
PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan? Donghyuk Lee†‡ Onur Mutlu∗†
?University of Virginia †Carnegie Mellon University ‡Nvidia ∗ETH Zürich

Abstract
System-level detection and mitigation of DRAM failures of-

fer a variety of system enhancements, such as better reliability,
scalability, energy, and performance. Unfortunately, system-
level detection is challenging for DRAM failures that depend on
the data content of neighboring cells (data-dependent failures).
DRAM vendors internally scramble/remap the system-level ad-
dress space. Therefore, testing data-dependent failures using
neighboring system-level addresses does not actually test the
cells that are physically adjacent. In this work, we argue that
one promising way to uncover data-dependent failures in the
system is to determine the location of physically neighboring
cells in the system address space. Unfortunately, if done naively,
such a test takes 49 days to detect neighboring addresses even
in a single memory row, making it infeasible in real systems.

We develop PARBOR, an efficient system-level technique that
determines the locations of the physically neighboring DRAM
cells in the system address space and uses this information to
detect data-dependent failures. To our knowledge, this is the
first work that solves the challenge of detecting data-dependent
failures in DRAM in the presence of DRAM-internal scram-
bling of system-level addresses. We experimentally demonstrate
the effectiveness of PARBOR using 144 real DRAM chips from
three major vendors. Our experimental evaluation shows that
PARBOR 1) detects neighboring cell locations with only 66-90
tests, a 745,654X reduction compared to the naive test, and 2)
uncovers 21.9% more failures compared to a random-pattern
test that is unaware of the neighbor cell locations. We introduce
a new mechanism that utilizes PARBOR to reduce refresh rate
based on the data content of memory locations, thereby improv-
ing system performance and efficiency. We hope that our fast
and efficient system-level detection technique enables other new
ideas and mechanisms that improve the reliability, performance,
and energy efficiency of DRAM-based memory systems.

1. Introduction
The tremendous growth in DRAM capacity over the last few

decades resulted from the continued scaling of DRAM process
technology. By making the cell dimensions smaller, more cells
can be packed in the same die area, enabling more capacity at
the same cost. Unfortunately, scaling cells to smaller technology
nodes introduces major reliability issues in DRAM [34, 37, 39,
46, 47, 52, 56, 57, 58, 60, 64]. In order to enable reliable DRAM
in future memory systems, prior works proposed to detect and
mitigate DRAM failures in the field, while the system is under
operation. Such system-level detection of DRAM failures has
three advantages. First, it can enable better scaling of DRAM
by manufacturing smaller and unreliable cells, but providing
reliability guarantees by detecting and mitigating failures at the
system level [6, 35, 47, 51, 59, 62]. Second, it can provide
better reliability against failures that escape the manufacturing
tests [30, 39, 53, 67, 74, 75]. Third, it can improve system
performance and power/energy consumption by enabling the
system to reduce the access latency [18, 27, 43] and refresh
rate [46, 48, 62, 80] of robust DRAM cells, while maintaining a
higher latency and higher refresh rate for likely-to-fail cells.

Even though a system-level detection and mitigation tech-
nique offers better reliability, performance, and energy effi-
ciency, such a technique faces a major unresolved challenge in

DRAM failure detection. A large fraction of DRAM failures oc-
cur due to interference between cells located in close proximity:
some cells fail when specific patterns are stored in neighboring
cells, as shown in prior works [18, 35, 39, 43, 45, 47, 64]. We
call this phenomenon data-dependent failures. These failures
can be detected by testing neighboring cells with a data pattern
that induces the maximum interference between the cells, which
we call the worst-case data pattern. Detecting data-dependent
failures at the system level is particularly challenging: DRAM
vendors internally scramble the address space, and therefore,
adjacent bit addresses in the system (i.e., system addresses) do
not map to adjacent cells in the physical DRAM cell arrays
(i.e., physical addresses). This mapping of system address to
physical address, referred to as address mapping, is different
for each vendor and each chip generation (depending on the
internal design of chips), making it difficult to expose it to the
system. Without precise knowledge of the address mapping, the
worst-case data pattern cannot be applied to induce the maxi-
mum interference in physically neighboring cells, since adjacent
bit addresses at the system level might not map to cells that are
physically adjacent.

Figure 1 shows one example of address scrambling. If the
system address and physical address are mapped linearly, data-
dependent failure in the cell at the system-level bit address X
can be detected by writing the worst-case pattern at system-
level bit addresses X-1, X, and X+1. Unfortunately, due to
scrambled mapping of system addresses to physical addresses,
physically neighboring cells can have completely different sys-
tem addresses. In this example, the left physical neighbor is
located at system address X+1, the right physical neighbor at
X+5.

VictimLeft

X
MAPPING

SCRAMBLED X+1 X+5

Right

10 0

Victim

X+1X−1 XLINEAR

Left

MAPPING

Right

10 0

Figure 1: Scrambled mapping of system address to physical

In this work, we show that one way to uncover data-dependent
DRAM failures at the system level is to determine the location
of physically neighboring cells in the system address space
and use that information to devise test patterns that ensure that
the physically neighboring cells are tested with the worst-case
data pattern. This is a promising approach considering that
each generation of chips can have different address mappings,
and a technique that can learn the mapping will be generally
applicable to any system with any chip. As a cell is primar-
ily affected by two immediate neighbor cells [1, 60], such a
system-level mechanism should detect the locations of these
immediate neighbors. Unfortunately, naively ensuring that all
two physically neighboring cells are covered in testing requires
exhaustively testing every combination of two bit addresses in a
row, an O(n2) test where n is the number of cells, which takes
49 days of testing even for a single row with 8K cells. As cells
get smaller and more vulnerable to cell-to-cell interference, it
is likely that potentially more neighboring cells will affect each
other in the future [2], increasing the test time to 1115 years
for three neighbors and 9.1M years for four neighbors. Clearly,
it is not feasible to run tests for such a long time to uncover
data-dependent failures.

Our goal in this work is to propose a fast and efficient mech-
anism to determine the locations of the physically neighboring

1

cells in the system address space. Doing so would help to detect
data-dependent failures in the system and thus would enable
techniques that improve DRAM reliability, latency, and energy,
and aid DRAM technology scaling.

To this end, we develop an efficient test method based on two
key ideas. The first key idea leverages the observation that cells
exhibit variability in the way they get affected by cell-to-cell
interference. Even though cells get affected by both left and right
neighbors, some cells are strongly coupled to only one neighbor
(due to process variation) and fail when the data content of only
one neighbor changes. We call these cells strongly coupled cells.
Figure 2 shows the variability in coupling in three different
cells (A, B, C, each marked as Victim). Cells A and B are
strongly coupled cells: they fail depending on the content of
only the left or the right neighbor, respectively. Cell C is a
weakly coupled cell: it fails only when both neighbors contain
the worst-case data pattern. Leveraging our observation, our
key idea to reduce the test time is to locate the address of only
one neighboring cell of strongly coupled cells. This approach
reduces the test time from O(n2) to O(n), as each address bit
needs to be tested linearly once to determine the address that
causes the data-dependent failure in the strongly coupled cell.

Left Victim Right Left Victim Right Left Victim Right

A B C0

(a) Strongly Coupled (b) Weakly Coupled

0 0 0

Figure 2: Strong vs. weak coupling of neighboring cells

However, detecting the address of only one neighbor can have
a negative effect on the coverage of failures for weakly coupled
cells, as these cells depend on the content of both neighbors
instead of one. Our second key idea enables us to detect both
neighboring locations with multiple simple linear tests. The idea
is based on the observation that internal DRAM organization
is mostly regular and repetitive, with an abundance of paral-
lelism in rows. Due to the regularity in internal DRAM address
mapping, the distance of the left neighbor in the system address
space is the same for many cells in multiple rows. Ditto for
the distance of the right neighbor. And, due to randomness in
process variation, some strongly coupled cells fail based on the
content of the left neighbor and some on the right neighbor. By
running parallel tests in different rows simultaneously, we can
detect the system address distance of both the left neighbor and
the right neighbor for different strongly coupled cells, which
together serve as the distances of the left and right neighbors for
weakly coupled cells (since internal DRAM address mapping
is very regular across rows). Consequently, it is possible to
estimate the addresses of all neighboring cells by testing multi-
ple cells in different rows simultaneously and aggregating the
distances of the neighboring locations found in those rows.

Based on these two key ideas, we propose PArallel Recursive
neighBOR (PARBOR) testing, which detects the locations of
physically neighboring cells efficiently by recursively testing
multiple rows in parallel. We demonstrate the effectiveness of
PARBOR by evaluating it using real DRAM chips. Using an
FPGA-based infrastructure, we are able to find the locations of
physically neighboring cells in 144 real DRAM chips manufac-
tured by three major vendors with only 66−90 tests, a 90X and
745,654X reduction, respectively, compared to tests with O(n)
and O(n2) complexity. Using this neighboring cell location in-
formation, we devise a new test methodology, which performs
only a small number of test iterations to uncover data dependent
failures in the entire chip. PARBOR uncovers 21.9% more fail-
ures than a test with random data patterns that is unaware of the
locations of neighboring cells in 144 tested DRAM chips.

We show that PARBOR enables not only prior optimizations
that rely on system-level detection of data-dependent failures,
but also new system-level optimizations that improve the reliabil-
ity, performance, and energy efficiency of DRAM. We propose
and evaluate one such mechanism that improves DRAM perfor-
mance by reducing refresh operations. We call this new refresh
reduction technique data content-based refresh (DC-REF). The
key idea of DC-REF is to employ a high refresh rate only in rows
where the data content of the application matches the worst-case
pattern that causes failures. Our evaluation shows that DC-REF
reduces the number of refreshes by 73% and improves perfor-
mance by 18% for a system with 32 Gbit DRAM chips and 8
cores running a wide range of applications.

This paper makes the following contributions:
• This is the first work to propose an efficient system-level

mechanism for locating the addresses of neighboring cells
in DRAM devices. Our mechanism, PARBOR, reduces
the test time for such detection by exploiting the notion of
strongly coupled cells and recursively testing multiple rows
in parallel. We use the addresses of physically neighboring
cells to devise a new test methodology that can efficiently
uncover data-dependent failures.

