
Family Name: First Name: Student ID:

Final Exam

Computer Architecture (227-2210-00L)

ETH Zürich, Fall 2020
Prof. Onur Mutlu

Problem 1 (175 Points): Potpourri

Problem 2 (105 Points): DRAM Refresh

Problem 3 (90 Points): RowHammer

Problem 4 (100 Points): Processing-using-Memory

Problem 5 (70 Points): Emerging Memory Technologies

Problem 6 (100 Points): Prefetching

Problem 7 (100 Points): Cache Coherence

Problem 8 (BONUS: 90 Points): Genome Analysis

Total (740 + 90 bonus Points):

Examination Rules:

1. Written exam, 180 minutes in total.

2. No books, no calculators, no computers or communication devices. 10 single-sided (or 5 double-sided) A4
pages of handwritten notes are allowed.

3. Write all your answers on this document, space is reserved for your answers after each question. Blank
pages are available at the end of the exam. Do not answer questions on them.

4. Clearly indicate your final answer for each problem. Answers will only be evaluated if they are readable.

5. Put your Student ID card visible on the desk during the exam.

6. If you feel disturbed, immediately call an assistant.

7. Write with a black or blue pen (no pencil, no green, red or any other color).

8. Show all your work. For some questions, you may get partial credit even if the end result is wrong due
to a calculation mistake. If you make assumptions, state your assumptions clearly and precisely.

9. Please write your initials at the top of every page.

Tips:

• Be cognizant of time. Do not spend too much time on one question.
• Be concise. You may be penalized for verbosity.
• Show work when needed. You will receive partial credit at the instructors’ discretion.
• Write legibly. Show your final answer.

i

Initials: Computer Architecture December 18th, 2020

This page intentionally left blank

Final Exam Page 1 of 33

Initials: Computer Architecture December 18th, 2020

1 Potpourri [175 points]

A multiple choice question can potentially have multiple correct choices. 4 incorrectly-answered ques-
tions will cause you to lose 1 correctly-answered question (you can never go below 0, though, in the
points you gain from this question). Choose wisely.

(a) [8 points] In lecture, we covered the Bloom Filter data structure. As you should recall,
Bloom Filter represents set membership. Which of the following is NOT correct about
Bloom Filters?

1) It has no false negatives.

2) It has false positives.

3) It is approximate.

4) It can be used in both hardware and software.

5) In the best case, its false positive rate is 100%.

(b) [8 points] Consider the following statements about different memory technologies.
Pick the one that is NOT correct.

1) DRAM is charge based memory.

2) Phase Change Memory is resistive memory.

3) Charge based memories are fundamentally less scalable than resistive memories (based on our
current understanding of them).

4) Flash memory is resistive memory.

5) Both Flash memory and Phase Change Memory are non-volatile memories.

(c) [8 points] If activating row A causes some bits in row B to flip (due to RowHammer),
then does activating row B cause some bits in row A to flip as well?

1) No, never.

2) Yes, always.

3) Not necessarily.

4) Only the bits that contain ‘1’ in row A will be flipped to ‘0’.

5) Only the bits that contain ‘0’ in row A will be flipped to ‘1’.

(d) [8 points] DRAM latency has improved much less than capacity or bandwidth in recent
years. The main inhibitor of DRAM latency is the long subarray bitlines. What is
the main reason manufacturers do not reduce the latency?

1) Shorter subarray bitlines result in larger chip area and higher module costs.

2) Long subarray bitlines are necessary due to the manufacturing process technology limitation.

3) Long bitlines require an extremely large sense amplifier for fast sensing. DRAM technology
does not allow to for a faster sense amplifier structure.

4) Reducing latency requires considerable engineering effort.

5) Latency is dependent on the memory controller design, which was not redesigned in recent
years.

Final Exam Page 2 of 33

Initials: Computer Architecture December 18th, 2020

(e) [8 points] What makes it very difficult to determine the retention time of a DRAM
cell?

1) Retention time of the cell can change randomly over time, due to the variable retention time
phenomenon.

2) Retention time of the cell is dependent on the value stored in the cell and the cells around it.

3) The RowHammer phenomenon negatively affects the retention time of the cell.

4) Only 1) and 2).

5) 1), 2), and 3).

(f) [8 points] In lecture, we covered the idea of Heterogeneous Reliability Memory (HRM),
where part of physical memory is built using very reliable DRAM chips whereas other
parts are built using unreliable DRAM chips. The system intelligently partitions the
data between the two types of memories. What is the fundamental property that
HRM relies on?

1) Even unreliable DRAM chips provide some amount of error correction.

2) Some data in a given application can tolerate the memory errors that may happen in unreliable
DRAM chips.

3) The operating system can automatically detect and correct memory errors that happen in
unreliable DRAM chips.

4) Only 1) and 2).

5) Only 2) and 3).

(g) [8 points] Why is a DRAM cell faster to access at low temperatures compared to at
high temperatures?

1) DRAM cell loses charge quickly at low temperatures, which causes it to be refreshed more
frequently, which, in turn, reduces the access latency of the cell.

2) DRAM cell stores more charge at low temperatures, which leads to faster sensing.

