
Bioinformatics, YYYY, 0–0

doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY

Original Paper

Sequence Alignment

SLIDER: Fast and Efficient Computation of

Banded Sequence Alignment

Mohammed Alser1,2,3,*, Hasan Hassan2, Akash Kumar3, Onur Mutlu2,1,*, and Can Al-

kan1,*

1Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey, 2Computer Science De-

partment, ETH Zürich, 8092 Zürich, Switzerland, 3Institute for Computer Engineering, CfAED, Technische Uni-

versität Dresden, Germany

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: The ability to generate massive amounts of sequencing data continues to overwhelm the

processing capacity of existing algorithms and compute infrastructures. In this work, we explore the

use of hardware/software co-design and hardware acceleration to significantly reduce the execution

time of short sequence alignment, a crucial step in analyzing sequenced genomes. We introduce

SLIDER, a highly parallel and accurate pre-alignment filter that remarkably reduces the need for com-

putationally-costly dynamic programming algorithms. The first key idea of our proposed pre-alignment

filter is to provide high filtering accuracy by correctly detecting all common subsequences shared be-

tween two given sequences. The second key idea is to design a hardware accelerator design that

adopts modern FPGA (field-programmable gate array) architectures to further boost the performance

of our algorithm.

Results: SLIDER significantly improves the accuracy of pre-alignment filtering by up to two orders of

magnitude compared to the state-of-the-art pre-alignment filters, GateKeeper and SHD. Our FPGA

accelerator is up to three orders of magnitude faster than the equivalent CPU implementation of

SLIDER. Using a single FPGA chip, we benchmark the benefits of integrating SLIDER with five state-

of-the-art sequence aligners, designed for different computing platforms. The addition of SLIDER as a

pre-alignment step reduces the execution time of five state-of-the-art sequence aligners by up to 18.8x.

SLIDER can be adopted for any bioinformatics pipeline that performs sequence alignment for verifica-

tion. Unlike most existing methods that aim to accelerate sequence alignment, SLIDER does not sac-

rifice any of the aligner capabilities, as it does not modify or replace the alignment step.

Availability: https://github.com/BilkentCompGen/SLIDER

Contact: mohammed.alser@inf.ethz.ch, onur.mutlu@inf.ethz.ch, calkan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most fundamental computational steps in most bioinformatics

analyses is the detection of the differences/similarities between two ge-

nomic sequences. Edit distance and pairwise alignment are two ap-

proaches to achieve this step, formulated as approximate string matching

(Navarro, 2001). Edit distance approach is a measure of how much the

sequences differ. It calculates the minimum number of edits needed to

convert one sequence into the other. The higher is the distance, the more

different are the sequences from one another. Commonly-allowed edit op-

erations include deletion, insertion, and substitution of characters in one

or both sequences. Pairwise alignment is a measure of how much the se-

quences are alike. It calculates the alignment that is an ordered list of char-

acters representing possible edit operations and matches required to

change one of the two given sequences into the other. As any two se-

quences can have several different arrangements of the edit operations and

matches (and hence different alignments), alignment algorithm usually in-

volves a backtracking step. This step finds the alignment that has the high-

est alignment score (called optimal alignment). The alignment score is the

M. Alser et al.

sum of the scores of all edits and matches along the alignment implied by

a user-defined scoring function. The edit distance and pairwise alignment

approaches are non-additive measures (Calude, et al., 2002). This means

that if we divide the sequence pair into two consecutive subsequence pairs,

the edit distance of the entire sequence pair is not necessarily equivalent

to the sum of the edit distances of the shorter pairs. Instead, we need to

examine all possible prefixes of the two input sequences and keep track of

the pairs of prefixes that provide an optimal solution. Enumerating all pos-

sible prefixes is necessary for tolerating edits that result from both se-

quencing errors (Fox, et al., 2014) and genetic variations (McKernan, et

al., 2009). Therefore, the edit distance and pairwise alignment approaches

are typically implemented as dynamic programming algorithms to avoid

re-examining the same prefixes many times. These implementations, such

as Levenshtein distance [40], Smith-Waterman [28], and Needleman-

Wunsch [41], are inefficient as they have quadratic time and space com-

plexity (i.e., O(m2) for a sequence length of m). Many attempts were made

to boost the performance of existing sequence aligners. Despite more than

three decades of attempts, the fastest known edit distance algorithm

(Masek and Paterson, 1980) has a running time of O(m2/log2m) for se-

quences of length m, which is still nearly quadratic (Backurs and Indyk,

2017). Therefore, more recent works tend to follow one of two key new

directions to boost the performance of sequence alignment and edit dis-

tance implementations: (1) Accelerating the dynamic programming algo-

rithms using hardware accelerators. (2) Developing filtering heuristics

that reduce the need for the dynamic programming algorithms, given an

edit distance threshold.

Hardware accelerators are becoming increasingly popular for

speeding up the computationally-expensive alignment and edit dis-

tance algorithms (Al Kawam, et al., 2017; Aluru and Jammula, 2014;

Ng, et al., 2017; Sandes, et al., 2016). Hardware accelerators include

multi-core and SIMD (single instruction multiple data) capable central

processing units (CPUs), graphics processing units (GPUs), and field-pro-

grammable gate arrays (FPGAs). The classical dynamic programming al-

gorithms are typically accelerated by computing only the necessary re-

gions (i.e., diagonal vectors) of the dynamic programming matrix rather

than the entire matrix, as proposed in Ukkonen’s banded algorithm

(Ukkonen, 1985). The number of the diagonal bands required for compu-

ting the dynamic programming matrix is 2E+1, where E is a user-defined

edit distance threshold. The banded algorithm is still beneficial even with

its recent sequential implementations as in Edlib (Šošić and Šikić, 2017).

The Edlib algorithm is implemented in C for standard CPUs and it calcu-

lates the banded Levenshtein distance. Parasail (Daily, 2016) exploits both

Ukkonen’s banded algorithm and SIMD-capable CPUs to compute a

banded alignment for a sequence pair with a user-defined scoring func-

tion. SIMD instructions offer significant parallelism to the matrix compu-

tation by executing the same vector operation on multiple operands at

once. Multi-core architecture of CPUs and GPUs provides the ability to

compute alignments of many sequence pairs independently and concur-

rently (Georganas, et al., 2015; Liu and Schmidt, 2015). GSWABE (Liu

and Schmidt, 2015) exploits GPUs (Tesla K40) for a highly-parallel com-

putation of global alignment with a user-defined scoring function.

CUDASW++ 3.0 (Liu, et al., 2013) exploits the SIMD capability of both

CPUs and GPUs (GTX690) to accelerate the computation of the Smith-

Waterman algorithm with a user-defined scoring function. CUDASW++

3.0 provides only the optimal score, not the optimal alignment (i.e., no

backtracking step). Other designs, for instance FPGASW (Fei, et al.,

2018), exploit the very large number of hardware execution units in

FPGAs (Xilinx VC707) to form a linear systolic array (Kung, 1982). Each

execution unit in the systolic array is responsible for computing the value

of a single entry of the dynamic programming matrix. The systolic array

computes a single vector of the matrix at a time. The data dependencies

between the entries restrict the systolic array to computing the vectors se-

quentially (e.g., top-to-bottom, left-to-right, or in an anti-diagonal man-

ner). FPGA accelerators seem to yield the highest performance gain com-

pared to the other hardware accelerators (Banerjee, et al., 2018; Chen, et

al., 2016; Fei, et al., 2018; Waidyasooriya and Hariyama, 2015). However,

many of these efforts either simplify the scoring function, or only take into

account accelerating the computation of the dynamic programming matrix

without providing the optimal alignment as in (Chen, et al., 2014; Liu, et

al., 2013; Nishimura, et al., 2017). Different and more sophisticated scor-

ing functions are typically needed to better quantify the similarity between

two sequences (Henikoff and Henikoff, 1992; Wang, et al., 2011). The

backtracking step required for the optimal alignment computation in-

volves unpredictable and irregular memory access patterns, which poses a

difficult challenge for efficient hardware implementation.

Pre-alignment filtering heuristics aim to quickly eliminate some of

the dissimilar sequences before using the computationally-expensive

optimal alignment algorithms. There are a few existing filtering tech-

niques such as the Adjacency Filter (Xin, et al., 2013), which is imple-

mented for standard CPUs as part of FastHASH (Xin, et al., 2013). SHD

(Xin, et al., 2015) is a SIMD-friendly bit-vector filter that provides higher

filtering accuracy compared to the Adjacency Filter. GRIM-Filter (Kim,

et al., 2018) exploits the high memory bandwidth and the logic layer of

3D-stacked memory to perform highly-parallel filtering in the DRAM

chip itself. GateKeeper (Alser, et al., 2017) is designed to utilize the large

amounts of parallelism offered by FPGA architectures. MAGNET (Alser,

et al., July 2017) is the most accurate filtering algorithm but its current

implementation is much slower than that of SHD or GateKeeper. Gate-

Keeper (Alser, et al., 2017) is thus the best-performing pre-alignment filter

in terms of accuracy and execution time.

Our goal in this work is to significantly reduce the time spent on cal-

culating the optimal alignment of short sequences. To this end, we intro-

duce SLIDER, a new, fast, and very accurate pre-alignment filter.

SLIDER is based on two key ideas: (1) A new filtering algorithm that re-

markably accelerates the computation of the banded optimal alignment by

rapidly excluding dissimilar sequences from the optimal alignment calcu-

lation. (2) Judicious use of the parallelism-friendly architecture of modern

FPGAs to greatly speed up this new filtering algorithm.

The contributions of this paper are as follows:

 We introduce SLIDER, a highly-parallel and highly-accurate pre-

alignment filter, which uses a sliding search window approach to

quickly identify dissimilar sequences without the need for computa-

tionally-expensive alignment algorithms. We overcome the imple-

mentation limitations of the MAGNET (Alser, et al., July 2017). We

build two hardware accelerator designs that adopt modern FPGA ar-

chitectures to boost the performance of both SLIDER and

MAGNET.

 We provide a comprehensive analysis of the run time and space

complexity of SLIDER and MAGNET algorithms. SLIDER and

MAGNET are asymptomatically inexpensive and run in linear time

with respect to the sequence length and the edit distance threshold.

 We demonstrate that SLIDER and MAGNET significantly improve

the accuracy of pre-alignment filtering by up to two and four orders

of magnitude, respectively, compared to GateKeeper and SHD.

 We demonstrate that our FPGA implementations of MAGNET and

SLIDER are two to three orders of magnitude faster than their CPU

implementations. We demonstrate that integrating SLIDER with

five state-of-the-art aligners reduces execution time of the sequence

aligner by up to 18.8x.

