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ABSTRACT

DRAM scaling has been the prime driver for increasing the capac-
ity of main memory system over the past three decades. Unfor-
tunately, scaling DRAM to smaller technology nodes has become
challenging due to the inherent difficulty in designing smaller ge-
ometries, coupled with the problems of device variation and leak-
age. Future DRAM devices are likely to experience significantly
high error-rates. Techniques that can tolerate errors efficiently can
enable DRAM to scale to smaller technology nodes. However, ex-
isting techniques such as row/column sparing and ECC become
prohibitive at high error-rates.

To develop cost-effective solutions for tolerating high error-rates,
this paper advocates a cross-layer approach. Rather than hiding
the faulty cell information within the DRAM chips, we expose it
to the architectural level. We propose ArchShield, an architectural
framework that employs runtime testing to identify faulty DRAM
cells. ArchShield tolerates these faults using two components, a
Fault Map that keeps information about faulty words in a cache
line, and Selective Word-Level Replication (SWLR) that replicates
faulty words for error resilience. Both Fault Map and SWLR are in-
tegrated in reserved area in DRAM memory. Our evaluations with
8GB DRAM DIMM show that ArchShield can efficiently tolerate
error-rates as higher as 10−4 (100x higher than ECC alone), causes
less than 2% performance degradation, and still maintains 1-bit er-
ror tolerance against soft errors.

Categories and Subject Descriptors

B.3.4 [Hardware]: [Memory Structures - Reliability, Testing, Fault
Tolerence ]
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1. INTRODUCTION
Dynamic Random Access Memory (DRAM) has been the basic

building block for main memory systems for the past three decades.
Scaling of DRAM to smaller technology nodes allowed more bits
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in the same chip area, and this has been a prime driver for increas-
ing the main memory capacity. Data is stored in a DRAM cell
as charge on a capacitor. As we scale down the feature size, the
amount of charge that must be stored on the capacitor must still re-
main constant in order to meet the retention time requirements of
DRAM. DRAM technology has already reached sub 30nm regime,
and it is becoming increasingly difficult to further scale the cells to
smaller geometries. The challenge lies not only in inherent prob-
lems of fabricating small cylindrical cells for the capacitor but also
from the increased variability and leakage across cells. Recently,
DRAM scaling challenges have caused the community to look at
alternatives technologies for main memory [1–3]. Until a viable
DRAM replacement that is competitive in terms of cost and perfor-
mance becomes commercially available, scaling DRAM to smaller
feature sizes will continue to be critical for future systems.

The smaller geometry and increased variability for future tech-
nologies are likely to result in higher error-rates. To maintain sys-
tem integrity, faulty DRAM cells must either be decommissioned
or corrected. If the cost of tolerating faulty cells is significantly
higher than the capacity gains from moving from a given technol-
ogy node to a smaller technology node, future technology nodes
may be deemed unviable, thus halting DRAM scaling. Therefore,
techniques that can tolerate high error-rates at low cost can allow
DRAM to scale to smaller technology nodes than possible with tra-
ditional techniques.

Figure 1 shows different schemes to mitigate errors in DRAM
(without loss of generality, we consider 8GB Dual Inline Mem-
ory Module (DIMM) in our studies). If the bit error-rate (BER) of
DRAM cells is less than 10−12 then the memory system may not
need any error correction for faulty cells. Current DRAM systems
rely on sparing of rows/columns to tolerate faulty cells. For exam-
ple, with row sparing, the DRAM row containing the faulty DRAM
cell is replaced by one of the spare rows. This method incurs an
overhead of about 10K-100K bits (and several laser fuses) for toler-
ating one faulty bit. While seemingly expensive, this method works
quite well at low bit error-rates that are typical in current DRAM
chips. Unfortunately, the high cost makes this technique impracti-
cal for high error-rates.
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Another alternative to tolerate errors in DRAM is to use Error
Correcting Code (ECC). Commodity DIMMs are also available
with ECC, which can correct one bit out of the 8-byte word. While
these DIMMs are aimed at tolerating soft errors, we can also use
it to tolerate faulty DRAM cells. However, using such DIMMs to
tolerate random bit errors, is still ineffective for high bit error-rates.
Our analysis shows that ECC DIMMs can tolerate an error-rate of
only in the regime of about 1 faulty cell per million. To tolerate
higher error-rates, we would need higher levels of ECC. For exam-
ple, for tolerating an error-rate of 10−4 we need 3-bit error correc-
tion per 64-bit word. Such high level of ECC is expensive in terms
of both storage and latency. Furthermore, this approach sacrificed
soft error resilience for tolerating faulty cells, and would need ad-
ditional ECC to tolerate soft errors. Ideally, we want to use ECC
DIMMs to tolerate both faulty cells due to manufacturing and soft
errors due to alpha particles.

We advocate exposing the information about the faulty DRAM
cells to the hardware, so that the amount of error tolerance can be
tailored to the vulnerability level of each word. We propose such an
architecture-level framework called ArchShield. ArchShield is built
on top of commodity ECC DIMMs, and is geared towards tolerat-
ing 100x higher error-rates than can be handled by ECC DIMMs
alone, while retaining the soft error tolerance. When a new DIMM
is configured in the system, ArchShield performs a runtime testing
of the DIMM to identify the faulty cells in the memory. In partic-
ular, it tracks if the given 64-bit word has zero error, one error, or
more than one error.

ArchShield contains a Fault Map that stores information about
faulty words on a per line basis. All faulty words (including the
ones with one-bit error) are replicated in a spare region. Such Se-

lective Word Level Replication (SWLR) allows decommissioning
for words with multi-bit error, while providing soft error protection
for words with one-bit error. On a memory access, the fault map
entry is consulted. If the line is deemed to have a word with more
than 1 error, the replication area is accessed to obtain the replicated
words for the corresponding line. Whereas, if the line is deemed to
have a word with 1-bit error, the replicated copy is accessed only
when an uncorrectable fault is encountered at the original location,
which allows fast access in common case. Thus, ArchShield can
tolerate multi-bit errors, while retaining soft error protection of 1-
bit error correction per word.

The Fault Map and word-level repair of ArchShield is inspired,
in part, by similar approach to dealing with high error-rate in cur-
rent Solid State Disk (SSD). Similar to SSD, we propose to em-
bed the Fault Map and Replication Area in reserved portion of the
DRAM memory. This reduces the effective main memory visible
to the operating system. Fortunately, the visible address space pro-
vided by ArchShield is contiguous, so ArchShield can be employed
without any software changes (except that the memory is deemed
to have smaller capacity). Similarly, ArchShield does not require
any changes to the existing ECC DIMMs, and only minor changes
to the memory controller to do runtime testing, orchestrate Fault
Map access, and update and access replicas.