3) DRAM cell is more reliable at low temperature, which enables it to be accessed faster since
there is less need for error correction.

4) DRAM cell is less vulnerable to RowHammer at low temperatures, making it faster to access.

5) The question starts from a wrong axiom. DRAM cell is not faster to access at low tempera-
tures.

(h) [8 points] In lecture, we covered the concept of thread ranking, as a fundamental
building block of modern memory controllers. The idea, as you should recall, is to
rank the threads based on some characteristics, and use the ranking as a prioritization
order between requests of different threads across all banks and memory controllers.
Which of the following statements is NOT correct about thread ranking?

1) Ranking a low-memory-intensity thread over a high-memory-intensity thread improves system
throughput.

2) Ranking is complex to implement, compared to a baseline thread-unaware memory scheduler.

3) Ranking helps preserve bank-level parallelism of threads.

4) Ranking provides starvation freedom to different threads.

5) Ranking can be determined by system software, if the interfaces to the memory controller are
provided.

Final Exam Page 3 of 33

Initials: Computer Architecture December 18th, 2020

(i) [8 points] We covered the idea of the Blacklisting Memory Scheduler, which essentially
de-prioritizes the requests of an application that has recently been serviced by the
memory scheduler with a series of consecutive requests. Basically, the application gets
blacklisted for a short time. The rest of the scheduling policy is similar to baseline
First-Ready First-Come-First-Serve (FR-FCFS) policy of modern memory schedulers.
Which of the following is NOT correct about the Blacklisting Memory Scheduler?

1) Blacklisting is simpler to implement than ranking of applications.

2) It adapts quickly to changing memory access behavior of different threads.

3) It explicitly tries to preserve bank-level parallelism of each thread.

4) It takes into account row buffer locality in scheduling decisions.

5) It does not take into account requests coming from accelerators with strict QoS requirements.

(j) [8 points] We discussed the idea of identifying “limiter threads” in a multithreaded ap-
plication in order to prioritize them in the memory scheduler. Which of the following
can be considered a limiter thread?

1) A thread that is holding a contended lock.

2) A thread that arrives late at a barrier synchronization point.

3) A thread that is executing a pipeline stage with the lowest throughput.

4) Only 1) and 2).

5) 1), 2), and 3).

(k) [8 points] Which of the following interference control techniques can fundamentally
reduce the load (i.e., number of outstanding requests) on the entire memory system?

1) Application-aware memory request scheduling.

2) Application-aware data mapping.

3) Application-aware source throttling.

4) Only 2) and 3).

5) 1), 2), and 3).

(l) [8 points] Assume a toy system that has 32,000,000 bytes of DRAM. Assume each
refresh consumes 1 milliWatts (i.e., 10−3 Watts). If you are told that the total power
consumption spent on refresh is 320 Watts, what can you conclude about the DRAM
system?

1) The row size is 10 bytes.

2) The row size is 100 bytes.

3) The row size is 1000 bytes.

4) The row size is 10,000 bytes.

5) The row size is not possible to determine.

Final Exam Page 4 of 33

Initials: Computer Architecture December 18th, 2020

(m) [8 points] In lecture, we covered the idea of accelerating serialized code portions by
shipping them to powerful cores in an asymmetric multicore system. Which of the
following is NOT one of the key benefits bottleneck acceleration provides in an asym-
metric multicore architecture?

1) It lowers the burden on the programmer for parallel code optimization.

2) It reduces serialization due to contended locks.

3) It improves lock locality.

4) It increases the number of available parallel threads.

5) It reduces the performance impact of hard-to-parallelize code sections.

(n) [8 points] To improve the performance of a program, we decide to split the program
code into segments and run each segment on the most suitable core to run it. Which
of the following can this approach NOT achieve by itself?

1) It can accelerate segments/critical paths using specialized/heterogeneous cores.

2) It can exploit inter-segment parallelism.

3) It can improve the locality of inter-segment data.

4) It can improve the locality of within-segment data.

(o) [8 points] In a runahead execution processor, runahead mode is used to:

1) Tolerate memory latency.

2) Increase computational parallelism.

3) Increase power efficiency.

4) All of the above.

(p) [8 points] Entering runahead mode in an out-of-order runahead execution processor
requires checkpointing:

1) The store buffer.

2) The L1 instruction cache.

3) The register file.

4) All of the above.

(q) [8 points] Exiting runahead mode in an out-of-order runahead execution processor
requires:

1) Flushing the pipeline.

2) Flushing the branch predictor tables.

3) Flushing the prefetcher tables.

4) All of the above.

Final Exam Page 5 of 33

Initials: Computer Architecture December 18th, 2020

(r) [8 points] We covered the design of the Tesseract system for graph processing. Re-
call that Tesseract exploits the logic layer in 3D-stacked memory to perform graph
processing computations. Which one of the following is NOT true about Tesseract?

1) The system is programmed using message passing.

2) The system makes use of aggressive prefetching.

3) The system provides cache coherence between the CPU cores and the computation logic in
the logic layer of 3D-stacked memory.

4) The system uses simple in-order cores in the logic layer of 3D-stacked memory.

5) The system exposes a very large amount of memory bandwidth to the cores.

