
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969

Cellular Logic-in-Memory Arrays

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract-As a direct consequence of large-scale integration,
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of identical elementary net-
works, or cells. When a small amount of storage is included in each
cell, the same array may be regarded either as a logically enhanced
memory array, or as a logic array whose elementary gates and con-
nections can be "programmed" to realize a desired logical behavior.

In this paper the specific engineering features of such cellular
logic-in-memory (CLIM) arrays are discussed, and one such special-
purpose array, a cellular sorting array, is described in detail to illus-
trate how these features may be achieved in a particular design. It is
shown how the cellular sorting array can be employed as a single-
address, multiword memory that keeps in order all words stored
within it. It can also be used as a content-addressed memory, a
pushdown memory, a buffer memory, and (with a lower logical
efficiency) a programmable array for the realization of arbitrary
switching functions. A second version of a sorting array, operating
on a different sorting principle, is also described.

Index Terms-Cellular logic, large-scale integration, logic arrays
logic in memory, push-down memory, sorting, switching functions.

I. INTRODUCTION

REDICTIONS for the development of integrated
semiconductor electronics indicate the availability
within the next decade of inexpensive and reliable

circuit chips, each of which may contain hundreds or
thousands of circuit elements. While many problems are
unsolved regarding fabrication, testing, and intercon-
nection of these chips, the outstanding problem is that
of deciding just what kinds of large but useful networks
should be designed. This may be regarded as the prob-
lem of how to decompose a large system into "modules"
or "packages." In seeking a solution to the problem, the
following may be assumed.

1) The modules are potentially very complex.
2) The number of terminals per module is constrained

to some value between 50 and 100.
3) A high premium is placed on the use of only a

small number of different module types.
4) The modules are inherently nonrepairable, so that

fault accommodation (on the chip, or in the sys-
tem organization, or both) assumes a greater
importance.

One aspect of this problem of "what to put on the
chip," concerns the class of applications centered around

Manuscript received September 4, 1968; revised April 8, 1969.
The research reported herein was supported by the Office of Naval

Research, Information Systems Branch, under Contract Nonr-
4833(00).

The author is with Stanford Research Institute, Menlo Park,
Calif. 94025.

digital computers and information handling systems.
Advantages can be obtained by arranging the chip cir-
cuitry in the form of a cellular array-a two-dimen-
sional iterative configuration of identical cells, each of
which contains both logic and storage and is connected
mainly to its immediate neighbors [4a]. Such an array,
therefore, has the form of a memory array that is en-
hanced with logic at each digit position. Several fea-
tures of these cellular logic-in-memory (CLIM) arrays
are described. By way of an outstanding example, the
balance of this paper then describes the structure, logi-
cal circuitry, operation, and use of one such CLIM array,
a cellular sorting array, that has been found to be more
versatile and efficient than several other types of cel-
lular logic-in-memory arrays under study. This sorting
array can be employed not only as a single-address sort-
ing memory which keeps in order all words stored within
it, but also as a pushdown memory, a buffer (queue)
memory, a content-addressed memory, and even as an
electronically programmable array for the realization of
arbitrary combinational switching functions.

Several other types of cellular logic-in-memory arrays
are described in other reports and technical papers.
Some of these have already appeared (arrays for com-
binational logic [1]-[4], a cellular permutation array
[5], [6], and a cellular threshold array [7]), and others
are in preparation (improved arrays form combina-
tional and sequential logic, arrays for the solution of
problems that can be formulated in graphical terms,
arrays for matrix inversion, arrays for encoding and
decoding error correcting codes, an augmented content-
addressed memory array, an arithmetic memory array,
linear programming arrays, and others). The applica-
tion of CLIM principles to the design of scratchpad
memories, conventional associative memories, and pro-
grammable microprogram control arrays is straight-
forward, and probably not novel.

II. CELLULAR LOGIC-IN-MEMORY ARRAYS

Desirable features of the digital circuitry that is to
be placed on an array or subarray are:

1) flexibility in function to reduce the required num-
ber of different types of subarrays,

2) testability,
3) fault accommodation,
4) subarray interconnectability (due to the limita-

tions on the number of external terminals),
5) high logical performance (that is, a large process-

ing or logical capability per chip),

719

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1969

6) ease of logical design,
7) low power level and high speed, and
8) ease of functional decomposition of a system into

chip-size "packages."
These features can be achieved simultaneously by

organizing the logical circuitry on the chip in the form
of a two-dimensional rectangular array of identical
cells, each of which contains a relatively simple logic-
and-storage circuit (10 to 50 gates). Each cell is con-

nected only to its immediate neighbors with a small
number of connections, although busing along rows and
columns of the array is allowed, provided it is driven
from some external source through terminals of the
array, and not by internal gates. The fan-in and fan-
out of each internal gate are held to small fixed values.
Embellishments of this basic form of array, such as

