
DR-STRaNGe: 
End-to-End System Design 

for DRAM-based True Random Number Generators

F. Nisa Bostancı

Ataberk Olgun   Lois Orosa A. Giray Yağlıkçı

Jeremie S. Kim   Hasan Hassan    Oğuz Ergin   Onur Mutlu



DR-STRaNGe Summary
Motivation:

- Random numbers are important for many applications

- DRAM-based True Random Number Generators (TRNGs) can provide true random 
numbers at low cost on a wide range of systems

Problem: There is no end-to-end system design for DRAM-based TRNGs

1. Interference between regular memory requests and RNG requests significantly slows
down concurrently running applications

2. Unfair prioritization of RNG applications degrades system fairness

3. High latency of DRAM-based TRNGs degrades the RNG applications’ performance

Goal: A low-cost and high-performance end-to-end system design for DRAM-based TRNGs

DR-STRaNGe: An end-to-end system design for DRAM-based TRNGs that 

- Reduces the interference between regular memory requests and RNG requests by 
separating them in the memory controller

- Improves fairness across applications with an RNG-aware memory request scheduler

- Hides the large TRNG latencies using a random number buffering mechanism combined 
with a new DRAM idleness predictor

Results: DR-STRaNGe

- Improves the average performance of non-RNG (17.9%) and RNG (25.1%) applications

- Improves the average system fairness (32.1%) when generating random numbers 
at a 5 Gb/s throughput

- Reduces the average energy consumption (21%)

2



Outline

3

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



DRAM Organization

4

CPU

M
e

m
o

ry
 

C
o

n
tr

o
ll

e
r

DRAM
Module

Chip

…

M
e

m
o

ry
 C

h
a

n
n

e
l

Chip

Chip

DRAM 
Bank

DRAM 
Bank

DRAM 
Bank

…

Channel

DRAM Bank

R
o

w
D

e
co

d
e

r

DRAM cell

Row Buffer

Chip I/O



Request Scheduler DRAM Module

Row 1

M
e

m
o

ry
 C

h
a

n
n

e
l Row 2

…

Older

Younger

Row 10

Row 3

Row Buffer

Memory Request Scheduling

Commonly used memory request schedulers aim to maximize
throughput by leveraging the row buffer locality

(1) Requests to open rows over all requests

(2) Older requests over the younger ones

5

Read (Row 1)

Read (Row 5)

Read (Row 2)

Read (Row 1)

Read (Row 3)

Read (Row 1)

App. A

App. B



Memory Request Scheduling

Commonly used memory request schedulers aim to maximize
throughput by leveraging the row buffer locality

(1) Requests to open rows over all requests

(2) Older requests over the younger ones

6

Request Scheduler DRAM Module

Row 1

M
e

m
o

ry
 C

h
a

n
n

e
l Row 2

…

Read (Row 1)

Read (Row 5)

Read (Row 2)

Read (Row 1)

Older

Younger

Row 10

Row 3

Read (Row 3)

Read (Row 1)

Row Buffer

Row 1Row 3Row 2Row 5

App. A

App. B



Outline

7

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



• True random numbers are widely used in real world

True Random Numbers (TRN)

8

Security Applications:
• Cryptographic key generation, 

authentication, countermeasures
against hardware attacks, …

• Emerging protocols require a very
high TRNG throughput (~ Gb/s)

Other:
• Randomized algorithms, 

scientific simulation, 
statistical sampling, 
blockchain applications,
…



True Random Numbers (TRN)

• True random numbers are generated by harnessing
entropy resulting from random physical processes

9

Thermal Noise Brownian MotionClock Jitter



True Random Number Generators

• Systems can generate true random numbers
with dedicated hardware true random
number generators (TRNGs)
• Sample non-deterministic various physical

phenomena

• Not suitable for all systems

10



Why DRAM-based TRNGs?

DRAM is everywhere

11

DRAM-based TRNGs enable true random number
generation within widely available DRAM chips



DRAM-based TRNGs

12

Fundamentally Slow: cells leak charge slowly

Fundamentally Slow: requires power-cycle

Fast: enabled by reducing DRAM command latencies

Retention Failures
1

Start-up Values
2

Timing Failures3



DRAM-based TRNGs

13

Fundamentally Slow: cells leak charge slowly

Fundamentally Slow: requires power-cycle

Fast: enabled by reducing DRAM command latencies

Retention Failures
1

Start-up Values
2

Timing Failures3



Integration of DRAM-based TRNGs
into Real Systems

14

No prior work provides
an end-to-end system design
to enable DRAM-based TRNGs

in real systems



Three Key Challenges

15

RNG Interference
significantly slows down concurrently-running
applications

1.
Unfair Prioritization
degrades overall system fairness2.
High TRNG Latency
degrades RNG applications’ performance3.



Three Key Challenges

16

RNG Interference
significantly slows down concurrently-running
applications

Unfair Prioritization
degrades overall system fairness

High TRNG Latency
degrades RNG applications’ performance

1.