• We experimentally demonstrate that PARBOR can detect
the neighboring cell locations with a small number of tests.
Using an FPGA-based infrastructure, we show that PAR-
BOR detects neighboring locations with only 66−90 tests
in 144 real DRAM chips from three major manufacturers, a
90X and 745,654X reduction compared to optimized/naive
tests, with respectively O(n) and O(n2) complexity.

• We show that PARBOR uncovers, on average, 21.9% more
failures than a test with random data patterns that is unaware
of the locations of neighboring cells.

• We show that PARBOR enables new mechanisms to improve
future memory systems. Based on the detected patterns that
cause failures in cells, we propose a data content-based
refresh minimization mechanism, DC-REF, which improves
performance by 18% for a system with 32 Gbit DRAM chips
and 8 cores over a wide range of applications.

2. Background
We provide necessary background on DRAM organization

and cell operation to understand the causes of data-dependent
failures. We refer the reader to other works for more detail on
the DRAM system and its operation [16, 38, 42, 43, 44, 46, 69].

2.1. DRAM Organization
Figure 3a shows the high level organization of DRAM. A

DRAM module is connected to the memory controller through
a channel and each module is hierarchically organized into mul-
tiple ranks, chips, and banks. For example, a typical DRAM
module can have one rank with 8 chips, where each chip consists
of 8 banks. While accessing a 64-byte cache line from DRAM,
each chip transfers 64 bits of data in 8 bursts.

Chip 7

...

C
o

n
tr

o
ll

er

...

B
a

n
k

 0

B
a

n
k

 7

B
a

n
k

 1

M
em

o
ry

Rank
Chip 0 Chip 1

(a) DRAM Hierarchy

B
itlin

e

Wordline

C
a

p
a

ci
to

r

Cell

Transistor

Sense Amplifier

(b) Cell Array

Figure 3: DRAM organization

DRAM banks are organized as multiple 2D arrays of cells.
Figure 3b shows a cell array within a bank, and sense amplifiers
that are used to latch data values read from cells. A cell consists
of a capacitor and a transistor. The capacitor stores data as

2

1

0 0 0 0

00

Q Q

SA

1 2V
D

D
+δ

1 2V
D

D
-δ

1 2V
D

D
-δ

C
el

l
B

itl
in

e

À PRECHARGED Â AMPLIFICATION

0 V D
D 0

Á CHARGE SHARING

1 2V
D

D

1 2V
D

D

1 2V
D

D

(a) Cell operation

0

0 0

RightVictimLeft

0 0

0 0

0Q

SA
C

el
l

B
itl

in
e

Â AMPLIFICATION

¸

· 000

¶

1 2V
D

D
-δ

À PRECHARGED

1 2V
D

D

1 2V
D

D

1 2V
D

D

1 2V
D

D
+δ

-ε

1 2V
D

D
-δ

Á CHARGE SHARING

(b) Failure during charge sharing

0

0 0

RightVictimLeft

0 0

0 0

0Q

SA
C

el
l

B
itl

in
e

À PRECHARGED Â AMPLIFICATION

0 0

1 2V
D

D
-δ

1 2V
D

D
+δ

1 2V
D

D
-δ

0

¶
¸

Á CHARGE SHARING

1 2V
D

D

1 2V
D

D

1 2V
D

D ·

(c) Failure during sensing and amplification

Figure 4: Example data-dependent failures due to coupling

charge, and the transistor acts as a switch to the capacitor. While
accessing a row, all cells in the row are selected in parallel using
a wire called wordline. An individual cell in each column is
accessed through a vertical wire called bitline.
2.2. DRAM Cell Operation

Figure 4a describes DRAM cell operation in detail. A cell is
represented as a circle and a sense amplifier is represented as a
rectangular box. We represent the amount of charge in grayscale
where white depicts the discharged state, 0 (data value ‘0’), dark
gray the charged state, Q (data value ‘1’), and light gray the
quiescent state. DRAM cell operation can be explained with
three major steps:

À PRECHARGED. Initially, each cell in a bank is in charged
(Q) or discharged (0) state, depending on the data value stored
in the cell. Bitlines are maintained at a voltage level of 1

2VDD, to
enable access to the bank.

Á CHARGE SHARING. Activation of a row raises the voltage
in the wordline, connecting the cell capacitor to the bitline.
Depending on whether the cell is charged (Q) or discharged (0),
charge flows out of or into the cell, slightly perturbing the bitline
voltage from 1

2VDD to 1
2VDD ±δ .

Â SENSING AND AMPLIFICATION. After the charge sharing
phase, the sense amplifier “senses” the voltage perturbation
towards VDD or 0 in its corresponding bitlines and starts to
“amplify” this voltage in the same direction. Data values can be
read from the sense amplifiers during this time. A cell remains
in quiescent state during this transition and is restored to its
original state once the bitline voltage stabilizes to VDD or 0.

Once read or write accesses to the row are complete, the bank
is brought back to the PRECHARGED state: the cell capacitor
and sense amplifiers are disconnected from the bitlines, and the
bitlines are driven back to 1

2VDD.
So far, we discussed cell operation without considering inter-

ference among cells. We next discuss the impact of data values
of neighboring cells on cell operation.
2.3. Data-Dependent Failures: Causes and Examples

Adjacent cells can interfere with (i.e., disturb) each other,
depending on the values (i.e., charge) stored in them. A bit
failure occurs when a cell is disturbed enough to alter the data
value stored in the cell. We call such a failure that is a func-
tion of the data values of neighboring cells as data-dependent
failure. The cell experiencing the failure is the victim cell. A
data-dependent failure is caused by coupling between adjacent
bitlines due to parasitic coupling capacitance [1, 45, 47, 60, 64].
This capacitance provides an indirect path between neighboring
cells, which affects cell operation and hence value. Here, we
discuss the impact of the coupling capacitance between adjacent
bitlines on data-dependent failures in an open bitline DRAM
architecture [66, 68].1 We examine data-dependent failures in
two groups based on the affected stage of cell operation.

During CHARGE SHARING. The voltage difference in two
adjacent bitlines is responsible for data-dependent failures dur-

1All major DRAM vendors use the open bitline architecture, as it enables
higher DRAM density.

ing the CHARGE SHARING phase. A capacitor starts to build up
charge in the presence of a voltage difference between its two
nodes, but remains quiescent otherwise. In the presence of a
voltage difference in neighboring bitlines, coupling capacitance
between adjacent bitlines builds up, providing an extra path for
charge flow that perturbs the voltage in bitlines. Figure 4b de-
picts this effect, where we show three neighboring cells in a row.
The middle cell is the victim that is in charged state (Q), and the
two adjacent cells (left and right neighbors) are discharged (0).
A data-dependent failure during the CHARGE SHARING phase
occurs in three steps:

¶ Once the wordline is raised, charge flows out of the victim
cell (Q), perturbing the bitline voltage to 1

2VDD+δ . At the same
time, charge flows from the bitline to discharged neighbor cells
(0), perturbing the neighboring bitlines towards 0 (1

2VDD −δ).
· The coupling capacitor between the victim and neighbors

now experiences the voltage 1
2VDD+δ at one node and 1

2VDD−δ

at the other. Due to the increasing voltage difference between the
neighboring bitlines, the coupling capacitance starts to increase.

¸ As a result, some charge from the victim bitline flows
towards the parasitic capacitor, decreasing the bitline voltage
from 1

2VDD +δ to 1
2VDD +δ − ε . If the voltage decreases to the

point that the sense amplifier senses the voltage perturbation as
data value ‘0’, it drives the victim bitline towards 0 instead of
VDD, resulting in a failure in the victim cell.

Note that this failure is data-dependent because it would not
occur if the adjacent cells have the same initial data value. In
that case, all neighboring bitlines experience similar changes in
bitline voltage during the charge sharing phase (either 1

2VDD+δ

or 1
2VDD−δ for all bitlines). The coupling capacitor experiences

minimal voltage difference, and thus there is no effect on cell
access.

During SENSING AND AMPLIFICATION. The time-delay
in sensing two adjacent bitlines is responsible for data-dependent
failures during the SENSING AND AMPLIFICATION phase. In the
presence of a sudden voltage change in one node of a capacitor,
the coupling effect changes the voltage of the other node in
the same direction. During SENSING AND AMPLIFICATION,
due to imperfect timing, if one bitline is sensed and amplified
before the neighbors are sensed, the sudden change in the bitline
voltage perturbs the neighboring bitlines, which can lead to
a data-dependent failure. Figure 4c depicts this effect, where
the middle cell is the victim in charged state (Q), and the two
adjacent cells (left and right neighbors) are discharged (0). Once
the wordline is raised, voltages in the bitlines are perturbed to
1
2VDD ± δ depending on the initial state of the cells. A data-
dependent failure during the SENSING AND AMPLIFICATION
phase occurs in three steps:

¶ Due to time delay, the two neighboring bitlines are sensed
and amplified towards 0 before the victim bitline is sensed.

· As a result, the coupling capacitor between the victim and
the neighbor experiences a sudden voltage change towards 0 in
the node connected to the neighbor bitline. Consequently, the
other node of the capacitor connected to the victim bitline also
experiences a similar voltage change towards 0.

3

¸ When the sense amplifier finally starts to sense the victim
bitline, it senses a value less than 1

2VDD + δ and can wrongly
sense it as data value ‘0’, resulting in a failure in the victim cell.

This failure is data-dependent because it would not occur
if the adjacent cells have the same initial data value. In this
case, all the bitlines are driven in the same direction during the
sensing and amplification phase. Therefore, voltage in the cou-
pling capacitor increases or decreases the voltage of all bitlines
towards the original values of the cells. Thus, neighboring cells
with the same content do not lead to data-dependent failures.

Manufacturing Tests for Data-Dependent Failures. Man-
ufacturers exhaustively test DRAM cells for data-dependent
failures after production. First, they determine the data pattern
that introduces maximum cell-to-cell interference through the
coupling capacitor, which can lead to a data-dependent fail-
ure [3, 4, 19, 33, 36, 70, 71, 78]. This pattern is the worst-case
pattern. Second, they test the chips with the worst-case pattern,
while the cells store the minimum possible amount of charge,
to make sure that cells are more vulnerable to failure. DRAM
cells leak charge gradually and are refreshed periodically over
time. A cell contains the minimum amount of charge just before
refresh and is thus more vulnerable to data-dependent failures
just before refresh [3, 35, 43, 47, 83]. Manufacturers test for
data-dependent failures by writing the worst-case pattern in the
cells and waiting for the end of the refresh interval before access-
ing the cells again. A data-dependent failure is detected if the
data value read from a cell does not match the value originally
written into the cell. The chip is either discarded or repaired if
there is any data-dependent failure.