longer intercell connections, nonuniform cells, and non-

rectangular (e.g., hexagonal) cell arrangements are cer-

tainly possible, but they do not appear to be necessary

for most array functions.
The eight features listed above are achieved for such

a CLIM array as follows.
1) Functional flexibility: For CLIM arrays principal

function is logical, flexibility is obtained mainly by us-

ing the flip-flop storage in each cell to allow the cell
logic to be "programmed" to a desired "mode" [8].
Thus, a cell that behaves as a full adder in one mode
may act in other modes as a simple permutation switch,
a register stage, a counter stage, or some other simple
circuit. Through judicious selection of the set of cell
modes that are employed in the cells of a particular
array, the array as a whole can be made to exhibit
a wide range of useful behavior, as each cell is pro-

grammed independently to one of its possible modes. In
some types of arrays, particularly arrays whose prin-
ciple function is storage, cell mode selection depends
mainly upon the signals that are applied to the row and
column buses through external terminals along the
edges of the array.

2) Testability: Because of their regular structure,
logical networks that are cellular should be substan-
tially easier to test for faults and to diagnose than un-

structured networks having the same number of ele-
ments. This conjecture is borne out not only by docu-
mented experience with fault detection and location pro-

cedures applied to one-dimensional iterative networks,
and by theoretical results on two-dimensional arrays

[9], [10], but also by experience with numerous exam-

ples of two-dimensional cellular arrays of various types
and complexities [10], [11]. These examples strongly
support the conjecture that test schedules for fault
testing and diagnosis are both easier to derive and
shorter in length for CLIM arrays than for arbitrary
unstructured networks. In fact, in some of the cases

studied, the length of the test schedule required for
single fault detection was found to depend only upon

the complexity of the cell, and not upon the number
of cells in the array.

3) Fault Accommodation: Because of the flexibility
claimed in 1), isolated faulty cells in an array may often
be bypassed by programming the adjacent cells to
avoid active connection to the faulty cell [8], [12]. In
some cases, only one or two cells need be bypassed. In
others, the entire row or column (or both) containing
a faulty cell must be taken from use. In still other cases,
appropriate reprogramming can utilize a cell in one
mode, even though it has failed in another mode. While
these techniques are not universal in either their ap-
plicability or their capability (that is, there will always
be types of arrays and types of faults that are not ame-
nable to fault avoidance), they nevertheless offer the de-
signer an alternative to the usual requirement that all
circuits employed in a network be absolutely perfect.

4) Subarray Interconnectability: Normally a cellular
array will be realized as a macrocellular interconnection
of cellular subarrays (chips), each having, say, between
20 and 200 cells. Since each cell has only a small num-
ber of connections to adjacent cells, the number of ex-
ternal inputs and outputs that connect to the edges of
an array or subarray is relatively small. In any case,
this number grows with the perimeter (that is, linearly)
and not with the number of cells (quadratically) as the
size of the array is increased. Typically, a 10-by-10
array, each cell of which has one horizontal bus, one
vertical bus, one horizontal logic cascade, and one ver-
tical logic cascade (such as the sorting array to be de-
scribed in the next section), will have a total of about
64 terminals (including clock, reset, and power) around
the periphery of the array.

5) Logical Performance (Gate Utilization Efficiency):
Array performance can be measured only by detailed
analysis and evaluation of the capabilities of each sep-
arate array type. This is done for two arrays in the sec-
tions to follow, and for other arrays in other technical
papers. Suffice it to say at present that past experience
indicates that a high gate utilization efficiency is pos-
sible when realizing high speed memories of all types, as
well as word-organized sequential circuitry such as
registers, parallel accumulators, counters, etc. A some-
what lower efficiency results when realizing arbitrary
combinational and sequential logic. Justification of this
logical performance will probably become apparent only
slowly, as more and more examples gradually improve
the statistics. In any case, however, the cost per gate
of integrated circuitry is expected to drop during the
next decade.

6) Ease of Logical Design: Many common logical de-
sign techniques for realizing combinational and se-
quential behavior are still applicable when the network
is constrained to be cellular. In addition, some special
design procedures have been developed especially for
cellular logic arrays [i]-[4]. These are even more
readily programmed and applied than the familiar tech-
niques, and some of them lead to efficient logical cir-
cuitry. Increasingly useful design approaches are still
being developed.

720

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

KAUTZ: CELLULAR LOGIC-IN-MEMORY ARRAYS

7) Low Power Level and High Speed: Because of the
low fan-in and fan-out of the gates within the cells, and
the assumed constraints placed upon the length and
number of intercell connections, individual gates in a
CLIM array may operate at very low power levels and
may be very small physically, without a sacrifice in the
maximum achievable gate speed for a given device
technology. If power drivers are needed, it is only on
those signal lines that leave the subarray (chip). The
logic diagrams of most arrays show logic cascades that
pass successively through all cells in each row or each
column. In some cases, as in a parallel adder or com-
parator, this cascading is unavoidable, and one must
simply accept the resultant signal delays. In other
cases, the cascade serves merely as a convenient dia-
grammatic means to buffer many signals together; the
large OR gate may actually be realized electrically as
many semiconductor elements feeding a single bus, so
that the cell delays are not cumulative.

