHIPPER: A Low-Complexity Bufferless Deflection Router” in
HPCA 2011 https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf

17. R. Das, O. Mutlu, T. Moscibroda, and C.R. Das. “Application-Aware Prioritization Mechanisms for
On-Chip Networks” in MICRO 2009 https://people.inf.ethz.ch/omutlu/pub/app-aware-noc_mic
ro09.pdf

18. B. Grot, J. Hestness, S.W. Keckler, and O. Mutlu. “Kilo-NOC: A Heterogeneous Network-on-Chip
Architecture for Scalability and Service Guarantees” in ISCA 2011 https://people.inf.ethz.ch/omu
tlu/pub/kilonoc_isca11.pdf

19. J. Laudon and D. Lenoski. “The SGI Origin: A ccNUMA Highly Scalable Server” in ISCA 1997 https:
//safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=the_sgi_origin_a_ccnum
a_highly_scalable_server.pdf

20. W.J. Dally and B. Towles. “Route Packets, Not Wires: On-Chip Interconnection Networks” in DAC 2001
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=onchip_dac01.pdf

21. R. Ausavarungnirun, C. Fallin, X. Yu, K. Chang, G. Nazario, R. Das, G. Loh, and O. Mutlu, “A case
for hierarchical rings with deflection routing: An energy-efficient on-chip communication substrate” in
PARCO 2016 https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=hiera
rchical-rings-ausavarungnirun.pdf

https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/bless_isca09.pdf
https://people.inf.ethz.ch/omutlu/pub/aergia_ieee_micro_top_picks11.pdf
https://people.inf.ethz.ch/omutlu/pub/aergia_ieee_micro_top_picks11.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=flynn_1966.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=flynn_1966.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=multiprocessors-multicomputers.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=multiprocessors-multicomputers.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=hill_dataflow_multithreading.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=hill_dataflow_multithreading.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=pipelined1978smith.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=pipelined1978smith.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=memory_consistency_and_event_ordering_in_scalable_shared-memory_multiprocessors.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=memory_consistency_and_event_ordering_in_scalable_shared-memory_multiprocessors.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=memory_consistency_and_event_ordering_in_scalable_shared-memory_multiprocessors.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=token_coherence_decoupling_performance_and_correctness.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=token_coherence_decoupling_performance_and_correctness.pdf
https://people.inf.ethz.ch/omutlu/pub/app-aware-noc_micro09.pdf
https://people.inf.ethz.ch/omutlu/pub/app-aware-noc_micro09.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p168-patel.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p168-patel.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p22-seitz.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p22-seitz.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p278-glass.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p278-glass.pdf
https://people.inf.ethz.ch/omutlu/pub/maze-routing_nocs15.pdf
https://people.inf.ethz.ch/omutlu/pub/maze-routing_nocs15.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p2626.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=p2626.pdf
https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
https://people.inf.ethz.ch/omutlu/pub/app-aware-noc_micro09.pdf
https://people.inf.ethz.ch/omutlu/pub/app-aware-noc_micro09.pdf
https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=the_sgi_origin_a_ccnuma_highly_scalable_server.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=the_sgi_origin_a_ccnuma_highly_scalable_server.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=the_sgi_origin_a_ccnuma_highly_scalable_server.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=onchip_dac01.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=hierarchical-rings-ausavarungnirun.pdf
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=hierarchical-rings-ausavarungnirun.pdf

2. Interconnects: Warm-Up [150 points]

2.1. Topologies
Suppose you would like to connect 625 processors, and you are considering three different topologies:

bus, point-to-point network, and mesh. Describe one disadvantage of each:
(i) A Single Bus.

(ii) A Point-to-Point Network.

(iii) A 25x25 Mesh.

Which one would you choose? Why?

2.2. Trade-Offs
Company X is designing a multi-core processor with 100 cores. Their initial design connects the cores

with a single shared bus. Give two reasons as to why this is not a good idea. (< 20 words each.)

An engineer suggests using a crossbar to connect each core to every other, instead. Give two reasons as
to why this is a good idea. (< 20 words each.)

Give two reasons as to why this is not a good idea. (< 20 words each.)