3. Challenges of System-Level Detection
of Data-Dependent Failures

Traditionally, DRAM chips are tested for data-dependent
failures at the manufacturing time. However, data-dependent
failures are becoming more difficult to test for as DRAM cell
size reduces. Recent works propose different system optimiza-
tions that can be enabled by detecting data-dependent failures
while DRAM is being used in the field, during online system
operation. As described in Section 1, such system-level detec-
tion of data-dependent failures can enable better DRAM scal-
ing [6, 35, 47, 51, 59, 62], reliability [39, 53, 67, 74, 75], and
latency and refresh reduction [18, 27, 43, 46, 48, 62, 80]. Un-
fortunately, detection of data-dependent failures at the system
level faces two major challenges.

Challenge 1: Address Scrambling. The system can theoret-
ically detect data-dependent failures by writing the worst-case
pattern in the neighboring bit addresses in DRAM. Unfortu-
nately, DRAM vendors scramble the system address space inter-
nally in the DRAM chip. As a result, neighboring addresses in
the system address space do not correspond to neighboring cells
in the physical cell array. The mapping of system address space
to physical address space, which we call address mapping, is
not exposed to the system. This mapping could be different for
different vendors and generations of DRAM chips, making it
difficult to expose it to the system. DRAM manufacturers might
also not want to expose this mapping to the system as it might
provide competitive information related to DRAM yield.

The reason behind this address scrambling lies in the cost-
optimized organization of DRAM internals [70, 78]. During
an access, DRAM data is buffered internally in multiple stages
before it is sent over the bus through the IO pins [44]. To
minimize cost, DRAM-internal buffers are organized in a hi-
erarchical manner, where each level has a different number of
entries. Data gets scrambled while passing from a wider to a
narrower structure [70, 78].

Figure 5 shows two stages of buffering in a DRAM bank.
First, an access to a DRAM bank activates an entire row (8K

cells) in multiple cell arrays. The data of the activated row gets
latched in the local sense-amplifiers (LSA). As each LSA’s width
is approximately twice the width of a cell, data from a row is
latched in two different rows of LSAs [17, 68], one at the top
and the other at the bottom of each cell array. Second, upon a
read command, data is transferred from the LSAs to global sense-
amplifiers (GSA) via long global bitlines. Each bank contains
only a small number (64 – 128) of global bitlines and GSAs due
to their large width and hence high cost. Because of this large
mismatch in the number of LSAs and GSAs, only a fraction of
data from the LSAs can be transferred to GSAs at a given time.

X+1

X+5 X+6

X+2X

X+7

X+3

X+4

MUX

Data Bits in Bursts

Top LSA Row

Cells

Bottom LSA Row

GSA

I/O
Burst0

Burst1

+7 +6+2+3+4+5X+1

Figure 5: An example of address scrambling

Depending on how (i) cells are connected to LSAs and (ii)
LSAs are connected to GSAs, different address mappings are
possible in a DRAM chip. Figure 5 illustrates one example map-
ping. The system writes to bit addresses X to X+7 in two bursts
through the I/O pins. The number in a cell in the figure repre-
sents the address of that cell as a difference from address X (e.g.,
X: X+0, +7: X+7). When the first burst of data arrives at the
IO pins, the data first gets distributed into two groups (X, X+1),
(X+2, X+3), where each group is buffered in GSAs connected
to different cell arrays. Then, depending on the way top and
bottom LSAs are connected to cells, data bits get swapped when
transferred from LSAs to cells (X, X+1 to X+1, X). Similarly,
data in the second burst ends up in different arrays swapped as
(X+5, X+4) and (X+7, X+6).

As shown in the figure, finally, the neighboring cells of X
get data from system address bits X+1 and X+5. Due to this
internal address scrambling, testing for data-dependent failures
with neighboring system addresses (X, X+1, X+2) would not
test physically neighboring cells within DRAM.

Challenge 2: Long Test Time. Without knowledge of ad-
dress mapping, detecting data-dependent failures at the system
level is hard, as the system does not know the addresses of
physically neighboring cells. Many prior works that depend
on system-level detection of data-dependent failures assume
that simple tests with all 0s/1s data patterns can detect data-
dependent failures. Unfortunately, prior studies [6, 47] show
that a large fraction of failures remain undetected with such
simple tests. As a result, mechanisms built on top of such sim-
ple tests are impractical as they would face severe reliability
issues. One prior work [35] tries to solve this problem by testing
DRAM with a large number of random data patterns. Many
rounds of tests with random patterns increase the probability of
discovering more failures by increasing the likelihood of writing
the worst case pattern into the addresses mapped to physically
neighboring cells [35]. Unfortunately, system-level testing with
random patterns take very long, are expensive, and make it diffi-
cult to provide any guarantees on the fraction of data-dependent
failures that remain undetected [35] (as we will quantitatively
show in Section 7).

One alternate way to uncover data-dependent failures is to
determine the location of physically neighboring cells in the
system address space and use that information to ensure that
the physically neighboring cells are tested with the worst-case
pattern. This is a promising approach, since each generation
of chips can have different address mappings: a technique that

4

can quickly learn that mapping is applicable to any system
with any chip. As a cell receives the most interference from
its two immediate neighbors [1, 60], it is possible to devise an
exhaustive test to determine the locations of these two neighbors.

For each potential failing cell (victim), such a test would ex-
haustively test all combinations of two bit addresses in a DRAM
row. The victim would fail when the addresses of the neighbors
are being tested, indicating where the neighbors are located in
the system address space. For example, when the cell at address
X in Figure 5 is tested, out of all two bit address combinations
within the row, the cell at X would fail only when content in
addresses X+1 and X+5 is set to the worst case pattern, revealing
the system addresses of immediate neighbors. Unfortunately, se-
lecting every combination of 2 bit addresses from n bit addresses
requires O(n2) tests and takes 49 days of testing for a row with
n = 8K cells (Discussed in Appendix). As cells get smaller
and more vulnerable to cell-to-cell interference, it is likely that
potentially more neighboring cells will affect each other in the
future [2]. Determining the location of k-neighboring cells re-
quires O(nk) tests, increasing the test time to 1115 years/9.1M
years for detecting physical addresses of three/four neighbors.
Clearly, it is not feasible to run tests for such a long time.

Our goal in this work is to develop a fast and efficient testing
method to determine the locations of physically neighboring
cells in the system address space and use that information to
detect data-dependent failures in DRAM.

4. Key Ideas
In this work, (i) we develop an efficient system-level test

method to detect data-dependent failures in DRAM, (ii) ex-
perimentally demonstrate the effectiveness of our mechanism
using real DRAM chips, and (iii) discuss new uses cases of
our mechanism to improve system reliability and performance.
Our system-level test method for determining the location of
neighboring cells builds upon two key ideas.

4.1. Key Idea 1: Exploiting Strongly Coupled Cells
Our first key idea is based on the observation that cells af-

fected by bitline coupling due to parasitic capacitance between
neighboring bitlines can be divided into two groups based on
their sensitivity to coupling: Strongly vs. Weakly coupled.

(i) Strongly Coupled Cells. In Section 2, we discussed that
a victim cell experiences the largest interference when it is
surrounded by neighboring cells containing the opposite data
value (e.g., charged victim cell (Q) surrounded by discharged
(0) neighbors). However, due to process variation, some cells
experience a large enough interference to cause a data-dependent
failure even when only one neighbor has the opposite value. We
call such cells strongly coupled cells. Figure 6a illustrates a
strongly coupled victim cell that fails based on the data content
of only the left neighbor, irrespective of the content of the right
one. A strongly coupled cell can be coupled with either the left
or the right neighbor.

0

RightVictimLeft

0

0

0

0

1

Q Q Q

AMPLIFICATION
PRECHARGED SHARING AND

SA
C

el
l

B
itl

in
e 0 0 V D

D

1 2V
D

D

1 2V
D

D

1 2V
D

D

(a) Strongly coupled cell

0

RightVictimLeft

0

0

0

00 0

0

Q

AMPLIFICATION
PRECHARGED SHARING AND

SA
C

el
l

B
itl

in
e 0 0 0

1 2V
D

D

1 2V
D

D

1 2V
D

D

(b) Weakly coupled cell

Figure 6: Cells have different sensitivity to coupling

(ii) Weakly Coupled Cells. For these cells, the content of
only one neighbor cannot make the victim fail. Only when

both neighbors contain the opposite data value than the victim,
the victim bitline experiences a large enough interference that
makes the cell fail. Figure 6b shows an example of a weakly
coupled cell.

Leveraging our observation, our key idea to reduce test time
is to locate the address of only one neighboring cell of a strongly
coupled cell. Instead of detecting the addresses of both neigh-
bors by testing every combination of two bit addresses in a
DRAM row, each address now has to be tested linearly just once.
This approach has two major advantages. First, it reduces the
test time from quadratic O(n2) to linear O(n), where n is the
number of cells in a row. Second, it makes other well-known
optimizations applicable to this linear test. In this work, we
apply a recursive test to further reduce test time. Instead of
testing one bit address at a time, we divide the address space
of an entire row into smaller regions and test all addresses in
one region at once. Only the region that contains the neighbor
address is tested in the next levels of the recursion. When the
region size becomes one, we find the exact bit address of the
neighboring cell. This divide and conquer mechanism reduces
our test time to θ(n) (See details in Appendix).
4.2. Key Idea 2: Exploiting DRAM Regularity

and Parallelism
Our first key idea to detect the address of only one neighbor

significantly reduces test time. Unfortunately, it decreases the
coverage of failures, as without the knowledge of both neighbor-
ing addresses, it will not be possible to detect all data-dependent
failures (i.e., weakly coupled cells). Our second key idea en-
ables us to detect both neighboring locations only with simple
linear tests. The idea is based on the observation that DRAM is
internally organized as a 2D array of similar and repetitive tiles.
The regularity in tiles results in regularity in address mapping
within and across the tiles.2

Figure 7 shows a bank with 32K rows and 8K cells per row,
where cells are divided into smaller tiles. Two cells located at
the same column of a tile likely have the same address mapping
for their neighboring cells. For example, the system address
offsets of the two neighboring cells of each of X, Y and Z are
+1 and +5, in Figure 7.