8) Functional Decomposition: The use of program-
mable cellular arrays frequently allows a digital system
under design to be decomposed into functional blocks.
Therefore, the number of interconnections required be-
tween these blocks is smaller than if a nonfunctional
decomposition were used. The number of terminals per
semiconductor array, while still a stringent constraint
on the detailed design of the system, is less stringent
than if some less structured decomposition were used.

In addition to these features, a few other advantages
also accrue from the use of cellular subarrays.

9) Insensitivity to Improvements in Device Technology:
The future availability of larger and larger subarrays
does not imply a complete redesign of an array-or-
ganized digital system, but requires only that a smaller
number of subarrays (chips) be used in building up full
arrays.

10) Simplitfed Circuit Design and Tooling: Because
each subarray consists of an iteration of a single, rela-
tively simple cell, all design energies may be focused
on the optimization of the circuitry of this cell with re-
spect to speed, reliability, stability, required area, test-
ing, tolerances, etc. Also, just a single set of initial
masks is needed for fabrication.

11) High Reliability: This feature is inherent and im-
plicit in the utilization of large-scale integrated cir-
cuitry. However, CLIM arrays have a minimum of
long connections that cross other circuitry and other
shorter connections, and the resultant reduction in the
probability of short circuits will tend to increase the
reliability and yield, if it has any effect at all upon these
features.

It may be concluded from these arguments that a
cellular approach to the selection of large-scale in-
tegrated modules for digital systems provides an alter-
native to customized arrays. This is true especially for
those portions of systems that have a natural iterative
structure, such as memories, registers, arithmetic units,
counters, programmable microprogram arrays, (logic-

less) line switching circuits, decoders, and many spe-
cial-purpose units that will undoubtedly find their
place within very large multiprocessors of the future
and in special-purpose computing systems. Indeed,
many completely new and useful array types may be de-
vised as the per-gate cost of arrays drops, and the pres-
sure to replace software with hardware increases in the
future. For these same reasons, the use of CLIM arrays
for the realization of arbitrary combinational and se-
quential logic can also be expected to increase, despite
its lower logical efficiency.

III. SORTING ARRAY I: BASIC OPERATION
We now describe a particular CLIM array' that be-

haves as a single-address, multiple-word memory that
keeps in sorted order all data words that are fed into it.
Words that are read out are obtained in order of size,
with the largest word first (or alternatively, with the
smallest first, as desired). The words are assumed to be
of maximum length n. This memory could find use as a
functional unit that can be attached to the central pro-
cessor of a general-purpose computer, or to a special-
purpose computing system for which sorting capability
is needed. As explained later (Section V), the array may
also be used for various other purposes having nothing
to do with sorting.
The sorting array in question is a two-dimensional,

iterative configuration of identical cells, each of which
is a simple sequential digital logic circuit. Each cell is
connected only to its immediate neighbors, and the
cells around the edges of the array are connected to
fixed signals or to registers of a conventional type that
are assumed to lie outside of the array proper. Fig. 1
displays the elementary sorting array, the logic cir-

cuitry and equations of a typical cell, and the registers
that would normally be used (an input-output register
X, and a word selected register W). All cell input ter-
minals on the right-hand side of the array are connected
to a logical signal (zo, normally fixed at 1), and the out-
puts labeled £ from the left edge of the array serve as
inputs to the stages of the W-register.

It may be noted from the figure that each cell of the
array contains one flip-flop, whose contents is designated
y, so that the set of n flip-flops in any one of the N rows
of the array may be employed to store one n-digit word.
This set of words is assumed to be encoded in a uniform
digit-weighted code, such as the conventional binary or

binary-coded decimal number system, with the most
significant digits at the left ends of the words, and a

one's or two's complement representation for negative
numbers, with the minus sign encoded as a 0 at the left
end of the word. (The case in which sorting is per-
formed with other representations or over only, a por-
tion of the digits in the word is treated later.) An entire

I A similar array based on cryogenic technology was described by
Seeber [13] in 1960, but his elementary cell design is needlessly com-
plex when converted to gate-type logic.

721

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1969

ARRAY: X x

0

W ~ ~ ~~~~~I
Lw.I

(x leads return to X-register)

CELL EQUATIONS: x =W + wy

Sy= wcx, ry = wcx
z

= M(x,y,z) = xy+z(x+y)

Fig. 1. Cellular sorting array I.

word is handled as a unit during the input, output, and
sorting operations.
One cycle of operation of the array consists of two

steps.
1) A comparison step, in which the word X in the

X-register is simultaneously compared with all N words
stored in rows of the array; a 1 is injected into the W-
register in those rows whose words (including blank
words) are smaller than or equal to the word X, and a

0 is injected into the W-register in those rows whose
words are larger than the word X.