We perform evaluations with 8GB DIMM. We show that for tol-
erating an error-rate as high as 10−4, ArchShield requires 4% mem-
ory space, and causes a performance degradation of less than 2%
due to the extra memory traffic of Fault Map and SWLR. ArchShield
provides this while maintaining a soft error protection of 1-bit error
per ECC word.

We also show how ArchShield can be used to reduce refresh op-
erations in DRAM systems. With ArchShield, the system can re-
duce the refresh rate by almost 16x, and thus reduce refresh power
and and performance penalties.

2. BACKGROUND AND MOTIVATION
The DRAM industry is on track to meet the ITRS projection of

28nm technology node for 2013 [4]. The ITRS road-map for the
next decade projects DRAM technology node of 10nm in 2022, in
essence a new technology node every three years. If DRAM tech-
nology could be kept on this scaling curve, we can expect a dou-
bling of memory capacity of DRAM modules every three years.
Unfortunately, scaling DRAM to smaller technology nodes has be-
come quite challenging. In addition to the typical problems of scal-
ing to smaller geometries, DRAM devices face several additional
barriers.

2.1 Why DRAM Scaling is Challenging
The capacitive element used to store charge in DRAM is typi-

cally made as a vertical structure to save chip area (as shown in
the inset in Figure 2). To meet the DRAM retention time, the ca-
pacitance stored on the DRAM device needs to be approximately
25fF. When DRAM technology is scaled to smaller node, the lin-
ear dimensions scale by approximately 0.71x, the surface area of
the cell reduces to approximately 0.5x, which means the depth of
the vertical structure must be doubled to obtain the same capaci-
tance. Let Aspect Ratio be the ratio of the height of the cell to the
diameter. As shown in Figure 2, the aspect ratio has been increas-
ing exponentially and is expected to reach more than 100x at sub
20nm [5]. Such narrow cylindrical cells are inherently unstable due
to mechanical reasons, hence difficult to fabricate reliably [6].
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Figure 2: Exponential increase in aspect ratio of DRAM cells

with scaling to smaller technology nodes (redrawn from [5])

The second problem is reduction in the thickness of the dielectric
material of the DRAM cell. This makes it challenging to ensure
the same capacitance value, given the unreliability of the ultra-thin
dielectric material.

The third problem is the increase in gate induced drain leakage
and increased variability, which means that to obtain the same re-
tention time we may be forced to increase the capacitance of the
DRAM cell, exacerbating the problem of cell geometry and relia-
bility of the dielectric material.

Due to the challenges from shrinking dimensions and variability,
future DRAM cells will be expected to have much higher rate of
faulty cells than current designs. To assist DRAM scaling, cost
effective solutions must be developed to tolerate such high rate of
faulty cells, otherwise it may become prohibitive to scale DRAM
to smaller nodes.



Unfortunately, the exact data about error-rates in DRAM mem-
ories tend to be proprietary information and is guarded closely by
DRAM manufactures. So, in our studies we assume that error-
rates exceed significantly than what are handled by traditional tech-
niques. We will also assume that these errors are persistent, and that
they are distributed randomly across the chips. In this paper, we tar-
get a bit error-rate in the regime of 100 parts per million (ppm), or
equivalently 10−4.

2.2 Existing DRAM Repair Schemes
Current DRAM chips tolerate faulty cells by employing row spar-

ing and column sparing. These mechanisms tend to mask the faulty
cell at a large granularity. For example, with row sparing, the en-
tire DRAM row containing the faulty cell gets decommissioned and
replaced by a spare row. Given that DRAM rows contain in the
regime of 10K-100K bits, masking each faulty cell incurs a signifi-
cant overhead. Further-more disabling the faulty row and enabling
the spare row must be done at design time, hence it must rely on
non-volatile memory. Typically laser fuses are used to disable the
row with faulty cell, and enable the spare row for the given row ad-
dress, as shown in Figure 3 (derived from [7]). To handle a memory
array containing few thousand rows, each spare row requires fuse
memory of few tens of bits. Unfortunately, each bit of laser fuse
incurs an area equivalent few tens of thousands of DRAM cells [8].
Thus, sparing incurs an overhead of approximately several hundred
thousand DRAM cells to fix one faulty cell. While this overhead
may be acceptable at very small error-rate, it is prohibitive to toler-
ate error-rates in the regime of several parts per million.
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Figure 3: Typical row sparing design relies on laser fuses and

sacrifices an entire row for masking a faulty cell.

2.3 Tolerating Faulty Cells with ECC DIMM
Instead of masking faulty cells, one can correct them using ECC.

Commodity memory modules are typically also available in ECC
enabled versions, in a (72,64) configuration. Such modules contain
an extra ECC chip in addition to the eight data chips, and can cor-
rect up-to one error (and detect up-to two errors) in the 64-bit word.
While the typical applications for ECC DIMM tend to be to tolerate
soft errors, we can potentially use it to tolerate faulty DRAM cells
as well. However, even with an ECC DIMM the error-rates that can
be tolerated is low.

In our studies we consider an 8GB DIMM, containing one bil-
lion 8-byte words. The expected number of random errors that
would result in a word with two errors can be computed using the
Birthday Paradox analysis [9]. For example, if balls are randomly
thrown into N buckets, on an average after 1.2×

√
N throws, we

can expect at-least one bucket to have more than one ball. Sim-
ilarly, on average, a memory with 1 billion words would tolerate
approximately 40K errors before getting a word with two errors.
Thus, the error rate tolerated with ECC DIMM is 40K divided by
the number of bits in memory (77 billion), or equivalently 0.5 ppm,
approximately 200x lower than the error-rate we want to handle.
Furthermore, such usage of ECC DIMM to tolerate faulty cells in-
creases the vulnerability of the system to soft errors. Ideally, we
want to tolerate faulty cells while retaining soft error protection of
ECC DIMMs.

2.4 Need for Handling Multiple Faults/Word
A higher rate of faulty cells can be tolerated with the ECC ap-

proach if we correct multiple errors per word. To estimate the
amount of multi-bit error protection required, we compute the ex-
pected number of words for a given number of faults. Let p be
the probability of bit failure. Let there are b bits in the word. The
expected number of faulty bits per word is p · b. If p · b << 1,
then the probability (Pk) that the word has k errors (k ≥ 1) can be
approximated by Equation 1.