Bank Tile

...

...

...

...

Global Sense Amplifiers

32
K

 R
ow

s

8K Cells

...

...

...

Local Sense Amplifiers

Local Sense Amplifiers

+1

+1

+1

+5

+5

+5

X

Y

Z

Figure 7: Regularity in address mapping across rows

We propose to utilize this regularity in mapping by running
parallel tests in different rows simultaneously. Due to random-
ness in process variation, some strongly coupled cells will fail
depending on the content of the right neighbor and some on
left. As the mapping is the same in different rows, even if the
cells tested are located in different rows, the location of the
neighboring cells will be the same. By running parallel tests
in different rows simultaneously, we can detect the system ad-
dress distance of both the left neighbor and the right neighbor
for different strongly coupled cells, which together serve as the
distances of the left and right neighbors for weakly coupled
cells. Consequently, it is possible to estimate the addresses of
all neighboring cells by testing multiple cells in different rows
simultaneously and aggregating the distances of the neighboring
locations found in those rows. For example, in Figure 7, the

2A very small fraction of faulty cells are remapped in DRAM [28, 41, 78].
Section 7.3 discusses how remapped cells can be handled.

5

test of some rows would find +1 as the neighbor distance (for
strongly coupled cells that are coupled with their left neighbors)
and the test of some other rows would find +5. Aggregating the
single neighbor distances found in all rows would provide both
distances as the locations of neighboring cells.

5. PARBOR: System-Level Parallel Recursive
Neighbor Testing

Based on our two key ideas, we propose an efficient system-
level technique for detecting the locations of neighboring cells,
called PArallel Recursive neighBOR (PARBOR) testing. We
first present the high-level design of PARBOR, and then discuss
design challenges and our solutions to solve those challenges.

5.1. Design Overview
At the high level, PARBOR first determines the location of

neighbors in the system address space by simultaneously testing
multiple rows containing data-dependent failures and aggregat-
ing the neighbor locations found in each row. Next, PARBOR
uses this information to test every cell in DRAM by applying
the worst-case data pattern to the neighboring cells and detects
all data-dependent failures. PARBOR has five major steps.

¶ Construct an initial set of victims that fail depending on
the data content in the neighboring cells (Section 5.2.1).

· Simultaneously test all the rows containing the initial set
of victims. Test each row recursively by dividing it into smaller
subregions until PARBOR finds the bit addresses of the neigh-
boring cells (Section 5.2.3).

¸ Aggregate the locations of neighboring cells found in each
row. Due to the regularity of DRAM tiles, the neighbors of
different victim cells are found at common regular distances
from each victim cell’s system address (Section 5.2.2). Thus,
the union of all distances found in step · for the initial set of
victims provides a set of possible distances where the physically
neighboring cells can be located for any cell in the chip.

¹ Filter out the random (non-data-dependent) failures that
occurred during the tests, as these failures can potentially include
some non-neighbor locations in the set of possible distances
determined in step ¸ (Section 5.2.4).

º Use the information on neighbor distances to detect data-
dependent failures in the entire chip by ensuring that all phys-
ically neighboring cells are tested with the worst-case pattern.
Test independent bits in the address space simultaneously to
reduce the test time (Section 5.2.5).

5.2. Detailed Design
PARBOR has five design challenges. (i) How to determine the

initial set of victim cells that exhibit data-dependent failures? (ii)
How to represent the neighbor locations efficiently for all cells?
(iii) How to recursively test a row? (iv) How to identify and filter
out random (non-data-dependent) failures during the tests? (v)
How to efficiently use the location information of neighboring
cells to test the entire chip for data-dependent failures? Next,
we provide a full overview of these challenges and describe our
proposed mechanisms that address these challenges.

5.2.1. Determining the Initial Set of Victim Cells
PARBOR relies on a set of known victim cells that exhibit

data-dependent failures to determine the locations of the phys-
ically neighboring cells. This initial victim set is needed as
testing for neighbor addresses in any random cell will likely not
work, as that cell might not be vulnerable to failure at all. To
determine the initial set of victim cells, PARBOR first tests a
DRAM chip with multiple different data patterns. A cell that
operates correctly for one pattern, but fails when the content in
the row changes with a different pattern is likely to exhibit data

dependence.3 PARBOR includes such a cell in the initial set of
victim cells. We demonstrate the effect of the size of this initial
set in Section 7.3.

Note that accurately detecting data-dependent failures is chal-
lenging as it is difficult to resolve the root cause behind fail-
ures. For example, some weak cells fail irrespective of the con-
tent of the neighbors [47], soft failures occur randomly across
cells [7, 76], VRT cells fail when charge randomly gets trapped
in the gate of the transistor and causes the capacitor to leak
charge faster [47, 55, 65, 85], etc. Thus, when a failure is found
(during the determination of the initial set of victim cells), its
cause might not be data dependence. We resolve this issue by
making PARBOR robust to such random failures. PARBOR
first detects a set of failures (i.e., the initial set of victim cells)
that are likely to be caused by data dependence. It later filters
out random failures from this set (Section 5.2.4).
5.2.2. Representation of Neighbor Addresses

PARBOR determines the physically neighboring cell ad-
dresses by running simultaneous recursive tests in multiple rows
to exploit the regularity in DRAM chips. Representing the neigh-
bor addresses efficiently is important as recording the neighbor
address for every bit in a row will incur a large overhead. PAR-
BOR simplifies the representation of neighbor addresses by
expressing each neighbor address as a distance (or, offset) from
the victim cell. We observe that, due to regularity in address
mapping, the distance of any physically neighboring cell from
the victim can be represented with a limited set of numbers.
Figure 8 demonstrates the possible distances of any cell with
the example mapping discussed in Figure 5 of Section 3. The
system address for the cells in the row runs from 0 to 15, as
shown below the cell array. The figure shows that all physi-
cally neighboring cells are located at a distance of {±1, ±5},
irrespective of the absolute address of the victim cell. This
distance-based representation not only eliminates the necessity
to record every single neighbor address, but also simplifies the
recursive algorithm, which we discuss next.

01 5 9 84 13 12 3 2 7 6 11 10 15 14

+1 +5

−1

Victim

Distance = Address Difference

D

−5 C

A

+5+1 B

Left Victim Right Left Right

−1

−5

Cell Array

Address

±1 ±5 ±1 ±5 ±1 ±5 ±1 ±5 ±1 ±5 ±1 ±5±1 ±1

Figure 8: Representing neighbor addresses as distances

5.2.3. Recursive Test Algorithm
PARBOR recursively divides a row into smaller regions. The

region that contains the victim address is called the victim re-
gion. Each region is tested to determine if the neighbor address
belongs to that region. To test a region, opposite data values are
written to the victim address and to the bits in the test region.
This ensures that if the neighbor cell is located in the test region,
victim and neighbor cells contain the worst-case pattern. If the
victim is strongly coupled to the neighbor cell, data value written
to the victim will flip due to interference from the neighbor cell.
When data is read back from the victim region and compared
to the original values written, victim data will result in a mis-
match. The region that contains the address of the neighbor that
causes the victim to fail is referred to as neighbor region. We
represent the regions using distance, too. If the neighbor address

3DRAM cells can store data value 1 as either charged state or discharged
state [47]. To make sure that both types of cells are tested, every pattern tested
in PARBOR is also accompanied with the inverse pattern.

6

is located within the victim region, then the distance is 0; if
neighbor address is located in the immediate neighbor region,
then distance is ±1, and so on. These neighbor distances found
in multiple rows represent possible neighbor locations in the
entire chip. The reason is that, due to the regularity in mapping,
the left or the right neighbor locations for all cells in the chip
can be represented with a limited set of distances, as shown in
Figure 8. In order to find all possible neighbor locations, each
neighbor distance found in multiple rows is aggregated at each
level. In the next level of the recursive algorithm, only those
regions where a neighbor is found are subdivided into smaller
regions and tested recursively until the region size becomes one.
The aggregate list of all found distances provide the neighbor
locations for any cell in the entire chip.

We provide a simple example of our recursive testing method.
PARBOR starts with an initial set of victims that exhibit data-
dependent failures ({A, B, C, D}), as shown in Figure 8. The
victims are strongly coupled with one of their neighbors, denoted
by red circles in the figure. The distance between the victim
and neighbor address is shown within the cell. In this example,
PARBOR divides a region into equal halves at every level of the
recursive algorithm. As the address space is 16 bits, the region
size becomes 8 in the first level of the recursion. This region is
recursively divided into smaller regions of sizes 4, 2, and 1 in
the next levels. In Figure 9, we show the steps of the recursive
test for cell D, located at address 5. Each level of the recursive
test is labeled as L1, L2, and so on. At each level, the neighbor
region found is shown with a red outlined box. Figure 10 shows
the union of distances found at each level for all victim cells.

3 151 2 4 6 8 9 10 11 13 145 7 120

L1

L2

L3

L4

Victim AddressNeighbor Address

0 31 2
Distance −1

4 65 7 8 9 10 11 14 1512 13
Distance 0

0 1
Distance −2

32 4 5 6 7 8 9 10 11 12 13 14 15

Distance −5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

31 2 50 4 6 7 11 151413121098

Figure 9: Recursive test for cell D

L3

L1

L2

L4

3 151 2 4 6 11 13 145 127 80 109

C AD B

1 1 1 1

4

2

−1−5 +5+1

8

0
4

0

−2 −20

−1
2

+1

4

2

{±1, ±5}

{0, ±2}

{0, ±1}

{0}

Figure 10: Union of distances at each level for A, B, C, and D

¶ At the first level of the recursion (L1), the entire row is
divided into two regions, each containing 8 bits: Region 0 (ad-
dress bits 0–7) and Region 1 (address bits 8–15). D fails while
Region 0 is tested. As D also belongs to Region 0, PARBOR
determines that the distance between the victim and neighbor
region for D is 0. By testing the other rows simultaneously,
PARBOR finds that all victims fail at distance 0 at this level.

· At the next level, PARBOR divides the neighbor regions
found in level 1 into two smaller regions of size 4. For cell D,
these two regions contain address bits 0–3 and 4–7 (as shown in
the second level in Figure 9, denoted by L2). The neighbor of D
is located at address 0, which resides in the region at distance -1.
Therefore, D fails while testing the region at distance -1. On the
other hand, cell A is located at the region with address bits 8–11
and the neighbor (address 15) is located in the next immediate
region with address bits 12–15. Therefore, A fails at distance
+1. Similarly, PARBOR determines that B and C fail at distance
0. PARBOR creates a union of the distances at level 2 as {0,

±1} (as shown at L2 in Figure 10), At the next level, only the
regions at these distances are tested.