(s) [8 points] Name the three fundamental reasons as to why the parallel portion of a
parallel program is NOT perfectly parallel.

1)

2)

3)

(t) [15 points] Consider the following statement: “A sequentially consistent multiproces-
sor guarantees that different executions of the same multithreaded program produce
the same architecturally-exposed ordering of memory operations.”

1) Is this statement true or false? CIRCLE ONE.

1. True 2. False

2) Explain your reasoning (less than 15 words).

3) Why do we want the property described above; i.e., the property that “different executions
of the same multithreaded program produce the same architecturally-exposed ordering of
memory operations”?

Final Exam Page 6 of 33

Initials: Computer Architecture December 18th, 2020

(u) [8 points] The figure below shows the speedup curve for a workload on two systems:
symmetric multicore and asymmetric multicore. Assume an area budget of 128 small
cores.

Number	of	threads

Sp
ee
du
p

10

20

30

40

50

1 128

Asymmetric

Symmetric

What is the performance improvement of the asymmetric multicore over the symmetric one?

Final Exam Page 7 of 33

Initials: Computer Architecture December 18th, 2020

2 DRAM Refresh [105 points]

2.1 Basics [30 points]

A memory system is composed of eight banks, and each bank contains 216 rows. Every DRAM row
refresh is initiated by a command from the memory controller, and it refreshes a single row in a single
DRAM bank. Each refresh command keeps the command bus busy for 5 ns. We define command bus
utilization as the fraction of total execution time during which the command bus is occupied.

1. [10 points] Given that the refresh interval is 64ms, calculate the command bus utilization of refresh
commands. Show your work step-by-step.

2. [20 points] Now assume 60% of all rows can withstand a refresh interval of 128 ms. If we are
able to customize the refresh rate of each row independently, up to how much could we reduce the
command bus utilization of refresh commands? Calculate the reduction (1− new

old) in bus utilization.
Show your work step-by-step.

2.2 VRL: Variable Refresh Latency [75 points]

In this question, you are asked to evaluate "Variable Refresh Latency," proposed by Das et al. in DAC
2018.1

The paper presents two key observations:

• First, a cell’s charge reaches 95% of the maximum charge level in 60% of the nominal latency value
during a refresh operation. In other words, the last 40% of the refresh latency is spent to increase
the charge of a cell from 95% to 100%. Based on this observation, the paper defines two types of
refresh operations: (1) full refresh and (2) partial refresh. Full refresh uses the nominal latency
value and restores the cell charge to 100%, while the latency of partial refresh is only 60% of the
nominal latency value and it restores 95% of the charge.

1Das, A. et al., "VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency." In Proceedings of the
55th Annual Design Automation Conference (DAC), 2018.

Final Exam Page 8 of 33

Initials: Computer Architecture December 18th, 2020

• Second, a fully refreshed cell operates correctly even after multiple partial refreshes, but it needs to
be fully refreshed again after a finite number of partial refreshes. The maximum number of partial
refreshes before a full refresh is required varies from cell to cell.

The key idea of the paper is to apply a full refresh operation only when necessary and use partial re-
fresh operations at all other times.

(a) [25 points] Consider a case in which:

• Each row must be refreshed every 64 ms. In other words, the refresh interval is 64 ms.

• Row refresh commands are evenly distributed across the refresh interval. In other words, all
rows are refreshed exactly once in any given 64 ms time window.

• You are given the following plot, which shows the distribution of the maximum number of
partial refreshes across all rows of a particular bank. For example, if the maximum number
of refreshes is three, those rows can be partially refreshed for at most three refresh intervals,
and the fourth refresh operation must be a full refresh.

• If all rows were always fully refreshed, the time that a bank is busy serving the refresh requests
within a refresh interval would be T.

10

20

30

40

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)

M
ax

 N
um

be
r

of
 P

ar
tia

l R
ef

re
sh

es

Refresh interval: 64ms

10

20
10

20

40

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)

M
ax

 N
um

be
r

of
 P

ar
tia

l R
ef

re
sh

es

Refresh interval: 128ms

How much time does it take (in terms of T) for a bank to refresh all rows within a refresh interval,
after applying Variable Refresh Latency?

Final Exam Page 9 of 33

Initials: Computer Architecture December 18th, 2020

(b) [25 points] You find out that you can relax the refresh interval, and define your baseline as follows:

• 75% of the rows are refreshed at every 128ms; 25% of the rows are refreshed at every 64ms.

• Refresh commands are evenly distributed in time.

• All rows are always fully refreshed.

• A single refresh command costs 0.2/N ms, where N is the number of rows in a bank.

• Refresh overhead is defined as the fraction of time that a bank is busy, serving the refresh
requests over a very large period of time.

Calculate the refresh overhead for the baseline.

Final Exam Page 10 of 33

Initials: Computer Architecture December 18th, 2020

(c) [25 points] Consider a case where:

• 90% of the rows are refreshed at every 128ms; 10% of the rows are refreshed at every 64ms.

• Refresh commands are evenly distributed in time.

• You are given the following plot, which shows the distribution of the maximum number of
partial refreshes across all rows of a particular bank.

• A single refresh command costs 0.2/N ms, where N is the number of rows in a bank.