2.3. Latencies
The following diagrams show two different ring topologies of size n.

a) Uni-directional Ring b) Bi-directional Ring

Throughout this question, assume that:
• n is an odd number.
• Packets can move from one node to an adjacent node in 1 cycle.
• The routing mechanism uses the shortest path from the source to the destination.
• The traffic pattern is uniform (i.e., every node has an equal probability of sending a packet to every

other node).
• There is no contention (i.e., a packet can always move toward its destination through the shortest path

at every cycle).

(a) What is the average latency of a uni-directional ring of size n? Show your work.

(b) What is the average latency of a bi-directional ring of size n? Show your work.

3. Interconnects (I) [200 points]

A computer architect would like to design an interconnect for a server processor with 64 cores. Each core
has it’s private cache and part of the shared physical memory of a shared memory multiprocessor.

The architect chooses to design the interconnect as a 2D mesh. The link width is 2B of payload each
direction. The interconnect routers can work at frequencies of 100MHz (at 0.6V) or 200MHz (at 0.8V).
The architect chooses to operate the interconnect at 100MHz to save energy.

Please answer the following questions. Show your work.
(a) The architect observe that multiple packets are sent from different cores in parallel which cause con-

tention. In case that two packets are trying to use the same link at the same time, what three options
does she have to handle packets contention?

(b) Calculate
i) The diameter of the topology
ii) The bisection bandwidth (in number of links) of the topology
iii) The bisection bandwidth in MB/s (one direction) .

(c) The architect observed that some cores have significantly high average packet latency that the others.
i) Explain why this happens and what topology change we can do to keep the latency uniform for all
cores.
ii) What is the diameter and bisection bandwidth (in number of links) for the new proposed topology?

(d) The architect examines three types of routers that can buffer K, 2K and 3K input packets.
i) Draw the curve of average packet latency as a function of the injected load.
ii) On the same drawing, add the curve when buffers are increased to 2K packets.
iii) On the same drawing, add the curve when buffers are increased to 3K packets.

(e) The architect observe that the router with the 2K buffers meets the average packet latency requirements
of the quality of service (QoS) for 99.5% of the workloads. However, 0.5% of the workloads have high
packet latency and require the routers with bigger buffers (i.e., 3K) in order to keep the packaet latency
within QoS requirement.
Assume that the 0.5% can be easily distinguished by a system global monitoring logic. Propose a
power management technique to reduce the packet latency without changing the router design (e.g.,
routing algorithm, buffers, etc.) or topology?

4. Interconnects (II) [200 points]

Assume you need to design an interconnect with 256 nodes, where each node consists of a core, a cache,
and part of the shared physical memory of a shared memory multiprocessor. The network will support all
types of communication (for the purposes of this question, the type of communication does not matter).
You are told that the “load” on this network varies over time from very low to very high. Besides that,
communication happens in a uniform traffic pattern, where every node has an equal probability of sending
a packet to every other node. The packet size ranges from 16 bytes to 256 bytes.

Given this information, pick the best design choices for this network. Your goal is to maximize perfor-
mance and energy efficiency, and minimize area and design complexity, all at the same time, if possible (the
Holy Grail, yes!).

Which of the following would you choose? Circle one in each sub-question and explain.
(a) Choose your network topology:

Crossbar Multistage Logarithmic 2D Mesh

Pick one above, and explain

(b) Choose your switching strategy in each router:

Circuit switching Packet switching Does not matter

Pick one above, and explain

(c) Choose the type of your routing algorithm:

Deterministic routing Oblivious routing Adaptive routing Does not matter

Pick one above, and explain

(d) Choose your flow control method:

Bufferless Store and Forward Cut Through Wormhole Virtual Cut Through

Pick one above, and explain

5. Interconnects (III) [200 points]

Suppose you would like to connect 2N processors, and you are considering four different topologies:
•
√
2N ×

√
2N 2D mesh

•
√
2N−2 ×

√
2N−2 2D concentrated mesh (Cmesh), where each router serves four processors

•
√
2N ×

√
2N 2D torus

• Hypercube
Please answer the following questions. Show your work.

(a) For N = 4, please draw how each network looks like. You can use ... (three dots) to avoid repeated
patterns. Please clearly label each of the network you draw.

For the remaining questions, assume N = 8.