SLIDER: Fast and Efficient Computation of Banded Sequence Alignment

2 METHODS

2.1 Overview

Our primary purpose is to reject the dissimilar sequences accurately and

quickly such that we reduce the need for the computationally-expensive

alignment step. We propose the SLIDER algorithm to achieve highly-ac-

curate filtering. We then accelerate SLIDER by taking advantage of the

capabilities and parallelism of FPGAs to achieve fast filtering operations.

The key filtering strategy of SLIDER is inspired by the pigeonhole prin-

ciple, which states that if E items are distributed into E+1 boxes, then one

or more boxes would be empty. In the context of pre-alignment filtering,

this principle provides the following key observation: If two sequences

differ by E edits, then the two sequences should share at least a single

common subsequence (i.e., free of edits) and at most E+1 non-overlapping

common subsequences, where E is the edit distance threshold. With the

existence of at most E edits, the total length of these non-overlapping com-

mon subsequences should not be less than m-E, where m is the sequence

length. SLIDER employs the pigeonhole principle to decide whether or

not two sequences are potentially similar. SLIDER finds all the non-over-

lapping subsequences that exist in both sequences. If the total length of

these common subsequences is less than m-E, then there exist more edits

than the allowed edit distance threshold and hence SLIDER filters out the

two given sequences. Otherwise, SLIDER preserves the two sequences.

Next, we discuss the details of SLIDER.

2.2 SLIDER Pre-alignment Filter

SLIDER identifies the dissimilar sequences, without calculating the opti-

mal alignment, in three main steps. (1) The first step is to construct what

we call a neighborhood map that visualizes the pairwise matches and mis-

matches between two sequences given an edit distance threshold of E char-

acters. (2) The second step is to find all the non-overlapping common sub-

sequences in the neighborhood map using a sliding search window ap-

proach. (3) The last step is to accept or reject the given sequence pairs

based on the length of the found matches. If the length of the found

matches is small, then SLIDER rejects the input sequence pair.

2.2.1 Building the Neighborhood Map

The neighborhood map, N, is a binary m by m matrix, where m is the se-

quence length. Given a text sequence T[1…m], a pattern sequence

P[1…m], and an edit distance threshold E, the neighborhood map repre-

sents the comparison result of the ith character of P with the jth character

of T, where i and j satisfy 1≤i≤m and i-E≤j≤i+E. The entry N[i, j] of the

neighborhood map can be calculated as follows:

𝑁[𝑖, 𝑗] = {
0, if 𝑃[𝑖] = 𝑇[𝑗]

1, if 𝑃[𝑖] ≠ 𝑇[𝑗]
 (1)

We present in Fig. 1 an example of a neighborhood map for two se-

quences, where a pattern P differs from a text T by three edits. The entry

N[i,j] is set to zero if the ith character of the pattern matches the jth character

of the text. Otherwise, it is set to one. The way we build our neighborhood

map ensures that computing each of its entries is independent of every

other and thus the entire map can be computed all at once in a parallel

fashion. Hence, our neighborhood map is well suited for highly-parallel

computing platforms (Alser, et al., 2017; Seshadri, et al., 2017). Notice

that in sequence alignment algorithms, computing each entry of the dy-

namic programming matrix depends on the values of the immediate left,

upper left, and upper entries of its own.

Neighborhood Map:

j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

0 0 0 0 1 0 0 0 0 1 0 1

three common
subsequences

search
window # 7

search
window # 1

last bottom
right entrySLIDER bit-vector:

search window # 1

search window # 2

search window # 3

search window # 4

search window # 5

search window # 6

search window # 7

search window # 8

. . . .

Fig. 1: Neighborhood map (N) and the SLIDER bit-vector, for text T =

GGTGCAGAGCTC, and pattern P = GGTGAGAGTTGT for E=3. The three com-

mon subsequences (i.e., GGTG, AGAG, and T) are highlighted in yellow. We use a

search window of size 4 columns (two examples of which are highlighted in red) with

a step size of a single column. SLIDER searches diagonally within each search window

for the 4-bit vector that has the largest number of zeros. Once found, SLIDER exam-

ines if the found 4-bit vector maximizes the number of zeros at the corresponding

location of the 4-bit vector in the SLIDER bit-vector. If so then SLIDER stores this 4-

bit vector in the SLIDER bit-vector at its corresponding location.

Different from "dot plot" or "dot matrix" (visual representation of the

similarities between two closely similar genomic sequences) that is used

in FASTA/FASTP (Lipman and Pearson, 1985), our neighborhood map

computes only some necessary diagonals near the main diagonal of the

matrix (e.g., seven diagonals shown in Fig. 1).

2.2.2 Identifying the Diagonally-Consecutive Matches

The key goal of this step is to find accurately all the non-overlapping com-

mon subsequences shared between a pair of sequences. The accuracy of

finding these subsequences is crucial for the overall filtering accuracy, as

the filtering decision is made solely based on their total length. With the

existence of E edits, there are at most E+1 non-overlapping common sub-

sequences (based on the pigeonhole principle) shared between a pair of

sequences. Each non-overlapping common subsequence is represented as

a streak of diagonally-consecutive zeros in the neighborhood map (as

highlighted in yellow in Fig. 1). These streaks of diagonally-consecutive

zeros are distributed along the diagonals of the neighborhood map without

any prior information about their length or number. One way of finding

these common subsequences is to use a brute-force approach, which ex-

amines all the streaks of diagonally-consecutive zeros that start at the first

column and selects the streak that has the largest number of zeros as the

first common subsequences. It then iterates over the remaining part of the

neighborhood map to find the other common subsequences. However, this

brute-force approach is infeasible for highly-optimized hardware imple-

mentation as the search space is unknown at design time.

M. Alser et al.

SLIDER overcomes this issue by dividing the neighborhood map into

equal-size parts. We call each part a search window. Limiting the size of

the search space from the entire neighborhood map to a search window

has three key benefits: (1) It helps to provide a scalable architecture that

can be implemented for any sequence length and edit distance threshold.

(2) Downsizing the search space into a reasonably small sub-matrix with

a known dimension at design time limits the number of all possible per-

mutations of each bit-vector to 2n, where n is the search window size. This

reduces the size of the look-up tables (LUTs) required to design the hard-

ware architecture and simplifies the overall design. (3) Each search win-

dow is considered as a smaller sub-problem that can be solved inde-

pendently and rapidly with high parallelism. SLIDER uses a search win-

dow of 4 columns wide as we illustrate in Fig. 1. We need m search win-

dows for processing two sequences, each of which is of length m charac-

ters. Each search window overlaps with its next neighboring search win-

dow by 3 columns. This ensures covering the entire neighborhood map

and finding all the common subsequences regardless of their starting lo-

cation. We select the width of each search window to be 4 columns to

guarantee finding the shortest possible common subsequence, which is a

single match located between two mismatches (i.e., ‘101’). However, we

observe that the bit pattern ‘101’ is not always necessarily a part of the

correct alignment (or the common subsequences). For example, the bit

pattern ‘101’ exists once as a part of the correct alignment in Fig.1, but it

also appears six times in other different locations that are not included in

the correct alignment. To avoid confusing SLIDER and improve the accu-

racy of finding the diagonally-consecutive matches, we increase the length

of the diagonal vector to be examined to four bits. We also experimentally

evaluate different search window sizes in Supplementary Materials, Sec-

tion 6.1. We find that a search window size of 4 columns provides the

highest filtering accuracy without falsely-rejecting similar sequences.

SLIDER finds the diagonally-consecutive matches that are part of the

common subsequences in the neighborhood map in two main steps. Step

1: For each search window, SLIDER finds a 4-bit diagonal vector that has

the largest number of zeros. SLIDER greedily considers this vector as a

part of the common subsequence as it has the least possible number of

edits (i.e., 1’s). Finding always the maximum number of matches is nec-

essary to avoid overestimating the actual number of edits and eventually

preserving all similar sequences. SLIDER achieves this step by comparing

the 4 bits of each of the 2E+1 diagonal vectors within a search window

and selects the 4-bit vector that has the largest number of zeros. In case of

two 4-bit subsequences have the same number of zeros, SLIDER breaks

the ties by selecting the one that has a leading zero. SLIDER then slides

the search window by a single column (i.e., step size = 1 column) towards

the last bottom right entry of the neighborhood map and repeats the previ-

ous computations. Thus, SLIDER performs “Step 1” m times using m

search windows, where m is the sequence length. Step 2: The last step is

to gather the results found for each search window (i.e., 4-bit vector that

has the largest number of zeros) and construct back all the diagonally-

consecutive matches. For this purpose, SLIDER maintains a SLIDER bit-

vector of length m that stores all the zeros found in the neighborhood map

as we illustrate in Fig. 1. For each sliding search window, SLIDER exam-

ines if the selected 4-bit vector maximizes the number of zeros in the

SLIDER bit-vector at the same corresponding location. If so, SLIDER

stores the selected 4-bit vector in the SLIDER bit-vector at the same cor-

responding location. This is necessary to avoid overestimating the number

of edits between two given sequences. The common subsequences are rep-

resented as streaks of consecutive zeros in the SLIDER bit-vector.

2.2.3 Filtering out Dissimilar Sequences

The last step of SLIDER is to calculate the total length of the common

subsequences. SLIDER examines if the total number of zeros in the

SLIDER bit-vector is less than m-E. If so, SLIDER excludes the two se-

quences from the optimal alignment calculation. Otherwise, SLIDER con-

siders the two sequences similar within the allowed edit distance threshold

and allows their optimal alignment to be computed using optimal align-

ment algorithms. We provide the pseudocode of SLIDER and discuss its

computational complexity in Supplementary Materials, Section 6.2. We

also present two examples of applying SLIDER filtering algorithm in Sup-

plementary Materials, Section 8.

2.3 Accelerator Architecture

Our second aim is to substantially accelerate SLIDER, by leveraging the

capabilities and parallelism of FPGAs. In this section, we present our

hardware accelerator that is designed to exploit the large amounts of par-

allelism offered by modern FPGA architectures (Aluru and Jammula,

2014; Herbordt, et al., 2007; Trimberger, 2015). We then outline the im-

plementation of SLIDER to be used in our accelerator design. Fig. 2 shows

the hardware architecture of the accelerator. It contains a user-configura-

ble number of filtering units. Each filtering unit provides pre-alignment

filtering independently from other units. The workflow of the accelerator

starts with transmitting the sequence pair to the FPGA through the fastest

communication medium available on the FPGA board (i.e., PCIe). The

sequence controller manages and provides the necessary input signals for

each filtering unit in the accelerator. Each filtering unit requires two se-

quences of the same length and an edit distance threshold. The result con-

troller gathers the output result (i.e., a single bit of value ‘1’ for similar

sequences and ‘0’ for dissimilar sequences) of each filtering unit and trans-

mits them back to the host side in the same order as their sequences are

transmitted to the FPGAs.