• Refresh overhead is defined as the fraction of time that a bank is busy, serving the refresh
requests over a very large period of time.

10
20

30

40

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)

M
ax

 N
um

be
r

of
 P

ar
tia

l R
ef

re
sh

es

Refresh interval: 128ms
Refresh interval: 64ms

Calculate the refresh overhead. Show your work step-by-step. Then, compare it against the baseline
configuration (part b). How much reduction (1− new

old) do you see in the performance overhead of
refreshes?

Final Exam Page 11 of 33

Initials: Computer Architecture December 18th, 2020

3 RowHammer [90 points]

3.1 RowHammer Properties [15 points]

Determine whether each of the following statements is true or false. Note: we will subtract 1.5 points
for each incorrect answer. (The minimum score you can get for this question is 0 point.)

(a) [3 points] Violating DRAM timing parameters is necessary to induce RowHammer bit flips.

1. True 2. False

(b) [3 points] SECDED (Single Error Correction Double Error Detection) Hamming ECC cannot guar-
antee RowHammer-safe operation.

1. True 2. False

(c) [3 points] Mobile devices are RowHammer-safe because they use low power memory chips.

1. True 2. False

(d) [3 points] We can more effectively induce bit flips in a given victim row by hammering rows in
different banks.

1. True 2. False

(e) [3 points] In DRAM TRR (Target Row Refresh) mechanism provides RowHammer-safe operation.
The only problem is that it is not implemented in all DRAM chips.

1. True 2. False

3.2 RowHammer Mitigation [75 points]

You are assigned to implement a RowHammer mitigation mechanism within the memory controller of a
new processor. The DRAM chips that will be used with the processor are organized as 1 channel, 1 rank,
8 banks, 8 KB row size, and 1 GB total capacity. The DRAM protocol specifies that each row should
be refreshed every 64 ms, and there should be at least 64 ns between two row activations targeting the
same DRAM bank. The RowHammer threshold of the chips is 50,000 row activations per aggressor row
during a double-sided attack, while no hammer count for a single-sided attack can induce bit flips within
64 ms.

(a) [20 points] How many rows in a bank can an attacker concurrently hammer enough times to induce
bit flips? Show your work and explain clearly.

Final Exam Page 12 of 33

Initials: Computer Architecture December 18th, 2020

(b) [20 points] What is the maximum number of victim rows that can be affected in a bank? Show
your work and explain clearly.

(c) [20 points] To detect a RowHammer attack, you consider using existing hardware performance
counters. Sort the following performance metrics from the most accurate to the least accurate as
an indicator of an ongoing RowHammer attack. Explain your reasoning clearly. You may not get
points without explanation even if the ordering is correct.

– AM: Available Memory: The amount of physical memory, free and available to processes.

– RBHR: Row Buffer Hit Rate: The fraction of requests that hit the row buffer

– LLC MPKI: Last Level Cache Misses per Kilo Instructions

– RBCPKI: Row Buffer Conflicts per Kilo Instructions

Final Exam Page 13 of 33

Initials: Computer Architecture December 18th, 2020

(d) [15 points] As the RowHammer mitigation mechanism’s designer, you have a chance to change
the memory controller’s row policy. From the perspective of RowHammer mitigation, which page
policy would you choose? Please mark below and explain.

Open-Row Policy Closed-Row Policy Does Not Matter

Final Exam Page 14 of 33

Initials: Computer Architecture December 18th, 2020

4 Processing-using-Memory [100 points]

One promising trend in the Processing-in-Memory paradigm is Processing-using-Memory (PuM), which
exploits the analog operation of memory cells to execute bulk bitwise operations. A pioneering proposal
in PuM in DRAM technology is Ambit, which we discussed in class. Ambit provides the ability to
perform bitwise AND/OR of two rows in a subarray and NOT of one row. Since Ambit is logically
complete, it is possible to implement any other logic gate (e.g., XOR). However, to be able to implement
arithmetic operations (e.g., addition), bit shifting is also necessary. There is no way of shifting bits in
DRAM with a conventional layout, but there are two possible approaches to modifying DRAM to enable
bit shifting.

The first approach uses a bit-serial layout (i.e., it changes the horizontal layout to vertical), as Figure 1(a)
shows. With such a layout, it is possible to perform bit-serial arithmetic computations inside DRAM.
For example, performing an addition in a bit-serial manner only requires XOR, AND, and OR operations,
as the 1-bit full adder in Figure 1(b) shows.

A[0]_3

A[0]_2

A[0]_1

A[0]_0

A[1]_3

A[1]_2

A[1]_1

A[1]_0

A[2]_3

A[2]_2

A[2]_1

A[2]_0

A[3]_3

A[3]_2

A[3]_1

A[3]_0

A[4]_3

A[4]_2

A[4]_1

A[4]_0

SA SA SA SA SA

XOR

XOR

AND

AND

OR

A
B
Cin S

Cout

(a) (b)

Figure 1: (a) In-DRAM bit-serial layout for array A, which contains five 4-bit elements. DRAM cells in
the same bitline contain the bits of an array element: A[i]_j represents bit j of element i. (b) 1-bit
full adder.