2) An execution step, in which: a) the set of all words
that are stored in the subset of rows having a 1 in the
W-register are collectively moved downward one row

within the set, while the word in the X-register is copied
into the uppermost such row; and b) the lowermost such
word is copied into the X-register. Words in rows having
a 0 in the W-register are not moved. Only one clock
is needed, but if desired, the two substeps a) and b) can

be executed with two separate clocks, so that readout
may be carried out without concurrent write-in.

Sorting with this array is accomplished by maintain-
ing a sorted file of previously entered words, with the
largest at the top of the array, and the smallest and any

blank rows (rows containing all 0's) at the bottom. Each
new word that is to be sorted is inserted into this file
in a single operational filing cycle. In step 1) every

word smaller than or equal to the new word is marked
with a 1 in the corresponding position of the W-register,
and in step 2) all marked words are shifted down one

word position, with the new word being inserted in the
uppermost marked row. Unless the array is already full
prior to the filing cycle, the X-register will contain all
0's at the end of the cycle. Otherwise, it will contain the
smallest word in the array.
To read out in order the words in the file, largest to

smallest, place a single 1 in the uppermost stage of the
W-register. Now carry out step 2) of the cycle re-

peatedly, shifting the 1 downward in the W-register,
one row with each step. If the words are desired in the
opposite order, the single 1 may be started at the bottom
of the W-register and shifted upward, although this

procedure will produce an initial string of all-0 words if
the array is not full. (See the next section for a way to
avoid this.) This sequence of operations gradually
empties the file; if it is desired to merely copy the file
into the output channel, without clearing it, then only
step 2b) should be used.
An alternative method of readout is to enter re-

peatedly the number (1111 - 1) from the X-register.
This forces the contents of the array out of the bottom,
one word at a time. This method avoids the use of the
W-register as a shift register, but leaves the array full
of l's, which must then be cleared by some other means.
The detailed operation of the array during the com-

parison step 1) proceeds as follows. With reference to
the cell circuitry and equations shown in Fig. 1, note
that the majority gate at the top of the cell forms part
of a chain of n such gates along each row of the array.
The inputs x and y of this gate allow it to play the role
of a size compartor, so that the leftmost z-output in
each row takes on the value 1 when and only when the
number represented on the set of x-lines entering this
row is greater than or equal to the number represented
in the cascade of y-flip-flops in the same row.

Normally, step 1) is carried out with the- W-register
initially empty, so that the w busses in all rows of the
array carry the value 0. In this case the x-output in
each cell carries the same value as the x-input; x'=x.
That is, the contents of the X-register is bussed down-
ward to all rows of the array. As a result, the compari-
sons in step 1) are made between the word X in the X-
register and every word Y stored in the array.
The detailed operation of the array during the execu-

tion step 2) proceeds as follows. Within each row for
which the W-register contains a 0, we have w =0, so
that each cell in this row behaves according to

x=x, y'=y.

That is, the row is static, and behaves as if it were not
even present. Within each row for which the W-register
contains a 1, we have w =1, so each cell behaves ac-
cording to

xe= y y' =cx

where c is the clock. Thus, the word stored in the flip-
flops in this row is transferred onto the set of x-lines that
pass downward from this row. Also, with the application
of the clock, the word received on the x-lines from the
row above is transferred into the flip-flops in this row.
For the array as a whole, therefore, all words in the
subset of rows consisting of the X-register and those
rows marked with a 1 in the W-register shift down
cyclically one row position within this subset. The con-
tents of the X-register fills the top position, and the
contents of the lowest marked row passes back into the
X-register.

For some special uses of the array, it may be desired
to use the W-register during step 1). Suppose that some
one row containing word Yi has been marked with a 1

722

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

KAUTZ: CELLULAR LOGIC-IN-MEMORY ARRAYS

in the, W-register. The comparison process will then be
modified so that all words Y in rows below the marked
row will now be compared with the word Yi in the
marked row, instead of with the word X. If several rows
are so marked, then each word in the array will be com-
pared against the first marked word above it (or against
the word X, if there is no marked word above it).

IV. SORTING ARRAY I: EMBELLISHMENTS
AND SIMPLIFICATIONS

In most computation and data-processing problems,
words are not sorted on the basis of just their relative
magnitudes, but of their magnitudes taken over only a
subset of the digits, usually called the key, of the words.
That is, certain nonkey digit positions within the words
carry auxiliary data (or pointers to the location of
auxiliary data) that should not enter into the compari-
son process, but that must be retained for other com-
putation purposes not related to the sorting. To inhibit
the comparison in these digit positions, the array shown
in Fig. 1 may be augmented, as depicted in Fig. 2, to
include a mask register M, the stage outputs of which
are bussed vertically along columns to all rows of the
array. Each cell of the new array contains the additional
gatery to inhibit the comparison operation in a column
whenever m =0 for that column. When m = 1, the cell
behaves normally. With this arrangement, the position
of the key within the data words may be selected ex-
ternally by injecting a string of l's into the proper
positions in the M-register. In fact, multiple keys may
be employed, and their positions need not be contiguous,
but it is assumed as before that the significance of the
digits in the keys increases from right to left.
A less flexible but simpler arrangement is shown in