Pk =
(p · b)k

k!
(1)

In our studies, we consider a traditional (72,64) ECC DIMM. So,
the number of bits in the ECC word is 72. Table 1 shows the ex-
pected number of words in an 8GB memory that have 0, 1, 2, 3,
and 4 or more errors for a probability of bit failure of 100 ppm.
The episodes of 4 or more errors are rare, but we need to tolerate
three faulty cells per word.

Table 1: Percentage of words with multiple faulty cells (and

expected number of words in 8GB memory, i.e. 230 words).

Num Faulty bits 0 1 2 3 4+

Probability 0.993 0.007 26 · 10−6 62 · 10−9 10−10

Num words 0.99 Bln 7.7 Mln 28K 67 0.1

2.5 Low Cost Fault Handling by Exposing Faults
To handle 3-bits per word, the ECC overhead would be approx-

imately 24 bits per word, or approximately 37%. Thus, the stor-
age overhead of uniform fault tolerance is prohibitive at high error-
rates. The problem with both row sparing and ECC schemes is
that they try to hide the faulty cell information from the architec-
ture, hence they incur significant storage overhead. To develop a
cost-effective solution, we take inspiration from the fault tolerant
architecture typically used in Solid State Drives (SSD) [10]. SSD
are made of Flash technology, that tends to have high error-rates.
The management layer in SSD keeps track of bad blocks and redi-
rects access to good location. A similar approach can also allow
DRAM systems to tolerate high error-rates.

From Table 1 we see that only a small fraction of words have
more than 1 faulty cell. If we can expose the information about
faulty cells to the architecture layer, then we can tolerate faulty
words by decommissioning and redirecting at a word granularity
and thus significantly reduce the storage overhead of tolerating faulty
cells. Note that we cannot arbitrarily disable words in memory, as



the operating system relies on having a contiguous address space.
We propose the ArchShield framework that can efficiently tolerate
high rate of faulty cells, provides contiguous address space to the
Operating System (OS), does not require changes to the existing
ECC DIMMs, while still retaining soft error tolerance.

3. ARCHSHIELD FRAMEWORK
ArchShield leverages existing ECC DIMMs and enables them

to tolerate high-rate of faulty DRAM cells. Figure 4 shows an
overview of ArchShield. ArchShield divides the memory into two
regions: one that is visible to the OS, and the other reserved for
handling faulty cells. Thus, the OS is provided with a contigu-
ous address space, even though this space may have faulty cells.
ArchShield contains two data structures: Fault Map (FM) and Repli-
cation Area (RA). The Fault Map contains information about the
number of faulty cells in the word. ArchShield employs Selective

Word Level Replication (SWLR), whereby only faulty words are
replicated in the Replication Area. On a memory access, ArchShield
obtains the Fault Map information associated with the line. If the
line contains word with faulty cells, it is repaired with the replicas
from the Replication Area.

For implementing ArchShield several challenges must be ad-
dressed. For example, having Fault Map entry for every word in-
curs high overhead. Similarly, accessing Fault Map from memory
on every access incurs high latency. Also, the replication area must
be architected to reduce the storage and latency overhead associ-
ated with obtaining replicas. Ideally, we want almost all of the
memory address available for demand usage (visible to OS), and
we want to keep the performance penalties associated with Fault
Map access and Replication Area to be small, while retaining soft
error protection.

ADDRESS

SPACE

REPLICATION
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RESERVED

ECC

VISIBLEOS

FAULT MAP

Figure 4: Overview of ArchShield (Figure not to scale)

3.1 Testing for Identifying Faulty Cells
ArchShield relies on having the location of faulty cells available.

If the error-rate was small, then this information can be supplied by
the manufacturer using some non-volatile memory on the DRAM
module. Unfortunately, this method does not scale well to high er-
ror rates, as it incurs high storage overhead and cost (especially if
the non volatile memory is employed with laser fuses as done with
row sparing). So, for tolerating high error-rates, we advocate run-
time testing. We assume there is a Built-In Self Test (BIST) con-

troller present in the system that performs testing on the memory
module when the module is first configured in the system. Testing
can be done by writing a small number of patterns (such as “all
ones” and “all zeros”) as done in [11, 12] or by using well-known
testing algorithms such as MARCH-B, MARCH-SS, GALPAT, and
pseudo random algorithms for testing Active Neighborhood Pattern
Sensitive Faults (ANPSFs) [13,14].

As ECC protection exists at the word granularity, testing is also
performed at word granularity. During the testing phase, the words
are classified into three categories: Words with no faulty cells (NFC),
Words with single faulty cell (SFC), words with multiple faulty
cells (MFC). We assume that testing is able to identify all faulty
cells,1 and the Fault Map and Reserved Area are populated with
the results of testing.

3.2 Architecting Efficient Fault-Map
ArchShield makes a separation between words with single faulty

cell (SFC) and multiple faulty cells (MFC) as words with SFC can
be handled with ECC in the absence of soft error. Thus, the Fault
Map entry for each word must provide a tertiary value: NFC, SFC,
or MFC. If we keep 2-bits per 64-bit word, this would result in a
storage overhead of 1/32 of the entire memory. Furthermore, there
may be faulty cells in the Fault Map as well, so additional redun-
dancy would make the storage overhead of Fault Map prohibitive.

3.2.1 Line Level Fault Map

We reduce the storage overhead of Fault Map by exploiting the
observation that memory is typically accessed at a cache line gran-
ularity (64 bytes). So, we can keep the information about faulty
words at the cache line granularity as well. To ensure correctness,
the fault level of all the words in the line is determined by the word
with the most number of errors. If the line contains no faulty cell,
it will be classified to be an NFC line. If the line contains at-least
one SFC word, but no MFC word, the line is classified as an SFC
line. Whereas, if the line has a MFC word, the line is classified as
an MFC line.

As the line contains eight words, the probability of SFC line is
approximately 8x higher than SFC word, increasing from 0.7% of
words to 5.6% of the lines. Similarly, the probability that the line
is classified as MFC line is increased by approximately 8x as well,
increasing from 26ppm to 200ppm. The increase in SFC line does
not impact performance significantly, as the replicated information
is not accessed on a read (unless there is soft error). The dual read
because of increase in MFC line is negligible to have any mean-
ingful impact system performance, as it affects one out of 5000
accesses.

3.2.2 Fault Tolerance and Overhead of Fault Map

ArchShield assumes that the entire memory can contain faulty
cells, including the area used to store the Fault Map. Therefore,
we use redundancy in storing the Fault Map entry. Each Fault Map
entry consists of 4-bits. If it is 0000, the line is deemed to have
no faulty cells. If it is 1111, the line is deemed to have at-least
one (or more) word with at-most one faulty cell. For any other
combination, the line is conservatively deemed to be a MFC line.
We store an MFC line as 1100 in the Fault Map.