The second approach uses the conventional horizontal layout, but extends the DRAM subarray with
shifting lines, which connect each bitline to the previous sense amplifier (SA) to enable left shifting.
Figure 2(a) illustrates the second approach, where dashed lines represent the shifting lines. With such
shifting lines, it is possible to perform bit-parallel arithmetic computations inside DRAM. For example,
an addition can be performed in a bit-parallel manner using a parallel adder, such as the Kogge-Stone
adder. Figure 2(b) shows an example of an 8-bit Kogge-Stone adder.

We want to compare the potential performance of both approaches to arithmetic computation by imple-
menting a simple workload, the element-wise addition of two arrays. Listing 1 shows a sequential code
for the addition of two input arrays A and B into output array C.

Listing 1: Sequential CPU implementation of element-wise addition of arrays A and B.

for(int i = 0; i < num_elements; i++){
C[i] = A[i] + B[i];

}

As you know from lectures and homeworks, Ambit implements bitwise operations by issuing back-to-
back ACTIVATE (A) and PRECHARGE (P) commands. For example, to compute AND, OR, and XOR
operations, Ambit issues the sequence of commands described in Figure 3, where AAP(X,Y) represents
two consecutive activations of two row addresses X and Y (each of which may correspond to 1, 2, or 3
rows) followed by a precharge operation, and AP(X) represents one activation of row address X followed
by a precharge operation.

In those instructions, Ambit copies the source rows Di and Dj to auxiliary row addresses (Bi). Some of
the auxiliary row addresses (e.g., B12 in Figure 3) correspond to 3 rows, enabling Triple-Row Activation

Final Exam Page 15 of 33

Initials: Computer Architecture December 18th, 2020

B[0]_3

A[0]_3

B[0]_2

A[0]_2

B[0]_1

A[0]_1

B[0]_0

A[0]_0

B[1]_3

A[1]_3

SA SA SA SA SA

B[1]_2

A[1]_2

SA

B[1]_1

A[1]_1

SA

B[1]_0

A[1]_0

SA

1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

C7 = 0 C6 = 0 C5 = 0 C4 = 0 C3 = 1 C2 = 1 C1 = 1 C0 = 1 Cin = 0

1 0 1 1 0 0 0 0

prev

prev

prev

A 1 0 0 0 1 0 0 1
B 0 0 1 0 0 1 1 1
Sum 1 0 1 1 0 0 0 0

A7 B7
1 0

A6 B6
0 0

A5 B5
0 1

A4 B4
0 0

A3 B3
1 0

A2 B2
0 1

A1 B1
0 1

A0 B0
1 1

Pi Gi
Pi = Ai XOR Bi
Gi = Ai AND Bi

Ai Bi
p’i g’i

p’i = pi AND pi_prev
g’i = (pi AND gi_prev) OR gi

p’i g’i

pi gi

p’i = pi
g’i = gi

pi gi pi_prev
gi_prev

Ci = gi
Sumi = Pi XOR Ci-1

Sum

Legend

(a) (b)

Figure 2: (a) In-DRAM bit-parallel layout for arrays A and B, which contain two 4-bit elements each.
DRAM cells in the same bitline contain the same bits of equal-index elements of different arrays. A[i]_j
represents bit j of element i. (b) Example of an 8-bit Kogge-Stone adder. A (10001001) and B (00100111)
are the two input operands.

Figure 3: Command sequences for different bitwise operations in Ambit. Notice that AND and OR need
the same sequence of commands. Reproduced from Seshadri et al., MICRO 2017.

(TRA), which is the basic operation in Ambit. Control rows Ci dictate which operation (AND/OR)
Ambit executes. The DRAM rows with dual-contact cells (i.e., rows DCCi) are used to perform the
bitwise NOT operation on the data stored in the row. Basically, the NOT operation copies a source row
to DCCi, flips all bits of the row, and stores the result in both the source row and DCCi. Assume that:

• The DRAM row size is 8 Kbytes.

• An ACTIVATE command takes 20ns to execute.

• A PRECHARGE command takes 10ns to execute.

• DRAM has a single memory bank.

• Arrays A, B, and C are properly aligned in both bit-serial and bit-parallel approaches.

• In the bit-parallel approach, a shift operation by one bit requires one AAP.

Final Exam Page 16 of 33

Initials: Computer Architecture December 18th, 2020

(a) [40 points] Compute the maximum throughput in terms of addition operations per second (OPS)
of the bit-serial approach as a function of the element size (i.e., bits/element).

(b) [35 points] Compute the maximum throughput in terms of addition operations per second (OPS)
of the bit-parallel approach as a function of the element size (i.e., bits/element). Hint:

∑n
i=0 x

i =
1−xn+1

1−x .

Final Exam Page 17 of 33

Initials: Computer Architecture December 18th, 2020

(c) [25 points] Determine the element size (in bits) for which one approach (i.e., bit-serial or bit-
parallel) is preferred over the other one.

Final Exam Page 18 of 33

Initials: Computer Architecture December 18th, 2020

5 Emerging Memory Technologies [70 points]

5.1 Phase Change Memory [15 points]

Indicate whether each of the following statements is true or false. Note: we will subtract 1.5 points for
each incorrect answer. (The minimum score you can get for this question is 0 point.)