2.

3.



RNG Interference

17

• TRNG in DRAM can be intrusive in current systems that use
DRAM as main memory and stall memory requests

(A) Non-RNG App.Memory 
Controller

0 1 2 3 4 5t    =

(B) RNG App.
Memory 

Controller

Memory 
Controller

memory request timeline

1 2 3

(C) Concurrently
running

RNG RNG

1
2

21RNG RNG



Three Key Challenges

18

RNG Interference
significantly slows down concurrently-running
applications

1.
Unfair Prioritization
degrades overall system fairness2.
High TRNG Latency
degrades RNG applications’ performance3.

RNG Interference
significantly slows down concurrently-running
applications

Unfair Prioritization
degrades overall system fairness

High TRNG Latency
degrades RNG applications’ performance

1.

2.

3.



• Memory request schedulers can prioritize RNG applications to
achieve high throughput

• Stalls the non-RNG applications more and creates unfairness

(A) Non-RNG App.Memory 
Controller

0 1 2 3 4 5t    =

(B) RNG App.
Memory 

Controller

Memory 
Controller

Unfair Prioritization

21 2 1 3 4

19

memory request timeline

1 2

1 2 3

3 4

Multiple DRAM accesses1 High TRNG demand2

(C) Concurrently
running

RNG request



Three Key Challenges

20

RNG Interference
significantly slows down concurrently-running
applications

1.
Unfair Prioritization
degrades overall system fairness2.
High TRNG Latency
degrades RNG applications’ performance3.

RNG Interference
significantly slows down concurrently-running
applications

Unfair Prioritization
degrades overall system fairness

High TRNG Latency
degrades RNG applications’ performance

1.

2.

3.



High TRNG Latency

• DRAM-based true random number generation has high latency
and can degrade the performance of applications that use TRNGs

21

Memory 
Controller

0 1 2 3 Nt    =

2 3 4

{

/* code block

* depending on the

* random number n

*/

}

RNG application

n : getRandom()

...

1

memory stall
time

1

2

3



Our Goal

22

To develop a low-cost and high-performance
end-to-end system design for DRAM-based TRNGs



Outline

23

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



DR-STRaNGe: Overview

24

Random Number Buffering Mechanism
Predicts and utilizes idle DRAM channels to generate random numbers
Stores the generated random numbers in a buffer to be served to upcoming RNG requests

RNG-Aware Memory Request Scheduler
Accumulates RNG and regular memory requests in separate queues
Schedules requests based on the priority levels set by the OS

Application Interface
Exposes a secure interface to applications that use random numbers

Serves RNG requests with low latency

Reduces the RNG interference and improves system fairness

Completes the end-to-end system design and ensures security



Outline

25

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



Random Number Buffering Mechanism

• Generates and stores random numbers before they are requested, 
to be served in the future with low latency

• Predicts DRAM idleness to generate random numbers with low
overhead and stores them in a secure buffer

26

Random Number Buffering
Mechanism

DRAMDRAM Idleness Predictor
Memory 
Request

Scheduler

Random Number Buffer



When to Generate Random Numbers

• Before they are requested by an application

• Two key metrics to determine when to generate random
numbers:

27

2. DRAM Idle Period Length
Number of idle DRAM cycles due to no memory accesses

1. Low DRAM Utilization
Low channel utilization due to the low rate of memory accesses



Metric 1: Low DRAM Utilization

• Determine if a channel has low utilization based on the
number of queued memory requests in the memory
request scheduler

28

Random Number Buffering
Mechanism

DRAMDRAM Idleness Predictor

Memory 
Request

Scheduler

Random Number Buffer

2

Channel has low utilization?
1

Low Util. 
Threshold

Compare with The Low Utilization Threshold



Metric 2: DRAM Idle Period Length

• Applications often do not fully utilize the DRAM bandwidth and
this creates idle periods

• Idle period lengths differ across applications based on the
memory access pattern

29

Memory 
Controller

0 1 2 3 4 5t    =

DRAM

6

Application A

memory request timeline

1 2IDLE TIME

Memory 
Controller

DRAM1 2 3IDLE IDLE IDLE

Application B

Long Idle Period

Short Idle Period



• Key Idea: Use the last accessed memory address to
predict the length of the idle period

Memory 
Controller

0 1 2 3 4 5t    =

DRAM

6

DRAM Idleness Predictor

30

Memory 
Controller

DRAM… #1

#1 …LONG IDLE PERIOD

RECALL THE LONG IDLE PERIOD

Multiple
times

READ #ADDRESS_1
(Followed by a long idle period)

