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Executive Summary

e Background: A hybrid storage system (HSS) uses multiple different storage devices to
provide high and scalable storage capacity at high performance

* Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:
* Workload changes
* Changes in device types and configurations

- Lack of extensibility to more devices

* Goal: Design a data placement technique that provides:

- Adaptivity, by continuously learning and adapting to the application and underlying device
characteristics

- Easy extensibility to incorporate a wide range of hybrid storage configurations

e Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

* Key Results: Evaluate on real systems using a wide range of workloads

- Sibyl improves performance by 21.6% compared to the best previous data placement technique in
dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB
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Talk Outline

Key Shortcomings of Prior Data Placement Techniques
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Hybrid Storage System Basics
Address Space (Application/File System View)
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Hybrid Storage System Basics

Performance of a hybrid storage system
highly depends on the ability of the
storage management layer
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

SAFARI 6



Lack of Adaptivity
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are statically tuned
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Lack of Adaptivity
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are staticallv tuned
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Lack of Adaptivity
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are statically tuned
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Lack of Adaptivity
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are statically tuned
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Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in
read/write latencies, garbage collection)
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Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in
read/write latencies, garbage collection)
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Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in
read/write latencies, garbage collection)
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Lack of Extensibility

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration
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Lack of Extensibility

Rigid techniques that require significant effort to
accommodate more than two devices

\ Tri-HSS :
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Our Goal

e
A data-placement mechanism

that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying
device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations
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Our Proposal

Sibyl

Formulates data placement in
hybrid storage systems as a
reinforcement learning problem

Sybil is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl
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Talk Outline

Formulating Data Placement as Reinforcement Learning
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Basics of Reinforcement Learning (RL)

| Agent l

[ Environment ]

Agent learns to take an action in a given state
to maximize a numerical reward
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Formulating Data Placement as RL

State (S,)

>[ Agent }
)
Reward (R,.;) Action (A,)

{ Environment ]<

Features of the
current request
and system

>[ Sibyl
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Sibyl ]—‘
A

Request latency  Select storage
(of last served device to place
request) the current page

1
Hybrid Storage
System

the current

What is State?

* Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

 6-dimensional vector of state features

O; = (sizes, typey, intry, cnty, capy, curry)

* We quantize the state representation into bins to
reduce storage overhead
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What is Reward? |

Features of . 4

the current iy /
request and evice to place

* Defines the objective of Sibyl system [0/ the current page
| | Hybrid Storage I |
System

e We formulate the reward as a function of the
request latency

* Encapsulates three key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
- Evictions

* More details in the paper
SAFARI 16



What is Action?

* At every new page request, the

. . . Hybrid Storage
action is to select a storage device [ Systen

Features of Request lateney v, Js
the current .
(of last served  \device to plaje

request and request) .
O !
system I e currentpage

e Action can be easily extended to any number of

storage devices

* Sibyl learns to proactively evict or promote a page
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Talk Outline

Sybil: Overview
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Sibyl Execution
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Sibyl Design: Overview
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RL Decision Thread
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RL Decision Thread
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RL Decision Thread
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Periodic Weight

Transfer

(from OS)

g Trainin vl : — RL Training\
Network' ! | Training } Batch Thread
: YOl | Dataset
Periodic Policy :
\_Weight Update | | )
/ ! | RL Decision
: I Experience Buffer ead
| : (in host DRAM)
State [ | O I{ Max \ SOE
i
Storage ; Inference : Sibvl Poli
yl Policy
Request ||Observation \{ e, ~ - ] Reward ( C |‘|'
_______ - R ollect
Vector { HSS | 'LExperiences]

K State

/

SAFARI

23



Training and Inference Network

* Training and inference
network allow parallel

. ‘ Probabilility distribution
EXECUtlon of the actions

(place data in the fast or
the slow storage)

Fully-connected
layer
(30 neurons)

e Observation vector as
the input

t swish
._|activation
Fully-connected
layer
(20 neurons)

. Observation vector
* Produces pro babil Ity <size; type; intr; cnt, cap; curre

distribution of Q-values
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Talk Outline

Evaluation of Sybil and Key Results
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Evaluation Methodology (1/3)

* Real system with various HSS configurations
- Dual-hybrid and tri-hybrid systems
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration
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Evaluation Methodology (3/3)

18 different workloads from:
- MSR Cambridge and Filebench Suites

* Four state-of-the-art data placement baselines:

- CbE Heuristic-based
Hps :> euristic-base
- Archivist

Learning-based
- RNN-HSS

SAFARI
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Performance Analysis
Cost-Oriented HSS Configuration
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Performance Analysis
Cost-Oriented HSS Configuration

High-end SSD Low-énd HBD}
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Sibyl consistently outperforms all the baselines
for all the workloads
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Performance Analysis {

. .
 High-endSSD ~ Mid-end SSD

Performance-Oriented HSS Configuration
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Performance Analysis

High-endSSD  Mid-end SSD

Performance-Oriented HSS Configuration

/ _“‘_Mf' N\

[ Sibyl [ Oracle

9)

N

Normalized Average
Request Latency
o ? N
\ss
‘&

OV

%» O 5% .0 .7% .HD 0 \) ’L S
s A9 ™7 .oV .oV oM / ‘\' / ( s N 0

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy
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Performance-Oriented HSS Configuration
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= erarures

Performance Analysis

=

 High-endSSD ~ Mid-end SSD

Sibyl achieves 80% of the performance
of an oracle policy that has
complete knowledge of future access patterns
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Performance on Tri-HSS gz
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Extending Sibyl for more devices:
1. Add a new action
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Performance on Tri-HSS mmm=
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Performance on Tri-HSS

H/gh-end SSD M/d-end SSD Low-end HDDJ

Sibyl outperforms the state-of-the-art

data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility
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Sibyl’s Overhead

* 124.4 KiB of total storage cost
- Experience buffer, inference and training network

* 40-bit metadata overhead per page for state features

* Inference latency of ~¥10ns

* Training latency of ~2us

V Small area overhead
V Small inference overhead

V Satisfies prediction latency
SAFARI 37



More in the Paper (1/2)

* Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

* Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

* Evaluation on mixed workloads

- Sibyl provides equally-high performance benefits as in single
workloads
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More in the Paper (2/2)

e Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

e Evaluation with different hyperparameter values

* Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to
available storage size

of Sybil's decision making
for different workload characteristics and
device configurations
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More in the Paper (2/2)
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Talk Outline

Conclusion
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Conclusion

* We introduced Sibyl, the first reinforcement learning-
based data placement technique in hybrid storage
systems that provides

- Adaptivity
- Easily extensibility
- Ease of design and implementation

*We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves of an oracle policy with a
storage overhead of only
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Performance on Unseen Workloads
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Performance Analysis

Performance-Oriented HSS Configuration
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Performance on Mixed Workloads
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Performance on Mixed Workloads
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Performance on Mixed Workloads
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Performance With Different Features
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Sibyl autonomously decides which features are
important to maximize the performance of the running
workload

SAFARI



Performance With Different Features
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Sensitivity to Fast Storage Capacity
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Explainability Analysis
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