(a) [3 points] Phase Change Memory (PCM) is more technology-scalable than DRAM.

1. True 2. False

(b) [3 points] PCM read/write operations are more energy efficient than DRAM read/write operations.

1. True 2. False

(c) [3 points] PCM provides shorter access latency but has lower endurance compared to NAND flash
memory.

1. True 2. False

(d) [3 points] Row-buffer hit latencies of DRAM and PCM are comparable.

1. True 2. False

(e) [3 points] Row-buffer miss penalty is smaller in PCM than in DRAM, since PCM commonly employs
a small row buffer.

1. True 2. False

5.2 SAFARI-RAM [55 points]

Researchers in the SAFARI Research Group developed a new non-volatile memory technology, SAFARI-
RAM. The read and write latency of SAFARI-RAM is close to that of DRAM while providing higher
memory density compared to the latest DRAM technologies. However, SAFARI-RAM has one shortcom-
ing: it has limited endurance, i.e., a memory cell fails after 107 writes are performed to the cell (known
as cell wear-out).

A bright ETH student has built a computer system using SAFARI-RAM as the main memory. SAFARI-
RAM exploits a perfect wear-leveling mechanism, i.e., a mechanism that equally distributes the writes
across all of the cells of the main memory.

The student wants to estimate the worst-case lifetime of SAFARI-RAM when used as main memory.
The student executes a test program to wear out the entire SAFARI-RAM as quickly as possible. The
test program runs special instructions to bypass the cache hierarchy and repeatedly writes data into
different pages until all the SAFARI-RAM cells are worn out. The student’s measurements show that
SAFARI-RAM stops functioning (i.e., all its cells are worn-out) in 2.5 years. Assume the following:

• The processor is in-order.

• There is no memory-level parallelism (i.e., there is a single bank in the memory system).

• It takes 32 ns to send a memory request from the processor to the memory controller.

• It takes 52 ns to send the request from the memory controller to SAFARI-RAM.

• The write latency of SAFARI-RAM is 172 ns.

• Each write request is fully serialized, i.e., there are three steps of write requests: (1) memory
request from CPU to controller, (2) write request from controller to SAFARI-RAM, and (3) data
write to SAFARI-RAM cells. None of the steps can be pipelined.

• SAFARI-RAM requests are issued at page granularity, where the page size is 4,096 bytes (4 KiB).

• SAFARI-RAM adopts a quad-level cell (QLC) technique that stores four bits in a single memory
cell.

Final Exam Page 19 of 33

Initials: Computer Architecture December 18th, 2020

(a) [30 points] What is the capacity of SAFARI-RAM? Show your work. Hint: 2.5 years ≈ 8 ×1016
ns.

(b) [25 points] The student decides to improve the lifetime of SAFARI-RAM cells by using the single-
level cell (SLC) mode in which a single memory cell stores a single bit. When SAFARI-RAM
operates in the SLC mode, each cell’s endurance increases by a factor of 10 while the write latency
of SAFARI-RAM decreases to p% of the write latency of the QLC mode. To measure the lifetime
of SAFARI-RAM in the SLC mode, the student repeats the same experiment performed in part
(a) while keeping everything else in the system the same. The result shows that the lifetime of
SAFARI-RAM increases by 2× in SLC mode compared to the QLC mode. Formulate p using
CQLC, which denotes the capacity of SAFARI-RAM in the QLC mode.

Final Exam Page 20 of 33

Initials: Computer Architecture December 18th, 2020

6 Prefetching [100 points]

A processor is observed to have the following access pattern to cache blocks. Note that the addresses
are cache block addresses, not byte addresses. This pattern is repeated for a large number of iterations.

Access Pattern P : A, A+ 3, A+ 6, A, A+ 5

Each cache block is 8 KB. The hardware has a fully associative cache with LRU replacement policy and
a total size of 24 KB.

None of the prefetchers mentioned in this problem employ confidence bits, but they all start out with
empty tables at the beginning of the access stream shown above. Unless otherwise stated, assume that 1)
each access is separated long enough in time such that all prefetches issued can complete before the next
access happens, and 2) the prefetchers have large enough resources to detect and store access patterns.

(a) [20 points] You have a stream prefetcher (i.e., a next-N -block prefetcher), but you do not know
the prefetch degree (N) of it. However, you have a magical tool that displays the coverage and
accuracy of the prefetcher. When you run a large number of repetitions of access pattern P, you
get 40% coverage and 10% accuracy. What is the degree of this prefetcher (i.e., N)?

(b) [20 points] You are not satisfied with the performance of the stream prefetcher, so you decide to
switch to a PC-based stride prefetcher that issues prefetch requests based on the stride detected for
each memory instruction. Assume all memory accesses are incurred by the same load instruction
(i.e., the same PC value) and the initial stride value for the prefetcher is set to 0.

Underline which of the cache block addresses are prefetched by this prefetcher:

A, A+3, A+6, A, A+5
A, A+3, A+6, A, A+5
A, A+3, A+6, A, A+5
A, A+3, A+6, A, A+5

Explain clearly to get points.