1Given that ArchShield provides a protection of 1-bit soft error per
word, it can tolerate a small probability of faults escaping the test-
ing procedure. In particular, the system can tolerate one untested
fault per word. A persistent soft error in the word can be notified to
the Fault Map.



An error in Fault Map results in reading the replicated version of
the word. The Fault Map area is also protected by ECC, so on any
detected (or corrected) fault, the design conservatively tries to read
from the replicated region. With 4-bits per 64-byte line, the storage
overhead of Fault Map would be 1/128 of the entire memory, or
equivalently 64MB for a 8GB DIMM. The address of the Fault
Map entry can be obtained by simply adding the line address to the
Fault Map Start Address (which is kept in a register of ArchShield).

3.2.3 Caching Fault Map Entries for Low Latency

The Fault Map must be consulted on each memory access. A
naive implementation of probing Fault Map in main memory on
every memory access would result in high performance overhead.
So, we recommend caching the Fault Map entries in the on-chip
cache, on a demand basis. Each Fault Map access can bring in a
cache line worth of Fault Map information and cache it in the Last
Level Cache (LLC). Given each Fault Map entry is only 4-bits, each
cache line of Fault Map contains Fault Map information for 128
lines, resulting in high spatial and temporal locality. Our analysis
shows that the Fault Map hit rate in the on-chip LLC to be in the
regime of 95% on average, thus significantly reducing the memory
accesses for Fault Map and associated performance penalties.

3.3 Architecting Replication Area
The Replication Area stores a replica for all the words with a

faulty cell. The Fault Map only identifies if the line has a word
with faulty cell, it does not identify the location of the replicated
copy of this word. Therefore, the Replication Area must also con-
tain a tag entry associated with each word. The tag size depends on
the ratio of Replication Area to Memory size. To tolerate a BER of
10−4, the Replication Area needs to store 7.74 million faulty words
for an 8GB DIMM. If we could configure the Replication Area as a
fully associative structure, we would need only 7.74 million entries,
incurring about 1% of memory capacity. Unfortunately, this con-
figuration would incur unacceptably high latency overheads. Repli-
cation Area is provisioned to be 1

64
th of main memory for BER of

10−4. So we have 6 bits for line address, 3 bits for word in line,
1 valid bit and 2 overflow bits (replicated) for every entry, hence
we get 1.5 bytes for tag. Thus, each entry in the replication region
would be 9.5 bytes (1.5 bytes for tag and 8 bytes for data). This
section identifies the appropriate structure for Replication Area to
reduce latency while keeping the storage overhead manageable.

3.3.1 A Set Associative Structure

We want the interaction between the memory and the memory
controller to be at a cache line granularity. Therefore, even the
memory of the Replication Area can be accessed at a cache line
granularity. Given that the cache line is 64 bytes, and each Repli-
cation Area entry is 9.5 bytes (1.5 bytes tag + 8 bytes data), we can
store six entries in each line of 64 bytes, and have seven bytes of
unused storage, as shown in Figure 5.

8 byte word1.5 byte Tag

64−byte Line = 6 Entries of (Tag+Data) + Seven bytes

7−bytes unused

Figure 5: A 64-byte line configured as one set in the replication

region. It can hold six entries and have seven bytes unused.

Given that we can hold six entries in each line, we can config-
ure the Replication Area as a 6-way set associative structure. If

the access across sets was uniform we would need only 1.3 mil-
lion sets (7.74 Million divided by six). Unfortunately, as errors are
spread randomly throughout the memory space, the allocation of
this structure is non-uniform. We want to avoid the overflow of any
of the set, as it would mean that we are unable to accommodate all
faulty cells, and that module may be deemed unusable.

We can reduce the probability of overflow by increasing the num-
ber of sets. However, even with 2 million sets, approximately 10%
sets overflow. Our analysis shows that to avoid the overflow of any
set, the total number of sets must be increased by 12x compared
to the minimal configuration. This incurs a storage overhead of
approximately 15% of memory, making such design unappealing.

3.3.2 Efficiently Handling Overflow of Sets

Given that the overflow of the set associative structure are infre-
quent, we can tolerate these with a flexible organization that han-
dles overflows in the set associative structure. We provide the set
associative structure with a victim-cache like structure. Each group
of 16-sets is provisioned with a 16 additional overflow sets. The
7-bytes unused in each set is used to link to one of the entries in the
overflow region. The location of the overflow set can be identified
with 4-bits and coupled with a valid bit, the pointer to overflow sets
would take 5-bits. We use triple modulo redundancy on the pointer
for fault tolerance. We call such a structure of 16 sets + 16 over-
flow sets as a Replication Area group, or simply RAgroup. Figure 6
shows the overview of RAgroup.

16 overflow sets

16 sets

Figure 6: An RAgroup with 16-sets and 16 overflow sets. An

overflow set can overflow into another set of same RAgroup.

Note that even though there is linkage between the normal sets
and overflow sets, this does not impact the deterministic latency
of existing memory interfaces. We first access the normal sets in
the group. If no words for the given line is present, and there is
a link to the overflow sets, then we send another memory request
for obtaining the overflow set. Thus, our proposed structure can be
easily incorporated in existing (deterministic) memory controllers.

Given that the normal sets occupy a storage of 1KB and the over-
flow sets also occupy the a storage of 1KB, the entire RAgroup can
be in the same row buffer, as long as the row buffer size is 2KB
or more. Thus, the access to overflow set is guaranteed to get a
row buffer hit, reducing the access latency. To handle 7.75 million
faulty words, we use 128K RAgroups (each with 16-set + 16 over-
flow sets). As each RAgroup incurs a storage overhead of 2KB,
our proposed structure for the Replication Area incurs a storage
overhead of 256MB.

Figure 7 shows the probability that this structure will not be able
to handle a given number of random errors, for different value of
overflow sets in the group. We perform this analysis using Monte-
Carlo simulation, and repeating it 100K times. Even in 100K sim-
ulations, the structure with 16 overflow sets was unable to handle
8 Million errors only once. Thus, the structure has low variance
which means the probability of deeming the DIMM unusable is
negligible (10ppm).
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with 16 overflow sets to tolerate 7.74 million errors in DIMM.

