
 

 

LAB 2 – Mapping Your Circuit to an FPGA 

Goals 

• Design a 4-bit adder using structural modeling. 

• Learn how to interface to the components on an FPGA Board. 

• Implement your design on the Basys 3 FPGA board and see your circuit in action! 

To Do 

• The first step is designing a simple full adder, a 1-bit adder circuit. 

• In the next step, you will instantiate 4 copies of the 1-bit adder to implement 
a “4-bit Adder”. 

• Then, you will learn how to use Xilinx Vivado to write Verilog code and how to 
connect to the Basys 3 board. 

• Finally, you will program the FPGA and get the circuit running on the FPGA board. 

• Follow the instructions. Paragraphs that have a gray background like the current 
paragraph denote descriptions that require you to do something. 

• To complete the lab you have to show your work to an assistant before the 
deadline. There is nothing to hand in. The required tasks are clearly marked 
with gray background throughout this document.  

Introduction 

In the previous lab we drew some small circuits. We did not, however, see what our circuit 
did. In today’s lab, we will see how we can implement our schematics on an FPGA board. 
In the last week, our designs were relatively small. This week, we will design a slightly 
larger circuit using structural modeling, which we have already learned in class. First, we 
will design a small circuit that adds two 1-bit numbers. Then, we will combine multiple 
instances of the 1-bit adder circuit to make a larger 4-bit adder. This hierarchical design 
technique is very important to allow us to design more complex circuits. 

Binary Addition 

Today, we will start by designing a simple adder circuit. The following is a quick recap on 
a simple method to perform the addition of two binary numbers. Binary addition works in 
a very similar way to the decimal addition that you are used to. The only difference is that 
a digit in a binary number can only be 0 or 1, instead of an integer between 0 and 9. 
  



 

 

Consider the following simple example: 
 

 1 1   
  8 7 3 

+  3 6 2 
 1 2 3 5 

 
1. We start from the right and first add 3 + 2, which results in 5. Since this number is 

less than 10, we can directly write it as it is. 
2. The next digit is 7 + 6, which results in 13. Now we cannot directly write the result 

since it exceeds the largest possible number we can use in a digit. We write 3 to the 
result and have a ‘carry’ that we move over to the next digit. 

3. In the third digit, we now have 1 + 8 + 3 = 12 since we need to also add the carry 
from the right side. This result also produces a carry, which also gives the final 
result. 

 

Now consider the very same addition when expressed with binary numbers. 
 

  1  1 1  1     
 0 1 1 0 1 1 0 1 0 0 1 

+ 0 0 1 0 1 1 0 1 0 1 0 
 1 0 0 1 1 0 1 0 0 1 1 

 

The principle is the same. We start from the right. 
Add each digit: 

1. 1 + 0 is 1 
2. 0 + 1 is 1 

3. 0 + 0 is 0 
4. … 

Once we try to add 1 + 1 we realize that the result, (2)10, cannot be expressed in one binary 
digit, (10)2. This gives rise to a ‘carry’ signal that is propagated in the direction of the most 
significant bits. 
  



 

 

Part 1 - One-bit addition 

The example shows that adding two one-bit numbers requires two outputs: one ‘sum’ 
output that is the result of the addition, and a ‘carry-out’ output, that indicates that the 
addition overflowed and a carry signal was generated. This circuit is called a half adder. 
The problem with the half adder is that it produces a ‘carry-out’ but cannot accept a ‘carry-
in’ as an input. That is where the full adder circuit comes in. This is a circuit that can add 
three inputs (A, B, carry-in) and outputs the sum and carry-out signals. 
By sequentially connecting the carry-out signal of one stage to the carry-in stage of the 
following digit we can build larger adders easily. 

For your convenience, the questions from part 1 have been moved to a 
separate sheet at the end of this document. 

Please answer those now. 

Now we have everything in place to implement a 1-bit full adder in Vivado. 

 

Part 2 - Starting Vivado and Creating a Project 

 
Please follow the instructions below. 

 
1. Start Vivado: Click on the Start menu and go to  

Programs → Xilinx Design Tools → Vivado 2019.2. 
Alternatively, searching for “Vivado 2019.2” using the search function in the task bar 
should also work. 
2. Create a ‘New Project’: Inside Vivado, choose File → New Project. This will bring up 
a new project wizard. 

- Specify the “Project name”. You can simply call it Lab2. You can also specify 
where the project files will be stored using the “Project location.” Click next. 

- Select “RTL Project” as the project type and click next. 
- In the “Add Source” dialog, just click next (we do not have source files yet). 

- In the “Add Existing IP” dialog, click next. 
- In the “Add Constraints” dialog, click next. 

  



 

 

- In “Default Part”, we need to select the FPGA board that we are using. Type 
“xc7a35tcpg236-1” in the Search field and you should be left with only one option. Select 
it and click next. 