¸ PARBOR keeps dividing the neighbor regions until the
region size becomes 1 at level 4. At this level, D fails while
testing the region located at distance -5. Thus, we can deduce
the location of the neighbor bit address. Note that the union of
distances found for only four cells (A, B, C, and D) at this level
({±1, ±5}) provides the possible distances of neighbors for any
cell in this chip.
5.2.4. Filtering Random Failures During Tests

PARBOR starts the recursive tests with an approximate set of
data-dependent failures. However, some of these failures might
be caused by other phenomena (for example, soft failures [7, 76],
VRT [55, 65, 85], wordline coupling [39, 64], etc.). Failures
might also occur due to marginal cells that hold barely enough
charge to reliably store data until the end of the refresh interval.
Content in these marginal cells are sometimes read correctly,
sometimes not. These random failures interfere with PARBOR
during the recursive testing. A random failure may occur while
testing some region at a level, which wrongfully indicates that
region as a neighbor region, even though the region may not
contain any physically neighboring cells. PARBOR has to be
robust to such random failures, as our goal is to accurately
detect the neighboring locations of data-dependent cell failures.
In order to eliminate the noise induced by random failures,
PARBOR takes two steps. First, PARBOR discards the distances
found due to a victim cell that repeatedly exhibits failures while
testing most of the regions. These are likely to be marginal
failures as opposed to data-dependent ones. Second, PARBOR
ranks the distances of neighboring regions at each level. It
only considers the distances that occur very frequently. Due
to regularity in mapping, victims are likely to fail at a limited,
common set of distances. Hence, infrequent distances are likely
to occur due to random failures. We provide the frequency
of different distances found in real chips in Section 7.3, and
demonstrate how ranking helps to avoid noise from random
failures.
5.2.5. Finding Data-Dependent Failures in the Entire Chip

Once the addresses of the physically neighboring cells are
known, well-known test methods, such as neighborhood pattern-
sensitive fault (NPSF) tests [19, 77]), can be applied. These
tests identify hard faults depending on the data stored in nearby
memory cells. Efficient algorithms for detecting NPSFs are
based on March algorithms, which repeat a set of operations
for each bit. However, testing one bit at a time is not cost-
effective at the system level, as multiple data bits are transferred
in parallel (typically 8/16 bits per chip) from DRAM to the
processor. In order to take advantage of parallel data transfer in
real systems, we devise neighbor location-aware data patterns
that can simultaneously test different independent parts of the
row and reduce the number of required tests. The system can test
for a data-dependent failure by writing the worst-case pattern
in the victim cell and at the neighboring addresses. We observe
that multiple victim cells and their potential neighbors can be
tested simultaneously, if they do not interfere with each other.

At the end of the recursive algorithm, PARBOR already has
a set of distances that contain the possible locations of neigh-
boring addresses. We use this information in two ways to test
independent parts of rows in parallel. First, PARBOR deter-
mines the maximum distance between a victim and the neighbor,
as any address located outside that region does not interfere with
the victim cell and therefore, can be tested at the same time.
PARBOR divides row addresses into chunks, where the length
of a chunk is equal to the maximum distance between the victim
and neighbors, and tests each of these chunks in parallel. For ex-
ample, if the neighboring cells are located at distance ±8, each
16-bit chunk in a row can be tested at once. However, within

7

each chunk, each bit is tested serially. Therefore, this method
would require 16 rounds to test each bit in a chunk of size 16.
Second, within each chunk, only the victim and the neighbor are
dependent. Bits in-between these two locations in the system
address space can be tested independently at the same time. In
this example, as the neighbor is located at distance 8, the first 8
bits in the 16-bit chunk (bit 0–7) do not interfere with each other
and are independent. Therefore, instead of testing one bit at a
time within the chunk, the first 8 bits within the chunk are tested
at once. As a result, each chunk can be tested in two rounds: the
first 8 bits in round 1 and the second 8 bits in round 2. As all
the chunks in the system address space are tested in parallel, all
cells in the chip can be tested in two rounds.

We conclude that PARBOR is an efficient mechanism that
determines the location of physically neighboring cells with a
recursive test and uses that information to test the entire chip for
data-dependent failures with a small number of neighbor-aware
data patterns.

6. Experimental Design and Infrastructure
In order to determine the efficacy of PARBOR in finding

the neighboring bit locations and uncovering data-dependent
failures, we test PARBOR with real DRAM chips using an
FPGA-based infrastructure. Similar to our prior works that
studied DRAM failures in off-the-shelf chips [18, 35, 39, 43, 47],
our infrastructure consists of a Xilinx ML605 board that is
connected to a host PC using a PCIe bus [84]. PARBOR is
implemented as a system-level test in the host, interfaced with
the memory controller to read and write DRAM modules.

Temperature. The amount of time DRAM cells can retain
charge largely depends on the operating temperature and almost
halves with every 10 ◦C increase in temperature [35, 39]. As
data-dependent failures get affected by the amount of charge in
the victim cells, our experiments isolate the effect of the temper-
ature using a temperature-controlled heat chamber. PARBOR is
targeted for systems running in the field, which usually operate
at the temperature range of 20 ◦C–60 ◦C [24, 43, 49]. Conse-
quently, we run our experiments at 45 ◦C, with sensitivity tests
at 40 ◦C and 50 ◦C. We find that neighbor locations determined
by PARBOR are not dependent on temperature.

Refresh Interval. A large refresh interval makes a cell more
vulnerable to failures. Prior works test DRAM at a large refresh
interval to model increased cell vulnerability in the future [29,
35, 47, 62]. In this work, PARBOR operates at a higher refresh
interval of 4 s (4 s at 45 ◦C corresponds to 328 ms at 85 ◦C [47]).
We expect that our results will hold at other refresh intervals as
prior works show that data-dependent failures exhibit similar
characteristics across different refresh intervals [35, 47].

DRAM Modules. We tested PARBOR using 18 DRAM
modules containing 144 chips from three different vendors. All
modules have a capacity of 2 GB and were manufactured within
the last five years (2011–2014).

Source Code and Data Release. We will release the source
code of PARBOR and data for all DRAM chips we tested at [61].

7. Results and Analysis
We first show the efficacy of PARBOR in (i) finding the

distances in the system address space of physically neighboring

locations of any cell and (ii) uncovering data-dependent failures.
Then, we provide detailed analyses of PARBOR.

7.1. Determining Neighbor Locations with PARBOR
We provide (i) the implementation details of the recursive al-

gorithm used in our experiments, (ii) neighbor address distances
found by PARBOR at each level of the recursion, and (iii) the
number of tests performed during the recursion.

Details of the recursive algorithm. The tested modules in
this work all have 8K cells in a row. In our experiments, PAR-
BOR recursively tests 8K cells in a row by dividing the row into
smaller regions until the region size becomes 1. PARBOR uses
5 levels of recursive testing to get to a region size of 1 from
a row size of 8K. The row is divided into two regions of size
4096 bits at the first level. At the remaining levels, each region
is divided into eight subregions (of sizes 512, 64, 8, and 1 for
levels 2 to 5, respectively).

Neighbor distances at each level of the recursion. Fig-
ure 11 shows the union of distances of neighbor locations found
by PARBOR at each level of the recursion for modules from
three different vendors. We found that all modules from a spe-
cific vendor and generation exhibit the same distances. Fig-
ure 11a shows that in the first two levels (L1 and L2), when the
row is divided into regions of 4096 bits and 512 bits respectively,
modules from A always have the neighbor region at distance
0. In the next levels, neighbor regions are found at multiple
distances. For example, neighbors are found at distances {0,
±1} at L3, and at distances {±1, ±2, ±6} at L4. Finally, at
the last level (L5), when region size becomes 1, neighbors are
found at distances {±8, ±16, ±48}. This set represents the
possible distances of the physically neighboring cells for any
cell in the system address space. We observe that neighbor
distances found by PARBOR are different across vendors. For
example, distances of neighbor cells for A is {±8, ±16, ±48},
whereas it is {±1, ±64} for B, and {±16, ±33, ±49} for C.
We conclude that PARBOR is capable of determining neighbor
locations across different vendors and generations.

Number of tests for the recursive algorithm. PARBOR
takes the union of neighbor distances found for all victim cells
at each level of the recursive test. Neighbor regions found at
each level are divided into smaller regions, and these smaller
regions are tested serially at the next level to determine which of
them contains the neighbor location. As a result, the number of
tests at each level directly depends on the number of neighbor
regions found at the prior level. If the number of tests at level
i is ti, the number of neighbor regions found in the prior level
is Ni−1, and each region is divided into Si subregions at level i,
then ti=Ni−1* Si.

Table 1 shows the number of tests performed at each level
for modules from three different vendors. At the first level, the
entire row is divided into two regions of size 4096 bits, and
therefore requires two tests (shown in the column labeled as
L1 in the table). Figure 11 shows that for modules from A,
PARBOR always finds the neighbor region at distance 0 at L1
and L2. As a result, it subdivides this region into 8 smaller
regions at the next levels and therefore, requires 1*8=8 tests at
L2 and L3, respectively. At L3, for the same modules, PARBOR
finds three neighboring regions at distances {0, ±1}. Therefore,

8

1 1 1 1 1 1

0

0

4096

0

512

64 64 64

L1

L2

L3

L4

L5

−6 −2

+1

+6

8 8 8 8

−1 +1 +2

+16−48 −8 +8−16

−1
8

+48

(a) Modules from A

8

1 111

0

0

4096

0

512

64 64 64

L1

L2

L3

L4

L5

−8

+1

−64

8

0

−1

+8

8

+1−1 +64

(b) Modules from B

8 8

1 1 1 1 1 1

0

0

4096

0

512

64 64 64

L1

L2

L3

L4

L5

−6 −4

+1

+6

8 8 8 8

−2 +2 +4

+33−49 −33 −16 +16 +49

−1

(c) Modules from C

Figure 11: Distances of neighbor regions at each level for modules from A, B, and C

8

it requires 3*8=24 tests at the next level (L4). The rightmost
column of Table 1 shows that the total number of tests performed
by PARBOR is 90/66/90 for modules from vendors A/B/C, a
90X/745,654X reduction compared to tests with O(n)/O(n2)
runtime. We conclude that PARBOR determines the neighbor
locations very efficiently with a small number of tests.