3.4 ArchShield Operation: Reads and Writes
ArchShield extends the memory controller to do read and write

operations appropriately. On a read request that misses in the LLC,
the request is sent to memory. In parallel, the address for the Fault
Map entry is computed and the LLC is probed with the Fault Map
address. In case there is a LLC hit for the Fault Map address (com-
mon case), the Fault Map entry is retrieved. Otherwise, another
request is sent to memory to obtain the line containing the Fault
Map (an uncommon case) and is installed in the LLC. If the Fault
Map entry shows that the line does not have any faulty cell, we
can use the data supplied from the main memory. If the line is
deemed to have single faulty cell words, and ECC operation on the
line does not result in uncorrectable error, we do not read the repli-
cated copy. However, if there is one bit soft error and the ECC
operation results in uncorrectable error, the replicated copy is read,
thus providing soft error protection. If the line is deemed to have a
word with multiple faulty cells, then the replicated copy is read and
the matching words are incorporated in the line. Thus, accessing a
line with multiple faults causes extra latency, however this is a rare
event. For an error-rate of 10−4, extra read is performed for less
than one in few thousand read operations.

We add a bit called Replication bit (R-bit) to the tag-store entry
in each line of the LLC to mark if the line requires replication on
writeback. If, on the demand read, the line was determined to have
a single faulty cell or multiple faulty cells the R-bit is set. A write to
two locations (a good location and the replicated location) in case
of word with single fault ensures that soft errors can be corrected
by reading the copy from the Replication Area.

When a dirty line is evicted from the cache, and the R-bit is
not set, writeback is done in normal manner. However, if the R-
bit is set, we also need to update the replicated region. After the
normal write is performed, the memory controller probes the repli-
cated area for obtaining the set containing the replicated words for
the given line. It then updates the data value for the corresponding
words of the line, and updates the replicated region. Thus, while
the Fault Map is cached in LLC, the replicated region is updated
by the memory controller on a demand basis, and is not cached.
Also note that the latency for doing the multiple writes is not in
the critical path, however the extra operations can cause contention
and thus impact performance indirectly. For an error-rate of 10−4,
5.6% of the memory lines will require extra write operations.

Figure 8 shows the flowchart for servicing memory requests with
ArchShield. The performance impact of ArchShield is determined
by the hit-rate for the Fault-Map entries. As the hit rate is high
(approximately 95%), for a read request ArchShield performs only
one memory access in the common case.
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Yes
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Figure 8: A Flowchart of the read and write operations in

ArchShield. The decisions in ‘Bold’ words indicate the most

frequent path for requests in case of a LLC miss

Our proposed implementation assumes an R-bit for each cache
line. If the cache does not support this, we can still implement
ArchShield by making dirty evictions from the cache probe the
Fault Map in memory in order to determine if dual writes must be
performed. Similarly, Fault Map requires 4-bit per line (64MB for
8GB chip). This structure is designed to handle high BER. When
the BER is low, an alternative implementation (such as Bloom fil-
ters and lookup-tables) can be used to reduce the storage overhead.



3.5 ArchShield: Tying it All Together
Figure 9 shows a memory system with ArchShield. The main

memory consists of traditional ECC DIMMs and does not require
any changes. The memory space is divided into addressable space,
Replicated Area and Fault Map. The memory controller is extended
to compute the address of the Fault Map entry, check that entry in
the LLC, and in cases of an LLC miss for the Fault Map, read the re-
quired line with Fault Map information and cache it in the LLC. On
an LLC read miss, the memory controller obtains the Fault Map en-
try, and determines if a second read from the replicated region is re-
quired. If so, it reads the replicated region and repairs the line with
replicated words. In case of an LLC writeback, the memory con-
troller determines if the replicated region must be updated. If so,
the extra write operations are performed. This check for replicated
writeback is assisted by the R-bit in the LLC. Thus, ArchShield re-
quires changes to the memory controller and minor changes to the
cache structure (to add the R-bit to the tag store entry).

Check Fault Map Entry in LLC

LEGEND

Reads from Spare Region (for 2 bit faults)

Read and Write Backs from the LLC

Fault Map Transactions

Writes to Spare Region (for 1 and 2 bit faults)

LEVEL

LAST

CACHE

R−Bit
Requests

LLC Miss/Writeback AREA

7.7GB

256MB

64MB

8GB DIMM

REPLICATION

Controller

Memory

Memory
Main

FAULT MAP

Figure 9: Memory System with ArchShield

The data-structures for ArchShield are kept in main memory. For
8GB memory, the Fault Map requires 64MB storage, and the Repli-
cation Area requires 256MB storage, for a total storage overhead of
320MB. Thus, ArchShield provides remaining 7.7GB (or 96% of
the 8GB memory) available as visible address space.

4. EXPERIMENTAL METHODOLOGY

4.1 Configuration
We use an in-house memory system simulator for our studies.

The baseline configuration is described in Table 2. There are 8
cores sharing an 8MB LLC. The memory system contains two chan-
nels, each with one 8GB DIMM. We perform virtual to physical
translation using a first touch policy, with 4KB page size. The
Fault Map entries are cached on a demand basis and evicted us-
ing LRU replacement of LLC. We assume an error-rate of 10−4,
and that faulty cells are spread randomly across the memory space.
For accessing replicated region, we add extra 3 DRAM cycles for
parsing the tag-store, and one additional DRAM cycle for access to
overflow set.

4.2 Workloads
We use a representative slice [15] of 1 billion instructions for

each benchmark from the SPEC2006 suite. We perform evalua-
tions by executing the benchmark in rate mode, where all the eight
cores execute the same benchmark. Table 3 shows the characteriza-
tion of the workloads used in our study. The Read and Write MPKI

Table 2: Baseline System Configuration

Processors

Number of cores 8
Processor clock speed 3.2 GHz

Last Level Cache

L3 (shared) 8MB
Associativity 8 way

Latency 24 cycles
Cache line size 64Bytes

DRAM 2x8GB/channel-DDR3

Memory bus speed 800MHz (DDR3 1.6GHz)
Memory channels 2

DIMM capacity per channel 8GB
Ranks per channel 2

Banks per rank 8
Row Buffer Size 8KB (DIMM)

Bus width 64 bits per channel
tCAS-tRCD-tRP -tRAS 9-9-9-36

of these workloads indicate their memory activity. Workload foot-
print is computed by the number of unique (4KB) pages touched
by the workload. As we use 8 copies of the benchmark, the total
footprint is increased by 8x. We perform timing simulation till all
the benchmarks in the workload finish execution, and measure the
execution time as the average execution time of all 8 cores.