(b) For N = 8, calculate the number of network links for each network. (Hint: a single network link is
bi-directional)

(c) For N = 8, calculate the number of input/output ports including the injection/ejection ports for each
router in these topologies (Hint: give answer to all types of routers that exist in an irregular network).

(d) Assume a network link can be faulty. For each topology, what is the minimum possible number of
faulty links that are needed to make at least one processor unreachable from any other processor?

6. Building Multicore Processors [150 points]

You are hired by Amdahl’s Nano Devices (AND) to design their newest multicore processor.
Ggl, one of AND’s largest customers, has found that the following program can predict people’s happiness.

for (i = 12; i < 2985984; i++) {
past = A[i-12];
current = A[i];
past *= 0.37;
current *= 0.63;
A[i] = past + current;

}

A is a large array of 4-byte floating point numbers, gathered by Ggl over the years by harvesting people’s
private messages. Your job is to create a processor that runs this program as fast as possible.

Assume the following:
• You have magically fast DRAM that allows infinitely many cores to access data in parallel. We will

relax this strong assumption in parts (d), (e), (f).
• Each floating point instruction (addition and multiplication) takes 10 cycles.
• Each memory read and write takes 10 cycles.
• No caches are used.
• Integer operations and branches are fast enough that they can be ignored.

(a) Assuming infinitely many cores, what is the maximum steady state speedup you can achieve for this
program? Please show all your computations.

(b) What is the minimum number of cores you need to achieve this speedup?

(c) Briefly describe how you would assign work to each core to achieve this speedup.

It turns out magic DRAM does not exist except in Macondo1. As a result, you have to use cheap, slow,
low-bandwidth DRAM. To compensate for this, you decide to use a private L1 cache for each processor. The
new specifications for the DRAM and the L1 cache are:

• DRAM is shared by all processors. DRAM may only process one request (read or write) at a time.
• DRAM takes 100 cycles to process any request.
• DRAM prioritizes accesses of smaller addresses and write requests. (Assume no virtual memory)
• The cache is direct-mapped. Each cache block is 16 bytes.
• It takes 10 cycles to access the cache. Therefore, a cache hit is processed in 10 cycles and a cache miss

is processed in 110 cycles.
All other latencies remain the same as specified earlier. Answer parts (d), (e), (f) assuming this new

system.
(d) Can you still achieve the same steady state speedup as before? Please explain.

(e) What is the minimum number of cores your processor needs to provide the maximum speedup?

(f) Briefly describe how you would assign work to each core to achieve this speedup.

1An imaginary town featured in One Hundred Years of Solitude by the late Colombian author Gabriel García Márquez
(1927-2014).

7. Asymmetric Multicore (I) [150 points]

A microprocessor manufacturer asks you to design a multicore processor for modern workloads. You
should optimize it assuming a workload with 80% of its work in the parallel portion while the reset is serial.
You have two design configurations: 1) Small cores (SC) and 2) Large + Small cores (LC) that can fit into
the processor’s die area:
• SC : A design that contains 8 small cores, which share the same die. You have the choice to build a

multicore processor that has 8 small cores that share the same die. Seven of these small cores operate at
a baseline fixed throughput. The other eighth small core is an overclockable core, that is it can operate at
either: 1) baseline throughput, or 2) overclocked with 2× the baseline throughput.

• LC : You also have another design choice where you can build a multicore processor that has 1 large core
and 4 small cores that all share the same die. The four small cores operate at the baseline throughput.
The large core is 4× faster than a small core.
You are given that the dynamic power (i.e., when the core is active) and the static power (i.e., when the

core is idle) of baseline/overclocked small core are 1/8 Watts and 0.5/2 Watts, respectively. The dynamic
power and the static power of a large core are 2 Watts and 1 Watt, respectively.

Cores Throughput Active Power (W) Idle Power (W)

SC 7 small cores Baseline 1 0.5
1 overclockable small core 2 x Baseline 8 2

LC 4 small cores Baseline 1 0.5
1 Large core 4 x Baseline 2 1

The SC processor executes the parallel portion on the small cores including the overclockable core using
the baseline throughput, and the serial portion only on the overclockable core (using baseline or overclocked
options). The LC processor executes the parallel portion on the small cores, and the serial portion only on
the large core.