The host-FPGA communication is achieved using RIFFA 2.2

(Jacobsen, et al., 2015). To make the best use of the available resources in

the FPGA chip, our algorithm utilizes the operations that are easily sup-

ported on an FPGA, such as bitwise operations, bit shifts, and bit count.

To build the neighborhood map on the FPGA, we use the observation that

the main diagonal can be implemented using a bitwise XOR operation be-

tween the two given sequences. The upper E diagonals can be imple-

mented by gradually shifting the pattern (P) to the right-hand direction and

then performing bitwise XOR with the text (T). This allows each character

of P to be compared with the right-hand neighbor characters (up to E char-

acters) of its corresponding character of T. The lower E diagonals can be

implemented in a way similar to the upper E diagonals, but here the shift

operation is performed to the left-hand direction. This ensures that each

character of P is compared with the left-hand neighbor characters (up to E

characters) of its corresponding character of T.

We also build an efficient hardware architecture for each search win-

dow of SLIDER algorithm. It quickly finds the number of zeros in each 4-

bit vector using a hardware look-up table that stores the 16 possible per-

mutations of a 4-bit vector along with the number of zeros for each per-

mutation. We present the block diagram of the search window architecture

in Supplementary Materials, Section 6.3. Our hardware implementation of

the SLIDER filtering unit is independent from specific FPGA-platform as

it does not rely on any vendor-specific computing elements (e.g., intellec-

tual property cores). However, each FPGA board has different features

and hardware capabilities that can directly or indirectly affect the perfor-

mance and the data throughput of the design. In fact, the number of filter-

ing units is determined by the maximum data throughput from main

memory and the available FPGA resources.

SLIDER: Fast and Efficient Computation of Banded Sequence Alignment

S
e

q
u

e
n

c
e

 R
e

p
o

s
it

o
ry

. . .

FPGA Board

P
C

Ie

Host

. . .

. . .

Filter

3

Filter

2

Filter

1

Filter

6

Filter

5

Filter

 # 4

Filter

9

Filter

8

Filter

7

Filter

N

Filter

N-1

Filter

N-2

Result Controller

R
IF

F
A

 R
X

 E
n

g
in

e
R

IF
F

A
 T

X
 E

n
g

in
e

R
IF

F
A

 D
ri

v
e

r

F
il
te

ri
n

g
 U

n
it

s

FIFOFIFOFIFO FIFO

FIFOFIFOFIFO FIFO

Sequence Controller

Fig. 2: Overview of our hardware accelerator architecture. The filtering units can be

replicated as many times as possible according to the resources available on the FPGA

fabric.

3 RESULTS

In this section, we evaluate (1) the filtering accuracy, (2) the FPGA re-

source utilization, (3) the execution time of SLIDER, our hardware imple-

mentation of MAGNET (Alser, et al., July 2017), GateKeeper (Alser, et

al., 2017), and SHD (Xin, et al., 2015), and (4) the benefits of the pre-

alignment filters together with state-of-the-art aligners. As we mention in

Section 1, MAGNET is a highly-accurate filtering algorithm but suffers

from poor performance. We comprehensively explore this algorithm and

provide an efficient and fast hardware implementation of MAGNET in

Supplementary Materials, Section 7. We run all experiments using a 3.6

GHz Intel i7-3820 CPU with 8 GB RAM. We use a Xilinx Virtex 7 VC709

board (Xilinx, 2014) to implement our accelerator architecture (for both

SLIDER and MAGNET). We build the FPGA design using Vivado 2015.4

in synthesizable Verilog.

3.1 Dataset Description

Our experimental evaluation uses 12 different real datasets. Each dataset

contains 30 million real sequence pairs. We obtain three different read sets

(ERR240727_1, SRR826460_1, and SRR826471_1) of the whole human

genome that include three different read lengths (100 bp, 150 bp, and 250

bp). We download these three read sets from EMBL-ENA

(www.ebi.ac.uk/ena). We map each read set to the human reference ge-

nome (GRCh37) using the mrFAST (Alkan, et al., 2009) mapper. We ob-

tain the human reference genome from the 1000 Genomes Project

(Consortium, 2012). For each read set, we use four different maximum

numbers of allowed edits using the -e parameter of mrFAST to generate

four real datasets. This enables us to measure the effectiveness of the fil-

ters over a wide range edit distance thresholds. We summarize the details

of these 12 datasets in Supplementary Materials, Section 9. For the

reader’s convenience, when referring to these datasets, we number them

from 1 to 12 (e.g., set_1 to set_12). We use Edlib (Šošić and Šikić, 2017)

to generate the ground truth edit distance value for each sequence pair.

3.2 Filtering Accuracy

We first assess the false accept rate of SLIDER, MAGNET (Alser, et al.,

July 2017), SHD (Xin, et al., 2015), and GateKeeper (Alser, et al., 2017)

across different edit distance thresholds and datasets. The false accept rate

(or false positive rate) is the ratio of the number of dissimilar sequences

that are falsely-accepted by the filter and the number of dissimilar se-

quences that are rejected by optimal sequence alignment algorithm. We

aim to minimize the false accept rate to maximize that number of dissim-

ilar sequences that are eliminated. In Fig.3, we provide the false accept

rate of the four filters across our 12 datasets and edit distance thresholds

of 0% to 10% of the sequence length.

Based on Fig. 3, we make four key observations. (1) We observe that

SLIDER, MAGNET, SHD, and GateKeeper are less accurate in examin-

ing the low-edit sequences (i.e., datasets 1, 2, 5, 6, 9, and 10) than the high-

edit sequences (i.e., datasets 3, 4, 7, 8, 11, and 12). (2) SHD (Xin, et al.,

2015) and GateKeeper (Alser, et al., 2017) become ineffective for edit dis-

tance thresholds of greater than 8% (E=8), 5% (E=7), and 3% (E=7) for

sequence lengths of 100, 150, and 250 characters, respectively. This

causes them to examine each sequence pair unnecessarily twice (i.e., once

by GateKeeper or SHD and once by the alignment algorithm). (3) For

high-edit datasets, SLIDER provides up to 17.2x, 73x, and 467x (2.4x,

2.7x, and 38x for low-edit datasets) less false accept rate compared to

GateKeeper and SHD for sequence lengths of 100, 150, and 250 charac-

ters, respectively. (4) MAGNET shows up to 1577x, 3550x, and 25552x

for high-edit datasets (3.5x, 14.7x, and 135x for low-edit datasets) less

false accept rate compared to GateKeeper and SHD for sequence lengths

of 100, 150, and 250 characters, respectively. MAGNET also shows up to

205x, 951x, and 16760x for high-edit datasets (2.7x, 10x, and 88x for low-

edit datasets) less false accept rate over SLIDER for sequence lengths of

100, 150, and 250 characters, respectively.

Second, we assess the false reject rate in Supplementary Materials, Sec-

tion 10. We demonstrate that SLIDER and GateKeeper have a 0% false

reject rate. We also observe that SHD and MAGNET falsely-reject correct

sequence pairs, which is unacceptable for a reliable filter. We conclude

that SLIDER and MAGNET are very effective and superior to state-of-

the-art pre-alignment filters, SHD (Xin, et al., 2015) and GateKeeper

(Alser, et al., 2017) for both low-edit and high-edit datasets. SLIDER and

MAGNET maintain a very low rate of falsely-accepted dissimilar se-

quences and they significantly improve the accuracy of pre-alignment fil-

tering by up to two and four orders of magnitude compared to Gate-

Keeper/SHD, respectively. Unlike MAGNET and SHD, SLIDER pre-

serves all sequence pairs that differ by less than or equal to the user-de-

fined edit distance threshold. Hence, we conclude that SLIDER is the most

effective filter, with a low false accept rate and a zero false reject rate.

3.3 Data Throughput and Resource Analysis

The operating frequency of our FPGA accelerator is 250 MHz. At this

frequency, we observe a data throughput of nearly 3.3 GB/s, which corre-

sponds to ~13.3 billion bases per second. This nearly reaches the peak

throughput of 3.64 GB/s provided by the RIFFA (Jacobsen, et al., 2015)

communication channel that feeds data into the FPGA using Gen3 4-lane

PCIe. We examine the FPGA resource utilization of SLIDER, MAGNET,

and GateKeeper (Alser, et al., 2017) filters. SHD (Xin, et al., 2015) is im-

plemented in C with Intel SSE instructions and cannot be directly imple-

mented on an FPGA. We provide several hardware designs for two com-

monly used edit distance thresholds, 2% and 5% of the sequence length,

as reported in (Ahmadi, et al., 2012; Alser, et al., 2017; Hatem, et al., 2013;

Xin, et al., 2015). The VC709 FPGA chip contains 433,200 slice LUTs

(look-up tables) and 866,400 slice registers (flip-flops). Table 1 lists the

FPGA resource utilization for a single filtering unit. We make three main

observations. (1) The design for a single MAGNET filtering unit requires

about 10.5% and 37.8% of the available LUTs for edit distance thresholds

of 2 and 5, respectively.

M. Alser et al.

(a) Sequence length = 100

(b) Sequence length =150

(c) Sequence length = 250

Fig. 3: The false accept rate of SLIDER, MAGNET, SHD and GateKeeper across 12

real datasets. We use a wide range of edit distance thresholds (0%-10% of the se-

quence length) for sequence lengths of (a) 100, (b) 150, and (c) 250.

Hence, MAGNET can process 8 and 2 sequence pairs concurrently for

edit distance thresholds of 2 and 5, respectively, without violating the tim-

ing constraints of our accelerator. (2) The design for a single SLIDER fil-

tering unit requires about 15x-21.9x less LUTs compared to MAGNET.

This enables SLIDER to achieve more parallelism over MAGNET design

as it can have 16 filtering units within the same FPGA chip. (3) Gate-

Keeper requires about 26.9x-53x and 1.7x-2.4x less LUTs compared to

MAGNET and SLIDER, respectively. GateKeeper can also examine 16

sequence pairs at the same time.

We conclude that the FPGA resource usage is correlated with the filter-

ing accuracy. For example, the least accurate filter, GateKeeper, occupies

the least FPGA resources. We also conclude that the less the logic utiliza-

tion of a single filtering unit, the more the number of filtering units that

can be integrated into the FPGA.

Table 1: FPGA resource usage for a single filtering unit of SLIDER,

MAGNET, and GateKeeper, for a sequence length of 100 and under

different edit distance thresholds.