Table 3: Benchmark Characteristics (Rate Mode)

Class Workload Read MPKI Write MPKI Footprint

mcf 74.24 12.75 10.5 GB
lbm 31.89 23.9 3.2 GB

soplex 26.98 5.35 2 GB
milc 25.75 9.68 4.5 GB

libquantum 25.42 2.71 256 MB
omnetpp 20.8 8.22 1.1 GB
bwaves 18.71 1.45 1.5 GB

gcc 16.62 9.29 682 MB
High sphinx 12.33 1.06 139 MB
MPKI GemsFDTD 9.79 4.96 5.4 GB

leslie3d 7.55 2.25 619 MB
wrf 6.68 2.39 492 MB

cactusADM 5.29 1.54 1.27 GB
zeusmp 4.79 1.75 1.5 GB
bzip2 3.63 1.26 2.47 GB
dealII 2.98 0.39 52 MB

xalancbmk 2.21 1.61 1.4 GB

hmmer 0.94 0.91 16 MB
perlbench 0.85 0.14 185 MB
h264ref 0.71 0.39 66 MB

astar 0.64 0.44 22 MB
gromacs 0.59 0.19 60 MB

Low gobmk 0.42 0.23 148 MB
MPKI sjeng 0.39 0.31 1.3 GB

namd 0.07 0.02 42 MB
tonto 0.07 0.02 15 MB

calculix 0.02 0.001 16 MB
gamess 0.016 0.004 10 MB
povray 0.01 0 11 MB
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Figure 10: Impact on Execution Time for three ArchShield configurations: 1. Ideal Fault Map, 2. No extra writes, 3. Realistic
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Figure 11: Fault Map Hit Rate in Last Level Cache

5. RESULTS

5.1 Impact on Execution Time
ArchShield has two sources of performance overhead. One is

caching of the Fault Map. A read operation for a line from main
memory will not complete until the Fault Map entry is available.
So, Fault Map miss in the the LLC causes increase in the read la-
tency. The other is the extra traffic due to updates to the Replica-
tion Area. To, better understand the performance implications from
these two factors, we conducted experiments with three ArchShield
configurations. First, we assumed an ideal Fault Map (which does
not consume LLC area or memory traffic). Second, we assume that
the extra traffic for the Replication Area is ignored. Third one is
ArchShield with realistic Fault Map and Replication Area.

Figure 10 shows the execution time of the three ArchShield con-
figurations. The execution time is normalized to the baseline with
fault-free memory. The bar labeled Gmean shows the geometric
mean over all the workloads. On average, ArchShield causes an
execution time increase of 1%.2 The Fault Map and Replication
Area are each responsible for approximately half of the perfor-
mance loss. However, the impact depends on the workloads. For
several workloads the performance loss is primarily because of ex-
tra traffic to the Replication Area. For omnetpp, the performance
loss is due to non-ideal Fault Map.

2In our analysis we have assumed that the performance loss due
to the unavailable memory capacity (4%) is negligible, which is
accurate given the footprint of our workload. However, for work-
loads with larger footprints there may be a minor (negligible) per-
formance loss due to reduced capacity.

5.2 Fault Map Hit Rate Analysis
The locality of the Fault Map is central to efficient operation of

ArchShield. Given that each line of Fault Map contains information
about 128 contiguous lines, we expect high spatial and temporal
locality for the Fault Map line in the LLC. Figure 11 shows the hit
rate of the LLC for Fault Map accesses. On average, the Fault Map
hit rate for LLC is 94%.

For benchmarks that have high MPKI, the Fault Map hit rate is
reduced. This happens because the cache is contended for both the
demand lines as well as the lines from the Fault Map. For example,
omnetpp has a Read MPKI of 20.8, and FM hit rate of 82%, hence
it has the highest performance degradation with ArchShield. Other
high MPKI workloads such as mcf and xalancbmk show similar
behavior. For sjeng, the low hit rate of the Fault Map does not im-
pact performance because it has very low MPKI, hence the system
performance is not sensitive to memory performance. Overall, the
Fault Map caching for ArchShield is quite effective as only three
benchmarks out of 29 show a FM hit rate of less than 90%,

We also analyzed the occupancy of Fault Map entries in the LLC.
We found that, on average, 6% of the LLC contains lines from the
Fault Map. Thus, the spatial locality of Fault Map entries helps the
Fault Map to get high hit rate without occupying significant area
in the LLC. Note that, when we perform cache replacement in the
LLC we do not differentiate between lines from the main memory
and lines from the Fault Map. So, even a simple demand-based
caching policy for the Fault Map works quite well.

5.3 Analysis of Memory Traffic
In addition to the normal memory traffic from LLC misses and

writebacks, ArchShield increases the memory traffic due to extra
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Figure 12: Memory Traffic Breakdown with ArchShield

activity. In particular, the memory traffic is increased because of
Fault Map misses in the LLC and the extra writes to the Replica-
tion Area for the faulty lines. Furthermore, caching the Fault Map
entries in the LLC may increase the LLC miss rate and writebacks
for the demand accesses.

To capture the impact of ArchShield on memory traffic we divide
the total memory traffic into three components. The read traffic em-
anating from LLC misses, the writebacks from LLC, and the traf-
fic related to ArchShield (Fault Map and extra writes). Figure 12
shows the breakdown of these three components. The total mem-
ory traffic is normalized to the memory traffic with the fault-free
memory.

The traffic due to ArchShield shows a negative correlation with
Fault Map hit rate. The benchmark sjeng has the highest traffic
overhead due to ArchShield of around 35%. This happens because
of low hit rate of the Fault Map. However, as this benchmark has
low MPKI, the impact on performance is insignificant. For astar,
the traffic due to demand accesses is higher compared to the base-
line because of extra LLC misses and writebacks due to caching of
Fault Map entries.

Due to the replication of lines with fault cells, we can expect
the writeback traffic to increase by 5.6%, as 5.6% of the lines are
expected to have a faulty cell. On average, ArchShield increases
the total memory traffic by 6%.

5.4 Analysis of Memory Operations
For lines with multiple faults, ArchShield requires that multiple

accesses be done on a read: one to the normal location and the other
to the Replication Area. The access to the Replication Area can
itself result in multiple accesses, if the set in the Replication Area
overflows to another set. However, this happens rarely. Table 4
shows the breakdown of memory operations in terms of number of
accesses to memory. We analyze three operations: a read operation
due to LLC miss, a writeback from LLC and a Fault Map miss in
the LLC. All numbers are relative to the total memory operations.