Please answer the following questions.

(a) Which of the two design configurations results in the highest performance when considering that the
overclockable small core runs at (i) the baseline throughput, and (ii) the overclocked throughput? Show
your work.

(b) The energy consumption should also be a metric of reference in your design. Which of the two design
configurations results in the lowest energy consumption. Show your work.

(c) You are asked to use another key metric of reference that is called Energy-Delay Product (EDP). We
define EDP as the product of the energy consumption times the execution time. Which of the two
design configurations has the least EDP? Show your work.

8. Asymmetric Multicore (II) [200 points]

A microprocessor manufacturer asks you to design an asymmetric multicore processor for modern work-
loads. Your design contains one large core and several small cores, which share the same die. Assume the
total die area is A units. The table below describes the area, performance, and power specifications for each
core type.

Type of Core Area (mm2) Performance Dynamic Power (W) Static Power (W)
Large S

√
S S 1

4 × S
Small 1 1 1 0.5

The serial portion of a workload executes only on the large core, while the parallel portion executes on
both large and small cores. On this multiprocessor, we will execute a workload where a fraction P of its
work, and 1 − P of its work is serial. You will fit as many small cores as possible, after placing the large
core. Consider the following two configurations:

• Configuration X: A = 32, S = 4.
• Configuration Y: A = 32, S = 16.
Please answer the following questions. Show your work. Express your equations and solve them.

(a) What is the speedup of the workload on configuration X, compared to the execution time on a single-
core processor of area 1 (i.e., one of the small cores)?

(b) What is the speedup of the workload on configuration Y, compared to the execution time on a single-
core processor of area 1 (i.e., one of the small cores)?

(c) For what range of P does the workload run faster on Y than on X? Show your work.

(d) For what range of P does the workload consumes less energy when running on Y than on X? Show
your work.

8.1. Dual-Core Execution
Assume that two large cores can operate in a “dual-core execution” (DCE) manner to achieve the
single-thread performance of an even “larger” core that is N× faster than the largest core on the chip.
The “dual-core execution” occurs only during the serial portion of the workload. During the parallel
portion, the two large cores separate from each other (on-the-fly) and operate as two independent cores.
The serial portion executes only on the "dual-core", and the parallel portion executes on all the cores.
The table below describes the area and performance specifications for each core for the DCE design.

Type of Core Area (mm2) Performance
Large1 S1

√
S1

Large2 S2

√
S2

DCE S1 + S2 N×
√
Max(S1, S2)

Small 1 1

Consider the following two configurations:
• Configuration DCE: A = 32, S1 = 9, S2 = 4.

(e) For what range of N does the workload run faster on DCE than on X? Assume P = 0.8. Show your
work.

(f) For what range of P does the workload run faster on DCE than on X? Assume N = 1.5. Show your
work.

(g) Suppose you are executing workloads where a fraction P of its work is infinitely parallelizable. Which
configuration would you choose? DCE or Y? Why?

9. Cache Coherence [200 points]

We have a system with 4 processors {P0, P1, P2, P3} that can access memory at byte granularity. Each
processor has a private data cache with the following characteristics:

• Capacity of 256 bytes.
• Direct-mapped.
• Write-back.
• Block size of 64 bytes.
Each processor has also a dedicated private cache for instructions. The characteristics of the instruction

caches are not necessary to solve this question. All data caches are connected to and actively snoop a global
bus, and cache coherence is maintained using the MESI protocol, as we discussed in class. Note that on a
write to a cache block in the S state, the block transitions directly to the M state. The range of accessible
memory addresses is from 0x00000 to 0xfffff.

The semantics of the instructions used in this question are as follows:

Opcode Operands Description
ld rx,[ry] rx ← Mem[ry]
st rx,[ry] rx → Mem[ry]

addi rx,#VAL rx ← rx + VAL
subi rx,#VAL rx ← rx - VAL

j TARGET jump to TARGET
bneq rx,ry,TARGET if([rx]!=[ry]) jump to TARGET

This is the initial state of the data caches in all processors:

Initial Tag Store States
Cache for P0

Set Tag MESI state
0 0x100 M
1 0x010 S
2 0x100 I
3 0x222 E

Cache for P1
Set Tag MESI state
0 0x100 I
1 0x333 E
2 0x100 E
3 0x333 S

Cache for P2
Set Tag MESI state
0 0x101 E
1 0x010 S
2 0x010 S
3 0x222 I

Cache for P3
Set Tag MESI state
0 0x102 M
1 0x010 S
2 0x010 S
3 0x333 S

This is the final state of the data caches in all processors (the shadowed sets in the figure represent the
sets that change compared to the initial state):

Final Tag Store States
Cache for P0

Set Tag MESI state
0 0x102 S
1 0x102 E
2 0x102 E
3 0x333 I

Cache for P1
Set Tag MESI state
0 0x102 S
1 0x333 I
2 0x100 E
3 0x333 M

Cache for P2
Set Tag MESI state
0 0x101 E
1 0x333 M
2 0x010 S
3 0x222 E

Cache for P3
Set Tag MESI state
0 0x102 S
1 0x333 I
2 0x010 S
3 0x333 I

(a) Make the following assumptions:
• Each processor executes the instructions in a sequentially consistent manner.
• You can make use of five registers: r0, r1, r2, r3, and r4.
• The ordering between two instructions from different processors might be ambiguous when there

is no synchronization. If the order between two memory requests from different processors is
ambiguous, and if the ordering is important for the final result, indicate the ordering between the
two instructions in your solution.

• The initial values of all registers are the same in all processors, and they contain the following
values:

r0=0x22200 r1=0x10200 r2=0x3338f r3=0x00000 r4=0x102C0

What are the minimum sequences of instructions in each processor that lead to the caches final state?
Fill in the blanks. Write one instruction per line. Show your work as needed.

P0
0
1
2
3
4
5
6

P1
0
1
2
3
4
5
6

P2
0
1
2
3
4
5
6

P3
0
1
2
3
4
5
6

(b) Now assume all four processors execute the following code (This part is independent of part (a)):

P0, P1, P2, and P3
1 LOOP: st r0, [r1]
2 addi r1, #0x40
3 bneq r1, r4, LOOP

The final state of the tag store is the following:

Final Tag Store States
Cache for P0

Set Tag MESI state
0 0x102 M
1 0x102 M
2 0x102 M
3 0x100 M

Cache for P1
Set Tag MESI state
0 0x102 I
1 0x102 I
2 0x102 I
3 0x102 M

Cache for P2
Set Tag MESI state
0 0x106 M
1 0x106 M
2 0x104 M
3 0x104 M

Cache for P3
Set Tag MESI state
0 0x106 I
1 0x106 I
2 0x106 M
3 0x106 M

Make the following assumptions about the initial state of the caches:
• The tag is the same in all sets of a processor (but the tags might be different among processors).
• The MESI state of all cache lines in all processors is the same.

What are the initial state values of the registers r0, r1, and r4 in all four processors? Show your work.

What is the initial state of all caches? Fill in the blanks below.

Initial Tag Store States
Cache for P0

Set Tag MESI state
0
1
2
3

Cache for P1
Set Tag MESI state
0
1
2
3

Cache for P2
Set Tag MESI state
0
1
2
3

Cache for P3
Set Tag MESI state
0
1
2
3

10. Memory Consistency [150 points]

A programmer writes the following two C code segments. She wants to run them concurrently on a
multicore processor, called SC, using two different threads, each of which will run on a different core. The
processor implements sequential consistency, as we discussed in the lecture.

Thread T0
Instr. T0.0 X[0] = 2;
Instr. T0.1 flag[0] = 1;
Instr. T0.2 a = X[0]*2;
Instr. T0.3 b = Y[0]-1;
Instr. T0.4 c = X[0];

Thread T1
Instr. T1.0 X[0] = 1;
Instr. T1.1 X[0] += 2;
Instr. T1.2 while(flag[0] == 1);
Instr. T1.3 a = flag[0];
Instr. T1.4 X[0] = 2;
Instr. T1.5 Y[0] = 10;

X and flag have been allocated in main memory. Thread 0 and Thread 1 have their private processor
registers to store the values of a , b, and c. A read or write to any of these variables generates a single
memory request. The initial values of all memory locations and variables are 1. Assume each line of the C
code segment of a thread is a single instruction.