Filter E
Single Filtering Unit Max. No. of

Filtering Units Slice LUT Slice Register

SLIDER
2 0.69% 0.01% 16

5 1.72% 0.01% 16

MAGNET
2 10.50% 0.8% 8

5 37.80% 2.30% 2

GateKeeper
2 0.39% 0.01% 16

5 0.71% 0.01% 16

3.4 Effects of Pre-Alignment Filtering on Sequence

Alignment

We analyze the execution time of MAGNET and SLIDER compared to

SHD (Xin, et al., 2015) and GateKeeper (Alser, et al., 2017). We evaluate

GateKeeper, MAGNET, and SLIDER using a single FPGA chip and run

SHD using a single CPU core. SHD supports a sequence length of up to

only 128 characters (due to the SIMD register size). To ensure as fair a

comparison as possible, we allow SHD to divide the long sequences into

batches of 128 characters, examine each batch individually, and then sum

up the results. In Table 2, we provide the execution time of the four pre-

alignment filters using 120 million sequence pairs under sequence lengths

of 100 and 250 characters.

Table 2: Execution time (in seconds) of FPGA-based GateKeeper,

MAGNET, SLIDER, and CPU-based SHD under different edit dis-

tance thresholds and sequence lengths. We use set_1 to set_4 for a se-

quence length of 100 and set_9 to set_12 for a sequence length of 250.

We provide the performance results for both a single filtering unit

and the maximum number of filtering units (in parentheses).

E GateKeeper MAGNET SLIDER SHD

Sequence Length = 100

2 2.89a (0.18b, 16c) 2.89 (0.36, 8) 2.89 (0.18, 16) 60.33

5 2.89 (0.18, 16) 2.89 (1.45, 2) 2.89 (0.18, 16) 67.92

Sequence Length = 250

5 5.78 (0.72, 8) 5.78 (2.89d, 2) 5.78 (0.72d, 8) 141.09

15 5.78 (0.72, 8) 5.78 (5.78d, 1) 5.78 (0.72d, 8) 163.82

a Execution time, in seconds, for a single filtering unit.

b Execution time, in seconds, for maximum filtering units.

c The number of filtering units.

d Theoretical results based on the resource utilization and data throughput.

We make four key observations. (1) SLIDER’s execution time is as low

as that of GateKeeper (Alser, et al., 2017), and 2x-8x lower than that of

MAGNET. This observation is in accord with our expectation and can be

explained by the fact that MAGNET has more resource overhead that lim-

its the number of filtering units on an FPGA. Yet SLIDER is up to two

orders of magnitude more accurate than GateKeeper (as we show earlier

in Section 3.2). (2) SLIDER is up to 28x and 335x faster than SHD using

one and 16 filtering units, respectively. (3) MAGNET is up to 28x and

167.5x faster than SHD using one and 8 filtering units, respectively. As

we present in Supplementary Materials, Section 11, the hardware-acceler-

ated versions of SLIDER and MAGNET provide up to three orders of

magnitude of speedup over their functionally-equivalent CPU implemen-

tations.

We conclude that SLIDER is extremely fast and accurate. SLIDER’s

performance also scales very well over a wide range of both edit distance

thresholds and sequence lengths.

3.5 Effects of Pre-Alignment Filtering on Sequence

Alignment

We analyze the benefits of integrating our proposed pre-alignment filter

(and other filters) with state-of-the-art aligners. Table 3 presents the effect

of different pre-alignment filters on overall alignment time. We select five

best-performing aligners, each of which is designed for a different type of

computing platform. We use a total of 120 million real sequence pairs

from our previously-described four datasets (set_1 to set_4) in this analy-

sis. We evaluate the actual execution time of Edlib (Šošić and Šikić, 2017)

and Parasail (Daily, 2016) on our machine. However, FPGASW (Fei, et

al., 2018), CUDASW++ 3.0 (Liu, et al., 2013), and GSWABE (Liu and

Schmidt, 2015) are not open-source and not available to us. Therefore, we

scale the reported number of computed entries of the dynamic program-

ming matrix in a second (i.e., GCUPS) as follows: 120,000,000 / (GCUPS

/ 1002).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Set_1 Set_2 Set_3 Set_4

Fa
ls

e
 A

cc
e

p
t

R
at

e

Edit distance threshold (characters) and dataset number

GateKeeper
SLIDER
MAGNET
SHD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 3 4 6 7 9 10 12 13 15 0 1 3 4 6 7 9 10 12 13 15 0 1 3 4 6 7 9 10 12 13 15 0 1 3 4 6 7 9 10 12 13 15

Set_5 Set_6 Set_7 Set_8

Fa
ls

e
 A

cc
e

p
t

R
at

e

Edit distance threshold (characters) and dataset number

GateKeeper
SLIDER
MAGNET
SHD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 5 7 10 12 15 17 20 22 25 0 2 5 7 10 12 15 17 20 22 25 0 2 5 7 10 12 15 17 20 22 25 0 2 5 7 10 12 15 17 20 22 25

Set_9 Set_10 Set_11 Set_12

Fa
ls

e
 A

cc
e

p
t

R
at

e

Edit distance threshold (characters) and dataset number

GateKeeper

SLIDER

MAGNET

SHD

SLIDER: Fast and Efficient Computation of Banded Sequence Alignment

We make three key observations. (1) The execution time of Edlib (Šošić

and Šikić, 2017) reduces by up to 18.8x, 16.5x, 13.9x, and 5.2x after the

addition of SLIDER, MAGNET, GateKeeper, and SHD, respectively, as

a pre-alignment filtering step. We also observe a very similar trend for

Parasail (Daily, 2016) combined with each of the four pre-alignment fil-

ters. (2) Aligners designed for FPGAs and GPUs follow a different trend

than that we observe in the CPU aligners. We observe that FPGASW (Fei,

et al., 2018), CUDASW++ 3.0 (Liu, et al., 2013), and GSWABE (Liu and

Schmidt, 2015) are faster alone than with SHD (Xin, et al., 2015) incor-

porated as the pre-alignment filtering step. SLIDER, MAGNET, and Gate-

Keeper (Alser, et al., 2017) still significantly reduce the overall execution

time of both FPGA and GPU based aligners. SLIDER reduces the overall

alignment time of FPGASW (Fei, et al., 2018), CUDASW++ 3.0 (Liu, et

al., 2013), and GSWABE (Liu and Schmidt, 2015) by factors of up to

14.5x, 14.2x, and 17.9x, respectively. This is up to 1.35x, 1.4x, and 85x

more than the effect of MAGNET, GateKeeper, and SHD on the end-to-

end alignment time. (3) We observe that if the execution time of the

aligner is much larger than that of the pre-alignment filter (which is the

case for Edlib and Parasail for E=5 characters), then MAGNET provides

up to 1.3x more end-to-end speedup over SLIDER. This is expected as

MAGNET produces a smaller false accept rate compared to SLIDER.

However, unlike MAGNET, SLIDER provides a 0% false reject rate.

We conclude that among the four pre-alignment filters, SLIDER is the

best-performing pre-alignment filter in terms of both speed and accuracy.

Integrating SLIDER with an aligner leads to strongly positive benefits and

reduces the aligner’s total execution time by up to 18.8x.

Table 3: End-to-end execution time (in seconds) for several state-of-

the-art sequence alignment algorithms, with and without pre-align-

ment filters (SLIDER, MAGNET, GateKeeper, and SHD) and across

different edit distance thresholds.

E Edlib w/ SLIDER w/ MAGNET w/ GateKeeper w/ SHD

2 506.66 26.86 30.69 36.39 96.54

5 632.95 147.20 106.80 208.77 276.51

E Parasail w/ SLIDER w/ MAGNET w/ GateKeeper w/ SHD

2 1310.96 69.21 78.83 93.87 154.02

5 2044.58 475.08 341.77 673.99 741.73

E FPGASW w/ SLIDER w/ MAGNET w/ GateKeeper w/ SHD

2 11.33 0.78 1.04 0.99 61.14

5 11.33 2.81 3.34 3.91 71.65

E CUDASW++ 3.0 w/ SLIDER w/ MAGNET w/ GateKeeper w/ SHD

2 10.08 0.71 0.96 0.90 61.05

5 10.08 2.52 3.13 3.50 71.24

E GSWABE w/ SLIDER w/ MAGNET w/ GateKeeper w/ SHD

2 61.86 3.44 4.06 4.60 64.75

5 61.86 14.55 11.75 20.57 88.31

4 DISCUSSION AND FUTURE WORK

We demonstrate that the concept of pre-alignment filtering provides sub-

stantial benefits to the existing and future sequence alignment algorithms.

Accelerated sequence aligners are frequently introduced that offer differ-

ent strengths and features. Many of these efforts either simplify the scoring

function, or only take into account accelerating the computation of the dy-

namic programming matrix without supporting the backtracking step.

SLIDER offers the ability to make the best use of existing aligners without

sacrificing any of their capabilities, as it does not modify or replace the

alignment step. As such, we hope that it catalyzes the adoption of special-

ized pre-alignment accelerators in genome sequence analysis. However,

the use of specialized hardware chips may discourage users who are not

necessarily fluent in FPGAs. This concern can be alleviated in at least two

ways. First, the SLIDER accelerator can be integrated more closely inside

the sequencing machines to perform real-time pre-alignment filtering con-

currently with sequencing (Lindner, et al., 2016). This allows a significant

reduction in total genome analysis time. Second, cloud computing offers

access to a large number of advanced FPGA chips that can be used con-

currently via a simple user-friendly interface. However, such a scenario

requires the development of privacy-preserving pre-alignment filters due

to privacy and legal concerns (Salinas and Li, 2017). Our next efforts will

focus on exploring privacy-preserving real-time pre-alignment filtering.

Another potential target of our research is to explore the possibility of

accelerating optimal alignment calculations for longer sequences (few tens

of thousands of characters) (Senol, et al., 2018) using pre-alignment fil-

tering. Longer sequences pose two challenges. First, we need to transfer

more data to the FPGA chip to be able process a single pair of sequences

which is mainly limited by the data transfer rate of the communication link

(i.e., PCIe). Second, typical edit distance threshold used for sequence

alignment is 5% of the sequence length. For considerably long sequences,

edit distance threshold is around few hundreds of characters. For a large

edit distance threshold, each character of a given sequence is compared to

a large number of neighboring characters of the other given sequence. This

makes the short matches (e.g., a single zero or two consecutive zeros) to

occur more frequently in the diagonal vectors, which negatively affect the

accuracy of SLIDER. We will investigate this effect and explore new pre-

alignment filtering approaches for the sequencing data produced by third-

generation sequence machines.