Final Exam Page 21 of 33

Initials: Computer Architecture December 18th, 2020

(c) [20 points] You are not satisfied with the performance of the stride prefetcher either. So, you
decided to switch again to a Markov prefetcher with a 12-entry correlation table (assume each
entry can store a single address to prefetch, and remembers the most-recent correlation). When all
the entries are filled, the prefetcher replaces the entry that is least-recently accessed.

Mark which of the cache block addresses are prefetched by this prefetcher:

A, A+3, A+6, A, A+5
A, A+3, A+6, A, A+5
A, A+3, A+6, A, A+5
A, A+3, A+6, A, A+5

Explain clearly to get points.

(d) [20 points] After how many repetitions of access pattern P does the Markov prefetcher from part
(c) start to provide more coverage than the stream prefetcher from part (a), if it can at all? Show
your work.

(e) [20 points] You do not like the high hardware cost (i.e., the number of correlation entries) of the
Markov prefetcher, and want to reduce the hardware cost by reducing the number of correlation
table entries. What is the minimum number of entries that gives the same prefetcher performance
as the 12-entry Markov prefetcher from part (c)? Similar to the last part, assume each entry can
store a single next address to prefetch and remembers the most recent correlation. Show your work.

Final Exam Page 22 of 33

Initials: Computer Architecture December 18th, 2020

7 Cache Coherence [100 points]

We have a system with 4 processors {P0, P1, P2, P3} that can access memory at byte granularity. Each
processor has a private data cache with the following characteristics:

• Capacity of 256 bytes.

• Direct-mapped.

• Write-back.

• Block size of 64 bytes.

Each processor has also a dedicated private cache for instructions. The characteristics of the instruction
caches are not necessary to solve this question.

All data caches are connected to and actively snoop a global bus, and cache coherence is maintained
using the MESI protocol, as we discussed in class. Note that on a write to a cache block in the S state,
the block transitions directly to the M state. The range of accessible memory addresses is from 0x00000
to 0xfffff.

The semantics of the instructions used in this question are as follows:

Opcode Operands Description
ld rx,[ry] rx ← Mem[ry]
st rx,[ry] rx → Mem[ry]

addi rx,#VAL rx ← rx + VAL
subi rx,#VAL rx ← rx - VAL
j TARGET jump to TARGET

bneq rx,ry,TARGET if([rx]!=[ry]) jump to TARGET

(a) [50 points] This is the initial state of the data caches in all processors:

Initial Tag Store States

Cache for P0
Set Tag MESI state
0 0x100 M
1 0x010 S
2 0x100 I
3 0x222 E

Cache for P1
Set Tag MESI state
0 0x100 I
1 0x333 E
2 0x100 E
3 0x333 S

Cache for P2
Set Tag MESI state
0 0x101 E
1 0x010 S
2 0x010 S
3 0x222 I

Cache for P3
Set Tag MESI state
0 0x102 M
1 0x010 S
2 0x010 S
3 0x333 S

Final Exam Page 23 of 33

Initials: Computer Architecture December 18th, 2020

This is the final state of the data caches in all processors (the shadowed sets in the figure represent
the sets that change compared to the initial state):

Final Tag Store States

Cache for P0
Set Tag MESI state
0 0x102 S
1 0x102 E
2 0x102 E
3 0x333 I

Cache for P1
Set Tag MESI state
0 0x102 S
1 0x333 I
2 0x100 E
3 0x333 M

Cache for P2
Set Tag MESI state
0 0x101 E
1 0x333 M
2 0x010 S
3 0x222 E

Cache for P3
Set Tag MESI state
0 0x102 S
1 0x333 I
2 0x010 S
3 0x333 I

Make the following assumptions:

• Each processor executes the instructions in a sequentially consistent manner.

• You can make use of five registers: r0, r1, r2, r3, and r4.

• The ordering between two instructions from different processors might be ambiguous when
there is no synchronization. If the order between two memory requests from different proces-
sors is ambiguous, and if the ordering is important for the final result, indicate the ordering
between the two instructions in your solution.

• The initial values of all registers are the same in all processors, and they contain the following
values:

r0=0x22200 r1=0x10200 r2=0x3338f r3=0x00000 r4=0x102C0

What are the minimum sequences of instructions in each processor that lead to the caches final
state? Fill in the blanks. Write one instruction per line. Show your work as needed.

P0
0
1
2
3
4
5
6

P1
0
1
2
3
4
5
6

P2
0
1
2
3
4
5
6

P3
0
1
2
3
4
5
6

Final Exam Page 24 of 33

Initials: Computer Architecture December 18th, 2020

(b) [50 points] This part is independent of part (a). All four processors execute the following code:

P0, P1, P2, and P3
1 LOOP: st r0, [r1]
2 addi r1, #0x40
3 bneq r1, r4, LOOP

The final state of the tag store is the following:

Final Tag Store States

Cache for P0
Set Tag MESI state
0 0x102 M
1 0x102 M
2 0x102 M
3 0x100 M

Cache for P1
Set Tag MESI state
0 0x102 I
1 0x102 I
2 0x102 I
3 0x102 M

Cache for P2
Set Tag MESI state
0 0x106 M
1 0x106 M
2 0x104 M
3 0x104 M

Cache for P3
Set Tag MESI state
0 0x106 I
1 0x106 I
2 0x106 M
3 0x106 M

Make the following assumptions about the initial state of the caches:

• The tag is the same in all sets of a processor (but the tags might be different among processors).