(a) Do you find something that could be wrong in the C code segments? Explain your answer.

(b) What could be possible final values of X[0] in the SC processor, after executing both C code segments?
Explain your answer. Provide all possible values.

(c) What could be possible final values of a in the SC processor, after executing both C code segments?
Explain your answer. Provide all possible values.

(d) What could be possible final values of b in the SC processor, after both threads finish execution?
Explain your answer. Provide all possible values.

(e) With the aim of achieving higher performance, the programmer tests her code on a new multicore
processor, called NC, that does not implement memory consistency. Thus, there is no guarantee on
the ordering of instructions as seen by different cores.
What is the final value of X[0] in the NC processor, after executing both threads? Explain your
answer.

11. RowHammer [200 points]

11.1. RowHammer Properties
Determine whether each of following statements is true or false.

(a) Cells in a DRAM with a smaller technology node are more vulnerable to RowHammer.

1. True 2. False

(b) Cells which have shorter retention times are especially vulnerable to RowHammer.

1. True 2. False

(c) The vulnerability of cells in a victim row to RowHammer depends on the data stored in the victim row.

1. True 2. False

(d) The vulnerability of cells in a victim row to RowHammer depends on the data stored in the aggressor
row.

1. True 2. False

(e) RowHammer-induced errors are mostly repeatable.

1. True 2. False

11.2. RowHammer Mitigations
One research group rigorously investigated the relationship between the DRAM refresh rate and RowHammer-

induced errors using real DRAM modules from three major memory manufacturers: A, B, and C. The fol-
lowing figure shows the characterization results of the most RowHammer-vulnerable modules of each DRAM
manufacturer A, B, and C (A23, B11, and C19, respectively). As shown in the figure below, we can achieve
an effectively-zero probability of RowHammer-induced errors when we reduce the refresh interval to 8 ms.
This is because the probability of RowHammer-induced errors becomes less than that of a random DRAM
circuit fault.

0 16 32 48 64 80 96 112 128
Refresh Interval (ms)

0
100
101
102
103
104
105
106
107
108

E
rr

or
s

A1240
23 B1146

11 C1223
19

yA = 4.39e-6× x6.23

yB = 1.23e-8× x7.3

yC = 8.11e-10× x7.3

As a leading computer architect of a company, you are asked to design an efficient RowHammer mitiga-
tion technique based on the characterization results.

(a) A junior engineer suggests to simply reduce the refresh interval from the default 64 ms to 8 ms. How
will the bank utilization U and the DRAM energy consumption E of all refresh operations be changed
over the current system?

(b) A DRAM manufacturer releases a higher capacity version of the same DRAM module (4x the total
capacity). After rigorously reverse-engineering, you determine that the manufacturer doubles both
the (1) number of rows in a bank, and (2) number of banks in a module without changing any other
aspects (e.g., row size, bus rate, and timing parameters). Your company considers upgrading the
current system with the higher-capacity DRAM module and asks your opinion. In the current system,
the bank utilization of refresh operations is 0.05 when the refresh interval is 64 ms. Would reducing the
refresh interval to 8 ms still be viable (in terms of RowHammer protection capability and performance
overheads) in a module with 2x the number of rows per bank and 2x the number of banks per module?
How about in a module with 4x the number of rows per bank and 4x the number of banks per module?

(c) Due to significant overheads of reducing the refresh interval, your team decides to find other RowHam-
mer mitigation techniques with lower overhead. The junior engineer proposes a counter-based approach
as follows:

In this approach, the memory controller maintains a counter for each row R, which increments when an ad-
jacent row is activated, and resets when Row R is activated or refreshed. If the value of a row R’s counter
exceeds a threshold value, T , the memory controller activates row R and resets its respective counter.

Here are some specifications on the current memory system:
• Interface: DDR3-1333
• CL = 7
• tRCD = 13.5 ns
• tRAS = 35 ns
• tWR = 15 ns
• tRP = 13.5 ns
• tRFC = 120 ns
• Configuration: Per-channel memory controller deals with 2 ranks, each of which has 8 banks. The

number of rows per bank is 215. Each row in one bank is 8 KiB.
Are the given specifications enough to implement the proposed approach? If no, list the specifications
additionally required.