Table 4: Analysis of Memory Operations

Transaction 1 Access(%) 2 Access(%) 3 Access(%)

Reads 72.13 0.02 ~0
Writes 22.07 1.18 0.05

Fault Map 4.55 N/A N/A

Overall 98.75 1.2 0.05

On average, 72.15% of all memory accesses are read operations,
out of which only 0.02% accesses require two memory accesses.
Thus, almost all read operations get satisfied with single access.
Writebacks account for 23.3% of all memory operations on aver-
age. As we can expect 5.6% of lines to cause extra writes (due
to replication), the number of writes that require two accesses are
5.6%*23.3%=1.18%. Only a negligible number of write operations
require three accesses. On average, 4.55% of the memory opera-
tions are due to Fault Map miss, each of which get satisfied in one
memory operation. Thus, ArchShield satisfies 98.75% of all mem-
ory operations with single memory access.

We also analyzed read latency for the baseline and ArchShield
and found the change to be minor. ArchShield obtains an average
read latency of 200 cycles and baseline 197 cycles. This 1.5% in-
crease in the read latency causes the 1% reduction in performance.

5.5 Sensitivity of ArchShield to Bit Error-Rate
We have selected parameters for ArchShield to tolerate a bit

error-rate of 10−4. ArchShield can be tuned to handle a different
error-rate. For example, to handle a bit error-rate of 10−5, we can
reduce the size of Replication Area by 8x, as we expect 10x fewer
faulty cells. This reduces the storage overhead of ArchShield to
96MB, making 98.8% of memory capacity available for normal us-
age. Also, fewer faulty cells also reduces the traffic due to extra
writes. The overall increase in execution time is 0.5%, instead of
1% at error-rate of 10−4.

Conversely, to handle 2x higher error-rate (2×10−4), the storage
overhead would get doubled to 7%, making only 93% of memory
capacity available for use. It will also cause higher performance
degradation due to increased write traffic from replication, as 11%
of the lines would require an extra write.

6. REDUCING DRAM REFRESH
Thus far, we have used ArchShield for tolerating only faulty cells

due to manufacturing defects. However, ArchShield can also be
leveraged for other DRAM optimizations as it can tolerate high
error rates. For example, ArchShield can be used to reduce the
refresh operations in DRAM systems.

Data is stored in DRAM cells by placing charge on each cell.
DRAM cells are leaky and need periodic refresh to maintain data
integrity. A refresh operation is performed by reading the row,
precharging it and writing it back for all rows in the chip. DDRx
DRAM chips follow JEDEC standards which mandate that all cells
be refreshed within 64ms to prevent loss of data. As the memory



capacity increases, the total number of refresh operations increases
as well. In fact, we are at a point at which refresh operations are
going from negligible to significant. The memory throughput loss
due to refresh is approximately 7% at 8Gb, it will increase to 14%
at 16Gb, 28% at 32Gb, and more than 50% at 64Gb [12,16]. Thus,
the performance and power consumption of future DRAM systems
will be severely limited by refresh operations.

Fortunately, only a small number of bits in the DRAM row have
low retention time, and the average retention is in the range of few
(tens) of seconds. We can leverage this information to develop ef-
ficient refresh mechanisms. Figure 13 shows the probability of bit
failure as a function of retention time [17]. At a refresh rate of
256ms, approximately 1000 DRAM cells fail, whereas at 1s refresh
interval, the probability of cell failure increases to 0.5×10−4. For
an 8GB ECC-DIMM 3.9 million out of 77 billion cells is expected
to have retention failures if they are refreshed at 1s interval.
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Figure 13: Exploiting retention characteristics of DRAM for

efficient refresh. RAIDR operates at 4x longer refresh time in-

terval. ArchShield can operate at 16x longer refresh interval.

The variation in retention time can be used to develop multi rate
refresh algorithms, whereby rows containing cells with low reten-
tion time are refreshed at a higher rate whereas the rest of the mem-
ory is refreshed at a lower rate. Unfortunately, this scheme suffers
from the key drawback that even if the row contains one cell with
low retention time the entire row is subjected to faster refresh rate.
A row buffer typically contains few tens of thousands of DRAM
bits. Therefore, this technique inherently cannot tolerate a rate of
more than 1 weak cell (cell with low retention time) every few tens
of thousands of cells, otherwise almost the entire memory gets sub-
jected to higher refresh rate, reducing the effectiveness of multi-rate
refresh schemes.

Another challenge with multi-rate refresh algorithms is to store
retention time information efficiently. Even if we have a bit asso-
ciated with each row indicating if the row contains a weak cell or
not, it will still consume an overhead of several megabits. A recent
work called RAIDR [12] developed an efficient bloom filter imple-
mentation to reduce the storage overhead of storing retention time
of different rows. However, RAIDR still suffers from the inherent
problem of all multi-rate refresh algorithms, in that, even a single
weak cell in the DRAM row subjects the entire row (8KB, 64K
cells) to a normal refresh rate of 64ms. The problem is worsened
by false positives from bloom filter, when the rate of weak cell is
increased. Thus, RAIDR is effective only for a very small weak
cell probability. The version proposed reduces the refresh rate to
256ms, handling only 1000 weak cells.

At the refresh interval of 1s, the bit error rate is 0.5 · 10−4, so
RAIDR is unable to tolerate such a high rate of weak cell and will

93.75%

74.6%

  0%

  20%

  40%

  60%

  80%

  100%

Auto Smart Distributed RAIDR

 N
u

m
b

er
 o

f 
R

ef
re

sh
es

ArchShield

Figure 14: Effectiveness of different refresh saving schemes

lose almost all of its refresh savings. ArchShield, on the other
hand, is architected for error rate of up-to 10−4, which means we
can use it to lower refresh rate in the regime of 1 second. To re-
duce refresh operations, ArchShield will need to do retention time
profiling (similar to RAIDR) and then populate the Fault Map and
Replication Area with the information about the weak cells. Then
rather than having multiple rate of refresh, ArchShield can simply
use uniform rate of refresh of 1 second and thus reduce the refresh
related penalties by a factor of 16.

Figure 14 compares the number of refresh operations performed
per unit time (say 1 second) by different techniques. Auto refresh,
Distributed Refresh, and Smart Refresh [18] have similar refresh
rate in practice. RAIDR reduces the rate of refreshes by approxi-
mately 4x, whereas ArchShield reduces refresh operations by 16x.
Thus, ArchShield is useful not only for tolerating faulty cells, but
it can also be used effectively to optimize DRAM operations.

7. RELATED WORK
With reducing feature size, memory reliability has become a

growing concern, and several recent research studies have looked
at improving memory reliability. In this section, we compare the
work most related to ours from the areas of DRAM reliability, error
correction in Phase Change Memory (PCM), and enabling SRAM
caches to operate at low voltage.