Fig. 3. Here the key and nonkey portions of the words
are handled in two separate sorting arrays, the latter of
which is simplified over the former by having its com-
parison circuitry (the majority gate and associated
wiring) removed. Corresponding w-busses of the two
arrays are directly connected, however, so that the two
portions of each word undergo the same transfers.
When a mask register is used, it may be desirable to

change to a new key for the entire set of words in an
already ordered file, in order to re-sort the file on the
basis of the new key. Probably the simplest way to
achieve this re-sorting capability is to reserve the left-
most digit position within each word as a tag digit to
indicate "re-sort" status. This digit will normally have
the value 0. When the key is changed, the array is
cycled (N+1) times, starting with the W-register full
of O's, but clearing it as usual at the end of each cycle.
A 1 is held in the leftmost digit position in the X-
register throughout the re-sorting. In this way, the file
is gradually pushed out of the bottom of the array in
successive cycles, and is reinserted into the top for
re-sorting, one word at a time. The extra 1 causes all
words in the new file to be treated as if they were larger
than all words in the original file, thereby keeping the

CELL EQUATIONS: x = -wx + wy
Sy= wcx, ry = wci
z = mz + mrM(x,y,z)

Fig. 2. Cellular sorting array I with masking.

TYPICAL CELL
AT ARRAY NO. 2
'x

Fig. 3. Cellular sorting array I with separate nonkey array.

new file on top of the old one. The operation may be
stopped as soon as the first word having an extra 1 in its
most significant digit position appears at the output of
the array.

If this process were going to be repeated with still
another key, one could either: a) first circulate the file
again for N+1 cycles, holding all l's in the W-register
but forcing the leftmost x-digit to be 0 before repeating
the above process (in order to clear the leftmost
column); or b) augment the array with a reset line at-
tached to all flip-flops in the leftmost column, to clear
this column before repeating the re-sort operation; or
c) reserve a second digit position to indicate the next
"re-sort" status.

If two or more words equal in magnitude are filed in
the array described in the previous section, they will
occupy adjacent rows in the array, with each entry
located above all earlier equal-sized entries. If the op-
posite ordering of equal-sized words is desired for read-
out, this may be achieved by changing the signal value
on the boundary input zo on the right-hand edge of the
array of Fig. 1 from 1 to 0. This modification causes the
comparisons to be executed according to a strict in-
equality (X> Y) instead of a simple inequality (X> Y),
so that a word equal in size to a previous word is treated
as if it were larger rather than smaller than the previous
word.

723

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1969

Floating-point numbers are handled with no special
provisions required, provided only that the exponent is
placed to the left of the mantissa, and the representation
is normalized before being injected into the array
proper. Negative numbers represented in a "magni-
tude-plus-sign" form must be complemented (in the
X-register, for example) before comparison, and the
sign must be moved to the left end of the word and com-
plemented (to be 0 for a minus and 1 for a plus), if
necessary.

Actually, it is sometimes possible to dispense with
one or both of the X- and W-registers, depending upon
the computing environment in which the sorting array
is used. The X-register is used only as a buffer. If the
signals and timing on the x- and i-lines are compatible
with those of the input-output channel connecting the
sorting array to the rest of the digital system, then this
register can be eliminated. Even during resorting, the
x-lines can be fed back directly to the x-lines. The W-
register may also be eliminated by tying each z-output
directly to the x-bus in the same row. To see that this
simplification is valid, recall that the effect of step 1),
which is purely combinational and is unclocked, is to
force w to take on the value 1 in a lower group of rows,
each of whose words Y is less than or equal to the word
X supplied to the top of the array. This change in w
now changes the comparison in all of these rows (except
the uppermost of them), so that each word Y is com-
pared with the word immediately above it instead of
with the word X. In an ordered file, however, the mag-
nitude of the words decreases downward, so the value
of i, hence w, will never change to 1 and then back to 0
again, but in fact, will be held latched at the value 1, if
it changes to 1 at all. Step 2) proceeds normally. When
the input word X changes, the boundary between the
O and 1 strings of w-values will ripple upward or down-
ward until the insertion point for the new x-word is
located. Consequently, this registerless array may op-
erate somewhat more slowly, but still carries out the
filing operation properly.
From a computing system point of view, this array is

probably best treated as a single-address multiword
memory having a storage capacity of N words of n-

digits each, and having the property that a readout
command will always retrieve the largest word in the
memory. If a mask register is used, it should certainly
be addressable as well. It might also be desirable to
make the W-register partially addressable, so that
prescribed blocks of words or individual words can be
selected or inhibited during the sorting and readout op-
erations. Even a small degree of external control of the
W-register offers the possibility of employing some
rather sophisticated selection criteria, such as: selection
of all words whose magnitudes fall between given
limits; selection of the kth largest word; selection on the
basis of multiple keys, possibly improperly ordered
within the words; and selection using combined in-
equality and equality testing.