5 CONCLUSION

In this work, we propose SLIDER, a highly-parallel and accurate pre-

alignment filtering algorithm accelerated on a specialized hardware plat-

form. The key idea of SLIDER is to rapidly and accurately eliminate dis-

similar sequences without calculating banded optimal alignment. Our

hardware-accelerated version of SLIDER provides, on average, three or-

ders of magnitude speedup over its functionally-equivalent CPU imple-

mentation. SLIDER improves the accuracy of pre-alignment filtering by

up to two orders of magnitude compared to the best-performing existing

pre-alignment filter, GateKeeper. The addition of SLIDER as a pre-align-

ment step significantly reduces the alignment time of state-of-the-art

aligners by up to 18.8x, leading to the fastest alignment mechanism that

we know of.

Acknowledgments

We thank Tuan Duy Anh Nguyen for his valuable comments on the hardware design.

Funding

This work is supported in part by the NIH Grant (HG006004 to O. Mutlu and C.

Alkan) and the EMBO Installation Grant (IG-2521) to C. Alkan. M. Alser is sup-

ported by the HiPEAC collaboration grant and TUBITAK-2215 graduate fellowship

from the Scientific and Technological Research Council of Turkey.

Conflict of Interest: none declared.

M. Alser et al.

References

Ahmadi, A., et al. (2012) Hobbes: optimized gram-based methods for efficient read

alignment, Nucleic acids research, 40, e41-e41.

Al Kawam, A., Khatri, S. and Datta, A. (2017) A Survey of Software and Hardware

Approaches to Performing Read Alignment in Next Generation Sequencing,

IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), 14, 1202-1213.

Alkan, C., et al. (2009) Personalized copy number and segmental duplication maps

using next-generation sequencing, Nature genetics, 41, 1061-1067.

Alser, M., et al. (2017) GateKeeper: a new hardware architecture for accelerating

pre-alignment in DNA short read mapping, Bioinformatics, 33, 3355-3363.

Alser, M., Mutlu, O. and Alkan, C. (July 2017) Magnet: Understanding and

improving the accuracy of genome pre-alignment filtering, Transactions on

Internet Research 13.

Aluru, S. and Jammula, N. (2014) A review of hardware acceleration for

computational genomics, Design & Test, IEEE, 31, 19-30.

Backurs, A. and Indyk, P. (2017) Edit Distance Cannot Be Computed in Strongly

Subquadratic Time (unless SETH is false), arXiv preprint arXiv:1412.0348v4

Banerjee, S.S., et al. (2018) ASAP: Accelerated Short-Read Alignment on

Programmable Hardware, arXiv preprint arXiv:1803.02657.

Calude, C., Salomaa, K. and Yu, S. (2002) Additive distances and quasi-distances

between words, Journal of Universal Computer Science, 8, 141-152.

Chen, P., et al. (2014) Accelerating the next generation long read mapping with the

FPGA-based system, IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 11, 840-852.

Chen, Y.-T., et al. (2016) When spark meets FPGAs: a case study for next-generation

DNA sequencing acceleration. Field-Programmable Custom Computing

Machines (FCCM), 2016 IEEE 24th Annual International Symposium on.

IEEE, pp. 29-29.

Consortium, G.P. (2012) An integrated map of genetic variation from 1,092 human

genomes, Nature, 491, 56-65.

Daily, J. (2016) Parasail: SIMD C library for global, semi-global, and local pairwise

sequence alignments, BMC bioinformatics, 17, 81.

Fei, X., et al. (2018) FPGASW: Accelerating Large-Scale Smith–Waterman

Sequence Alignment Application with Backtracking on FPGA Linear Systolic

Array, Interdisciplinary Sciences: Computational Life Sciences, 10, 176-188.

Fox, E.J., et al. (2014) Accuracy of next generation sequencing platforms, Next

generation, sequencing & applications, 1.

Georganas, E., et al. (2015) meraligner: A fully parallel sequence aligner. Parallel

and Distributed Processing Symposium (IPDPS), 2015 IEEE International.

IEEE, pp. 561-570.

Hatem, A., et al. (2013) Benchmarking short sequence mapping tools, BMC

bioinformatics, 14, 184.

Henikoff, S. and Henikoff, J.G. (1992) Amino acid substitution matrices from protein

blocks, Proceedings of the National Academy of Sciences, 89, 10915-10919.

Herbordt, M.C., et al. (2007) Achieving high performance with FPGA-based

computing, Computer, 40, 50.

Jacobsen, M., et al. (2015) RIFFA 2.1: A Reusable Integration Framework for FPGA

Accelerators, ACM Trans. Reconfigurable Technol. Syst., 8, 1-23.

Kim, J.S., et al. (2018) GRIM-Filter: Fast seed location filtering in DNA read

mapping using processing-in-memory technologies, BMC genomics, 19, 89.

Kung, H.-T. (1982) Why systolic architectures?, IEEE computer, 15, 37-46.

Lindner, M.S., et al. (2016) HiLive–Real-Time Mapping of Illumina Reads while

Sequencing, Bioinformatics, btw659.

Lipman, D.J. and Pearson, W.R. (1985) Rapid and sensitive protein similarity

searches, Science, 227, 1435-1441.

Liu, Y. and Schmidt, B. (2015) GSWABE: faster GPU‐accelerated sequence

alignment with optimal alignment retrieval for short DNA sequences,

Concurrency and Computation: Practice and Experience, 27, 958-972.

Liu, Y., Wirawan, A. and Schmidt, B. (2013) CUDASW++ 3.0: accelerating Smith-

Waterman protein database search by coupling CPU and GPU SIMD

instructions, BMC bioinformatics, 14, 117.

Masek, W.J. and Paterson, M.S. (1980) A faster algorithm computing string edit

distances, Journal of Computer and System Sciences, 20, 18-31.

McKernan, K.J., et al. (2009) Sequence and structural variation in a human genome

uncovered by short-read, massively parallel ligation sequencing using two-base

encoding, Genome research, 19, 1527-1541.

Navarro, G. (2001) A guided tour to approximate string matching, ACM computing

surveys (CSUR), 33, 31-88.

Ng, H.-C., Liu, S. and Luk, W. (2017) Reconfigurable acceleration of genetic

sequence alignment: A survey of two decades of efforts. Field Programmable

Logic and Applications (FPL), 2017 27th International Conference on. IEEE,

pp. 1-8.

Nishimura, T., et al. (2017) Accelerating the Smith-Waterman Algorithm Using

Bitwise Parallel Bulk Computation Technique on GPU. Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE

International. IEEE, pp. 932-941.

Salinas, S. and Li, P. (2017) Secure Cloud Computing for Pairwise Sequence

Alignment. Proceedings of the 8th ACM International Conference on

Bioinformatics, Computational Biology, and Health Informatics. ACM, pp.

178-183.

Sandes, E.F.D.O., Boukerche, A. and Melo, A.C.M.A.D. (2016) Parallel optimal

pairwise biological sequence comparison: Algorithms, platforms, and

classification, ACM Computing Surveys (CSUR), 48, 63.

Senol, C.D., et al. (2018) Nanopore sequencing technology and tools for genome

assembly: computational analysis of the current state, bottlenecks and future

directions, Briefings in bioinformatics.

Seshadri, V., et al. (2017) Ambit: In-memory accelerator for bulk bitwise operations

using commodity DRAM technology. Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture. ACM, pp. 273-

287.

Šošić, M. and Šikić, M. (2017) Edlib: a C/C++ library for fast, exact sequence

alignment using edit distance, Bioinformatics, 33, 1394-1395.

Trimberger, S.M. (2015) Three ages of FPGAs: a retrospective on the first thirty

years of FPGA technology, Proceedings of the IEEE, 103, 318-331.

Ukkonen, E. (1985) Algorithms for approximate string matching, Information and

control, 64, 100-118.

Waidyasooriya, H. and Hariyama, M. (2015) Hardware-Acceleration of Short-read

Alignment Based on the Burrows-Wheeler Transform, Parallel and Distributed

Systems, IEEE Transactions on, PP, 1-1.

Wang, C., et al. (2011) Comparison of linear gap penalties and profile-based variable

gap penalties in profile–profile alignments, Computational biology and

chemistry, 35, 308-318.

Xilinx (2014) Virtex-7 XT VC709 Connectivity Kit, Getting Started Guide, UG966

(v3.0.1) June 30, 2014.

Xin, H., et al. (2015) Shifted Hamming Distance: A Fast and Accurate SIMD-

Friendly Filter to Accelerate Alignment Verification in Read Mapping,

Bioinformatics, 31, 1553-1560.

Xin, H., et al. (2013) Accelerating read mapping with FastHASH, BMC genomics,

14, S13.

1

Supplementary Materials

6 SLIDER Filter

6.1 Examining the effect of different window sizes on the accuracy of the SLIDER algorithm.

In Fig. 4, we experimentally evaluate the effect of different window sizes on the false accept rate of SLIDER. We observe that as we increase the window

size, the rate of dissimilar sequences that are accepted by SLIDER decreases. This is because individual matches (i.e., single zeros) are usually useless

and they are not necessarily part of the common subsequences. As we increase the search window size, we are ignoring these individual matches and
instead we only look for longer streaks of consecutive zeros. We also observe that a window size of 4 columns provides the lowest false accept rate (i.e.,

the highest accuracy).

Fig. 4: The effect of the window size on the rate of the falsely accepted sequences (i.e., dissimilar sequences that are considered as similar ones by SLIDER filter). We observe

that a window width of 4 columns provides the highest accuracy. We also observe that as window size increases beyond 4 columns, more similar sequences are rejected by

SLIDER, which should be avoided.

6.2 The SLIDER Algorithm and Its Analysis

We provide the SLIDER algorithm along with analysis of its computational complexity (asymptotic run time and space complexity). SLIDER divides the

problem of finding the common subsequences into at most m subproblems, as described in Algorithm 1 (line 9). Each subproblem examines each of the

2E+1 bit-vectors and finds the 4-bit subsequence that has the largest number of zeros within the sliding window (line 13 to line 23). Once found, SLIDER

also compares the found subsequence with its corresponding subsequence in the SLIDER bit-vector and stores the one that has more zeros in the SLIDER

bit-vector (line 24). Now, let c be a constant representing the run time of examining a subsequence of 4 bits long. Then the time complexity of SLIDER

algorithm is as follows:

TSLIDER(m) = c.m .(2E+2) (2)

This demonstrates that SLIDER algorithm runs in linear time with respect to the sequence length and edit distance threshold. SLIDER algorithm maintains

2E+1 diagonal bit-vectors and an additional auxiliary bit-vector (i.e., SLIDER bit-vector) for each two given sequences. The space complexity of SLIDER

algorithm is as follows:

DSLIDER(m) = m .(2E+2) (3)

Hence, SLIDER algorithm requires linear space with respect to the sequence length and edit distance threshold. Next, we describe the hardware

implementation details of SLIDER filter.