RNG RNG RNG RNG



DRAM Idleness Predictor

31

DRAM Idleness Predictor

Predictor Table

2-bit saturating
counter

Last Accessed
Memory Address

Idle Period
Length (CTR)

0

Channel 
is idle 1check the

predictor table

Prediction
3

increment the
idle period length

2

0 1

23

• Key Idea: Use the last accessed memory address to
predict the length of the idle period



DRAM Idleness Predictor

32

DRAM Idleness Predictor

Predictor Table

2-bit saturating
counterLast Accessed

Memory Address

Idle Period
Length (CTR)

1

new
memory
request 2

Check the
period length

CTR < PeriodThreshold : short
CTR ≥ PeriodThreshold : long

Evaluation:

4

update

5

reset

• Key Idea: Use the last accessed memory address to
predict the length of the idle period

3
Update the
predictor table



Random Number Buffering Mechanism

33

Random Number Buffering
Mechanism

DRAMDRAM Idleness Predictor

Memory 
Request

Scheduler

Random Number Buffer

2

Channel has low utilization?
1

g
e

t
p

re
d

ic
ti

o
nLow Util. 

Threshold

3

Low utilization

Long Idle Period

4

Generates random numbers only if DRAM is not fully utilized
and the idle period is predicted to be a long idle period



Outline

34

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



RNG-Aware Scheduler

• Goal: To schedule RNG requests without significantly
stalling regular memory requests

• Two main issues with prior RNG-oblivious schedulers:

35

RNG requests block regular memory requests due to
the shared scheduler queue space1.

Memory controller frequently switches between
RNG and regular memory requests due to
the RNG-oblivious scheduling decisions

2.



RNG-Aware Scheduler

• Two key ideas:

36

Accumulate RNG requests in a separate scheduler
queue to reduce contention for queue space1.

Use application priority levels to schedule RNG and
regular memory requests2.



RNG-Aware Scheduler: Key Idea 1 

37

Memory Request
Scheduler

DRAM
W

R

RNG

contention

Accumulate RNG requests in a separate scheduler
queue to reduce contention for queue space1.



RNG-Aware Scheduler: Key Idea 1 

38

Memory Request
Scheduler

DRAM
W

R

RNG

Accumulate RNG requests in a separate scheduler
queue to reduce contention for queue space1.



• The operating system manages hardware resources
based on priority levels of applications

• RNG-Aware scheduler
• Can use these priority levels

• Can identify applications that use TRNGs

RNG-Aware Scheduler: Key Idea 2 

39

Use application priority levels to schedule RNG and
regular memory requests2.



Three possible cases:

RNG-Aware Scheduler: Key Idea 2

40

R

RNG

RNG Prioritized.
RNG queue is prioritized to minimize the
memory stall time of RNG application

R

RNG

Non-RNG Prioritized.
Regular read queue is prioritized to
minimize non-RNG application’s memory
stall time

R

RNG

Equal Priorities.
RNG queue is prioritized to quickly serve
the RNG requests and minimize the RNG 
interference



Outline

41

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



Application Interface

• Applications use a system call to request a random number

• DR-STRaNGe serves the request from the random number buffer
with low latency if enough random bits are present

• DR-STRaNGe generates random numbers with low RNG 
interference and serve the request otherwise

42

A
p

p
li

ca
ti

o
n

getrandom()
system call

DR-STRaNGe

D
R

A
MRandom Number

Buffer

Generate Random
Number

1

2



Outline

43

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



Evaluation

• Performance, fairness, energy efficiency, and area overhead

• Cycle-level simulations using Ramulator [Kim+, CAL’16] and
DRAMPower [Chandrasekar+] 

• System configuration:

• D-RaNGe [Kim+, HPCA’19], and QUAC-TRNG [Olgun+, ISCA’21]

44

Processor 1-,2-,4-,8-,16-core, 4 GHz clock frequency,
3-wide issue, 128-entry instruction window

DRAM DDR3-1600, 800Mhz bus frequency, 4 channels, 
1 rank/channel, 8 banks/rank, 64K rows/bank

Memory 
Controller

32-entry read/write queues,
FR-FCFS with a column cap of 16 

DR-STRaNGe 32-entry random read queue, RNG-aware scheduler, 
256-entry predictor table/channel,
16-entry random number buffer



Evaluation

• 43 single-core applications from four benchmark suites:
• SPEC CPU2006, TPC, MediaBench, YCSB

• Synthetic RNG benchmarks with varying required TRNG 
throughputs
• 640 Mb/s, 1280 Mb/s, 2560 Mb/s, 5120 Mb/s