Manufacturer L1 L2 L3 L4 L5 Total

A 2 8 8 24 48 90
B 2 8 8 24 24 66
C 2 8 8 24 48 90

Table 1: Number of tests performed by PARBOR

We also find that different modules from a given vendor re-
quire the same number of tests in our experiments (not tabu-
lated). We believe this is because each vendor may have their
own unique address scrambling mechanisms and internal de-
signs that last across multiple DRAM generations.
7.2. Uncovering Data Dependent Failures with PARBOR

After discovering the distances of neighbor locations, PAR-
BOR utilizes this information to develop generalized neighbor-
aware test patterns for the entire chip. We provide (i) the number
of neighbor-aware data patterns for different modules in our ex-
periments, (ii) the number of data-dependent failures detected
using those patterns, and (iii) the fraction of failures detected by
PARBOR compared to all known failures (coverage).

Number of neighbor-aware test patterns. As discussed in
section 5.2.5, PARBOR generates neighbor-aware data patterns
such that independent regions of a row that do not interfere with
each other can be tested simultaneously. In our experiments, all
tested DRAM chips have neighboring locations within distances
of ±64. Consequently, PARBOR can test each 128-bit chunk in
a row at the same time.4 PARBOR further reduces the number
of test data patterns when addresses within a 128-bit chunk do
not interfere with each other. For example, neighboring cells
in modules from A are located at distances ±48, ±16, and
±8. As a result, each set of 8 bits in the 128-bit chunk do not
interfere with each other and therefore, are tested in parallel
for A, requiring a total of 16 rounds of tests. In order to test
both true and anti cells [47], each pattern is accompanied with
the inverse pattern. Therefore, 2*16=32 rounds are required
to test every bit in the entire chip for modules from A. In our
experiments, modules from B and C require a total of 32 and 16
rounds of tests, respectively.

Increase in detected failures. Figure 12 shows the addi-
tional failures detected by PARBOR using the neighbor-aware
data patterns compared to tests with random patterns that are
unaware of the neighboring locations. We keep the number of
performed tests constant in this figure, i.e., the number of ran-
dom pattern tests is limited to the number of tests performed by
PARBOR. The total number of tests in PARBOR is the sum of
(i) recursive test to determine the neighbor locations (66-90), (ii)
tests with neighbor-aware patterns (16-32), and (iii) initial tests
for locating sample victim bits (10). This amounts to 92-132
tests depending on vendor, which takes 38-55 seconds for a
2GB module with a refresh interval of 64 ms (See Appendix for
details). The bars in the figure depict the new failures detected
by PARBOR and the lines depict the percentage increase in
detected failures with PARBOR.

We make two observations from Figure 12. First, PARBOR
identifies 1K to 45K more failures in every tested module, result-
ing in a 2–55% increase in total detected failures. Second, the
absolute number of failures detected by PARBOR is different

4Note that these 128 bits belong to a single chip. As our tested modules
access 8 bits per chip in a burst, accessing these 128 bits requires 16 bursts.

0	

20	

40	

60	

80	

100	

1	

10	

100	

1000	

10000	

100000	

1000000	

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 C5 C6
Modules

Absolute Increase % Increase

N
um

be
r o

f
N

ew
 F

ai
lu

re
s

In
cr

ea
se

 in
 F

ai
lu

re
s (

%
)

Figure 12: Extra failures uncovered using PARBOR

across vendors and depends on the vulnerability of the chips in
the module. For example, on average, modules from C are more
vulnerable to data dependent failures compared to modules from
A and B (Notice the log scale). We conclude that PARBOR
can effectively uncover more data-dependent failures in DRAM
by testing with neighbor-aware data patterns instead of random
data patterns.

Coverage of failures. We examine the fraction of failures
detected by PARBOR compared to all failures uncovered by
both PARBOR and random pattern tests. Figure 13 shows the
percentage of failures in three specific modules detected by (i)
only PARBOR, (ii) only random tests, and (iii) both PARBOR
and random tests. We make two major observations from this
figure. First, a significant fraction of failures are detected only
by PARBOR (20-30%). Second, only a small fraction of failures
remains undetected by PARBOR (less than 1% for Module A1
and C1 and around 5% for Module B1).

Detected by Both
Only by Random
Only by PARBOR

(a) Module A1

Detected by Both
Only by Random
Only by PARBOR

(b) Module B1

Detected by Both
Only by Random
Only by PARBOR

(c) Module C1

Figure 13: Coverage of failures for A1, B1, and C1

There are two possible sources for failures that occur only
in tests with random patterns. First, prior works have shown
that DRAM cells are vulnerable to randomly-occurring failures,
such as soft failures [7, 76], VRT [55, 65, 85], etc. As these fail-
ures occur randomly, it is possible that such failures happened to
occur during random pattern tests and not during PARBOR tests.
Second, PARBOR depends on the regularity of physical address
mapping in DRAM. However, a small fraction of faulty columns
are remapped to some redundant columns available in the cell
array, which reduces regularity in physical address mapping in
DRAM. As such redundant columns may have neighbor cells
located at different positions than regular cells, PARBOR cannot
detect data-dependent failures in these cells. As the number of
failures not detected by PARBOR is relatively small, we con-
clude that our neighbor-aware test method effectively uncovers
more failures than testing with random patterns.
7.3. Sensitivity and Analysis

As discussed in Section 5.2.4, PARBOR ranks the distances
found at each level of the recursive algorithm based on the
frequency of distances. It eliminates the infrequent distances
from consideration, to avoid detecting the random, non-data-
dependent failures that occur throughout the tests. In this section,
we (i) show how these random failures impact the frequency of
distances, (ii) demonstrate the effect of the size of initial set of
victim cells, i.e., sample size, on the ranking of distances, and
(iii) discuss the limitations of PARBOR.

Avoiding random failures with ranking of distances. Fig-
ure 14 shows the ranks of regions at level 4 for three different
modules. Each bar at distance X in the figure represents the
number of times a neighbor region at distance ±x is discovered,

9

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

N
or

m
al

iz
ed

C

ou
nt

Distance of Neighbor Region

(a) Module A1

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

N
or

m
al

iz
ed

C

ou
nt

Distance of Neighbor Region

(b) Module B1

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

N
or

m
al

iz
ed

C

ou
nt

Distance of Neighbor Region

(c) Module C1
Figure 14: Ranking of regions in recursion level 4 for A1, B1, and C1

normalized to the most frequent distance. We observe that some
distances occur very frequently (for example, distances ±1, ±2,
±6 in Module A1). These are the regions where the neighbor
cells are very likely located. On the other hand, some distances
occur relatively infrequently (for example, distances ±3 and ±9
in Module B1). These distances are most likely noise caused by
random failures. By not considering such distances that occur
very infrequently, PARBOR eliminates the effect of random
failures from the determination of distances of neighboring cells.
We conclude that ranking of distances is an effective way to
filter out the noise caused by random failures.

Effect of the size of the initial set of victim cells (i.e., sam-
ple size). PARBOR identifies an initial set of victim cells and
determines the neighboring locations for these cells with the
recursive testing it employs. The sample size of this initial set
can affect the ranking of distances performed at each level of the
recursive test. For example, a small set of victim cells might not
be enough to differentiate data-dependent failures from random
failures that are due to non-data-dependent reasons. Figure 15
shows the effect of sample size on ranking. We perform this
sensitivity study in two modules (Module B1, and C1) with four
different sample sizes (1K, 5K, 10K, and 15K). We observe that
for some modules (e.g., B1), there is a clear partition between
frequent and non-frequent regions: the amplitude of the frequent
regions is much higher than that of the others. Therefore, ran-
dom failures do not affect the frequent regions, as we vary the
sample size of initial set of victim cells. On the other hand, for
some modules (e.g., C1) the difference between frequent and
non-frequent regions is not as clear. A small sample size might
negatively affect the ranking of distances in such modules. For
example, distance 5 in module C1 is frequent when testing with
a small sample size (1K), but, with a larger sample size, it is
clear that this distance is not frequent relative to others. We
conclude that a larger sample size for the initial set of victim
cells makes ranking more robust to random failures and thus
PARBOR more accurate in identifying data-dependent failures.

0	

0.5	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	

N
or

m
al

iz
ed

C

ou
nt

Distance of Neighbor Region

1000 5000 10000 15000

(a) Module B1

0	

0.5	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 N
or

m
al

iz
ed

C

ou
nt

Distance of Neighbor Region

1000 5000 10000 15000

(b) Module C1

Figure 15: Ranking for B1 and C1 with different sample sizes

Limitation. PARBOR depends on the regularity of DRAM
organization to determine the locations of the neighboring cells.
Unfortunately, a small number of cells in DRAM chips can
have neighboring cells in different distances than regular cells.
These cell are remapped in redundant columns to correct per-
manent faults in the cell array [28, 41].5 As the fraction of
remapped cells is quite low [78], such cells do not greatly af-
fect the coverage of our mechanism. However, as cells become
more vulnerable with scaling, it is likely that DRAM chips will
include more redundancy in the future, and PARBOR might
become less effective in detecting all data-dependent failures.

5Remapped rows will have the same mapping as the rest of the cell array.

We provide a simple way to extend PARBOR to detect data-
dependent failures in remapped columns. If a large fraction of
cells gets remapped in the future, the initial set of victim cells
will likely include some of the remapped cells. Therefore, neigh-
bor regions for these cells will show up as infrequent regions
in the ranking stage of PARBOR. In the current implementa-
tion, PARBOR discards infrequent neighbor distances to filter
out random failures. By taking into account these infrequent
regions in intelligent ways, it would be possible to detect the
neighboring locations of remapped cells.

8. A New Use Case for PARBOR
PARBOR enables existing mechanisms that require detecting

data-dependent failures in the system [6, 35, 46, 47, 48, 59, 80].
On top of that, PARBOR can also enable new mechanisms to
improve DRAM reliability, performance, and energy efficiency.
We propose one such new use case for PARBOR.