6.3 Hardware Implementation

We present the FPGA chip layout for our hardware accelerator in Fig. 5. As we illustrated in the main manuscript, Section 2.3, we implement the first

step of our SLIDER algorithm, building neighborhood map, using shift registers and bitwise XOR operations. The second step of SLIDER algorithm is

identifying the diagonally-consecutive matches. This key step involves finding the 4-bit vector that has the largest number of zeros. For each search

window, there are 2E+1 diagonal bit-vectors and an additional SLIDER bit-vector. To enable the computation to be performed in a parallel fashion, we

build 2E+2 counters. As presented in Fig. 5, each counter counts the number of zeros in a single bit-vector. The counter takes four bits as input and

generates three bits that represents the number of zeros within the window. Each counter requires three 4-input LUTs, as each LUT has a single output

signal. In total, we need 6E+6 4-input LUTs to build a single search window. All bits of the counter output are generated at the same time, as the

propagation delay through an FPGA look-up table is independent of the implemented function (Xilinx, November 17, 2014). The comparator is

responsible for selecting the 4-bit subsequence that maximizes the number of consecutive matches based on the output of each counter and the SLIDER

bit-vector. Finally, the selected 4-bit subsequence is then stored in the SLIDER bit-vector at the same corresponding location.

53%

17%

4%
1%

0%

15%

30%

45%

60%

1 2 3 4

Fa
ls

e
A

cc
ep

t
R

at
e

Window Size (columns)

2

Algorithm 1: SLIDER Comments

Input: text (T), pattern (P), edit distance threshold (E).
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).

 1: m ← length(T);
 2: for i ← 1 to m do
 3: for j ← i-E to i+E do
 4: if T[i] == P[j] then
 5: N[i,j] ← 0;
 6: else N[i,j]← 1;

Step 1: Building
neighborhood map (N)

Output: 2E+1 diagonal

bit-vectors

 7: for i ← 1 to m do SLIDER[i] ← 1; //initializing SLIDER bit-vector to 1’s
 8: Z ← [0000]; // Z is 4-bit vector that stores the longest streak of diagonally-consecutive zeros
 9: for i ← 1 to m do // slide the search window by a single step
10: for j ← 1 to E do // iterate over the diagonals
11: // function CZ(D) counts the occurrence of zeros in its input bit-vector D
12: // Compare jth lower diagonal with jth upper diagonal
13: if CZ(N[i+j:i+3+j,i:i+3]) > CZ(N[i:i+3,i+j:i+3+j]) then
14: Z ← N[i+j:i+3+j,i:i+3];
15: // If jth lower and jth upper diagonals have the same number of
16: // zeros then selects the diagonal that starts with zeros
17: else if CZ(N[i+j:i+3+j,i:i+3]) == CZ(N[i:i+3,i+j:i+3+j]) then
18: if N[i+j,i]==0 then Z ← N[i+j:i+3+j,i:i+3];
19: else if N[i,i+j]==0 then Z ← N[i:i+3,i+j:i+3+j];
20: // Compare Z with the jth upper diagonal
21: else Z ← N[i:i+3,i+j:i+3+j];
22: // Compare Z with main diagonal and SLIDER bit-vector
23: if CZ(N[i:i+3,i:i+3]) > CZ(Z) then Z ← N[i:i+3,i:i+3];
24: if CZ(Z) > CZ(SLIDER[i:i+3]) then SLIDER[i:i+3] ← Z;

Step 2: Identifying the
Diagonally-Consecutive

Matches

25: if CZ(SLIDER) ≥ m-E then return 1;
26: else return 0;

Step 3: Filtering out
Dissimilar Sequences

Algorithm 2: CZ function

Function: CZ() counts the number of occurrences of zeros.
Input: bit-vector D.
Output: number of occurrences of zeros.
 1: count ← 0;
 2: for i ← 1 to length(D) do
 3: if D[i] == 0 then
 4: count ← count + 1;
 5: return count;

3

m

m

m

Text

0's

Counter

SLIDER

bit-vector

m search windows for processing

sequences of length m characters

Pattern

Edit

distance

threshold

4
2

.5
m

m

42.5mm

 SLIDER logic slices

 PCIe controller

Filtering Unit

4
4

Search

Window m

2E+1 diagonals

4 . . .

. . .

4
4

Search

Window m-1

2E+1 diagonals

4 . . .

. . .

44
2E+1

diagonals

4. . .

. . .

B
u

il
d

in
g

 N
e

ig
h

b
o

rh
o

o
d

 M
a

p

(2
E

+
1

 d
ia

g
o

n
a

l
b

it
-v

e
c
to

rs
)

. . .

Z1

Zm-1

Zm

4

4

4

. . .

3

3

3
. . .

0's

Counter

0's

Counter

0's

Counter

s
e

le
c

t
th

e
 v

e
c

to
r

th
a

t

h
a

s
 t

h
e

 h
ig

h
e

s
t

#
 o

f
0

's

Search Window 1

2E+1

≥ m-E?

1: similar

0: dissimilar

Step 1 Step 2 Step 3

Fig. 5: FPGA chip layout for SLIDER and block diagram of the search window scheme implemented in a Xilinx VC709 FPGA for a single filtering unit.

7 MAGNET Filter

First, we provide the MAGNET (Alser, et al., July 2017) algorithm and describe its main filtering mechanism. Second, we analyze the computational

complexity of MAGNET algorithm. Third, we provide details about the hardware implementation of the MAGNET algorithm.

7.1 Overview

MAGNET (Alser, et al., July 2017) is another filter that uses a divide-and-conquer technique to find all the E+1 common subsequences, if any, and sum

up their length. By calculating their total length, we can estimate the total number of edits between the two given sequences. If the total length of the E+1

common subsequences is less than m-E, then there exist more common subsequences than E+1 that are associated with more edits than allowed. If so,

then MAGNET excludes the two given sequences from optimal alignment calculation. We present the algorithm of MAGNET in Algorithm 3. Finding

the common subsequences involves four main steps. (1) Building the neighborhood map. Similar to SLIDER, MAGNET starts with building the 2E+1

diagonal bit-vectors of the neighborhood map for the two given sequences (Algorithm 3, lines 2-6). (2) Extraction. Each diagonal bit-vector nominates

its local longest subsequence of consecutive zeros. Among all nominated subsequences, a single subsequence is selected as a global longest subsequence

based on its length (Algorithm 4, lines 2-11). MAGNET evaluates if the length of the global longest subsequence is less than ⌈(𝑚 − 𝐸)/(𝐸 + 1)⌉, then

the two sequences contain more edits than allowed, which cause the common subsequences to be shorter (i.e., each edit results in dividing the sequence

pair into more common subsequences). If so, then the two sequences are rejected (Algorithm 4, lines 12-13). Otherwise, MAGNET stores its length to be

used towards calculating the total length of all E+1 common subsequences. The lower bound equality occurs when all edits are equispaced and all E+1

subsequences are of the same length.

(3) Encapsulation. The next step is essential to preserve the original edit (or edits) that causes a single common sequence to be divided into smaller

subsequences. MAGNET penalizes the found subsequence by two edits (one for each side). This is achieved by excluding from the search space of all

bit-vectors the indices of the found subsequence in addition to the index of the surrounding single bit from both left and right sides (Algorithm 4, lines

14-17). (4) Divide-and-Conquer Recursion. In order to locate the other E non-overlapping subsequences, MAGNET applies a divide-and-conquer

technique where we decompose the problem of finding the non-overlapping common subsequences into two subproblems. While the first subproblem

focuses on finding the next long subsequence that is located on the right-hand side of the previously found subsequence in the first extraction step

(Algorithm 4, line 15), the second subproblem focuses on the other side of the found subsequence (Algorithm 4, line 17). Each subproblem is solved by

recursively repeating all the three steps mentioned above, but without evaluating again the length of the longest subsequence. MAGNET applies two early

termination methods that aim at reducing the execution time of the filter. The first method is evaluating the length of the longest subsequence in the first

recursion call (Algorithm 4, lines 12-13). The second method is limiting the number of the subsequences to be found to at most E+1, regardless of their

4

actual number for the given sequence pair (Algorithm 4, line 1). (5) Filtering out Dissimilar Sequences. Once after the termination, if the total length of

all found common subsequences is less than m-E then the two sequences are rejected. Otherwise, they are considered to be similar and the alignment can

be measured using sophisticated alignment algorithms.

Algorithm 3: MAGNET Comments

Input: text (T), pattern (P), edit distance threshold (E).
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).

 1: m ← length(T);
 2: for i ← 1 to m do
 3: for j ← i-E to i+E do
 4: if T[i] == P[j] then
 5: N[i,j] ← 0;
 6: else N[i,j]← 1;

Step 1: Building
neighborhood map (N)

Output: 2E+1 diagonal

bit-vectors

 7: for i ← 1 to m do
 8: MAGNET[i] ← 1; // Initializing MAGNET bit-vector
 9: [MAGNET, calls] ← EXEN(N, 1, m, E, MAGNET, 1);

Step 2 - Step 4

10: // Function CZ() returns number of zeros
11: if CZ(MAGNET) ≥ m-E then return 1; else return 0;

Step 5: Filtering out
Dissimilar Sequences

Algorithm 4: EXEN function Comments

Function: EXEN() extracts the longest subsequence of consecutive zeros and generate two
subproblems.
Input: Neighborhood map (N), start index (SI), end index (EI), E, MAGNET bit-vector, number of
recursion calls.
Output: updated MAGNET bit-vector, updated number of calls.