If it is desired to use a sorting memory in which the
roles of "smallest" and "largest" are interchanged, it is
only necessary to modify the cell so that the equation
for z has the form:

z = M(x, y, z) = xy + z(x + y).

The cell required has substantially the same complexity
as before.

If ordering based upon binary inclusion (XC Y)
rather than size comparison is desired, only the second
term in the above expression should be used-a rather
special case since binary inclusion normally generates
only a partial ordering.

V. OTHER USES OF SORTING ARRAY I

A. Switching Function Realization

This CLIM array may also be used for the realization
of an arbitrary switching function of up to n variables
if the W-register at the left side of the array is replaced
by a single column of exclusive-OR gates, as shown in
Fig. 4(a) or by some serial equivalent. In this role the
words stored in memory locations within the array
are used in programmed-logic fashion to set up the
switching function to be realized. The write-in capabil-
ity, including the w-busses and the clock, are then used
only to program the array initially to the desired func-
tion, and the readout capability can be used for verify-
ing the contents of the memory. The independent
variables xi, x2, - * , xn of the switching function are
entered into the top of the array, the right-edge boun-
dary input Zo is set at 1, and the output f(xi, X2,
xn) is taken from the bottom of the exclusive-OR-gate
chain, as shown in Fig. 4(a).
The words to be stored in the rows of the array (in

any order) are the binary-number representations of
those row-numbers of the function's truth table atL
which the function changes value [2]. For example, to
realize the function whose truth table is

X3 X2 XI

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

I 1 1

f
0

1

1

0

0

0

0

1

row 1

row 3

row 7,

the rows of the array should store as binary words the
row numbers

001
011

111

724

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

KAUTZ: CELLULAR LOGIC-IN-MEMORY ARRAYS

(a) (b)

Fig. 4. Use of sorting array I for the realization of a switching
function.

as depicted in Fig. 4(b).
The justification of this method is found in the fact

that each row-function ql, q2, * * * realized in the sorting
array, when expressed in truth-table form, consists of a

string of l's below a string of O's. The row function
qk (that is, z) equals 1 when and only when the binary
number X = (xn, * , x2, x1) is equal to or greater than
the binary number k (cf. Y) stored in that row. Thus,
the transition from l's to O's occurs in row k of the
truth table:

X3 X2 X1 qi q3 q7 f=ql D q3 D q7

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

1 0 0

1 0 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 1

0

1

1

0

0

0

0

1.

The order in which the words are stored in rows of the
array is arbitrary since the exclusive-OR operation is
commutative. If the words are ordered with the largest
at the top, however, the simpler downward-going left-
edge logic us=+i may be used instead of 4 =2Du, if
desired.

If f(0, 0, * * *, 0) = 1 instead of 0, the function f
should be realized instead of f, and a 1 injected into the
top of the exclusive-OR-gate chain.
The number N of rows that are needed in the array

is equal to one less than the total number of 0-strings
and 1-strings in the f-column of the truth table of the
desired function. As shown by Elspas and Short [14], a

least upper bound for all functions of n variable is
given by

N < 2.2n/3,

when permutations and complementations of the input
variables are permitted.

Actually, several other special types of arrays are
known that can realize switching functions in a much
more efficient manner than that illustrated for the
sorting array [1], [2].

B. Pushdown and Buffer Memories

In another mode of operation, this sorting array may
be employed as either a pushdown memory (last-in,
first-out) or a buffer memory (first-in, first-out). This
is done by allowing the W-register to have bidirectional
shifting capabilities, so that it may serve as an address
register for the set of words stored in the array. In this
mode the array itself is employed only as a bank of
memory registers having downward shifting capability,
and the comparison logic in the cells is not used. A
single 1 is held in the W-register to mark the row into
which the next word should be entered. For use as a
pushdown memory, the W-register is shifted one row
downward (initially in row 1) after each entry and one
row upward before each readout. For use as a buffer
memory, the W-register is shifted one row upward
(initially in row N) after each entry and one row down-
ward after each readout, and in addition, its contents
are complemented both before and after each readout.
(In this way the entire contents of the array are shifted
downward.) Several other configurations are possible
for simulating these memory operations, but this one
appears to be the simplest.

C. Content-Addressed Memory
Finally, the sorting array may also be used as a con-

tent-addressed (associative) memory. For inequality
searching (X > Y or X> Y, the selection between these
choices depending upon the value of zo), step 1) is
carried out as first described. This leaves l's in the W-
register in just those rows containing words Y that
satisfy the inequality. This entire subset of words may
now be shifted out of the array by executing step 2)
repeatedly with the input register empty until an all-O's
word is encountered on the output lines from the array.2

If the circuitry shown in Fig. 1 is modified so that
the z-line inputs to the stages of the W-register are
arranged to enter the trigger inputs rather than the set
inputs of these flip-flops, then the associative search
may be carried out on the basis of certain additional
searching conditions without giving up any of the cap-
abilities discussed so far. For example, assuming that
the words in the array are in order, a search for all
numbers Y in the range Xl< Y<X2 can be conducted
as follows.