Data content-based refresh. Existing refresh optimization
techniques minimize refresh operations by using a lower refresh
rate for rows that can reliably retain data at that refresh rate [46,
48, 62, 80]. These works rely on detecting weak cells that
have low retention times, so that they can refresh the rows
such cells reside in at a higher refresh rate, to avoid data loss.
However, these techniques do not take into account the fact that
retention failures in such weak rows occur only with the worst-
case pattern. Instead, they always refresh weak rows frequently.
In reality, application data does not always contain the worst-
case pattern in weak rows. Therefore, there is an opportunity to
further reduce the refresh rate based on the current data content
of DRAM rows.

We propose a new refresh reduction technique, called Data
Content-based REFresh (DC-REF). The key idea of DC-REF
is to employ a high refresh rate only when the data content of
the row exhibits the worst-case pattern. DC-REF uses PARBOR
to determine the location of data-dependent failures and the
worst-case pattern that causes the failures. When there is a write
to a row containing a cell vulnerable to data-dependent failure,
the new data content is checked against the worst-case pattern.
If and only if the new content matches the worst-case pattern,
the row is designated to be refreshed frequently.

Evaluation of DC-REF. We evaluate the performance of
DC-REF with Ramulator [40], an open-source cycle-accurate
DRAM simulator [63]. We use representative phases of 17
SPEC CPU2006 [73] applications as CPU traces [50]. We
evaluate 32 8-core multi-programmed workloads by randomly
assigning one application to each core. Our simulation executes
at least 256 ms on each core. We report performance as weighted
speedup [25, 72]. Table 2 shows the simulation parameters.

Figure 16 illustrates the system performance improvement
of DC-REF over the baseline system with a uniform refresh
interval of 64 ms. On average, DC-REF improves system perfor-
mance by 18.0% for 32Gbit DRAM across all 32 workloads.6
Compared to RAIDR [46], a refresh reduction technique that
refreshes all rows with weak cells using a high refresh rate, irre-
spective of the data content of such rows, DC-REF reduces re-
fresh operations by 27.6% and improves performance for 32Gbit

6We estimate tRFC (refresh latency) for 16/32Gbit DRAM as 590ns/1us,
similarly to the tRFC estimation in [46].

10

Component Main Parameters

Processor 8 cores, 3.2GHz, 3-wide issue, 128-entry inst. window

Last-level 64B cache-line, 16-way associative,
cache 512KB private cache-slice per core

Memory DDR3-1600 [31], 2 channels, 2 ranks-per-channel

Refresh RAIDR [46]: 64/256 ms for 16.4%/83.6% rows
Interval DC-REF: 64 ms for rows with the worst-case pattern,

256 ms for the remaining rows

Table 2: Configuration of simulated systems

DRAM by 3.0%. Note that the fraction of weak cells in RAIDR
is collected from real chips, using our FPGA-based infrastruc-
ture. RAIDR always refreshes 16.4% of the rows with a high
refresh rate, while DC-REF reduces that fraction to only 2.7%
on average over 17 SPEC benchmarks.

0

5

10

15

20

4 8 16 32

W
ei

g
h

te
d

 S
p

ee
d

u
p

Im
p

ro
v

em
en

t
(%

)

DRAM Chip Capacity (Gbit)

RAIDR DC-REF

Figure 16: Performance of DC-REF vs. RAIDR

We conclude that DC-REF is an effective mechanism to
improve system performance by leveraging both PARBOR
and the dynamic data content information of memory rows.
We believe similar data-content aware optimizations can also
be developed on top of DRAM latency reduction mecha-
nisms [17, 18, 27, 43, 69] to achieve further latency reduction
benefits.

9. Related Work
This is the first work to propose a feasible, fast and efficient

system-level detection mechanism to determine the locations of
physically neighboring DRAM cells and use that information
to detect all data-dependent cell failures. Prior works have
examined data-dependent failures in DRAM [1, 18, 35, 39, 43,
45, 47, 60, 64], NAND flash memory [8, 9, 10, 11, 12, 13, 14,
15, 26, 54], and SRAM [5, 23, 32, 79, 81, 82]. None of these
works developed a method for finding neighboring cell locations.
Some prior works focus on detecting data-dependent DRAM
failures, either in the system or using specialized logic within
DRAM with built-in self tests. Both of these types of works,
which we discuss next, have limitations that make them either
infeasible or impractical in a real system.

System-level detection. Prior works that depend on detecting
data-dependent DRAM failures in the system assume that a
simple test with all 0s/1s data pattern or random patterns can
detect all data-dependent failures [6, 35, 46, 48, 59, 80]. These
works are unaware of the location of physically neighboring
cells and, therefore, cannot detect all data-dependent failures, as
we showed in Section 7 with random patterns. Thus, they could
face serious reliability issues if deployed in a real system.

Built-in self test. Prior works propose to detect data-
dependent failures by implementing specialized built-in self
test (BIST) logic within DRAM chips. These works either as-
sume that designers are aware of the locations of the physically
neighboring cells [19, 77] or use exhaustive testing mechanisms
to detect failures over the scrambled address space [20, 22]. Due
to their high runtime and complexity, these techniques cannot
be used for system-level detection of neighbor cell locations or
data-dependent failures, which is the focus of our work.

10. Conclusion
We introduced PARBOR, an efficient system-level technique

that 1) determines the locations of physically neighboring
cells in DRAM and 2) uses this information to uncover data-
dependent failures. PARBOR greatly reduces the test time re-
quired to determine physically neighboring cells by exploiting
1) our new observation that some DRAM cells are strongly af-
fected by only one of their neighbors and 2) the regularity and
abundant parallelism found in modern DRAM chips. To our
knowledge, this is the first work to provide a fast and practical
method to detect data-dependent DRAM failures at the system
level, in the presence of scrambling of addresses within DRAM.

We experimentally demonstrate the effectiveness of PARBOR
using a large number of real DRAM chips. PARBOR greatly
reduces the number of tests (by orders of magnitude) while un-
covering significantly more data-dependent failures than state-
of-the-art testing methods. We demonstrate that PARBOR en-
ables both previously-proposed and new techniques that improve
DRAM reliability, performance and energy efficiency. We in-
troduce the notion of Data Content-based REFresh (DC-REF)
as one example new technique, and show that it significantly
improves system performance. We hope that PARBOR will also
inspire the development of a wide range of new system-level
mechanisms that take advantage of efficient dynamic detection
of data-dependent DRAM failures.

Acknowledgements
We thank Chris Wilkerson, Uksong Kang, anonymous review-

ers, and SAFARI group members for feedback. We acknowl-
edge the support of Google, Intel, Nvidia, and Samsung. This
research was supported in part by the ISTC-CC and NSF (grants
1212962, 1320531, and 1566483).

References
[1] Z. Al-Ars et al. Effects of bit line coupling on the faulty behavior of

DRAMs. VTS, 2004.
[2] Z. Al-Ars et al. Influence of bit line twisting on the faulty behavior of

DRAMs. MTDT, 2004.
[3] Z. Al-ars et al. Space of DRAM fault models and corresponding testing.

DATE, 2006.
[4] Z. Al-Ars et al. Defect oriented testing of the strap problem under process

variations in DRAMs. TEST, 2008.
[5] Z. Al-Ars and S. Hamdioui. Evaluation of SRAM faulty behavior under

bit line coupling. IDT, 2008.
[6] A. Bacchini et al. Characterization of data retention faults in DRAM

devices. DFT, 2014.
[7] R. Baumann. The impact of technology scaling on soft error rate perfor-

mance and limits to the efficacy of error correction. IEDM, 2002.
[8] Y. Cai et al. Error patterns in MLC NAND flash memory: Measurement,

characterization, and analysis. DATE, 2012.
[9] Y. Cai et al. Error analysis and retention-aware error management for

NAND flash memory. Intel Technology Journal, 2013.
[10] Y. Cai et al. Program interference in MLC NAND flash memory: Charac-

terization, modeling, and mitigation. ICCD, 2013.
[11] Y. Cai et al. Threshold voltage distribution in MLC NAND flash memory:

Characterization, analysis and modeling. DATE, 2013.
[12] Y. Cai et al. Neighbor-cell assisted error correction for MLC NAND flash

memories. SIGMETRICS, 2014.
[13] Y. Cai et al. Data retention in MLC NAND flash memory: Characterization,

optimization and recovery. HPCA, 2015.
[14] Y. Cai et al. Read disturb errors in MLC NAND flash memory: Character-

ization, mitigation, and recovery. DSN, 2015.
[15] J. Cha et al. New fault detection algorithm for multi-level cell flash

memories. ATS, 2011.
[16] K. Chang et al. Improving DRAM performance by parallelizing refreshes

with accesses. HPCA, 2014.
[17] K. Chang et al. Low-cost inter-linked subarrays (LISA): Enabling fast

inter-subarray data movement in DRAM. HPCA, 2016.
[18] K. Chang et al. Understanding latency variation in modern DRAM chips:

Experimental characterization, analysis, and optimization. SIGMETRICS,
2016.

[19] K.-L. Cheng et al. Neighborhood pattern-sensitive fault testing and diag-
nostics for random-access memories. IEEE TCAD, 2006.

[20] B. Cockburn and Y.-F. Sat. A transparent built-in self-test scheme for
detecting single V-coupling faults in RAMs. MTDT, 1994.

[21] T. H. Cormen et al. Introduction to Algorithms. 2001.
[22] D. Das and M. Karpovsky. Exhaustive and near-exhaustive memory testing

11

techniques and their BIST implementations. Journal of Electronic Testing,
10(3), 1997.

[23] R. Dekker et al. A realistic fault model and test algorithms for static
random access memories. TCAD, 1990.

[24] N. El-Sayed et al. Temperature management in data centers: Why some
(might) like it hot. SIGMETRICS, 2012.

[25] S. Eyerman and L. Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE Micro, 2008.

[26] O. Ginez et al. Embedded flash testing: Overview and perspectives. DTIS,
2006.

[27] H. Hassan et al. ChargeCache: Reducing DRAM latency by exploiting
row access locality. HPCA, 2016.

[28] M. Horiguchi and K. Itoh. Repair for Nanoscale Memories. Springer
Publishing Company, 2011.

[29] C.-S. Hou et al. An FPGA-based test platform for analyzing data retention
time distribution of DRAMs. VLSI-DAT, 2013.

[30] A. A. Hwang et al. Cosmic rays don’t strike twice: understanding the
nature of DRAM errors and the implications for system design. ASPLOS,
2012.