(d) Suppose that all the necessary specifications for implementing the proposed approach are known.
Calculate the maximum value of T that can guarantee the same level of security against RowHammer
attacks over when adopting 8-ms refresh interval?

(e) Calculate the number of bits required for counters in each memory controller. How does it change
when the number of rows per bank and the number of banks per chip are doubled?

(f) Obviously, we can reduce the size of counters in each memory controller, if we use a smaller value for
T . What are its drawbacks?

(g) You recall PARA (Probabilistic Adjacent Row Activation) which is proposed in the first RowHammer
paper. Here is how a PARA-enabled memory controller works (for more details, see Section 8.2 in the
paper2):

Whenever a row is closed, the controller flips a biased coin with a probability p of turning up heads, where
p << 1. If the coin turns up heads, the controller opens one of its adjacent rows where either of the two
adjacent rows are chosen with equal probability (p/2). Due to its probabilistic nature, PARA does not guaran-
tee that the adjacent will always be refreshed in time. Hence, PARA cannot prevent disturbance errors with
absolute certainty. However, its parameter p can be set so that disturbance errors occur at an extremely low
probability — many orders of magnitude lower than the failure rates of other system components (e.g., more
than 1% of hard-disk drives fail every year.)

Suppose that the probability of experiencing an error for PARA in 64 ms is 1.9×10−22 when p = 0.001
at the worst operating conditions. How can we estimate the probability of experiencing an error in one
year based on that value? Show your work. (If you just put an answer, you will get no points for this
problem.)

2Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu, "Flipping Bits in Memory without Accessing Them: an Experimental Study of DRAM Disturbance Errors," in Pro-
ceedings of the 41st Annual International Sympoisum on Computer Architecture, 2014. https://people.inf.ethz.ch/omutl
u/pub/dram-row-hammer_isca14.pdf

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf

12. Main Memory Organization and Interleaving [150 points]

Consider the following piece of code:

for(i = 0; i < 8; ++i){
for(j = 0; j < 8; ++j){

sum = sum + A[i][j];
}

}

The figure below shows an 8-way interleaved, byte-addressable memory. The total size of the memory is
4KB. The elements of the 2-dimensional array, A, are 4-bytes in length and are stored in the memory in
column-major order (i.e., columns of A are stored in consecutive memory locations) as shown. The width of
the bus is 32 bits, and each memory access takes 10 cycles.

.

.

.

A[7][0]

A[7][1]

A[7][2]

A[7][7]

31 28

255

.

.

.

A[1][0]

A[1][1]

A[1][2]

A[1][7]

7 4

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

A[0][0]

A[0][1]

A[0][2]

A[0][7]

3

224

64

32

0

.
.

.
.

.

.

RANK0

RANKn

Bank 7 Bank 1 Bank 0

A more detailed picture of the memory chips in Bank 0 of Rank 0 is shown below.

A[0][0] <31:24>

A[0][1] <31:24>

A[0][2] <31:24>

A[0][7] <31:24>

3

227

.

.

.

.

.

.

.

.

.

A[0][0] <23:16>

A[0][1] <23:16>

A[0][2] <23:16>

A[0][7] <23:16>

2

226

64

32
A[0][0] <7:0>

A[0][1]<7:0>

A[0][2] <7:0>

A[0][7] <7:0>

0A[0][0] <15:8>

A[0][1] <15:8>

A[0][2] <15:8>

A[0][7] <15:8>

1

225 224

(a) Since the address space of the memory is 4KB, 12 bits are needed to uniquely identify each memory
location, i.e., Addr[11:0]. Specify which bits of the address will be used for:

(b) How many cycles are spent accessing memory during the execution of the above code? Compare this
with the number of memory access cycles it would take if the memory were not interleaved (i.e., a
single 4-byte wide array).

(c) Can any change be made to the current interleaving scheme to optimize the number of cycles spent
accessing memory? If yes, which bits of the address will be used to specify the byte on bus, interleaving,
etc. (use the same format as in part a)? With the new interleaving scheme, how many cycles are spent
accessing memory? Remember that the elements of A will still be stored in column-major order.