- In “New Project Summary”, you can see the project configuration. Make sure that 
the default part and product family information reads: 

Default Part: xc7a35tcpg236-1 

Product: Artix-7 

Family: Artix-7 

Package: cpg236 

Speed Grade: -1 

Once everything checks out, click finish to create the project! 

After creating the project, you should see the following view: 

 
On the left side of Vivado, you will find the “Flow Navigator”, which you will extensively 
use to develop your project and finally program it to the FPGA board. 
Let’s create a new Verilog code file to implement the 1-bit full adder: inside the Flow 
Navigator, under “Project Manager”, click on “Add Sources”. 

Flow 
Navigator 



 

 

Select “Add or create design sources” and click next. 
Click “Create File”. A new dialog box will pop up: 

 

 
 

Keep the type as Verilog and choose a file name for your 1-bit full adder – for example, 
“FullAdder.v”. Then click OK. The dialog will disappear, and you will see your design in 
the list. Click Finish. A new dialog will popup asking you to define the module. Simply 
skip this process and press OK and ignore the warning message. 
In the Project Manager box, you should see your newly created file. Double click on it to 
edit it. 

Now you can start implementing the Full Adder in Verilog! 

 

Part 3 – Implementing a Full Adder in Verilog 

First, we will need to specify the input and output of the full adder. 
Complete the input/output list of the FullAdder module. Your code should look something 
like this: 

module FullAdder(input a, input b, input ci, output s, output co); 

 <your logic here> 

endmodule 

 
Implement the full adder logic inside the FullAdder module, using the equations you 
derived in Part 1.  



 

 

Part 4 – Implementing a 4-Bit Adder in Verilog 

Now that we have designed a full adder, we can use it to design a 4-bit adder. 
We have two 4-bit numbers (A and B) in our adder. The output is the sum (S) of these two 
4-bit numbers and is 5 bits wide, 4 Sum bits of the individual full adders plus the Carry 
Out bit of the final (left most, most significant) full adder. All but the first (right most, least 
significant) full adders have their Carry In signals connected to the Carry Out of the full 
adder to their left. The first (right most, least significant) full adder does not have anything 
to its right, so there is no Carry In entering this full adder. We can connect the Carry In 
input to logic-0 (or ground, the symbol for this being called ‘gnd’). You can see an example 
in the following figure. 

 
In the description (and the figure) the organization is so that the least significant bit is on 
the right and the most significant bit is on the left. This is partly for didactic purposes; the 
organization mimics the way we write numbers on paper.  
Given the description, we can now start a Verilog code that contains four instances of the 
full adder (FA).  
Similar as before, create another source file. You can call it FourBitAdder.v. Again, you 
should first complete the input/output list so that your code looks like: 
 

module FourBitAdder(input [3:0] a, input [3:0] b, output [4:0] s); 
 <your logic here> 

endmodule 

 
Afterwards, implement the combinational logic of the 4-bit adder by creating 4 instances 
of the full adder. 

  



 

 

Part 5 – Running Your 4-Bit Adder on the Basys 3 FPGA Board 

After designing the 4-bit adder, we can now program it to the FPGA board. An FPGA is a 
reconfigurable chip that allows you to map a given schematic (essentially a netlist of 
interconnected logic gates) in itself. Different FPGAs can map anywhere from a few 
hundred to up to more than a million gates. 
 
In this course, we will be using the Basys 3 boards from Digilent, shown below: 

 
This board includes an Artix®-7 FPGA chip which we can program, some switches, some 
light-emitting diodes (LEDs), and some other cool features. You can learn more about the 
Basys 3 Starter Board from: 

http://store.digilentinc.com/basys-3-artix-7-fpga-trainer-board-recommended-for-
introductory-users/ 

In this lab we have two four-bit inputs that we can map to eight switches (e.g., labeled SW7 
to SW0), and a 5-bit output which we can map to the LEDs (e.g., LD4 to LD0). From the 
board’s reference manual, 

https://reference.digilentinc.com/_media/basys3:basys3_rm.pdf 

we find out to which FPGA pins the switches and the LEDs are connected (page 15). If you 
look at the board, you see that the pin numbers are also written next to the name of the 
LEDs and Switches. For example, the right most switch (SW0) is connected to pin V17. 
What we now need to do is tell Vivado to which pin each of input and output should be 
connected. This is done using a Xilinx Design Constraint File (XDC). Typically, an XDC 
also contains timing related constraints, e.g., to indicate to Vivado how fast a circuit should 
run. For now, we do not need this functionality. 
  

Artix®-7 FPGA 

16 light emitting 
diodes (LEDs) 

16 Switches 

Power switch 
(Remember to 
turn it on!) 