1) Load Xi into the X register.
2) Compare X1> Y (i.e., execute step 1) with zo=0),

apply clock to W-register.
3) Load X2 into the X register.

2 For nondestructive readout, start with the X-register full of
0's, but cycle back to the X-register the words read out, for reentry
into the array. Stop when the all-O's word reappears in the X-register.

725

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1969

4) Compare X2. Y (execute step 1) with zo= 1), and
apply clock to W-register.
As a result, the W-register will contain a 1 in every row

whose word Y satisfies one of the two tests, but not both
(since two z-signals will return the W flip-flop to its
initial state). This can happen only when X1< Y<X2.
When X1=X2, this constitutes an equality test, and
step 3) is unnecessary. Readout of the selected words is
conducted as before.
These three supplementary uses of the sorting array

are offered merely as examples. Many other interesting
uses can undoubtedly be devised by the ingenious de-
signer. In particular, the multiple-comparison feature
described at the end of Section III in conjunction with
special control of the W and X registers could lead to
procedures for handling very complex testing conditions
involving several inequalities and equalities.

VI. SORTING ARRAY II
There also exist other possible configurations for

cellular sorting arrays based upon different sorting
algorithms [15]-[17], but the one described so far ap-
pears to be the simplest and most versatile. The array
form and cell circuitry of the runner-up are shown in
Fig. 5.
The cells of this sorting array are arranged in a "brick-

wall" pattern, and the data words to be sorted are
stored along rows, each semicell of which contains a
one-bit data flip-flop. Very briefly, sorting is accom-
plished by shifting synchronously the entire bank of
words to the left, making serial comparisons (most sig-
nificant digit first) in each cell to determine whether or
not the pair of words entering each cell should be row-
interchanged as it passes through that cell. With the
first shift, for example, the comparison is started in
column 1 between each word in an odd-numbered row
and the word just below it. For n-digit words (the width
of the array is n), this comparison will last for n clock
times (shifts), but as soon as the first digit has been
shifted out of column 1, the second comparison may
start in column 2 between each word in an odd-num-
bered row and the word just above it. While these two
comparisons are still in progress, the third comparison
may be started at the third clock time in column 3 be-
tween each odd-numbered word and the word below it,
as in column 1, and so on. It is not difficult to show that,
using only this elementary operation of successively
interchanging the positions of words in adjacent rows
on the basis of their relative sizes, ,,a total of exactly N
word comparisons (N+n digit shifts) is necessary and
sufficient to place into order a store of N arbitrary
words. Thus, after (N/n) + 1 complete word cyclings,
the entire set of words in the memory is back in its
proper digit phase, and is completely sorted.
The individual cell of this array has the form of a

two-input serial sorter combined with the two single

A

BOUNDARY SEMICELL

Fig. 5. Cellular sorting array II.

stages y and X of the shifting registers. Serial sorting of
two words U and V requires the storage of three states
per cell, and these states are represented in the two
flip-flops a and b:

a = 0, b = 0: U = V so far (that is, corresponding digits
u and v are equal, u =v, in every digit encountered so
far);
a=1, b = 0: U> V (that is, some digit position has

been encountered for which u = 1, v = 0);
a =0, b =1: U< V (that is, some digit position has

been encountered for which u =0, v = 1).
As soon as either the a or b flip-flop sets, setting of the

other is blocked, inhibiting further digit comparisons.
The R-register at the bottom of the array contains a
single shifting 1, which resets at each clock the a and b
flip-flops in that column that contains the ends of the
words, so that serial comparison may recommence at
the beginnings of the words at the next clock time. The
mask register M at the top also shifts in synchronism
with the data. It serves to inhibit comparisons in all
columns not corresponding to the key, which is assumed
for this type of sorting array to be located entirely to
the left of the nonkey portion of the data word. The
mechanism of filling and emptying the memory is not
specifically shown in Fig. 5. Input and output can be
accommodated by breaking into the data transfer lines
or storage flip-flops at any convenient set of points, for
example, at the register stages at the left or right side
of the array.

This array has a cell complexity (per data digit) of
about 15 elementary NOR gates per semicell (assuming
static flip-flops), the same as for a single cell of the first
sorting array (masking included). The number of ex-
ternal terminals per subarray is also the same. How-

726

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

KAUTZ: CELLULAR LOGIC-IN-MEMORY ARRAYS

ever, the versatility of Sorting Array I is completely
absent in Sorting Array II, which operates more slowly
and requires more precise clocking than does Sorting
Array I.