 1: if (SI ≤ EI and calls ≤ E+1) then // Early termination condition
 2: // Function CCZ() returns number and indices of longest
 3: // subsequence of diagonally consecutive zeros
 4: for j ← 1 to E do //Extraction
 5: [X,s1,e1] ← CCZ(N[SI+j,SI],EI); // Lower diagonal
 6: [Y,s2,e2] ← CCZ(N[SI,SI+j],EI); // Upper diagonal
 7: if X > Y then s ← s1; e ← e1;
 8: else s ← s2; e ← e2;
 9: [X,s1,e1] ← CCZ(N[SI,SI],EI);
10: if X > (e-s+1) then
11: s ← s1; e ← e1;

Step 2: Extracting the
longest subsequence of

consecutive zeros

12: if (calls=1 and (e-s+1)<⌈(𝑚 − 𝐸)/(𝐸 + 1)⌉) then
13: return [MAGNET, 0];

Early termination condition
(only in first call)

14: // Right subproblem with encapsulation
15: [MAGNET, calls] ← EXEN(N,e+2,EI, E,MAGNET, calls+1);
16: // Left subproblem with encapsulation
17: [MAGNET, calls] ← EXEN(N,SI, s-2, E, MAGNET, calls+1);

Step 3: Encapsulating the
found longest subsequence

and Step 4: Divide-and-
Conquer Recursion

18: return [MAGNET, calls];
19: else return [MAGNET, calls-1];

7.2 Analysis of MAGNET Algorithm

We analyze the asymptotic run time and space complexity of the MAGNET algorithm. MAGNET applies a divide-and-conquer technique that divides

the problem of finding the common subsequences into two subproblems in each recursion call. In the first recursion call, the extracted common

subsequence is of length at least 𝑎 = ⌈(𝑚 − 𝐸) (𝐸 + 1)⁄ ⌉ bases. This reduces the problem of finding the common subsequences from m to at most m-a,

which is further divided into two subproblems: a left subproblem and a right subproblem. For the sake of simplicity, we assume that the size of the left

and the right subproblems decreases by a factor of b and c, respectively, as follows:

m = 𝑎 + 2 + 𝑚/𝑏 + 𝑚/𝑐 (4)

The addition of 2 bases is for the encapsulation bits added at each recursion call. Now, let TMAGNET(m) be the time complexity of MAGNET algorithm, for

identifying non-overlapping subsequences. If it takes O(km) time to find the global longest subsequence and divide the problem into two subproblems,

where k = 2E+1 is the number of bit-vectors, we get the following recurrence equation:

TMAGNET(m) = TMAGNET(m/b) + TMAGNET(m/c) + O(km) (5)

Given that the early termination condition of MAGNET algorithm restricts the recursion depth as follows:

Recursion tree depth = ⌈𝑙𝑜𝑔2(𝐸 + 1)⌉ − 1 (6)

Solving the recurrence in (5) using (4) and (6) by applying the recursion-tree method provides a loose upper-bound to the time complexity as follows:

TMAGNET(m) = 𝑂(𝑘𝑚) . ∑ (
1

𝑏
+

1

𝑐
)

𝑥⌈𝑙𝑜𝑔2(𝐸+1)⌉−1
𝑥=0

≈ 𝑂(𝑓𝑘𝑚) (7)

5

Where f is a fraction number satisfies the following range: 1≤f<2. This in turn demonstrates that the MAGNET algorithm runs in linear time with respect

to the sequence length and edit distance threshold and hence it is computationally inexpensive. The space complexity of MAGNET algorithm is as follows:

DMAGNET(m) = DMAGNET(m/b) + DMAGNET(m/c) + (km+m)

≈ 𝑂(𝑓𝑘𝑚 + 𝑓𝑚) (8)

Hence, MAGNET algorithm requires linear space with respect to the read length and edit distance threshold. Next, we describe the hardware

implementation details of MAGNET filter.

7.3 Hardware Implementation

We outline the challenges that are encountered in implementing MAGNET filter to be used in our accelerator design. Implementing the MAGNET

algorithm on an FPGA is more challenging than implementing the SLIDER algorithm due to the random location and variable length of each of the E+1

common subsequences. Verilog-2011 imposes two challenges on our architecture as it does not support variable-size partial selection and indexing of a

group of bits from a vector (McNamara, 2001). In particular, the first challenge lies in excluding the extracted common subsequence along with its

encapsulation bits from the search space of the next recursion call. The second challenge lies in dividing the problem into two subproblems, each of which

has an unknown size at design time. To address these limitations and tackle the two design challenges, we keep the problem size fixed and at each

recursion call. We exclude the longest found subsequence from the search space by amending all bits of all 2E+1 bit-vectors that are located within the

indices (locations) of the encapsulation bits to ‘1’s. This ensures that we exclude the longest found subsequence and its corresponding location in all other

bit-vectors during the subsequent recursion calls. We build the MAGNET accelerator using the same FPGA board as that used for SLIDER for a fair

comparison.

8 Examples of Applying SLIDER and MAGNET algorithms

In this section, we provide two examples of applying SLIDER and MAGNET filtering algorithms to different sequence pairs. In Fig. 6, we set the edit

distance threshold to 4 in both examples. The diagonal vectors of the neighborhood map are horizontally presented in the same order of the diagonal

vectors for a better illustration. In the two examples, we observe that MAGNET is highly accurate in providing the exact location of the edits in the

MAGNET bit-vector. This is due to two main reasons. First, MAGNET finds the exact length of each common subsequence by performing multiple

individual iteration for each common subsequence. Second, it manually encapsulates each found longest subsequence of consecutive zeros by ones, which

ensures to maintain the edits in the MAGNET bit-vector. On the contrary, SLIDER uses overlapping search windows to detect segments of consecutive

zeros. If two segments of consecutive zeros are overlapped within a single search window, then the edit between the two segments is sometimes eliminated

by the overlapping zeros of the two segments as shown in Fig. 6(a).

Read : TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA

Reference : TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

Upper Diagonal-4 : ----110111111100111111110101100001010001011010011111101101100110110011010101011101111111101011000000

Upper Diagonal-3 : ---0110110101011111111111110111111111110010011110111111001000100100010011111110110111111000000110001

Upper Diagonal-2 : --001111011001011011101100010111110011

Upper Diagonal-1 : -000111110111001001100011101111111111100100111101111110010001001000100111111101101111110111111110111

Main Diagonal : 0000000000000000000001110110000101000101101001111110110110011011001101010101110111111111101111111111

Lower Diagonal-1 : 000111110111001001101011010111111111011111011111101111111011111101111011111100001011010101101111111-

Lower Diagonal-2 : 00111101100101101111011111100100010101110011100111011011111111111111010101111011010101001100111111--

Lower Diagonal-3 : 0110110101011111111010110101111111011110111111111101101101111110111110111101111111111111110011111---

Lower Diagonal-4 : 110111111100111110110001111100000101110101100111110010100111110011100100111101011011111111000111----

SLIDER bit-vector : 0000000000000000000100010001000000

MAGNET bit-vector : 00000000000000000000010100010001000000

(a)

Read : CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCAGGATGCTGTTATGTGAGT

Reference : CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCGGATGCTGTTATTTGAGTAG

Upper Diagonal-4 : ----011111101111111111110000011111011001111111011101111111110111111110100110000101111110101101111011

Upper Diagonal-3 : ---1111001111101011011100110010110110011111111101111011110110101101011101001001111111111011010101110

Upper Diagonal-2 : --11100111111101101111101010110111110101101101011111011110011111110010110111011011110111111100110011

Upper Diagonal-1 : -111111011110111111110110011011101011001001111111111111111010101110110001011110011010100101001111100

Main Diagonal : 00101010110101111111011011110010100011111111011010010111

Lower Diagonal-1 : 111111011110111111110110011011101011001001111100000000000000000000000000000000001011111110110111111-

Lower Diagonal-2 : 11100111111101101111101010110111110101101101110101011010111111101101111001010001000000000000100000--

Lower Diagonal-3 : 1111001111101011011100110010110110011111111001111111111101010111011000101111001101111111011101111---

Lower Diagonal-4 : 011111101111111111110000011111011001111111110111101111001111111001011011101101111111110110101101----

SLIDER bit-vector : 0001000000000000000000000000000000000100000000000010000100

MAGNET bit-vector : 00100000000000000000000000000000000010000000000010000010

(b)

Fig. 6: Examples of applying SLIDER and MAGNET filtering algorithms to two different sequence pairs, where the edit distance threshold is set to 4. We present the content of

the neighborhood map along with the SLIDER and MAGNET bit-vectors. In both examples, we apply SLIDER and MAGNET algorithms starting from the leftmost column

towards the rightmost column.

6

9 Dataset Description

Table 4 provides the configuration used for the -e parameter of mrFAST (Alkan, et al., 2009) for each of the 12 datasets. We use Edlib (Šošić and Šikić,

2017) to assess the number of similar (i.e., having edits fewer than or equal to the edit distance threshold) and dissimilar (i.e., having more edits than the

edit distance threshold) pairs for each of the 12 datasets across different user-defined edit distance thresholds. We provide these details for set 1, set 2, set

3, and set 4 in Table 5. We provide the same details for set 5, set 6, set 7, and set 8 in Table 6 and for set 9, set 10, set 11, and set 12 in Table 7.

Table 4: Benchmark illumina-like datasets (read-reference pairs). We map each read set to the human reference genome in order to generate

four datasets using different mappers’ edit distance thresholds (using the -e parameter).

Accession no. ERR240727_1 SRR826460_1 SRR826471_1

Sequence Length 100 150 250

HTS Illumina HiSeq 2000 Illumina HiSeq 2000 Illumina HiSeq 2000

Dataset Set_1 Set_2 Set_3 Set_4 Set_5 Set_6 Set_7 Set_8 Set_9 Set_10 Set_11 Set_12

mrFAST -e 2 3 5 40 4 6 10 70 8 12 15 100

Amount of Edits Low-edit High-edit Low-edit High-edit Low-edit High-edit

Table 5: Details of our first four datasets (set 1, set 2, set 3, and set 4). We use Edlib to benchmark the accepted and the rejected pairs for edit

distance thresholds of E=0 up to E=10 edits.

Dataset Set_1 Set_2 Set_3 Set_4

E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected

0 381,901 29,618,099 124,531 29,875,469 11,989 29,988,011 11 29,999,989

1 1,345,842 28,654,158 441,927 29,558,073 44,565 29,955,435 18 29,999,982

2 3,266,455 26,733,545 1,073,808 28,926,192 108,979 29,891,021 24 29,999,976
3 5,595,596 24,404,404 2,053,181 27,946,819 206,903 29,793,097 27 29,999,973

4 7,825,272 22,174,728 3,235,057 26,764,943 334,712 29,665,288 29 29,999,971

5 9,821,308 20,178,692 4,481,341 25,518,659 490,670 29,509,330 34 29,999,966
6 11,650,490 18,349,510 5,756,432 24,243,568 675,357 29,324,643 83 29,999,917

7 13,407,801 16,592,199 7,091,373 22,908,627 891,447 29,108,553 177 29,999,823

8 15,152,501 14,847,499 8,531,811 21,468,189 1,151,447 28,848,553 333 29,999,667

9 16,894,680 13,105,320 10,102,726 19,897,274 1,469,996 28,530,004 711 29,999,289

10 18,610,897 11,389,103 11,807,488 18,192,512 1,868,827 28,131,173 1,627 29,998,373

Table 6: Details of our second four datasets (set_5, set_6, set_7, and set_8). We report the accepted and the rejected pairs for edit distance

thresholds of E=0 up to E=15 edits.