(d) Using the original interleaving scheme, what small changes can be made to the piece of code to optimize
the number of cycles spent accessing memory? How many cycles are spent accessing memory using
the modified code?

for(i = 0; i < 8; ++i){
for(j = 0; j < 8; ++j){

sum = sum + A[i][j];
}

}

13. Memory Scheduling [200 points]

To serve a memory request, the memory controller issues one or multiple DRAM commands to access
data from a bank. There are four different DRAM commands.

• ACTIVATE: Loads the row (that needs to be accessed) into the bank’s row-buffer. This is called opening
a row. (Latency: 15ns)

• PRECHARGE: Restores the contents of the bank’s row-buffer back into the row. This is called closing a
row. (Latency: 15ns)

• READ/WRITE: Accesses data from the row-buffer. (Latency: 15ns)
The following figure shows the snapshot of the memory request buffers (in the memory controller) at t0.

Each request is color-coded to denote the application to which it belongs (assume that all applications are
running on separate cores). Additionally, each request is annotated with the address (or index) of the row
that the request needs to access (e.g., R3 means that the request is to the 3rd row). Furthermore, assume
that all requests are read requests.

R3 R9 R3 R5 R3R3R3R21

R27 R12R18R12R19R12

R17

R18R2

oldestyoungest

oldestyoungest

R11 R12

R4 R1 R3

Channel 0

Bank 0

Channel 1

Bank 0

Row 12

Row 3

application A’s request
application B’s request
application C’s request

Request queue for Bank 0 (Channel 0)

Request queue for Bank 0 (Channel 1)

A memory request is considered to be served when the READ command is complete (i.e., 15ns after the
request’s READ command has been issued). In addition, each application (A, B, or C) is considered to be
stalled until all of its memory requests (across all the request buffers) have been served.

Assume that, initially (at t0) each bank has the 3rd and the 12th row loaded in the row-buffer, respectively.
Furthermore, no additional requests from any of the applications arrive at the memory controller.
13.1. Application-Unaware Scheduling Policies

(a) Using the FCFS scheduling policy, what is the stall time of each application?

(b) Using the FR-FCFS scheduling policy, what is the stall time of each application?

(c) What property of memory references does the FR-FCFS scheduling policy exploit? (Three words or
less.)

(d) Briefly describe the scheduling policy that would maximize the request throughput at any given bank,
where request throughput is defined as the number of requests served per unit amount of time. (Less
than 10 words.)

13.2. Application-Aware Scheduling Policies
Of the three applications, application C is the least memory-intensive (i.e., has the lowest number of

outstanding requests). However, it experiences the largest stall time since its requests are served only
after the numerous requests from other applications are first served. To ensure the shortest stall time for
application C, one can assign its requests with the highest priority, while assigning the same low priority to
the other two applications (A and B).

(a) Scheduling Policy X: When application C is assigned a high priority and the other two applications
are assigned the same low priority, what is the stall time of each application? (Among requests with
the same priority, assume that FR-FCFS is used to break ties.)

Can you design an even better scheduling policy? While application C now experiences low stall time,
you notice that the other two applications (A and B) are still delaying each other.

(b) Assign priorities to the other two applications such that you minimize the average stall time across all
applications. Specifically, list all three applications in the order of highest to lowest priority. (Among
requests with the same priority, assume that FR-FCFS is used to break ties.)

(c) Scheduling Policy Y: Using your new scheduling policy, what is the stall time of each application?
(Among requests with the same priority, assume that FR-FCFS is used to break ties.)

(d) Order the four scheduling policies (FCFS, FR-FCFS, X, Y) in the order of lowest to highest average
stall time.

	Critical Paper Reviews [1,000 points]
	Interconnects: Warm-Up [150 points]
	Topologies
	Trade-Offs
	Latencies

	Interconnects (I) [200 points]
	Interconnects (II) [200 points]
	Interconnects (III) [200 points]
	Building Multicore Processors [150 points]
	Asymmetric Multicore (I) [150 points]
	Asymmetric Multicore (II) [200 points]
	Dual-Core Execution

	Cache Coherence [200 points]
	Memory Consistency [150 points]
	RowHammer [200 points]
	RowHammer Properties
	RowHammer Mitigations

	Main Memory Organization and Interleaving [150 points]
	Memory Scheduling [200 points]
	Application-Unaware Scheduling Policies
	Application-Aware Scheduling Policies