VII. CONCLUSIONS
Cellular logic-in-memory (CLIM) arrays offer an

attractive alternative to customized arrays in many ap-
plications of large-scale integration to the design of
digital information-handling systems. At the very
least, they offer many advantages to the designer of
conventional and associative memories, and other com-
puter circuitry that already has a natural iterative
structure. At best, CLIM arrays can be used for the
realization of arbitrary combinational and sequential
logic circuitry. As the per-gate costs of integrated cir-
cuitry drop and the pressures for more special-purpose
hardware within a processor increase, the advantages
of a CLIM approach to logical design should become
more attractive.
The cellular sorting arrays described in this paper are

examples of CLIM arrays that achieve the advantages
cited for the main purpose for which they were con-
ceived (i.e., sorting). At the same time, the first sorting
array has the flexibility to carry out certain secondary
functions, albeit with a lesser gate utilization efficiency.
Limited fault accommodation is also possible: except for
certain short circuits, the row containing a defective cell
may be taken from use by holding its w-bus at 0, and a
defective column may be avoided by suitable connection
of the array proper to the X-register. The array is
readily tested by available testing techniques for com-
binational cellular arrays. (The flip-flops in the array
are regarded merely as extra inputs since they may be
directly set and reset by external signals.) The hori-
zontal and vertical logical cascades involve only two
elementary gates per cell, thereby introducing minimal
delay in a situation where the cascades cannot be
avoided if sorting is to be achieved at all. The other ad-
vantages listed in Section II are inherent to the cellular
approach and are achieved automatically for the sorting
array.

ACKNOWLEDGMENT
The author would like to express his appreciation to

Dr. R. C. Singleton and Dr. M. C. Pease, III, of Stan-
ford Research Institute, for their participation in an
early survey of sorting methods to determine which
might be realizable in cellular form, and to Dr. H. S.
Stone for his comments on this paper.

REFERENCES
[1] R. C. Minnick and R. A. Short, "Cellular linear-input logic,"

Stanford Research Institute, Menlo Park, Calif., Final Rept.,
Contract AF 19(628)-498, SRI Project 4122, February 1964.

[2] R. C. Minnick, J. Goldberg, M. W. Green, W. H. Kautz, R. A.
Short, H. S. Stone, and M. Yoeli, "Cellular arrays for logic and
storage," Stanford Research Institute, Menlo Park, Calif.,
Final Rept., Contract AF 19(628)-4233, SRI Project 5087,
April 1966.

[31 R. C. Minnick, "Cutpoint cellular logic," IEEE Trans. Electronic
Computers, vol. EC-13, pp. 685-698, December 1964.

[4] , "Cobweb cellular arrays," 1965 Fall Joint Computer Conf.,
A FIPSProc., vol. 27, pt. 1. Washington, D. C.: Spartan, 1965,
pp. 327-341.

[4a] , "Survey of microcellular research," J. ACM, vol. 14, no.-2,
pp. 203-241, April 1967...

[5] W. H. Kautz, K. N. Levitt, and A. Waksman, "Cellular inter-
connection arrays," IEEE Trans. Computers, vol. C- 17, pp-
443-445, May 1968.

[6] A. Waksman, "A permutation network," J. ACM, vol. 15,-pp.
159-163, January 1968.

[7] W. H. Kautz, "A cellular threshold array," IEEE Trans. Elec-
tronic Computers (Short Notes), vol. EC-16, pp. 680-682, October
1967.

[8] S. E. Wahlstrom, "Programmable arrays and networks," Elec-
tronics, pp. 91-95 December 11, 1967.

[9] W. H. Kautz, "Fault testing and diagnosis in combinational
digital circuits," Proc. 1st Ann. IEEE Computer Conf., Chicago,
Ill., September 6-8, 1967. See also IEEE Trans. Computers, vol.
C-17, pp. 352-366, April 1968.

[10] ,"'Testing for faults in combinational cellular logic arrays,"
Proc. 8th Ann. Symp. on Switching and Automata Theory, Austin,
Tex., October 1967, pp. 161-174.

[11] J. Goldberg, M. W. Green, W. H. Kautz, K. N. Levitt, and J. B.
Turner, "Techniques for the realization of ultra-reliable space-
borne computers," Interim Scientific Rept. III, Contract
NAS12-33, SRI Project 5580, Stanford Research Institute,
Menlo Park, Calif., June 1968.

[12] R. C. Minnick [2], p. 82.
[13] R. R. Seeber, "Associative self-sorting memory," Proc. 1960

Eastern Joint Computer Conf., vol. 18, pp. 179-188.
[14] B. Elspas and R. A. Short, "A bound on the run measure of

switching functions," IEEE Trans. Electronic Computers, vol.
EC-13, pp. 1-4, February 1964.

[15] D. L. Shell, "A high-speed sorting procedure," Commun. A CM,
vol. 2, no. 7, pp. 30-32, 1959.

[16] R. C. Bose and R. J. Nelson, "A sorting problem," J. A CM, vol.
9, no. 2, pp. 282-296, 1962.

[17] K. E. Batcher, "Sorting networks and their applications," 1968
Spring Joint Computer Conf., A FIPS Proc., vol. 32. Washing-
ton, D. C.: Thompson, 1968, pp. 307-314.

727

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 11:01:11 UTC from IEEE Xplore. Restrictions apply.