 

 

You can generate an XDC file the same way you generated a new source file, through 
Add Sources and then Add or Create Constraints, under Project Manager. 
Once you have generated the new file, you will find it under “Constraints”, in the Project 
Manager. 
If you double click on this entry you should start a text editor. Using the text editor, enter 
the following constraints: 
set_property PACKAGE_PIN V17 [get_ports {a[0]}] 
set_property PACKAGE_PIN V16 [get_ports {a[1]}] 
set_property PACKAGE_PIN W16 [get_ports {a[2]}] 
set_property PACKAGE_PIN W17 [get_ports {a[3]}] 
set_property PACKAGE_PIN W15 [get_ports {b[0]}] 
set_property PACKAGE_PIN V15 [get_ports {b[1]}] 
set_property PACKAGE_PIN W14 [get_ports {b[2]}] 
set_property PACKAGE_PIN W13 [get_ports {b[3]}] 
set_property PACKAGE_PIN U16 [get_ports {s[0]}] 
set_property PACKAGE_PIN E19 [get_ports {s[1]}] 
set_property PACKAGE_PIN U19 [get_ports {s[2]}] 
set_property PACKAGE_PIN V19 [get_ports {s[3]}] 
set_property PACKAGE_PIN W18 [get_ports {s[4]}] 
set_property IOSTANDARD LVCMOS33 [get_ports {a b s}] 

Each line of code connects one of your inputs or outputs to a corresponding pin, which in 
turn connects your circuit to the peripherals on the board once it is downloaded to the 
FPGA. The last line sets the I/O standard of the ports. In this lab we will not get into the 
nitty-gritty of this, so simply include all the variable names in the last line. 

Programming the FPGA. We are almost done —we now have to compile (map) our 
design onto the FPGA. This process consists of several independent steps (we do not 
discuss them in detail here), but you can use a shortcut:  

Select your circuit (FourBitAdder) in Project Manager. From the Flow Navigator, select 
Program and Debug → Generate Bitstream. 

This will generate a binary file, which is the FPGA programming file that you will later 
download to the FPGA. To generate the programming file, all other steps (i.e., Synthesis 
and Implementation) have to be completed.  
You can track the process on the top right corner, where it will say “Running 
write_bitstream” with a progress bar. This process may take a couple of minutes. If there 
are errors or problems, try debugging your code or contact an assistant. 
Now that we have the program file we need to transfer this information to the FPGA. Make 
sure the FPGA board is powered on and that it is connected to the computer through the 
USB cable. 



 

 

From the Flow Navigator, select 
Program and Debug → Open Hardware Manager → Open Target → Auto Connect 

This will open a Hardware Manager. 
Vivado should automatically detect the FPGA board. You are now ready to download the 
code to the board. 

From the Flow Navigator, select 
Program and Debug → Hardware Manager → Program Device → xc7a35t_0 

A dialog window will pop up with two fields: Bitstream file and Debug probes file. The 
Bitstream file field should automatically contain the path of the previously generated 
bitstream file. Leave the Debug probes file empty. Press Program. 
 
Now you are ready to test your circuit on the board. Use the switches and verify that your 
circuit functions correctly. Show the working circuit to an assistant. If there are errors, you 
should find the problem and correct it.  

Last Words 

We have (hopefully) managed to program the FPGA and have translated our design idea 
from paper, to Verilog code, to a physical working circuit.  
It is quite possible that you have encountered errors during this exercise. The entire process 
consists of many steps, and at each step there are many parts where you could have made 
an error. If something did not work, starting at the lowest level, maybe… 

• …you made a mistake in the truth table? 

• …the equations were not derived correctly? 

• …there was a mistake in your Verilog implementation? 

• …there are errors in the constraint file? 

• …there are problems with the programming cable, or the USB port is not working? 

• …the configuration switches on the board were not correct? 

• …the board was not powered on? 

Since many things can go wrong it is normal that you experience problems during this 
exercise. Don’t feel frustrated: this is a complex process involving many steps, and getting 
it right requires some experience.  
The circuit we created takes up a very small portion of the capabilities of the FPGA (it uses 
less than 1% of the FPGA’s resources). For such a small circuit, some of the steps of the 
program may seem a little bit complex. However, the environment is designed for much 
larger circuits, and its quirks will start to make sense to you once you design more complex 
circuits.  



 

 

Part 1a  
The truth table below describes the operation of a full adder. 
We use the inputs A, B, CI (carry-in) and the outputs are S (sum) and CO (carry-out). 
Derive the Boolean equations for both outputs. Apply logic minimization techniques to 
come up with a simplified full adder circuit. 

Then, complete the truth table by filling in the values of CO and S. 

CI B A CO S 

0 0 0   

0 0 1   

0 1 0   

0 1 1 1 0 

1 0 0 0 1 

1 0 1   

1 1 0   

1 1 1   

Part 1b 

Derive Boolean equations for CO and S (using whatever method you like). 

 
CO = 

 
S = 
 

Part 1c 

Draw the schematic of the full adder circuit according to the equations you have derived. 

 
 

 
 