• The MESI state of all cache lines in all processors is the same.

What are the initial state values of the registers r0, r1, and r4 in all four processors? Show your
work.

Final Exam Page 25 of 33

Initials: Computer Architecture December 18th, 2020

What is the initial state of all caches? Fill in the blanks below.

Initial Tag Store States

Cache for P0
Set Tag MESI state
0
1
2
3

Cache for P1
Set Tag MESI state
0
1
2
3

Cache for P2
Set Tag MESI state
0
1
2
3

Cache for P3
Set Tag MESI state
0
1
2
3

Final Exam Page 26 of 33

Initials: Computer Architecture December 18th, 2020

8 BONUS: Genome Analysis [90 points]

During a process called read mapping in genome analysis, each genomic read (i.e., DNA sequence frag-
ment) is mapped onto one or more possible locations in the reference genome based on the similarity
between the read and the reference genome segment at that location. A read mapper applies the following
3-step hash table-based mapping method:

(1) The hash table-based read mapper first constructs a hash table that stores the list of locations in
the reference genome that each possible short segment (i.e., k-mer, where k is the length of the
segment) appears. Querying the hash table with a k-mer returns a list of locations for that k-mer.

(2) For each read, the mapper extracts 3 consecutive non-overlapping 5-mers and uses them to query
the hash table.

(3) For each location of a k-mer, the mapper examines the differences between the entire read that
includes the k-mer and the corresponding reference segment using the function: (edit_distance()).
Allowable edit operations include: (1) substitution, (2) insertion, and (3) deletion of a character.
For example, edit operations between the read sequence ATATTTATA and the reference sequence
ATAAGAT are as follows:

ATATTTATA - Read sequence

| | | | | (3 matches, 3 insertions, 1 match, 1 substitution, 1 match, 1 deletion)

ATA - - - AGAT Reference sequence

The hash table (constructed in Step 1) is provided below. It includes a list of 5-mers extracted from
the human reference genome and their corresponding location lists (each number represents the starting
location of that k-mer in the reference genome sequence). If a k-mer does not exist in the hash table,
you can assume it does not appear in the reference genome. Answer the following questions based on
this hash table whenever needed.

A A A A A 20

A A A A C 25 125 230

A A A C T 30 225

T A C T A

K-length sequences
(k-mers)

G G T A C 40 205 325 430 560

35 235 320

Location list where k-mer occurs in
the reference genome

Final Exam Page 27 of 33

Initials: Computer Architecture December 18th, 2020

8.1 Edit Distance Computation [45 points]

(a) [20 points] Compute the edit distance for the following read and reference sequence pair and provide
the complete list of the edit operations used for calculation. Show your work.

Read sequence: ATCCTTAAATCTAAAATT
Reference sequence: CCTTAGAAACTTAA

(b) [25 points] We would like to figure out (i.e., reverse engineer) the read sequence based on the
following information available to us:

• The length of the read is 10.

• The first 5-mer of a read is found at the location 430 from the hash table.

• edit_distance() function returns edit distance value of 3 between the read sequence and the
human reference sequence starting from location 430. At least one of these three edits is a
deletion.

• The reference sequence segment used for the edit_distance() calculation is GGTACATAG.

Write down a read sequence that fits the criteria and show the complete list of edit operations.
Note that more than one solution is possible.

Final Exam Page 28 of 33

Initials: Computer Architecture December 18th, 2020

8.2 Read Mapping [45 points]

Suppose that you would like to map the following reads to the human reference genome sequence.
Each read is separated into smaller subsequences (k-mers) by underscores for readability.

read 1 = AAAAA_AAAAC_AAACT
read 2 = TACTA_GGTAC_AAACT
read 3 = GGTAC_AAACT_AAAAT
read 4 = AAAAC_TACTA_GGTAC

(a) [20 points] How many times will the edit distance function, edit_distance(), be invoked when
following the mapping steps described at the beginning of the question?

(b) [25 points] Suppose you want to change Step 3 to additionally include “Adjacency Filtering” (as
discussed in lecture) in order to find exact matches before calling the edit_distance() function.
This means that, if we find an exact match via Adjacency Filtering, the edit_distance() function is
not invoked. Adjacency Filtering checks if first, second, and third k-mers extracted from the read
exist in the reference genome at locations x, x+ k, and x+ 2× k, respectively.

At what locations in the reference genome does Adjacency Filtering find exact matches?

Final Exam Page 29 of 33

Initials: Computer Architecture December 18th, 2020

- SCRATCHPAD -

Final Exam Page 30 of 33

Initials: Computer Architecture December 18th, 2020

- SCRATCHPAD -

Final Exam Page 31 of 33

Initials: Computer Architecture December 18th, 2020

- SCRATCHPAD -

Final Exam Page 32 of 33

Initials: Computer Architecture December 18th, 2020

- SCRATCHPAD -

Final Exam Page 33 of 33