Dataset Set_5 Set_6 Set_7 Set_8

E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected

0 1,440,497 28,559,503 248,920 29,751,080 444 29,999,556 201 29,999,799

1 1,868,909 28,131,091 324,056 29,675,944 695 29,999,305 327 29,999,673

3 2,734,841 27,265,159 481,724 29,518,276 927 29,999,073 444 29,999,556
4 3,457,975 26,542,025 612,747 29,387,253 994 29,999,006 475 29,999,525

6 5,320,713 24,679,287 991,606 29,008,394 1,097 29,998,903 529 29,999,471

7 6,261,628 23,738,372 1,226,695 28,773,305 1,136 29,998,864 546 29,999,454
9 7,916,882 22,083,118 1,740,067 28,259,933 1,221 29,998,779 587 29,999,413

10 8,658,021 21,341,979 2,009,835 27,990,165 1,274 29,998,726 612 29,999,388

12 10,131,849 19,868,151 2,591,299 27,408,701 1,701 29,998,299 710 29,999,290
13 10,917,472 19,082,528 2,923,699 27,076,301 2,146 29,997,854 796 29,999,204

15 12,646,165 17,353,835 3,730,089 26,269,911 3,921 29,996,079 1,153 29,998,847

7

Table 7: Details of our first four datasets (set_9, set_10, set_11, and set_12). We report the accepted and the rejected pairs for edit distance

thresholds of E=0 up to E=25 edits.

Dataset Set_9 Set_10 Set_11 Set_12

E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected

0 707,517 29,292,483 43,565 29,956,435 4,389 29,995,611 49 29,999,951
2 1,462,242 28,537,758 88,141 29,911,859 8,970 29,991,030 163 29,999,837

5 1,973,835 28,026,165 119,100 29,880,900 12,420 29,987,580 301 29,999,699

7 2,361,418 27,638,582 145,290 29,854,710 15,405 29,984,595 375 29,999,625
10 3,183,271 26,816,729 205,536 29,794,464 22,014 29,977,986 472 29,999,528

12 3,862,776 26,137,224 257,360 29,742,640 27,817 29,972,183 520 29,999,480

15 4,915,346 25,084,654 346,809 29,653,191 37,710 29,962,290 575 29,999,425
17 5,550,869 24,449,131 409,978 29,590,022 44,225 29,955,775 623 29,999,377

20 6,404,832 23,595,168 507,177 29,492,823 54,650 29,945,350 718 29,999,282

22 6,959,616 23,040,384 572,769 29,427,231 62,255 29,937,745 842 29,999,158
25 7,857,750 22,142,250 673,254 29,326,746 74,761 29,925,239 1,133 29,998,867

10 False Reject Rates

We evaluate the false reject rate (or false negative rate) of SLIDER, MAGNET, SHD (Xin, et al., 2015), and GateKeeper (Alser, et al., 2017). The false

reject rate is the ratio of the number of similar sequences that are rejected by the filter and the number of similar sequences that are accepted by optimal

sequence alignment algorithm. The false reject rate should always be equal to 0%. Using our 12 low-edit and high-edit datasets for three different sequence

lengths, we observe that SLIDER, and GateKeeper do not filter out correct sequence pairs; hence, they provide a 0% false reject rate. The reason is the

way we find the common subsequences. We always look for the subsequences that have the largest number of zeros, such that we maximize the number

of matches and minimize the number of edits that cause the division of one long common sequence into shorter subsequences. However, this is not the

case for SHD and MAGNET. We observe that SHD (Xin, et al., 2015) falsely rejects correct sequence pairs of 100 characters long when the edit distance

threshold is set to 0. This is because SHD finds the common subsequences by ANDing all diagonal bit-vectors together based on the fact that a segment

of consecutive zeros dominates and causes the output of the AND operation to be all 0’s. To maintain the edits during the AND operation, SHD changes

some of the short segments of matches (i.e., single zero or double zeros, for example ‘101’ or ‘1001’) that are not part of the optimal alignment to all 1’s

(e.g., ‘111’ or ‘1111’). As SHD does not guarantee whether or not the found short segments are part of the optimal alignment, SHD convert back any bit

pattern of ‘111’ or ‘1111’ to its previous value before the amending process, that is ‘101’ or ‘1001’, respectively. SHD applies this process even for an

edit distance threshold of 0, where only a single diagonal bit-vector is produced. Using set 1, set 2, set 3, and set 4, SHD provides false reject rates of

45%, 51%, 64%, and 100%, respectively. GateKeeper addresses this accuracy issue by calculating the Hamming distance (Hamming, 1950) when the

edit distance threshold is set to 0. MAGNET provides a very low false reject rate of less than 0.00045% for an edit distance threshold of at least 4% of

the sequence length. This is due in large part to the greedy choice of always selecting the longest common subsequence regardless their contribution to

the total number of edits. On the contrary, SLIDER always examines whether or not the selected 4-bit segment that has the largest number of zeros

decreases the number of edits in the SLIDER bit-vector before considering the 4-bit segment to be part of the common subsequences. In Fig. 7, we show

an example of where MAGNET falsely considers two given sequences as a dissimilar ones, while they differ by less than the edit distance threshold. This

example shows that the MAGNET’s greedy approach of finding the common subsequences fails in finding the two common subsequences that are

highlighted in blue. Instead, MAGNET finds another four shorter subsequences that results in increasing the number of mismatches in the MAGNET bit-

vector.

Pattern : CAAACTGGGTGGAGCCCACCACAGCTCAAAGGAAGCCTGCCTTCCTCTGTAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAA

Text : CAAACTGGGTGGAGCCCACAACAGCTCAAGGAGGCCTGCCTGCCTCTATAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAAC

Upper Diagonal-6 : ------1111111011111110110111001111111011110110110111001101111111111010001100011101110100111011001101

Upper Diagonal-5 : -----11111101011101110010100111111111111111110011111111111000111111110001111010010101000101011111010

Upper Diagonal-4 : ----011110001111110111111111111011111110111011011111101110110111111110000011011101110001101011011111

Upper Diagonal-3 : ---1111111001011110100110111111010111000000001110110111111011111110110011111100010000010101001111101

Upper Diagonal-2 : --10111101011011010010011101111000111101110100111101111010010111100110111111111101100100101110001011

Upper Diagonal-1 : -100111001101110011111111111011101111111111110010111110110110011000111101100101010101000101011111111

Main Diagonal : 0000000000000000000100000000010111101110111011111110111011011110000111001111111100110000111111111101

Lower Diagonal-1 : 100111001101110011001111111000001000000001000001000-

Lower Diagonal-2 : 10111101011011010111011101101010010111010101111111011101101111000011100111111110011000011111111110--

Lower Diagonal-3 : 1111111001011110000010111111111111111111111001001111011011001100011110110010101010100010101111111---

Lower Diagonal-4 : 011110001111110011111111111101011110111011011111111101001011110011011111111110110010010111000101----

Lower Diagonal-5 : 11111101011101010011100111100011100001000111011111111101111111011001111110001000001010100111110-----

Lower Diagonal-4 : 1111111011111110110111011110111101010101111111110111011011111111000001101110111000110101101111------

MAGNET bit-vector : 0000000000000000000100000000011000101000000001010001

142 3 5 6 7

MAGNET should select this identical segment instead of the one highlighted in red

Fig. 7: An example of a falsely rejected sequence pair using MAGNET algorithm for an edit distance threshold of 6. The random zeros (highlighted in red) confuse MAGNET

filter causing it to select shorter segments of random zeros instead of a longer common subsequence (highlighted in blue).

8

11 FPGA Acceleration of SLIDER and MAGNET

We analyze the benefits of accelerating the CPU implementation of our pre-alignment filters SLIDER and MAGNET using FPGA hardware. As we show

in Table 8, our hardware accelerators are two to three orders of magnitude faster than the equivalent CPU implementations of SLIDER and MAGNET.

Table 8: Execution time (in seconds) of the CPU implementations of SLIDER and MAGNET filters and that of their hardware-accelerated

versions (using a single filtering unit).

E SLIDER-CPU SLIDER-FPGA Speedup MAGNET-CPU MAGNET-FPGA Speedup

Sequence Length = 100

2 474.27 2.89 164.11x 632.02 2.89 218.69x

5 1,305.15 2.89 451.61x 1,641.57 2.89 568.02x

Sequence Length = 250

2 1,689.09 2.89* 584.46x 5,567.62 2.89* 1,926.51x

5 6,096.61 2.89* 2,109.55x 14,328.28 2.89* 4,957.88x
 * Estimated based on the resource utilization and data throughput

12 Edlib, Parasail, and SHD Configurations

In Table 9, we list the software packages that we cover in our performance evaluation, including their version numbers and function calls used.

Table 9: Read aligners and pre-alignment filters used in our performance evaluations.

Edlib: November 5 2017

Edit Distance Mode:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibDefaultAlignConfig());

Accepted = (resultEdlib.editDistance <= ErrorThreshold);

edlibFreeAlignResult(resultEdlib);

Levenshtein Distance with backtracking:

EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));

char* cigar = edlibAlignmentToCigar(resultEdlib.alignment, resultEdlib.alignmentLength, EDLIB_CIGAR_STANDARD);

free(cigar);

edlibFreeAlignResult(resultEdlib);

Parasail: January 7 2018

function = parasail_lookup_function("nw_banded");

result = function(RefSeq, ReadLength, ReadSeq, ReadLength,10, 1, ErrorThreshold,¶sail_blosum62);
if(parasail_result_is_trace(result)==1){

 parasail_traceback_generic(RefSeq, ReadLength, ReadSeq, ReadLength, "Query:", "Target:", ¶sail_blosum62, result, '|', ':', '.', 50, 14, 0);

 if (result->score != 0) {
 cigar2=parasail_result_get_cigar(result, RefSeq, ReadLength, ReadSeq, ReadLength, ¶sail_blosum62);

 parasail_cigar_free(cigar2);

 }
}

SHD: November 7 2017

for (k=1;k<=1+ (ReadLength/128);k++)

 totalEdits= totalEdits + (bit_vec_filter_sse1(read_t, ref_t, length, ErrorThreshold));

REFERENCES
Alkan, C., et al. (2009) Personalized copy number and segmental duplication maps using next-generation sequencing, Nature genetics, 41, 1061-1067.

Alser, M., et al. (2017) GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping, Bioinformatics, 33, 3355-3363.

Alser, M., Mutlu, O. and Alkan, C. (July 2017) Magnet: Understanding and improving the accuracy of genome pre-alignment filtering, Transactions on Internet Research 13.

Hamming, R.W. (1950) Error detecting and error correcting codes, Bell System technical journal, 29, 147-160.

McNamara, M. (2001) IEEE Standard Verilog Hardware Description Language. The Institute of Electrical and Electronics Engineers, Inc. IEEE Std, 1364-2001.

Šošić, M. and Šikić, M. (2017) Edlib: a C/C++ library for fast, exact sequence alignment using edit distance, Bioinformatics, 33, 1394-1395.

Xilinx (November 17, 2014) 7 Series FPGAs Configurable Logic Block User Guide. Xilinx.

Xin, H., et al. (2015) Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly Filter to Accelerate Alignment Verification in Read Mapping, Bioinformatics, 31, 1553-

1560.