[31] JEDEC. Standard No. 79-3F. DDR3 SDRAM Specification, July 2012.
[32] R. R. Julie et al. 12N test procedure for NPSF testing and diagnosis for

SRAMs. ICSE, 2008.
[33] D.-C. Kang et al. An efficient built-in self test algorithm for neighborhood

pattern and bit-line-sensitive faults in high density memories. ETRI, 2004.
[34] U. Kang et al. Co-architecting controllers and DRAM to enhance DRAM

process scaling. In The Memory Forum, 2014.
[35] S. Khan et al. The efficacy of error mitigation techniques for DRAM

retention failures: A comparative experimental study. SIGMETRICS,
2014.

[36] J. Y. Kim et al. Parallely testable design for detection of neighborhood
pattern sensitive faults in high density DRAMs. ISCAS, 2005.

[37] K. Kim. Technology for sub-50nm DRAM and NAND flash manufactur-
ing. IEDM, 2005.

[38] Y. Kim et al. A case for subarray-level parallelism (SALP) in DRAM. In
ISCA, 2012.

[39] Y. Kim et al. Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors. ISCA, 2014.

[40] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A Fast and Extensible DRAM
Simulator. IEEE CAL, 2015.

[41] T. Kirihata, Watanabe, et al. Fault-tolerant designs for 256 Mb DRAM.
JSSC, 1996.

[42] D. Lee et al. Tiered-latency DRAM: A low latency and low cost DRAM
architecture. HPCA, 2013.

[43] D. Lee et al. Adaptive-latency DRAM: Optimizing DRAM timing for the
common-case. HPCA, 2015.

[44] D. Lee et al. Simultaneous multi-layer access: Improving 3D-stacked
memory bandwidth at low cost. TACO, 2016.

[45] M. J. Lee and K. W. Park. A mechanism for dependence of refresh time
on data pattern in DRAM. Electron Device Letters, 31(2), 2010.

[46] J. Liu et al. RAIDR: Retention-aware intelligent DRAM refresh. ISCA,
2012.

[47] J. Liu et al. An experimental study of data retention behavior in modern
DRAM devices: Implications for retention time profiling mechanisms.
ISCA, 2013.

[48] S. Liu et al. Flikker: Saving DRAM refresh-power through critical data
partitioning. ASPLOS, 2011.

[49] S. Liu et al. Hardware/software techniques for DRAM thermal manage-
ment. HPCA, 2011.

[50] C.-K. Luk et al. Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

[51] Y. Luo et al. Characterizing application memory error vulnerability to
optimize datacenter cost via heterogeneous-reliability memory. DSN,
2014.

[52] J. A. Mandelman et al. Challenges and future directions for the scaling
of dynamic random-access memory (DRAM). IBM J. of Res. and Dev.,
2002.

[53] J. Meza et al. Revisiting memory errors in large-scale production data
centers: Analysis and modeling of new trends from the field. DSN, 2015.

[54] M. G. Mohammad and K. K. Saluja. Flash memory disturbances: Model-
ing and test. VTS, 2001.

[55] Y. Mori et al. The origin of variable retention time in DRAM. IEDM,
2005.

[56] W. Mueller et al. Challenges for the DRAM cell scaling to 40nm. IEDM,
2005.

[57] O. Mutlu. Memory scaling: A systems architecture perspective. IMW,
2013.

[58] O. Mutlu and L. Subramanian. Research problems and opportunities in
memory systems. SUPERFRI, 2014.

[59] P. J. Nair et al. ArchShield: Architectural framework for assisting DRAM
scaling by tolerating high error rates. ISCA, 2013.

[60] Y. Nakagome et al. The impact of data-line interference noise on DRAM
scaling. JSSC, 1988.

[61] PARBOR Source Code. https://github.com/CMU-SAFARI/
PARBOR/.

[62] M. Qureshi et al. AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems. DSN, 2015.

[63] Ramulator Source Code. https://github.com/CMU-SAFARI/
ramulator/.

[64] M. Redeker, B. F. Cockburn, and D. G. Elliott. An investigation into
crosstalk noise in DRAM structures. MTDT, 2002.

[65] P. J. Restle, J. W. Park, and B. F. Lloyd. DRAM variable retention time.
IEDM, 1992.

[66] T. Schloesser et al. 6F2 buried wordline DRAM cell for 40nm and beyond.
IEDM, 2008.

[67] B. Schroeder et al. DRAM errors in the wild: A large-scale field study.
SIGMETRICS, 2009.

[68] T. Sekiguchi et al. A low-impedance open-bitline array for multigigabit
DRAM. JSSC, 2002.

[69] V. Seshadri et al. RowClone: Fast and efficient In-DRAM copy and
initialization of bulk data. MICRO, 2013.

[70] Y. Sfikas et al. Layout-based refined NPSF model for DRAM characteri-
zation and testing. VLSI, 2014.

[71] Y. Sfikas and Y. Tsiatouhas. Physical design oriented DRAM neighbor-
hood pattern sensitive fault testing. DDECS, 2009.

[72] A. Snavely and D. Tullsen. Symbiotic job scheduling for a simultaneous
multithreading processor. ASPLOS, 2000.

[73] SPEC CPU2006. Standard Performance Evaluation Corporation.
http://www.spec.org/cpu2006.

[74] V. Sridharan et al. Memory errors in modern systems: The good, the bad,
and the ugly. ASPLOS, 2015.

[75] V. Sridharan and D. Liberty. A study of DRAM failures in the field. SC,
2012.

[76] G. R. Srinivasan et al. Accurate, predictive modeling of soft error rate due
to cosmic rays and chip alpha radiation. IRPS, 1994.

[77] D. S. Suk and S. M. Reddy. Test procedures for a class of pattern-sensitive
faults in semiconductor random-access memories. IEEE TC, 1980.

[78] A. J. van de Goor and I. Schanstra. Address and data scrambling: Causes
and impact on memory tests. DELTA, 2002.

[79] A. J. van de Goor and I. B. S. Tlili. Disturb neighborhood pattern sensitive
fault. VTEST, 1997.

[80] R. K. Venkatesan et al. Retention-aware placement in DRAM (RAPID):
Software methods for quasi-non-volatile DRAM. HPCA, 2006.

[81] B. Wang et al. Reducing test time of embedded SRAMs. MTDT, 2003.
[82] X. Wang et al. Testing of inter-word coupling faults in word-oriented

SRAMs. DFTVS, 2004.
[83] C. Weis et al. Retention time measurements and modeling of bit error

rates of WIDE I/O DRAM in MPSoCs. DATE, 2015.
[84] Xilinx. ML605 Hardware User Guide, Oct. 2012.
[85] D. Yaney et al. A meta-stable leakage phenomenon in DRAM charge

storage - Variable hold time. IEDM, 1987.

Appendix
Time for Determining Neighboring Locations with Exhaustive

Testing. For each bit address in a row, we need to write the worst-case
pattern in the victim and the test cell, wait for 64 ms, and read them back
to detect the failures. In order to read/write these two cells, we need
to read data from the cells in the row buffer (tRCD), transfer the blocks
containing the corresponding bits to the memory controller, and close
the row (tRP). According to DDR3-1600 timing, time to read/write two
cache blocks is: tr = tRCD + tCCD + tRP = 13.75+5∗2+13.75 = 42.5
ns. Therefore, testing one address bit in a row takes 42.5 ns + 64 ms +
42.5 ns ≈ 64 ms. Testing all cells in an 8K-cell row (O(n) test) requires
64∗8192 ms = 8.73 minutes, n2 tests require 64∗81922 ms = 49 days,
n3 tests require 64∗81923 ms = 1115 years, n4 tests require 64∗81924

ms = 9.1 M years.
Computational Complexity of the Recursive Divide and Con-

quer Algorithm. Recurrence relations in divide and conquer algo-
rithms have the following form: T (n) = aT (n/b) + f (n), where the
problem of size n is divided into b subproblems at each level, and only
a of those subproblems are solved in the next level. f (n) corresponds
to the additional work done outside the recursion. The solution for this
recursion is: T (n) = θ(n logb a) when f (n)=O(1) [21]. In PARBOR,
each region is divided into 8 smaller regions at each level. The execu-
tion time becomes T (n) = 8T (n/8) + O(1). Solving this recurrence,
T (n) = θ(n log8 8) = θ(n).

Time for Detecting Data-dependent Failures in an Entire Mod-
ule with PARBOR. To test for data-dependent failures in an entire
module, we write a neighbor-aware data pattern in the entire module,
wait for 64 ms, and read the module to detect failures. In order to
read/write a row, we read data from the cells in the row buffer (tRCD),
transfer the row to the memory controller, and close the row (tRP).
According to DDR3-1600 timing, time to read/write an 8KB row is:
tr = tRCD+tCCD ∗(8KB/64B)+tRP = 13.75+5∗128+13.75= 667.5
ns. In a 2GB module, there are 262144 rows, so reading/writing the
entire module would take tr ∗ 262144 ns = 174.98 ms. So, to test a
module once, it would take 174.98+64+174.98 ms = 413.96 ms. 92
tests with PARBOR take 92*413.96 ms = 32 seconds and 132 tests
take 132*413.96 ms = 55 seconds.

12

https://github.com/CMU-SAFARI/PARBOR/
https://github.com/CMU-SAFARI/PARBOR/
https://github.com/CMU-SAFARI/ramulator/
https://github.com/CMU-SAFARI/ramulator/

	Introduction
	Background
	DRAM Organization
	DRAM Cell Operation
	Data-Dependent Failures: Causes and Examples

	Challenges of System-Level Detection of Data-Dependent Failures
	Key Ideas
	Key Idea 1: Exploiting Strongly Coupled Cells
	Key Idea 2: Exploiting DRAM Regularity and Parallelism

	PARBOR: System-Level Parallel Recursive Neighbor Testing
	Design Overview
	Detailed Design
	Determining the Initial Set of Victim Cells
	Representation of Neighbor Addresses
	Recursive Test Algorithm
	Filtering Random Failures During Tests
	Finding Data-Dependent Failures in the Entire Chip

	Experimental Design and Infrastructure
	Results and Analysis
	Determining Neighbor Locations with PARBOR
	Uncovering Data Dependent Failures with PARBOR
	Sensitivity and Analysis

	A New Use Case for PARBOR
	Related Work
	Conclusion