• Multi-core workloads

45



Comparison Points

• System-level Comparison Points:
• RNG-Oblivious Baseline Design

• Greedy Idle Design

• Perfect Idleness Predictor: predicts idle period lengths
with 100% accuracy

• Generates random numbers for the random number buffer
without any overhead

• Uses RNG-Aware scheduling

• Memory Request Scheduler Comparison Points:
• FR-FCFS + Column cap of 16 [Mutlu+, MICRO’07]

• BLISS [Subramanian+, ICCD’14]

46



System Performance (Dual-Core)

47



System Performance (Dual-Core)

48

17.9%

25.1%

20.6%

DR-STRaNGe improves the performance of both non-RNG and RNG applications

DR-STRaNGe outperforms both baseline designs by leveraging the idle
and low utilization periods to generate random numbers



System Performance (Multi-Core)

• 4-, 8-, 16-core evaluation of system performance

49

DR-STRaNGe’s performance improvement
increases with the number of memory-intensive

applications in the workload mix

DR-STRaNGe outperforms both
baseline designs significantly



System Fairness

50

DR-STRaNGe outperforms both designs
by employing an RNG-aware scheduling policy

and effectively reducing and controlling the RNG interference

32.1%



Impact of Memory Request Scheduling

51

RNG-Aware Scheduler



Impact of Memory Request Scheduling

52

RNG-Aware Scheduler outperforms both
FR-FCFS+Cap [Mutlu+, MICRO’07] and BLISS [Subramanian+, ICCD’14]

RNG-Aware Scheduler improves average fairness by 16.1%

RNG-Aware Scheduler



Area and Energy Analysis

• Area:

• CACTI [Muralimanohar+, HPL Tech. Report’09]

• DR-STRaNGe incurs minor area overhead:

• 0.0022mm2 (0.00048% of an Intel Cascade Lake 
CPU Core)

• Energy:

• DRAMPower [Chandrasekar+] 

• DR-STRaNGe reduces average energy consumption
by 21%

53



More in the Paper

• Security Analysis of DR-STRaNGe
• Security of Random Numbers

• Timing Side-Channel Attacks

• Covert Channel Attacks

• Denial of Service Attacks

54



More in the Paper

• More Results
• Impact of the DRAM Idleness Predictor

• Comparison to a Q-learning-based RL agent

• Impact of the Random Number Buffer

• Impact of the Priority-based Scheduling

• Impact of the Low Utilization Prediction

• Experiments using QUAC-TRNG [Olgun+, ISCA’21]

• Results of Low RNG Demand Applications

55



More in the Paper

• Security Analysis of DR-STRaNGe
• Security of Random Numbers

• Timing Side-Channel Attacks

• Covert Channel Attacks

• Denial of Service Attacks

• More Results
• Impact of the Random Number Buffer

• Impact of DRAM Idleness Predictor

• Impact of Priority-based Scheduling

• Impact of the Low Utilization Prediction

• Experiments using QUAC-TRNG [Olgun+, ISCA’21]

• Results of RNG Applications with Low RNG Demand

56

https://arxiv.org/abs/2201.01385

https://arxiv.org/abs/2201.01385


Outline

57

Background

Motivation and Goal

DR-STRaNGe

Random Number Buffering Mechanism

RNG-Aware Scheduler

Application Interface

Evaluation

Conclusion



DR-STRaNGe Summary
Motivation:

- Random numbers are important for many applications

- DRAM-based True Random Number Generators (TRNGs) can provide true random 
numbers at low cost on a wide range of systems

Problem: There is no end-to-end system design for DRAM-based TRNGs

1. Interference between regular memory requests and RNG requests significantly slows
down concurrently running applications

2. Unfair prioritization of RNG applications degrades system fairness

3. High latency of DRAM-based TRNGs degrades the RNG applications’ performance

Goal: A low-cost and high-performance end-to-end system design for DRAM-based TRNGs

DR-STRaNGe: An end-to-end system design for DRAM-based TRNGs that 

- Reduces the interference between regular memory requests and RNG requests by 
separating them in the memory controller

- Improves fairness across applications with an RNG-aware memory request scheduler

- Hides the large TRNG latencies using a random number buffering mechanism combined 
with a new DRAM idleness predictor

Results: DR-STRaNGe

- Improves the average performance of non-RNG (17.9%) and RNG (25.1%) applications

- Improves the average system fairness (32.1%) when generating random numbers 
at a 5 Gb/s throughput

- Reduces the average energy consumption (21%)

58



DR-STRaNGe: 
End-to-End System Design 

for DRAM-based True Random Number Generators

F. Nisa Bostancı

Ataberk Olgun   Lois Orosa A. Giray Yağlıkçı

Jeremie S. Kim   Hasan Hassan    Oğuz Ergin   Onur Mutlu