7.1 Multi-bit Error Correction in DRAM
We can tolerate a high error-rate by employing multi-bit error

correction in DRAM memories. To tolerate an error-rate in the
regime of 100ppm, we need three bit error correction, i.e. ECC-3
for each word (ECC-4 if we want soft error protection). Employing
such high levels of error correction would require storage overhead
of 37% of memory space. This would need the DIMM to have
three extra ECC chips, resulting in prohibitive cost. It will also
result in lower performance due to higher decode latency of ECC-4.
Figure 15 shows the normalized execution time with ECC-4 decode
latency of 15 cycles. On average, ECC-4 increases execution time
by 5%, compared to 1% with ArchShield.

A recent work, Virtual and Flexible ECC (VFECC) [19], allows
systems to implement high levels of ECC without relying on ECC
DIMMs. It incorporates the ECC storage within the main mem-
ory. Unfortunately, VFECC does not reduce the storage overhead
associated with high levels of error correction, as the ECC level is
not dependent on the number of faults in the word. To implement
ECC-3, VFECC would still need to dedicate about 37% of memory
capacity, reducing the effective size of the 8GB DIMM to 5.6GB,
making it unappealing for practical implementations.
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Figure 15: Execution time impact of different schemes. Providing ECC-4 per word incurs prohibitive storage overhead (37%

memory capacity), whereas the read-before-write of FREE-p can cause significant performance degradation.

7.2 Error Correction in PCM
Several recent studies have looked at error correction in PCM

memories. These solutions range from replicating pages with faulty
cells [20], to correcting hard errors with pointers or data inver-
sion [21, 22], to efficiently using non-uniform levels of error cor-
recting pointers [23], to sparing lines with faulty cells with em-
bedded pointer [24]. All of these schemes rely on non-traditional
DIMMs, and have extra bits associated with each page or line.
Whereas, we want a scheme that works well with existing DIMMs.
The work that is most closely related to our proposal is FREE-p
(Fine Grained Remapping with ECC and Embedded Pointers) [24].

FREE-p decommissions a line with faulty cells (more than what
can be handled by the per-line ECC) and stores a pointer in the
line to point to the spare location. It relies on the read-before-write
characteristics of PCM memory to read the pointer before writing
to the line (to avoid destroying the pointer). While this may be a
reasonable assumption for PCM because of high write latency, such
read-before-write operations cause significant performance degra-
dation in DRAM memories. Figure 15 compares the performance
of FREE-p with ArchShield. We implemented the Baseline FREE-
p system. FREE-p causes 8% performance degradation on aver-
age (and sometimes as high as 29%, such as for lbm), whereas
ArchShield causes negligible performance impact. Furthermore,
FREE-p assumes a fault indicator bit with each line, which is not
present in traditional DIMMs. The performance of FREE-p can
be improved by caching the embedded pointer (using pCache, pIn-

dexCache), however FREE-p would still incur the high decoding
latency of multi-bit ECC. As such multi-bit ECC decoding delay is
not present in ArchShield, it will avoid the associated performance
penalties of multi-bit ECC.

7.3 Low-Voltage SRAM Caches Using ECC
Reducing the supply voltage of an SRAM cell increases the prob-

ability of the cell becoming erroneous. Several recent studies [?,
25–29] have looked at means to tolerate such errors, so as to en-
able large SRAM caches to operate at low voltages. However, the
constraints for cache and memory are quite different. For exam-
ple, the deterministic latency requirement for main memory makes
it impractical to implement complex schemes [27, 28] that require
accessing multiple banks in parallel and combining the results. Fur-
thermore, the most recent work in this area [29] showed that even
at very low voltages only a small percentage of lines have more
than one-bit error, so low voltage operation can be enabled with-
out significant performance degradation by simply discarding lines

with multi-bit error. Unfortunately, discarding random lines from
the address space is not a viable option for main memories. While
disabling can be performed at a cache line granularity in SRAM
caches, the OS must disable the entire page for faulty lines. Thus,
even if 1% of the lines are deemed faulty, given that a typical page
of 4KB contains 64 lines, such page-level disabling would cause
most of the pages to be decommissioned. Thus, the constraints
of deterministic latency and coarse-grained disabling make main
memory reliability a more difficult problem than for SRAM caches.

7.4 Software Techniques for Reliability
Memory errors can be tolerated in software as well. For ex-

ample, with memory page retirement [30, 31], the OS can retire
a faulty page from the memory pool, once such a faulty page is
detected. Unfortunately, these schemes operate at a coarse granu-
larity of page size. Given that the typical page size is 4KB (32Kb),
these schemes are unable to tolerate error-rates higher than one er-
ror for every several tens of thousand of bits. To operate at high
error-rate, a fine grained approach such as at word-granularity or
line-granularity is needed.

8. SUMMARY
Scaling of DRAM memories has been the prime enabler for higher

capacity main memory system for the past several decades. How-
ever, we are at a point where scaling DRAM to smaller nodes has
become quite challenging. If scaling is to continue, future memory
systems may be subjected to much higher rate of errors than cur-
rent DRAM systems. Traditional techniques such as row sparing
or ECC DIMM do not tolerate high error-rates efficiently. Unfortu-
nately, tolerating high error rates while concealing the information
about faulty cells within the DRAM chips results in high overhead.
To sustain DRAM scaling, efficient hardware solutions for toler-
ating high error-rates must be developed. To that end, this paper
makes the following contributions:

1. We propose ArchShield, an architectural framework that ex-
poses the information about faulty cells to the hardware. It
uses a Fault Map to track lines with faulty cells, and employs
Selective Word Level Replication (SWLR), whereby only faulty
words are replicated for fault tolerance.

2. We show that embedding the data structure of ArchShield in
memory still provides most (96%) of the memory capacity
available for normal usage, even at high error-rate.



3. We show that the performance degradation of ArchShield
from extra traffic due to Fault Map and SWLR is only 1%.
This is achieved by demand-based caching of Fault Map en-
tries on processor chip, and by architecting the replication
structure to reduce access latency.

4. We show that ArchShield can also be leveraged for reduc-
ing refresh operations in DRAM memories. ArchShield can
reduce the effective refresh time of DRAM from 64ms to
1 second, thus reducing the refresh related overheads of la-
tency and power by a factor of 16.

ArchShield can be implemented by making minor changes to the
memory controller and the last level cache. ArchShield can be de-
ployed with commodity DIMMs and does not requires any changes
the existing memory interfaces. Similarly, ArchShield does not re-
quire any changes to the operating system, except for limited vis-
ibility to the address space. As system scale down to sub 20nm
regime, we believe such cross-layer solutions for handling errors
would become essential for future systems.
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